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To future generations of earth scientists — may their enthusiasm
and creativity keep seismology vibrant and exciting

I cannot give any scientist of any age better advice than this: the intensity of the conviction that a hypothesis is true has no bearing on
whether it is true or not. The importance of the strength of our conviction is only to provide a proportionally strong incentive to find
out if the hypothesis will stand up to critical examination.

Sir Peter Medawar, Advice to a Young Scientist, 1979
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Preface

1 Because subfields in the earth sciences overlap, the divisions between them are
not sharp, and a given topic draws on several. As John Muir, an early member of the
Seismological Society of America better known for founding the Sierra Club, pointed
out, “when we look at anything in isolation we realize it is hitched to the rest of the
universe.”

Science is only worth doing if it is interesting and fun. Hence
the goal of a textbook is to interest students in a subject, con-
vince them it is worth the effort required to learn about it, and
help them do so. We have tried here to do all three.

For seismology, these should be easy. It is hard to imagine
topics more interesting than the structure and evolution of a
planet, as manifested by phenomena as dramatic as earth-
quakes. Our goal is to address them via an introduction to
seismology, which is one of the cornerstones of the modern
earth sciences. Seismology has been defined as the study of
earthquakes and associated phenomena, or the study of elastic
waves propagating in the earth. By integrating techniques and
data from physics, mathematics, and geology, seismology has
produced a remarkably sharp picture of the earth’s interior
that is a primary datum for studying the formation and evolu-
tion of terrestrial planets. Seismologists have also learned much
about the nature of earthquakes and the tectonic processes
responsible for them. These studies are not of purely academic
interest; seismology is the major tool for earthquake hazard
assessment, hydrocarbon exploration, and the peacekeeping
role of nuclear test monitoring.

We thus believe that seismology should be part of the educa-
tion of every solid earth scientist, rather than a specialized
course for those whose primary interest is seismology or other
branches of geophysics. The subject has much to offer miner-
alogists or petrologists studying the composition of the earth’s
interior, students of tectonics interested in processes of the
lithosphere, geologists interested in the nature and evolution
of the crust, engineers concerned with seismic hazards, and
planetologists interested in the evolution of the terrestrial plan-
ets. As the earth sciences become increasingly more integrated
and interdisciplinary, the advantages of understanding seismo-
logy will continue to grow.

Many students have been deterred from the subject because
it requires confronting, often for the first time, both the physics
of a continuous medium and wave propagation. We view these
concerns as manageable. In fact, we believe that seismology is
a good way to introduce these topics, because it applies what
might otherwise seem abstract ideas. Seismic waves illustrate
effects like reflection, refraction, diffraction, and dispersion
by using them to study the earth. Earthquakes demonstrate

concepts like rigid tectonic plates, stress and strain, and viscous
mantle flow. Thus seismology is a natural way to discuss funda-
mental processes.

Our goal is to introduce key concepts and their application in
present research. This twofold goal places several limitations
on the text. First, time and space restrictions require a trade-off
between the range of topics and the level of presentation. The
resulting choices are, of necessity, subjective. Second, we end
discussions when material, however fascinating, seems more
appropriate for advanced classes or courses in a related field.1

Third, these limitations preclude an account of the historical
development of the subject, or a systematic assignment of
credit for ideas and results. Fourth, in introducing topics of cur-
rent research, we try to give our sense of issues while recogniz-
ing that others’ views may differ. The danger in presenting the
“current state of knowledge” in a text is that the field changes
so rapidly that accounts can soon be out of date. We thus try to
focus not on “what we know,” but on “how we seek to find
out,” and highlight current findings in the context of studying
interesting questions.

Given these limitations, suggestions for further reading are
provided. When possible, the readings are texts or reviews
rather than specialized research papers. In many cases, the
sources of the figures used to illustrate a concept provide
additional information. We also give some references to sites
on the World Wide Web, recognizing the trade-off between the
wealth of information there and the fact that the Web is volatile
and sites can change locations or vanish.

The material is designed for advanced undergraduates and
first-year graduate students. Readers are assumed to be fam-
iliar with ordinary differential equations and introductory
physics. Further background, including basic earth science
courses, is helpful but not essential. Material beyond this level
is derived as needed. Thus, we seek a balance between present-
ing the mathematics like magic pulled from a hat and deriving
so much so that the thematic flow is disrupted. Hence we



review some useful mathematics in an Appendix, to which we
refer. Other mathematical concepts, notably topics in Fourier
analysis, are used as needed and then presented in more depth
when appropriate.

Our goal is to introduce some concepts about seismology
and its application to such studies of earth structure and earth-
quakes. Doing this requires developing basic ideas about wave
propagation in a continuous solid medium, so the material of
greatest interest to geologically oriented readers is somewhat
postponed. Readers are urged to enjoy rather than endure the
introductory material on elasticity and wave propagation. They
risk only discovering the appeal of these topics and finding
themselves taking subsequent advanced courses.

Part of the delights of the earth sciences is that they are less
structured than some other sciences. There is no single set of
topics covered in specific courses, which instead reflect the
instructor’s and students’ interests. Certainly this is the case
here. The topics we have chosen contain about a year’s worth
of class material, which we ourselves divide into several
courses. Many students, of course, take only one. We have
experimented with different groupings, all of which seemed to
work well. We usually do not cover the Appendix in lectures,
but assign its problems to identify areas for study or review.

We have found that the homework problems are helpful
for understanding the topics. Given the nature of the modern
earth sciences, many problems are designed to be done on com-
puters. In our teaching, we expect that most will be done by
writing programs, and hence require programming, beginning
with simple problems in the Appendix and building to more
complex ones in the chapters. A secondary motive is to ensure
that students learn the skills of scientific programming, which
are often not stressed in computer classes. Some of the prob-

lems can be done using spreadsheets, and most can be done
with specialized mathematical software.

Some matters of style are worth mentioning. We illustrate
interconnections between topics by referring both forward and
backward to other sections. Figures are labeled with hyphens
(e.g. 5.6-2), and equations with periods (e.g. 5.3.2). Footnotes
generally cover side observations which we note in class but are
not essential. We use both SI units (those based on the meter,
kilogram, and second) and cgs units (those based on the
centimeter, gram, and second) because both are common in the
literature, although SI units are slowly superseding cgs. We also
use other units when customary: seismic velocities are given
in km/s and plate motions are given in the more intuitive
mm/yr (e.g., 48 mm/yr rather than 1.5 × 10−9 m/s), following
Emerson’s dictum that “a foolish consistency is the hobgoblin
of little minds.”

We have enjoyed writing this book. It is a pleasure to try to
summarize this diverse and fascinating discipline. We hope
readers have as much fun as we did, and that our discussions
prompt them to raise interesting and provocative questions as
well as learn the material. We also hope that some readers are
motivated to continue study of and research on these topics.
Much remains to be learned about the earth and earthquake
processes, and the opportunities for contributions are great
for those with the energy and imagination to go beyond our
current knowledge and ideas. Three hundred years after Isaac
Newton’s work in mechanics and optics laid what would
become seismology’s foundations, it is worth recalling his
words: “I seem to have been only like a boy playing on the
seashore, and diverting myself in now and then finding a
smoother pebble or a prettier shell than ordinary, whilst the
great ocean of truth lay all still undiscovered before me.”

x Preface
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1.1 Introduction

This book is an introduction to seismology, the study of elastic
waves or sound waves in the solid earth. Conceptually, the sub-
ject is simple. Seismic waves are generated at a source, which
can be natural, such as an earthquake, or artificial, such as an
explosion. The resulting waves propagate through the me-
dium, some portion of the earth, and are recorded at a receiver
(Fig. 1.1-1). A seismogram, the record of the motion of the
ground at a receiver called a seismometer, thus contains infor-
mation about both the source and the medium. This informa-
tion can take several forms. The waves provide information on
the location and nature of the source that generated them. If
the origin time when the waves left the source is known, their
arrival time at the receiver gives the travel time required to pass
through the medium, and hence information about the speed
at which they traveled, and thus the physical properties of the
medium. In addition, because the amplitude and shape of the

wave pulses that left the source are affected by propagation
through the medium, the signals observed on seismograms
provide additional information about the medium.

1.1.1 Overview

Before embarking on our studies, it is worth briefly outlining
some of the ways in which seismology is used to study the
earth, and some of the methods used. Seismology is the prim-
ary tool for the study of the earth’s interior because little of
the planet is accessible to direct observation. The surface can
be mapped and explored, and drilling has penetrated to depths
of up to 13 kilometers, though at great expense. Information
about deeper depths, down to the center of the earth (approx-
imately 6371 km), is obtained primarily from indirect methods.
Seismology, the most powerful such method, is used to map the
earth’s interior and study the distribution of physical proper-
ties. The existence of the earth’s shallow crust, deeper mantle,
liquid outer core, and solid inner core are inferred from varia-
tions in seismic velocity with depth. Our ideas about their
chemical compositions, including the presumed locations of
changes in mineral structure due to the increase of pressure
with depth, are also based on seismological data. Near the
surface, seismology provides detailed crustal images that reveal
information about the locations of economic resources like
oil and minerals. Deeper in the earth, seismology provides
the basic data for understanding earth’s dynamic history and
evolution, including the process of mantle convection.

Seismology is also the primary method for studies of earth-
quakes. Most of the information about the nature of faulting
during an earthquake is determined from the resulting seismo-
grams. These observations are useful for several purposes.
Because earthquakes generally result from the motions of the

1 Introduction

I cannot help feeling that seismology will stay in the place at the center of solid earth science for many, many years to come.
The joy of being a seismologist comes to you, when you find something new about the earth’s interior from the observation of

seismic waves obtained on the surface, and realize that you did it without penetrating the earth or touching or examining it directly.

Keiiti Aki, presidential address to the Seismological Society of America, 1980

Fig. 1.1-1 Schematic geometry of a seismic experiment.
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plates making up the earth’s lithosphere, which are the sur-
face expression of convection within earth’s mantle, know-
ledge of the direction and amount of motion is valuable for
describing plate motions and the forces giving rise to them.
Analysis of seismograms also makes it possible to investigate
the physical processes that occur prior to, during, and after
faulting. Such studies are helpful in assessing the societal
hazards posed by earthquakes.

Our purpose here is to discuss some basic ideas about
seismology and its applications. To do this, we first introduce
several concepts about waves in a solid medium. We will see
that a few simple but powerful ideas give a great deal of insight
into how waves propagate and respond to variations in phys-
ical properties in the earth. Fortunately, most of these ideas are
analogous to familiar concepts in the propagation of light
and sound waves. As a result, studying the earth with seismic
waves is conceptually similar to sensing the world around us
using light and sound. For example, you are reading this by
receiving light reflected off the paper. We see color because
light has different wavelengths; the sky is blue because certain
wavelengths are scattered preferentially. An even closer ana-
logy is the use of sound waves by bats, dolphins, and subma-
rines to “see” their surroundings. Seismology gives detailed im-
ages of earth structure, much as sound waves (ultrasound) and
electromagnetic waves (X-rays) are used in medicine to study
human bodies.

A familiar property of light is that it bends when traveling be-
tween materials in which its speed differs. Objects inserted into
water appear crooked, because light waves travel more slowly
in water than in air. Prisms and lenses use this effect, called re-
fraction. This phenomenon occurs in the earth because seismic
wave velocities generally increase with depth. Wave paths bend
away from the vertical as they go deeper into the earth, eventu-
ally become horizontal (“bottom”), turn upward, and return to
the surface (Fig. 1.1-2). The wave paths are thus used to infer
the variation of seismic velocity, and hence the composition
and physical properties of material, with depth in the earth.

Earthquake
Seismic stations

Fig. 1.1-2 Seismic ray paths in the earth, showing the effect of an increase
in seismic velocity with increasing depth. The waves travel in curved paths
between the earthquake and seismic stations.

Fig. 1.1-3 Left: Long-period vertical component seismogram at Golden, Colorado, from an earthquake in Colombia (July 29, 1967), showing various
seismic phases. The distance from earthquake to station is 44°. Right: Ray paths for the seismic phases labeled on the seismogram.

Just as light waves reflect at a mirror, seismic waves reflect at
interfaces across which physical properties change, such as the
boundary between the earth’s mantle and core. Because the
amplitudes of the reflected and transmitted seismic waves de-
pend on the velocities and densities of the material on either
side of the boundary, analysis of seismic waves yields informa-
tion on the nature of the interface. In addition to refraction and
reflection, waves also undergo diffraction. Just as sound dif-
fracts around the corner of a building, allowing us to hear what
we cannot see, seismic waves bend around “obstacles” such as
the earth’s core.

The basic data for these studies are seismograms, records of
the motion of the ground resulting from the arrival of refracted,
reflected, and diffracted seismic waves. Seismograms incor-
porate precise timing, so that travel times can be determined.
The seismometer’s response is known, so the seismogram can
be related to the actual ground motion. Because ground motion
is a vector, three different components (north–south, east–
west, and up–down) are typically recorded. Hence, although
seismograms at first appear to be simply wiggly lines, they
contain interesting and useful information.

To illustrate the use of seismology for the study of earth
structure, consider a seismogram from a magnitude 6 earth-
quake in Colombia, recorded about 4900 kilometers away in
Colorado (Fig. 1.1-3). Several seismic wave arrivals, called
phases, are identified using a simple nomenclature that de-
scribes the path each followed from the source to the receiver.
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Fig. 1.1-4 Seismogram (left) and ray paths (right) for a deep focus earthquake in Tonga, recorded at Oahu (Hawaii), showing multiple core reflections.

1 The labels P and S come from the early days of seismology, when P stood for
primary and S stood for secondary.

average of velocity with depth in the mantle. In addition, the
large amplitude of these reflections constrains the contrast in
physical properties between the solid rock-like lower mantle
and the fluid iron outer core. Multiple reflections also occur:
ScSScS, or ScS2, reflects twice at the core–mantle boundary,
ScS3 reflects three times, and ScS4 four times. Similar to the
phase SS, the S3 wave reflects twice off the surface, and S4
reflects three times. By analogy to pP, sScS went upward
from the source and was reflected first at the surface and then
at the core–mantle boundary. Most of the multiple SS and
ScS phases also have observable surface reflected phases
(e.g., sScS2, sScS3, etc.).

These examples indicate some of the ways in which seismo-
logical observations are used to study earth structure. By col-
lecting many such records, seismologists have compiled travel
time and amplitude data for many seismic phases. Because the
different phases have different paths, they provide multiple
types of information about the distribution of seismic veloci-
ties, and therefore physical properties within the earth. Seis-
mology can also be used to study the internal structure of other
planets; seismometers were deployed on the lunar surface by
each of the Apollo missions, and the Viking spacecraft that
landed on Mars carried a seismometer.

An important use of seismology is the exploration of near-
surface regions for scientific purposes or resource extraction.
Figure 1.1-5 shows a schematic version of a common technique
used. An artificial source at or near the surface generates
seismic waves that travel downward, reflect off interfaces at
depth, and are detected by seismometer arrays. The resulting
data are processed using computers to enhance the arrivals cor-
responding to reflections and to estimate the velocity structure.
Seismograms from different receivers are then displayed side
by side, with the travel time increasing downward, to yield an
image of the vertical structure. Reflections that match between
seismograms give near-horizontal arrivals that often corre-
spond to interfaces at depth. The vertical axis can be converted
from time to depth using the estimated velocities, and reflectors

We will see that seismic waves are divided into two types. In
one type, P or compressional waves, material moves back and
forth in the direction in which the wave propagates. In the
other, S or shear waves, material moves at right angles to the
propagation direction. P waves travel faster than S waves, so
the first arriving pulse, labeled “P,” is a P wave that followed a
direct path from the earthquake to the seismometer.1 Soon
afterwards, a pulse labeled pP appears, which went upward
from the earthquake, reflected off the earth’s surface, and
then traveled to the seismometer as a P wave. If the distribu-
tion of seismic velocity near the source is known, the depth
of the earthquake below the earth’s surface can be found
from the time difference between the direct P and pP phases,
because the primary differences between their ray paths are the
pP segments that first go up to and then reflect off the surface.
The phase marked PP is a compressional wave that went down-
ward from the source, “bottomed,” reflected at the surface,
and repeated the process. Among the later arrivals on the
seismogram are shear wave phases, including the direct shear
wave arrival, S, and a shear phase SS that reflected off the
surface, analogous to PP. All these phases, which traveled
through the earth’s interior, are known as body waves. The
large amplitude wave train that arrives later, marked “Ray-
leigh,” is an example of a different type of wave. Such surface
waves propagate along paths close to the earth’s surface.

Figure 1.1-4 shows a seismogram from an earthquake at
a depth of 650 km in the Tonga subduction zone recorded in
Hawaii. The seismometer is oriented such that all the arrivals
are shear waves. In addition to S and SS, phases reflected at
the core–mantle boundary appear. ScS went down from the
source, reflected at the core–mantle boundary (hence “c”), and
came back up to the seismometer. Its travel time gives the depth
to the core if the velocity in the mantle is known. Alternatively,
if the depth to the core is known, the travel time gives a vertical

1.1 Introduction 3
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Fig. 1.1-6 Data from a reflection seismic
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Mexico (bottom) and the resulting
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and Widmier, 1979. Reprinted by
permission of the Society of Exploration
Geophysicists.)

Seismic sources a typically earthquakes a are also a major
topic of seismological study. The location of an earthquake,
known as the focus or hypocenter, is found from the arrival
times of seismic waves recorded on seismometers at different
sites. This location is often shown by the epicenter, the point
on the earth’s surface above the earthquake. The size of earth-
quakes is measured from the amplitude of the motion recorded
on seismograms, and given in terms of magnitude or moment.3

In addition, the geometry of the fault on which an earthquake

2 This book follows this tradition and focuses on earthquakes and large-scale earth
structure because of the existence of an excellent introductory literature dealing with
exploration seismology and the inflexibility of university curricula.

3 Magnitude is given as a dimensionless number measured in various ways, includ-
ing the body wave magnitude mb, surface wave magnitude Ms, and moment magni-
tude Mw, as discussed in Section 4.6. The seismic moment has the dimensions of
energy, dyn-cm or N-m.

can be identified using geological information from the surface
and drill holes (Fig. 1.1-6). Such seismic images of the sub-
surface provide a powerful tool for structural and stratigraphic
studies. Although applications of seismology to exploration
have traditionally been treated in universities as distinct from
those dealing with earthquakes and the large-scale structure of
the earth, this distinction is largely historical.2 These applica-
tions draw on a common body of seismological principles, and
the techniques used have considerable overlap.

Fig. 1.1-5 Schematic example of the seismic
reflection method, the basic tool of
hydrocarbon exploration.



4 These terms are not the same as compressional and shear waves; as often occurs in
science, words have multiple meanings.

5 In discussing analogous issues Sarewitz and Pielke (2000) note than even after bil-
lions of dollars spent on climate research, a senior scientist observes, “This may come
as a shock to many people who assume that we do know adequately what’s going
on with the climate, but we don’t,” and the National Academy of Sciences states that
deficiencies in our understanding “place serious limitations on the confidence” of
climate modeling results.

surface, so geological and geodetic observations also show the
motion that occurs in earthquakes. In less accessible areas
seismological observations provide most of the data used to
identify the boundary along which motion occurs and to dem-
onstrate its nature. This is the case for most plate boundaries,
which occur in the oceans, beneath several kilometers of water.
Similarly, in subduction zones, where lithospheric plates
descend deep into the mantle and earthquakes can occur to
depths of 660 km, direct observations are not possible, but
analyses of seismograms reveal the motions and give insight
into their tectonic causes.

1.1.2 Models in seismology

As summarized in the previous section, seismology provides a
great deal of information about seismic sources, the structure
of the earth, and the relation of earthquakes to the tectonic pro-
cesses that produce them. Even so, we will see that there are
major limitations on what the present seismological observa-
tions and other data tell us. For example, although we have
good models of seismic velocity in the earth, we know much
less about the composition of the earth and have only general
ideas about the deep physical processes, such as convection,
thought to be taking place. Similarly, although seismology pro-
vides a great deal of detail about the slip that occurs during
an earthquake, we still have only general ideas about how
earthquakes are related to tectonics, little understanding of the
actual faulting process, no ability to predict earthquakes on
time scales shorter than a hundred years, and only rudimentary
methods to estimate earthquake hazards. This situation is
typical of the earth sciences,5 largely because of the complexity
of the processes being studied and the limits of our observa-
tions. Our best response seems to be to show humility in face of
the complexity of nature, recognize what we presently know

occurred is inferred from the three-dimensional pattern of radi-
ated seismic waves. Figure 1.1-7 illustrates the method used for
an earthquake in which the material on one side of a vertically
dipping fault moves horizontally with respect to that on the
other side. This motion generates seismic waves that propagate
away in all directions. In some directions the ground first
moves away from the source (toward a seismic station),
whereas in other directions the ground first moves toward the
source (away from a receiver). The seismograms thus differ
between stations. In the “toward” (called compressional)
quadrants the first ground motion recorded is toward the re-
ceiver, whereas in the “away” (called dilatational) quadrants
the first ground motion is away from the receiver. Because the
seismic waves go down from the source, turn, and arrive at a
distant seismographic station from below, the first motion
is upward in a compressional quadrant and downward in a
dilatational quadrant.4 The compressional and dilatational
quadrants can be identified using seismograms recorded at
different azimuths around the source. The fault orientation and
a surface perpendicular to it can then be found, because in
these directions the first motion changes polarity. With the use
of additional data we can often tell which of these surfaces
was the actual fault. Given the fault orientation, the direction
of motion can also be found; note that the compressional and
dilatational quadrants would be interchanged if the fault had
moved in the opposite direction. The pulse radiated from the
earthquake also gives some information about the amount of
slip that occurred, the size of the area that slipped, and the
slip process.

Such observations of the location of earthquakes and the
fault motion that occurred in them are among the most import-
ant data we have for understanding plate tectonics, the prim-
ary process shaping our planet. The earthquake analyzed in
Fig. 1.1-7, for example, is like those that occur along the San
Andreas fault in northern California, part of the boundary
along which the Pacific plate moves northward with respect
to the North American plate. The fault is visible at the earth’s

Fig. 1.1-7 First motions of seismic P waves observed
at seismometers located in various directions about
the earthquake allow the fault orientation to be
determined.
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and what we do not, use statistical techniques to assess what
we can say with differing degrees of confidence from the data,
and develop new data and techniques to do better.

In general, the approach taken is to describe complex prob-
lems with simplified models that seek to represent key elements
of the process under consideration. For example, an earth-
quake is a complicated rupture process that occurs in a finite
volume and radiates seismic energy through the real materials
of the earth. As we will see in the next few chapters, we rep-
resent all aspects of this process with simple models. We treat
the complex faulting process as elastic slip on an infinitely
narrow surface. We further treat the rock around it as a simple
elastic material, and thus describe the complex seismic wave
disturbance that propagates through it, using a number of
simplifications.

It is important to bear in mind that these models are only
approximations to a more complicated reality. For example,
although the radiated seismic energy is real (it can destroy
buildings), the mathematical descriptions used to understand it
are human constructs. P waves, S waves, seismic phases like
ScS, seismic ray paths, surface waves, or the earth’s normal
modes are all approximations that make the radiated energy
easier to conceptualize. Similarly, we model a fault as a planar
slip surface and use seismological observations to characterize
the slip geometry and history. However, although this process
nicely replicates the seismic observations, it only approximates
the actual physics of earthquake rupture.

We often use a hierarchy of different approximations, as
appropriate. For example, we might first predict the approx-
imate time when a packet of seismic energy arrives by treating
it as a seismic ray, and then use a more sophisticated wave or
normal mode calculation to predict its amplitude and hence
learn more about the properties of the parts of the earth it
traversed. Similarly, we first describe the earth as isotropic
(having the same properties in all directions) and purely elastic
(no seismic energy is lost to heat by friction) and then confront
the deviations from these simplifications.

A similar approach is often followed when discussing the
tectonic context of earthquakes. Although faults, earthquakes,
volcanoes, and topography are real, we associate these with the
boundaries of plates that are human approximations. We will
see that the questions of when to regard a region as a plate and
how to characterize its boundaries are not simple. The simplest
analyses assume that plates are rigid and divided by narrow
boundaries. Later, we treat the boundaries as broad zones, and
eventually we confront the fact that plates are not perfectly
rigid, but in fact deform internally, as shown by earthquakes
that occur within them.

We often choose a type of model to represent the earth
and then use seismological and other data to estimate the
parameters of this model. Thus a characteristic activity of
seismology, and of the earth sciences in general, is solving
inverse problems. We start with the end result, the seismo-
grams, and work backwards using mathematical techniques to
characterize the earthquakes that generated the seismic waves

and the material the waves passed through. Inverse problems
are more complicated than the conceptually simpler forward
problems in which we use the theory of seismic wave genera-
tion and propagation to predict the seismogram that would be
observed for a given source and medium. Inverse problems are
harder to solve for several reasons. Seismograms reflect the
combined effect of the source and medium, neither of which is
known exactly. There are often aspects of the inverse problem
that the data are insufficient to resolve. Thus seismology and
other branches of the earth sciences, to a greater extent than
most other scientific disciplines, often infer a “big picture” from
grossly limited and insufficient data. For example, our images
of the earth from seismic waves suffer from the fact that the
severely limited geographical distributions of both earthquakes
and seismometers leave most of earth’s interior unsampled. This
situation is like a doctor examining a possible broken bone with
only a few scattered bursts of x-rays from random directions.

Moreover, although the forward problem typically can be
solved in a straightforward way, giving a unique solution,
the inverse problem often has no unique solution. In fact, the
data are generally somewhat inconsistent due to errors, so no
model can exactly describe the data. Finally, the fact that solv-
ing the inverse problem yields a set of model parameters that
describe the observations well does not necessarily mean that
the resulting model actually reflects physical reality. This non-
uniqueness reflects the logical tenet that because a implies b,
b does not necessarily imply a. In fact, we often have no way of
determining what the reality is. For example, we will never
truly know the composition and temperature of the earth’s core
because we cannot go there. This limitation remains in spite
of the fact that over time our models of the core have become
increasingly consistent with seismological data, experimental
results about materials at high pressure and temperature, and
other data including inferences from meteorites about the
composition of the solar system.6

A consequence of this approach is the need to consider issues
of precision, accuracy, and uncertainty. Estimates of quantities
like the magnitude or depth of an earthquake depend both on
the precision, or repeatability, with which data like seismic
wave arrival times and amplitudes are measured, and on the
accuracy, or extent to which the resulting inferences correctly
describe the earth. For example, earthquake magnitudes are
simple measures of earthquake size, estimated in various ways
from seismograms without accounting for effects like the geo-
metry of the earthquake source or lateral variations in seismic
velocities. Hence measurements at different sites yield various
estimates, so it is of little value to argue whether an earthquake
had magnitude 5.2 or 5.4. Similarly, focal depths are derived
from seismic wave arrival times by assuming a velocity struc-
ture near the earthquake, which is often not well known. For

6 Similar difficulties afflict most of the earth sciences. Field geologists will never
know whether their inferences about the past history and environment of a region
are correct; paleontologists will never know how realistic their models of ancient
life are, etc.



example, the depth is sometimes estimated (Section 4.3.3) from
half the product of the time difference between the direct P and
pP phases (see Fig. 1.1-3) and the velocity. If the time difference
is measured to 0.25 s, and the velocity is 8 km/s, the method
of propagation of errors (Section 6.5.1) shows that the uncer-
tainty in depth is about 1 km, so it makes little sense to report
the depth to greater precision. In reality the uncertainty will
be greater, because the velocity also has some uncertainty. It is
important to bear in mind that assigning a single value to an
earthquake depth may exceed the relevant accuracy because
faulting extends over a finite area that may be large (on the
order of 10 km for a magnitude 6 earthquake). Moreover,
when we have alternative models with which to estimate
a parameter (for example, the earthquake stress drop estim-
ated from body waves depends on the assumed geometry of
the fault), the uncertainty associated with an estimate using
any particular model underestimates the uncertainty due to
the fact that we do not know which model is best. It is thus
useful to examine how the estimate depends on the precision
of the observation, the model parameters, and the choice of
models.

Seismologists generally assume that the best estimates of
values and uncertainties come from studies by different invest-
igators using multiple datasets and techniques. Ideally, studies
using the same data increase precision by reducing random
errors, and studies using different data and techniques increase
accuracy by reducing the effect of systematic errors. For ex-
ample, for the well-studied Loma Prieta earthquake, seismic
moment estimates vary by about 25%, and Ms values vary by
about 0.1 units.

However, statisticians have long noted the difficulties in as-
sessing probabilities and uncertainties. Two famous examples
are the Titanic, described as “unsinkable” (probability zero)
and the space shuttle, which was lost on its twenty-fifth launch,
surprisingly soon given the estimated probability of accident of
1/100,000. Other examples come from the history of measure-
ments of physical constants, which shows that the reported
uncertainties underestimate the actual errors. For example, the
27 successive measurements of the speed of light between 1875
and 1958 are shown by subsequent analysis to be consistently
in error by much more than the assigned uncertainty. It appears
that assessments of the formal or random uncertainty often
significantly underestimate the systematic error, so the overall
uncertainty is dominated by the unrecognized systematic error
and thus larger than expected. As a result, measurements of
a quantity often remain stable for some time, and then change
by much more than the previously assumed uncertainty. One
possible explanation, termed the “bandwagon effect,” is the
tendency to discount data that are inconsistent with previous
ideas, but later prove more accurate than those included.
Another effect appears to be the discarding of outliers: for
example, although R. Millikan reported using all the observa-
tions in his Nobel prize-winning (1910) study of the charge of
the electron, his notebooks show that he discarded 49 of 107
oil drops that appeared discordant, increasing the apparent

precision of the result. Until a method is developed that
excludes obviously erroneous data without discarding real
disconforming evidence, making realistic uncertainty estimates
will remain a challenge. Although such analyses are more
difficult in the earth sciences a for example, an earthquake is a
nonrepeatable experiment a they are useful to bear in mind.

This discussion brings out the fact that although we often
speak of “finding” or “determining” quantities like earth-
quake source parameters or velocity structure, it might be
better to speak of “estimating” or “inferring” these quantities.
There is no harm in the common and more upbeat phrasing
so long as we remember that these values reflect uncertainties
due to random noise and errors of measurement (sometimes
called aleatory uncertainty, after the Latin word for dice)
and systematic (sometimes called epistemic) uncertainty due
to our choice of model to describe the phenomenon under
consideration.

Although these caveats sound worrisome, seismological
models are far from useless. We can usually develop models
that not only describe the data used to develop them, but to
predict other data. For example, earthquake source models de-
rived only from seismology often predict the observations
made using field geology and geodesy (ground deformation),
both for the specific earthquake studied and for others in the
same region. Moreover, the seismological results often give
useful insight that is consistent with other lines of evidence. For
example, seismology, gravity, and geomagnetism all favor the
earth having a dense liquid iron core chemically different from
the rocky mantle. This idea is also consistent with the fact
that meteorites a thought to be fragments of small planets a
are divided into stony and iron classes. Hence seismologists
use this modeling approach to understand the earth, while
recognizing its limitations.

For several reasons, our models usually improve with time.
First, the data improve in both quantity and quality. Second,
new observational and analytical techniques are introduced.
As a result, long-standing problems such as the velocity struc-
ture of the earth are repeatedly reassessed. Successive genera-
tions of models seek to explain additional types of data, and
often contain more model parameters in the hope of better rep-
resenting the earth. Using statistical tests, we find that in some
cases the resulting improvements are significant, whereas in
others the new model improves only slightly on earlier ones. An
important point is that more complicated models can always fit
data better, because they contain more free parameters, just as
a set of points in the x–y plane can be better fit by a quadratic
polynomial than by a straight line. Thus we can statistically test
models to see whether a new model reduces the misfit to the
data more than would be expected purely by chance due to the
additional parameters. Another useful test is whether the new
or old models do a better job of describing data that were not
used in deriving either, a process called pure prediction. When
new models pass these tests, we can accept them a and then
look again to see which data are still not described well and try
to do better.

1.1 Introduction 7
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Since 1972, when the first such model was made, the amount of
available data has increased, and the data have become better,
due to advances in seismology, sea floor imaging, and marine
magnetic measurements. Similarly, the fit to the data has
improved (or the misfit reduced) due both to the higher data
quality and to improvements in the model, such as treating
India and Australia as separate plates. Similar patterns of
increased data and improved fit occur for many applications,
including seismic velocity structure in the earth.

Many of the same issues surface when considering the
models used to describe earth processes. For example, we will
see that there are various models for what occurs at the core–
mantle boundary or what causes earthquakes within down-
going plates at subduction zones. Such models assume that a
particular set of physical processes occur, and show that for
apparently plausible values of the (often unknown) relevant
physical parameters, some behavior like that observed might
be expected. Although these simple models attempt to reflect
key aspects of the complex natural system, we often have no
way of telling if and how well they succeed. Typically, various
plausible models are suggested, all of which may in part be true
and offer interesting insights into what may be occurring. The
data often do not allow discrimination between them, so the
model one prefers depends on one’s geological instincts and
prejudices, and models go in and out of vogue. A common
scenario is for a model to become the consensus of the small
group of researchers most interested in a problem, and then be
challenged by fresh ideas or data from the outside. Hence, criti-
cally examining conventional wisdom often leads to discarding
or modifying it, and so making progress in keeping with the
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Over the years this process leads to a better understanding
of how the earth works (Fig. 1.1-8). For example, Fig. 1.1-9
summarizes the development of global plate motion models,
discussed in Chapter 5, that give the motion of the dozen or so
major plates. The models are derived by inverting data consist-
ing of the directions of plate motions along transform faults,
the directions of plate motions during earthquakes, and the
rates of plate motions shown by sea floor magnetic anomalies.

Fig. 1.1-8 Schematic illustration of how models of earth processes
advance with time due to additional data and improved model
parameterizations.

Inversion modeling

New data

Compare old and new model
predictions to new data,

not used in deriving either

Verify that improvement
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Fig. 1.1-9 Evolution of successive global
plate motion models, as the amount of data
increases and the misfit is reduced. Left:
Number of data used to derive the models.
Three types of data are inverted: earthquake
slip vector azimuths, transform fault
azimuths, and spreading rates. Right: The
misfit to NUVEL-1 data for the various
models. The vertical bars showing total
misfit are separated into segments giving the
misfit to each type of data. (DeMets et al.,
1990. Geophys. J. Int., 101, 425–78.)
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ancient Jewish sages’ observation that “the rivalry of scholars
increases wisdom.”7 This process requires a constant cycle of
learning and unlearning in which old models are discarded,
even by those who helped create them, in favor of new models.

The classic geological example of advancing beyond conven-
tional thinking is the plate tectonic revolution of the late 1960s.
Although the idea of continental drift had been around for a
long time and was strongly advocated by Alfred Wegener in
1915, it was not accepted by most of the geological community
in the USA and Europe,8 in part because seismological pioneer
Harold Jeffreys argued that it was impossible. As a result,
although it was recognized in the 1950s that earthquakes
occurred on mid-ocean ridges that were young volcanic fea-
tures and at deep sea trenches in association with volcanoes
and mountain ranges (Fig. 1.1-10), their underlying nature was
not understood. However, once paleomagnetic and marine
geophysical data led to the recognition that oceanic lithosphere
formed at mid-ocean ridges and subducted at trenches, the
seismological observations made sense.

Thus, as in other sciences, progress in understanding seis-
mological problems is typically incremental during “normal
science” periods, in which we make small steady advances.
Occasionally, however, exciting “paradigm shifts” occur when
important new ideas change our views from our previous con-

ventional thinking and permit great advances. This concept,
developed by philosopher of science Thomas Kuhn (1962) for
science-wide conceptual revolutions like the theory of plate
tectonics, also describes progress in subfields. It is particularly
apt in seismology, because many major faults move at most
slightly for many years a and then break dramatically in large
earthquakes.

1.2 Seismology and society

Seismology impacts society through applications including
seismic exploration for resources, earthquake studies, and
nuclear arms control. These topics involve both scientific and
public policy issues beyond our focus on using seismic waves to
study earth structure, earthquakes, and plate tectonics. How-
ever, given the natural interest of these societal applications,
we briefly discuss some issues in earthquake hazard analysis
and nuclear test monitoring, in part to motivate our discussions
of the basic science.

These topics have the interesting feature that the state of
seismological knowledge influences policy, so scientific uncer-
tainties have broad implications. The choice of earthquake pre-
paredness strategies depends in part on how well earthquake
hazards can be assessed, and nations’ willingness to negotiate
test ban treaties depend in part on their confidence that com-
pliance can be verified seismologically. Seismology thus faces
the challenge, familiar in other applications like global warm-
ing or biotechnology, of explaining both knowledge and its
limits. Failure to do so can have embarrassing consequences.
For example, since the 1960s the Japanese government has
spent more than $1 billion on an earthquake prediction pro-
gram premised on the idea that large earthquakes will be
preceded by observable precursory phenomena, despite the
fact that (as discussed shortly) many seismologists increasingly
doubt that such phenomena exist. This approach has so far
failed to predict destructive earthquakes, like that which struck
the Kobe area in 1995, and has focused most of its efforts on
areas other than those where these earthquakes occurred.
Critics have thus argued that the program is scientifically weak,
diverts resources that could be more usefully employed for
basic seismology and earthquake engineering, and gives the
public the misleading impression that earthquakes can cur-
rently be predicted. Based on the program’s record to date, the
government would have been wiser to listen to these critics and
to have been more candid with the public.1

1 Such issues were eloquently summarized by Richard Feynman’s (1988) admoni-
tion after the loss of the space shuttle Challenger: “NASA owes it to the citizens from
whom it asks support to be frank, honest, and informative, so these citizens can
make the wisest decisions for the use of their limited resources. For a successful
technology, reality must take precedence over public relations, because nature cannot
be fooled.”

7 Alternative formulations of this idea include David Jackson’s observation,
(Fischman, 1992); “as soon as I hear ‘everybody knows’ I start asking ‘does everybody
know this, and how do they know it?’” the quotation used as the epigraph to
this book by Nobel Laureate Peter Medewar; and the adage attributed to 1960s
political activist Abbie Hoffman that “sacred cows make the best hamburger.”
8 Interestingly, many geologists in Southern Hemisphere countries like Australia
and South Africa accepted continental drift early on and never abandoned it.

1.2 Seismology and society 9

Fig. 1.1-10 Tectonic cartoon for oceanic and continental margin trenches,
prior to the acceptance of plate tectonics. The association of dip-slip
earthquakes with trenches, volcanism, and mountain ranges was
recognized. Note the exaggeration of surface relief. (Benioff, 1955. From
Crust of the Earth, ed. A. Poldervaart. Reproduced with permission of the
publisher, the Geological Society of America, Boulder, CO. Copyright ©
1955 Geological Society of America.)
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Fig. 1.2-1 Map showing epicenters of all earthquakes during 1963–95 with magnitudes of mb ≥ 4. Most earthquakes occur along the boundaries between
tectonic plates. Where these boundaries are distinct, the earthquakes occur within narrow bounds. More diffuse plate boundaries, like the Himalayan
plateau between India and China, show a much broader distribution of epicenters.

Fig. 1.2-2 Comparison of frequency,
magnitude, and energy release of
earthquakes and other phenomena. The
magnitude used is moment magnitude, Mw .
(After Incorporated Research Institutions
for Seismology.)



1.2.1 Seismic hazards and risks

One of the primary motivations for studying earthquakes and
seismology is the destruction caused by large earthquakes. In
many parts of the world, seismic risks are significant, whether
they are popularly recognized (as in Japan, where schools con-
duct earthquake drills) or not. Much of the challenge in assess-
ing and addressing seismic hazards is that in any given area
large earthquakes are relatively rare on human time scales, but
can cause great destruction when they occur.

Earthquakes primarily occur at the boundaries where the
100 km-thick tectonic plates converge, diverge, or slide past
each other. Although the plates move steadily, their boundaries
are often “locked,” and do not move most of the time. How-
ever, on time scales of a few hundred years, the boundary slips
suddenly, and the accumulated motion is released in an earth-
quake. Figure 1.2-1 shows the locations of mb ≥ 4 earthquakes
between 1963 and 1995. The earthquakes nicely define the
plate boundaries, although some earthquakes also occur in
intraplate regions, away from plate boundaries.

The energy released by large earthquakes is striking (Fig. 1.2-
2). For example, the 1906 San Francisco earthquake involved
about 4 m of slip on a 450 km-long fault, releasing about
3 × 1016 Joules2 of elastic energy. This energy is equivalent to
a 7 megaton nuclear explosion, much larger than the 0.012
megaton bomb dropped on Hiroshima. The largest recorded
earthquake, the 1960 Chilean event in which about 21 m of
slip occurred on a fault 800 km long and 200 km across,
released about 1019 J of elastic energy, more than a 2000 Mt
bomb. This earthquake released more energy than all the
nuclear bombs ever exploded, the largest of which was 58 Mt.
For comparison, the total global human annual energy con-
sumption is about 3 × 1020 J.

Fortunately, the largest earthquakes are infrequent, because
the energy released accumulates slowly over a long time. The
San Francisco earthquake occurred on the San Andreas fault
in northern California, part of the boundary along which the
Pacific plate moves northward relative to the North American
plate. Studies using the Global Positioning System satellites
show that away from the plate boundary the two plates move
by each other at a speed of about 45 mm/yr. Most parts of
the San Andreas fault are “locked” most of the time, but slip
several meters in a large earthquake every few hundred years.
A simple calculation suggests that such earthquakes should oc-
cur on average about every 4000 mm/(45 mm/yr) or 90 years.
The real interval is not uniform, for reasons that are unclear,
and is longer, because some of the motion occurs on other
faults.

Because plate boundaries extend for more than 150,000 km,
and some earthquakes occur in plate interiors, earthquakes
occur frequently somewhere on earth. As shown in Table 1.2-1,

Table 1.2-1 Numbers of earthquakes per year.

Earthquake Number Energy released
magnitude (Ms) per year (1015 J/yr)

≥8.0 0–1 0–1,000
7–7.9 12 100
6–6.9 110 30
5–5.9 1,400 5
4–4.9 13,500 1
3–3.9 >100,000 0.2

Based upon data from the US Geological Survey National Earthquake
Information Center. Energy estimates are based upon an empirical
formula of Gutenberg and Richter (Gutenberg, 1959), and the magnitude
scaling relations of Geller (1976), and are very approximate.

3 As part of his incorrect prediction of a magnitude 7 earthquake in the Midwest in
1990, I. Browning claimed that he had successfully predicted the 1989 Loma Prieta
earthquake. In fact, he had said that near the date in question there would be an earth-
quake somewhere in the world with magnitude 6, a prediction virtually guaranteed to
be true.

2 The SI unit of energy is 1 Joule (J) = 1 Newton meter (N-m) = 107 ergs = 107 dyn-
cm. Nuclear explosions are often described in megatons (Mt), equivalent to
1,000,000 tons of TNT or 4.2 × 1015 J.

an earthquake of magnitude 7 occurs approximately monthly,
and an earthquake of magnitude 6 or greater occurs on average
every three days.3 Earthquakes of a given magnitude occur
about ten times less frequently than those one magnitude
smaller. Because the magnitude is proportional to the logarithm
of the energy released, most of the energy released seismically is
in the largest earthquakes. A magnitude 8.5 event releases more
energy than all the other earthquakes in a given year combined.
Hence the hazard from earthquakes is due primarily to large
(typically magnitude greater than 6.5) earthquakes.

In assessing the potential danger posed by earthquakes or
other natural disasters, it is useful to distinguish between haz-
ards and risks. The hazard is the intrinsic natural occurrence of
earthquakes and the resulting ground motion and other effects.
The risk is the danger the hazard poses to life and property.
Hence, although the hazard is an unavoidable geological fact,
the risk is affected by human actions. Areas of high hazard can
have low risk because few people live there, and areas of
modest hazard can have high risk due to large populations and
poor construction. Earthquake risks can be reduced by human
actions, whereas hazards cannot (hence the US government’s
National Earthquake Hazards Reduction Program is, strictly
speaking, misnamed).

These ideas are illustrated by Table 1.2-2, which lists some
significant earthquakes and their societal consequences. As
shown, some very large earthquakes caused no fatalities
because of their remote location or deep focal depth. In general,
the most destructive earthquakes occur where large popula-
tions live near plate boundaries. The highest property losses
occur in developed nations where more property is at risk,
whereas fatalities are highest in developing nations. Although
the statistics are often imprecise, the impact of major earth-
quakes can be enormous. Estimates are that the 1990 Northern
Iran shock killed 40,000 people, and that the 1988 Spitak

1.2 Seismology and society 11
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Table 1.2-2 Some notable and destructive earthquakes. (Values in this table are compiled from various sources, and different estimates have been reported,
especially for older earthquakes.)

Location and date Strength

Kourion, Cyprus X
July 21, 365 MMI

Basel, Switzerland XI
October 18, 1356 MMI

Shansi, China 8
January 23, 1556 Ms (est.)

Port Royal, Jamaica 8
June 7, 1692 Ms (est.)

Lisbon, Portugal ≥8
November 1, 1755 Ms (est.)

New Madrid, MO 7–7.4
Dec. 1811 to Feb. 1812 Ms (est.)

Charleston, SC 7.2
August 31, 1886 Ms (est.)

Sanriku, Japan 8.5
June 15, 1896 Ms (est.)

Assam, India 8.7
June 12, 1897 Ms (est.)

San Francisco, CA 7.8
April 18, 1906 Ms

Kansu, China 8.5
December 16, 1920 Ms

Tokyo, Japan 8.2
September 1, 1923 Ms

Aleutian Islands, Alaska 7.4
April 1, 1946 Ms

Lituya Bay, Alaska 7.0
July 10, 1958 Ms

Hebgen Lake, MT 7.5
August 17, 1959 Ms

Chile 9.5
May 21, 1960 Mw

Alaska 9.1
March 27, 1964 Mw

Peru 7.8
May 31, 1970 Ms

San Fernando Valley, CA 6.6
February 9, 1971 Ms

Haicheng, China 7.4
February 4, 1975 Ms

Kalapana, Hawaii 7.1
November 29, 1975 Ms

Tangshan, China 7.6
July 27, 1976 Ms

Mexico City, Mexico 7.9
September 19, 1985 Ms

Spitak, Armenia 6.8
December 7, 1988 Ms

Loma Prieta, CA 7.1
October 17, 1989 Ms

Caspian Sea, Iran 7.7
June 20, 1990 Ms

Luzon, Philippines 7.8
July 16, 1990 Ms

Landers, CA 7.3
June 28, 1992 Mw

Effects

Total destruction of this Greco-Roman city. Very large tsunami in the Mediterranean.

Eighty castles destroyed over a wide area. 300 killed. Toppled cooking hearths caused fires that burned for
many days.

Collapse of cave dwellings carved into bluffs of soft glacial loess. 830,000 reported killed (worst ever). Near the
1920 Kansu earthquake (see below).

Widespread liquefaction caused one-third of Port Royal to spread and sink 4 m beneath the ocean surface.
2500 killed.

Large tsunamis seen all around the Atlantic. Felt over 1,600,000 km2. Algiers destroyed. 70,000 killed. Largest
documented earthquake in Europe (though several Italian quakes have killed >150,000 in past 500 years).

Three large quakes (Dec. 16, 1811, Jan. 23, 1812, Feb. 7, 1812). Vertical movements up to 7 m. Widespread
liquefaction. Changed course of Mississippi River. Felt over 5,000,000 km2.

No previous seismicity observed in this area between 1680 and 1886. Felt over 5,000,000 km2. 14,000 chimneys
damaged or destroyed. 90% of buildings damaged/destroyed. 60 killed.

Tsunamis 35 m high washed away 10,000 houses and killed 26,000 along the Sanriku coast of Honshu. A similar
Sanriku quake on March 2, 1933, killed 3000 with a 25 m high tsunami.

One of the largest quakes ever felt. 1500 killed. Extremely violent ground shaking. Other Himalayan events on
April 4, 1905 (20,000 killed), January 15, 1934 (10,000 killed), and August 15, 1950 (Ms = 8.6, 1526 killed).

About 4 m of slip on a 450 km-long fault. 28,000 buildings destroyed, largely by fires that burned for 3 days.
2500–3000 killed by fires (worst in USA).

180,000 killed, largely by downslope flow of liquefied soil over more than 1.5 km.

Occurred in Sagami Bay, 80 km south of Tokyo. 134 separate fires merged to become a giant firestorm. 12 m
tsunami hit shores of Sagami Bay. 143,000 killed.

Large tsunami destroyed a power station and caused $25 million in damage in Hilo, Hawaii, where it rose to 7 m
in height.

Massive landslides that slid into a local bay created a 60 m-high wave that washed up mountain sides as far as
540 m.

Extensive landslides, including one that dammed a river and created a lake. Reactivated 160 Yellowstone
geysers. Vertical displacement up to 6.5 m. 28 killed.

Largest quake ever recorded. Fault area: 800 by 200 km. Slip: 21 m. Triggered eruption of Puyehue volcano.
Massive landslides in Andes. Giant tsunami. 2000–3000 killed.

2nd largest quake ever recorded. Fault area: 500 by 300 km. Slip: 7 m. Large tsunamis, and widespread
liquefaction. 200,000 km2 of crustal surface deformed. 131 killed.

Quake offshore caused large landslides. 30,000 killed, largely by 100,000,000 m3 of rock and ice flowing down
Andes mountain sides.

Felt over more than 200,000 mi2. 65 killed. 1000 injured. More than $500 million in direct losses.

Successful prediction said to have led to an evacuation on the morning of the quake that possibly saved
100,000s of lives. 300–1200 killed.

South flank of Kiluea volcano slid seaward. 14.6 m-high tsunami on Hawaiian shores. Largest Hawaiian
earthquake since a 1868 quake that caused 22 m-high tsunamis and killed 148.

Of a city of 1 million, >250,000 killed and 50,000 injured. Exact numbers speculative: fatalities may have
exceeded the 1556 earthquake. In contrast to the 1975 Haicheng quake, this had no precursory behaviors.

Strong shaking lasted for 3 minutes due to sedimentary lake-fill oscillations. 10,000 killed. 30,000 injured.
$3 billion in damage.

Surface faulting showed 1.5 m of slip along a 10 km fault. 25,000 killed. 19,000 injured. 500,000 homeless.
$6.2 billion in damages.

Slip along San Andreas segment south of San Francisco. 63 killed, most from the collapse of an elevated freeway
in Oakland. About $6 billion in damages. Disrupted 5th game of World Series.

100,000 structures damaged or destroyed. 40,000 killed. 60,000 injured. 500,000 left homeless. Over
700 villages destroyed, and another 300 damaged.

Major rupture of Digdig fault, causing many landslides and major surface faulting. Extensive soil liquefaction.
1621 killed. 3000 injured.

Up to 6 m of horizontal displacement and 2 m of vertical displacement along a 70 km fault segment.
1 killed. 400 injured.



Table 1.2-2 (cont’d ).

Location and date Strength Effects

Flores Island, Indonesia 7.8
December 12, 1992 Ms

Northridge, CA 6.7
January 17, 1994 Mw

Northern Bolivia 8.2
June 9, 1994 Ms

Kobe, Japan 6.8
January 16, 1995 Ms

NW of Balleny Islands 8.2
March 25, 1998 Mw

Izmit, Turkey 7.4
August 17, 1999 Ms

Chi-Chi, Taiwan 7.6
September 21, 1999 Mw

Tsunami heights reached 25 m. Extensive shoreline damage, where tsunami run-up was up to 300 m.
2200 killed. 30,000 buildings destroyed.

Rupture on a blind thrust fault beneath Los Angeles. Many rock slides, ground cracks, and soil liquefaction.
58 killed. 7000 injured. 20,000 homeless. About $20 billion in damages.

Largest deep earthquake ever (depth was 637 km). Felt as far away as Canada.

5502 killed. 36,896 injured. 310,000 homeless. Massive destruction to world’s 3rd largest seaport: 193,000
buildings, $100 billion in damages (highest to date).

Largest oceanic intraplate earthquake ever. Occurred west of Australia–Pacific–Antarctic plate triple junction in
a region that was previously aseismic.

5 m slip. 120 km rupture. 30,000 killed. $20 billion in economic loss. 12 major (M > 6.7) events this century have
broken a total of 1000 km of the North Anatolian fault, including a 7.2 Mw aftershock on Nov. 12, 1999.

150 km south of Taipei. 2333 killed. 10,000 injured. >100,000 homeless. Extensive seismic monitoring in Taiwan
makes this one of the best seismically sampled earthquakes. One of largest observed surface thrust scarps.

(Armenia) earthquake killed 25,000. Even in Japan, where
modern construction practices are used to reduce earthquake
damage, the 1995 Kobe earthquake caused more than 5000
deaths and $100 billion of damage. On average during the
past century earthquakes have caused about 11,500 deaths per
year. As a result, earthquakes have had a significant effect upon
the history and culture of many regions.

The earthquake risk in the United States is much less than in
many other countries because large earthquakes are relatively
rare in most of the country and because of earthquake-resistant
construction.4 The most seismically active area is southern
Alaska, a subduction zone subject to large earthquakes. How-
ever, the population there is relatively small, so the 1964 earth-
quake (the second largest ever recorded instrumentally) caused
far fewer deaths than a comparable earthquake would have in
Japan. The primary earthquake impact in recent years has been
in California. The 1994 Northridge earthquake killed 58 peo-
ple and caused about $20 billion worth of damage in the Los
Angeles area, and the 1989 Loma Prieta earthquake that shook
the San Francisco area during a 1989 World Series baseball
game killed 63 people and did about $6 billion worth of
damage. Both these earthquakes were smaller (magnitude 6.8
and 7.1, respectively) than the largest known to occur on the
San Andreas fault, such as the 1906 San Francisco earthquake,
which had a magnitude of about 7.8.

Compared to other risks, earthquakes are not a major
cause of death or damage in the USA. Most earthquakes do
little harm, and even those felt in populated areas are com-
monly more of a nuisance than a catastrophe. Since 1811,
US earthquakes have claimed an average of nine lives per year
(Table 1.2-3), putting earthquakes at the level of in-line skating

4 Many seismologists have faced situations like explaining to apprehensive
telephone callers that the danger of earthquakes is small enough that the callers’
upcoming family vacations to Disneyland are not suicidal ventures.

Table 1.2-3 Some causes of death in the United States, 1996.

Cause of death Number of deaths

Heart attack 733,834
Cancer 544,278
Stroke 160,431
Lung disease 106,143
Pneumonia/influenza 82,579
Diabetes 61,559
Motor vehicle accidents 43,300
AIDS 32,655
Suicide 30,862
Liver disease/cirrhosis 25,135
Kidney disease 24,391
Alzheimer’s 21,166
Homicide 20,738
Falling 14,100
Poison 10,400
Drowning 3,900
Fires 3,200
Suffocation 3,000
Bicycle accidents 695
Severe weather1 514
In-line skating2 25
Football2 18
Skateboards2 10
Earthquakes (1811–1983),3 per year 9
Earthquakes (1984–98), per year 9

1 From the National Weather Service (property loss due to severe weather
is $10–15 billion/yr, comparable to the Northridge earthquake, and that
from individual hurricanes can go up to $25 billion).
2 From the Consumer Product Safety Commission.
3 From Gere and Shah (1984).
All others from the National Safety Council and National Center for
Health Statistics.

1.2 Seismology and society 13
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or football,5 but far less than bicycles, for risk of loss of
life. Similarly, the $20 billion worth of damage from the
Northridge earthquake, though enormous, is about 10% of the
annual loss due to automobile accidents. As a result, earth-
quakes pose an interesting challenge to society because they
cause infrequent, but occasionally major, fatalities and dam-
age. Society seems better able to accept risks that are more
frequent but where individual events are less destructive.6

Similar issues surface when society must decide the costs,
benefits, and appropriateness of various measures to reduce
earthquake risks. Conceptually, the issues are essentially those
faced in daily life. For example, a home security system costing
$200 per year makes sense if one anticipates losing $1000 in
property to a burglary about every five years ($200/year), but
not if this loss is likely only once every 25 years ($40/year).
However, the analysis is difficult, because the limited historical
record of earthquakes makes it hard to assess their recurrence
and potential damage.

Seismology is used in various ways to try to mitigate earth-
quake risks. Studies of past earthquakes are integrated with
other geophysical data to forecast the location and size of
future earthquakes. These estimates help engineers design
earthquake-resistant structures, and help engineers and public
authorities estimate and prepare for future damage by develop-
ing codes for earthquake-resistant construction. Seismology is
also used by the insurance industry to develop rates for earth-
quake insurance, which can reduce the financial losses due to
earthquakes and provide the resources for economic recovery
after a damaging earthquake. Rates can be based on factors in-
cluding the nature of a structure, its location relative to active
faults, and soil conditions. Homeowners and businesses then
decide whether to purchase insurance, depending on their per-
ceived risk and the fact that damages must exceed a deductible
amount (10–15% of the insured value) before the insurance
company pays. A complexity for the insurer is that, unlike
automobile accidents, whose occurrence is relatively uniform,
earthquakes or other natural disasters are rare but can produce
concentrated damage so large as to imperil the insurer’s ability
to pay claims. Approaches to this problem include limits on
how much a company will insure in a given area, the use of
reinsurance by which one insurance company insures another,
catastrophe bonds that spread the financial risk into the global
capital market, and government insurance programs.

1.2.2 Engineering seismology and earthquake engineering

Most earthquake-related deaths result from the collapse of
buildings, because people standing in an open field during a
large earthquake would just be knocked down. Thus it is often
stated that in general “earthquakes don’t kill people; buildings

5 These figures are for American football; in other countries soccer, termed football
there, is safer for players but more dangerous for spectators.
6 For example, although considerable attention is paid to aviation disasters and
safety, far more lives could be saved at far less cost by enforcing automobile seat belt
laws.

kill people.” As a result, proper construction is the primary
method used to reduce earthquake risks. This issue is addressed
by engineering seismology and earthquake engineering, dis-
ciplines at the interface between seismology and civil engineer-
ing. Their joint goal is to understand the earthquake ground
motions that can damage buildings and other critical struc-
tures, and to design structures to survive them or at least ensure
the safety of the inhabitants.

These studies focus on the strong ground motion near earth-
quakes that is large enough to do damage, rather than the much
smaller and often imperceptible ground motions used in many
other seismological applications. Two common measures are
used to characterize the ground motion at a site. One is the ac-
celeration, or the second time derivative of the ground motion.
Accelerations are primarily responsible for building destruc-
tion. A house would be unharmed on a high-speed train going
along a straight track, where there is no acceleration. However,
during an earthquake the house will be shaken and could be
damaged if the accelerations were large enough. These issues
are investigated using seismometers called accelerometers that
can operate during violent shaking close to an earthquake but are
less sensitive to the smaller ground motion from distant earth-
quakes. The seismic hazard to a given area is often described
by numerical models that estimate how likely an area is to ex-
perience a certain acceleration in a given time. For example, the
hazard map in Fig. 1.2-3 predicts the maximum acceleration
expected at a 2% probability in the next 50 years, or at least
once during the next 2500 (50/0.02) years. These values are
given as a fraction of “g,” the acceleration of gravity (9.8 m/s2).

A second way to characterize strong ground motion uses
intensity, a descriptive measure of the effects of shaking.
Table 1.2-4 shows values for the commonly used Modified
Mercalli intensity (MMI) scale, which uses roman numerals
ranging from I (generally unfelt) to XII (total destruction).
Intensity is not uniquely related to acceleration, which is a
numerical parameter that seismologists compute for an earth-
quake and engineers use to describe building effects. The table
shows an approximate correspondence between intensity and
acceleration, but this can vary. However, intensity has the
advantage that it is inferred from human accounts, and so can
be determined where no seismometer was present and for
earthquakes that occurred before the modern seismometer was
invented (about 1890). Although intensity values can be
imprecise (a fallen chimney can raise the value for a large area),
they are often the best information available about historic
earthquakes. For example, intensity data provide much of
what is known about the New Madrid earthquakes of 1811
and 1812 (Fig. 1.2-4). These large earthquakes are interesting
in that they occurred in the relatively stable continental interior
of the North American plate (Section 5.6). Historical accounts
show that houses fell down (intensity X) in the tiny Mississippi
river town of New Madrid, and several chimneys toppled
(intensity VII) near St Louis. Intensities can be used to infer
earthquake magnitudes, albeit with significant uncertainties.
These data have been used to infer the magnitude (about 7.2 ±
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Fig. 1.2-3 A map of estimated earthquake hazards in the United States. The predicted hazards are plotted as the maximum acceleration of ground shaking
expected at a 2% probability over a 50-year period. Although the only active plate boundaries are in the western USA, other areas are also shown as having
significant hazards. (Courtesy of the US Geological Survey.)

0.3 in the study shown) and fault geometry of the historic
earthquakes and to give insight into the effects of future ones.

The variation in ground motion with distance from an
earthquake can be seen by plotting lines of constant intensity,
known as isoseismals. Typically, as illustrated in Fig. 1.2-4, the
intensity decays with distance from the earthquake. Similarly,
strong motion data show that the variation in acceleration a
with earthquake magnitude M and distance r from the earth-
quake can be described approximately by relations like

a(M, r) = b10cMr−d, (1)

where b, c, and d are constants that depend on factors includ-
ing the geology of the area in question, the earthquake depth
and fault geometry, and the frequency of ground motion.
Hence the predicted ground acceleration increases with earth-
quake magnitude and falls off rapidly with distance at a rate
depending on the rock type. For example, rocks in the USA east
of the Rocky Mountains transmit seismic energy better than
those in the western USA (Section 3.7.10), so earthquakes in
the East are felt over a larger area than earthquakes of the same
size in the West (Fig. 1.2-5). Because the shaking decays rapidly
with distance, nearby earthquakes can do more damage than
larger ones further away.

The damage resulting from a given ground motion depends

on the types of buildings. As shown in Fig. 1.2-6, reinforced
concrete fares better during an earthquake than a timber frame,
which does better than brick or masonry. Hence, as also shown
in Table 1.2-4, serious damage occurs for about 10% of brick
buildings starting above about intensity VII (about 0.2 g),
whereas reinforced concrete buildings have similar damage
only around intensity VIII–IX (about 0.3–0.5 g). Buildings
designed with seismic safety features do even better. The worst
earthquake fatalities, such as the approximately 25,000 deaths
in the 1988 Spitak (Armenia) earthquake, occur where many of
the buildings are vulnerable (Fig. 1.2-7). Hence a knowledge-
able observer7 estimated that an earthquake of this size would
cause approximately 30 deaths in California. This estimate
proved accurate for the 1989 Loma Prieta earthquake, which
was slightly larger and killed 63 people.

Designing buildings to withstand earthquakes is a technical,
economic, and societal challenge. Research is being directed to
better understand how buildings respond to ground motion
and how they should be built to best survive it. Because such
design raises construction costs and thus diverts resources from
other uses, some of which might save more lives at less cost
or otherwise do more societal good, the issue is to assess the
seismic hazard and choose a level of earthquake-resistant

7 Ambraseys (1989).
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Table 1.2-4 Modified Mercalli intensity scale.

Intersity Effects

I Shaking not felt, no damage: not felt except by a very few under especially favorable circumstances.
II Shaking weak, no damage: felt only by a few persons at rest, especially on upper floors of buildings. Delicately suspended objects

may swing.
III Felt quite noticeably indoors, especially on upper floors of buildings, but many people do not recognize it as an earthquake.

Standing automobiles may rock slightly. Vibration like passing of truck. Duration estimated.
IV Shaking light, no damage: during the day felt indoors by many, outdoors by very few. At night some awakened. Dishes, windows,

doors disturbed; walls make creaking sound. Sensation like heavy truck striking building. Standing automobiles rocked noticeably.
(0.015–0.02 g)

V Shaking moderate, very light damage: felt by nearly everyone, many awakened. Some dishes, windows, and so on broken; cracked
plaster in a few places; unstable objects overturned. Disturbances of trees and poles, and other tall objects sometimes noticed.
Pendulum clocks may stop. (0.03–0.04 g)

VI Shaking strong, light damage: felt by all, many frightened and run outdoors. Some heavy furniture moved; a few instances of
fallen plaster and damaged chimneys. Damage slight. (0.06–0.07 g)

VII Shaking very strong, moderate damage: everybody runs outdoors. Damage negligible in buildings of good design and
construction; slight to moderate in well-built ordinary structures; considerable in poorly built or badly designed structures; some
chimneys broken. Noticed by persons driving cars. (0.10–0.15 g)

VIII Shaking severe, moderate to heavy damage: damage slight in specially designed structures; considerable in ordinary substantial
buildings with partial collapse; great in poorly built structures. Panel walls thrown out of frame structures. Fall of chimneys, factory
stacks, columns, monuments, walls. Heavy furniture overturned. Sand and mud ejected in small amounts. Changes in well water.
Persons driving cars disturbed. (0.25–0.30 g)

IX Shaking violent, heavy damage: damage considerable in specially designed structures; well-designed frame structures thrown out
of plumb; great in substantial buildings, with partial collapse. Buildings shifted off foundations. Ground cracked conspicuously.
Underground pipes broken. (0.50–0.55 g)

X Shaking extreme, very heavy damage: some well-built wooden structures destroyed; most masonry and frame structures destroyed
with foundations; ground badly cracked. Rails bent. Landslides considerable from river banks and steep slopes. Shifted sand and
mud. Water splashed, slopped over banks. (More than 0.60 g)

XI Few, if any, (masonry) structures remain standing. Bridges destroyed. Broad fissures in ground. Underground pipelines completely
out of service. Earth slumps and land slips in soft ground. Rails bent greatly.

XII Damage total. Waves seen on ground surfaces. Lines of sight and level destroyed. Objects thrown into the air.

Note: Parentheses show the average peak acceleration in terms of g (9.8 m/s), taken from Bolt (1999).

Fig. 1.2-4 Isoseismals for the first of the
three largest earthquakes of the 1811–12
New Madrid earthquake sequence. Such
plots, though based on sparse data, often
provide the best assessment of historical
earthquakes and of the effects of future
ones. (After Hough et al., 2000. J. Geophys.
Res., 105, 23,839–64, Copyright by the
American Geophysical Union.)
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Fig. 1.2-5 Comparison of the predicted strong ground motion as a
function of distance from magnitude 7 and 6 earthquakes in the eastern
and western United States. Shaking from an earthquake in the east is
comparable to that from one a magnitude unit larger in the west. The
curves are computed from models by Atkinson and Boore (1995) and
Sadigh et al. (1997).

Fig. 1.2-6 Approximate percentage of buildings that collapse as a
function of the intensity of earthquake-related shaking. The survival of
buildings differs greatly for constructions of weak masonry, fired brick,
timber, and reinforced concrete (with and without anti-seismic design).
(After Coburn and Spence, Earthquake Protection, © 1992. Reproduced
by permission of John Wiley & Sons Limited.)

Fig. 1.2-7 Five-story building in Spitak, Armenia, destroyed during the
December 7, 1988, earthquake. The building was made from precast
concrete frames that were inadequately connected. The failure of such
buildings contributed greatly to the loss of 25,000 lives. (Courtesy of the
US Geological Survey.)
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construction that makes economic sense. Countries like the
USA and Japan have the financial resources to study the effects
of shaking on buildings, develop codes of appropriate building
construction, and build structures to meet those codes. The
task for building codes is to not be too weak, permitting unsafe
construction and undue risks, or too strong, imposing un-
needed costs and encouraging their evasion. Deciding where
to draw this line is a complex policy issue for which there
is no unique answer. Making the appropriate decisions is
even more difficult in developing nations, many of which
face serious hazards but have even larger alternative demands
for resources that could be used for seismic safety. A classic

example is the choice between building schools for towns
without them or making existing schools earthquake-resistant.

A related issue is ensuring that buildings are built to the
codes, given the tendency to evade expensive regulations de-
signed to deal with events that are infrequent on a human time
scale. For example, much damage occurred during large earth-
quakes in Turkey in 1999 because the building codes were not
enforced. It has been reported that walls crumbled, revealing
empty olive oil cans inserted during construction to save the
costs of concrete.

Much of what has been learned about safe construction has
been via trial and error. In California, the first major set of
building codes was enacted following the 1933 Long Beach
earthquake, which did $41 million worth of damage and killed
120 people. With successive destructive earthquakes, engineers
have acquired a better sense of what works best, and build-
ing codes have been modified. For instance, buildings have
become more resistant to the lateral shear that accompanies
horizontal shaking with the use of shear walls consisting of
concrete reinforced with steel. Similarly, measures have been
developed to retrofit older buildings to increase their earth-
quake resistance.

An important factor for earthquake engineers is that struc-
tures resonate at different periods. Although the resonant
period or periods depend on the specific building geometry and
materials, they generally increase with an increase in the height
or base width of a building. For example, typical houses or
small buildings have periods of about 0.2 s, whereas a typical
10-story building has a period around 1 s. If the peak energy of
ground motion is close to a building’s resonant period, and the
shaking continues long enough, the building may undergo
large oscillations and be seriously damaged. This effect is
like a swing a pushing at random intervals will likely stop

1.2 Seismology and society 17
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the swing, whereas pushing repeatedly at its resonant period
gives the person on it a good ride. Through this mechanism,
an earthquake can destroy certain buildings and not others.
Similarly, a building might collapse after a magnitude 7 earth-
quake, but remain standing after a magnitude 8 event with
peak energy at a lower frequency. Sometimes damage occurs
because adjacent buildings resonate out of phase, making their
tops collide.

Another crucial factor for earthquake-resistant construction
is the ground material of the site. Loose sediments and other
weak rocks at the surface enhance ground motion compared
to bedrock sites. As shown in Section 2.4.5, near-surface
sediments can increase ground displacements by more than
an order of magnitude. For instance, during the 1989 Loma
Prieta earthquake, areas that sustained the worst damage
corresponded to ones of high risk identified on the basis of
subsurface geology. The failures of buildings in the Marina
district, the Bay Bridge, and the Nimitz freeway all occurred
on sedimentary layers.

An example of these effects occurred in 1985 in Mexico City,
which is built on the sedimentary fill of an ancient lake that has
dried up since the time of the Aztecs. A magnitude 7.9 earth-
quake at the subduction zone to the west caused the sediment-
ary basin to shake for more than 3 minutes (an unusually long
time) at a dominant period of about 2 s. The worst damage was
sustained by buildings with 6–15 stories, which had resonant
periods of 1–3 s. Shorter or taller buildings were less damaged
because they did not resonate with the ground shaking. This
damage pattern has repeated for successive earthquakes.

1.2.3 Highways, bridges, dams, and pipelines

Buildings are not the only challenge for earthquake-resistant
construction. Highways, bridges, parking structures, land-
fills, dams, pipelines, and power plants present additional
problems. Many of these structures are crucial to society, so
considerable effort is made to ensure that they will survive
earthquakes.

Elevated highways often fail during earthquakes. Most of
the lives lost during the 1989 Loma Prieta earthquake were due
to the collapse of the Nimitz freeway in Oakland. In Los Ange-
les, the I-5 freeway was built to withstand a large earthquake,
but parts were destroyed during the 1971 San Fernando earth-
quake. These were rebuilt, but parts collapsed again during the
1994 Northridge shock. A dramatic highway failure occurred
during the 1995 Kobe earthquake, when a 20 km length of
an expressway supported by large concrete piers fell over,
crushing many cars and trucks.

Similar problems beset bridges, as illustrated in the 1989
Loma Prieta earthquake. The Bay Bridge connecting San Fran-
cisco and Oakland is a double-deck bridge built in 1936 with
little flexibility and rests on sedimentary rocks. A large piece of
the upper span collapsed during the earthquake (Fig. 1.2-8),
and the bridge was closed for months for repairs. By contrast,
the Golden Gate Bridge, a suspension bridge built into bed-

Fig. 1.2-8 Damage to the Bay Bridge, connecting San Francisco
and Oakland, from the October 17, 1989, Loma Prieta earthquake.
The bridge is of old construction (1936), and its supports rest in
sedimentary fill that amplifies ground shaking. (Courtesy of the
US Geological Survey.)

rock, was designed to withstand a large amount of shaking and
fared well.

The failure of dams due to earthquakes poses considerable
risk, as illustrated by the near-failure of the lower Van Norman
dam during the 1971 San Fernando earthquake. A segment of
the dam 600 m long broke and slid into the reservoir (Fig. 1.2-
9), lowering the dam by 10 m and leaving it only 1.5 m above
the water. Fortunately, the area had been suffering from a
drought, and the reservoir was only half full. Eighty thousand
people living below the dam were evacuated, and the reser-
voir was quickly drained. The dam was replaced by a more
modern dam that suffered only minor cracking during the
1994 Northridge earthquake.

Dams have the special problem that they can cause earth-
quakes. This seems counter-intuitive, because the added weight
of the water should increase the pressure on the rock below and
inhibit faulting, because the two sides of the fault are pressed
together harder, requiring a greater force to overcome the
friction. However, it seems that the water impounded by dams
sometimes flows into the rock, lowering the friction across
faults and making rupture easier. The effect can be noticeable;
seismicity associated with the man-made lake in Koyna, India,
seems to follow a seasonal curve, being more active follow-
ing the rainy season when reservoir levels are higher. One
earthquake in 1967 was large enough to kill 200 people. The
possibility of reservoir-induced earthquakes is thus considered
when designing dams.

The greatest cause of earthquake-related death and destruc-
tion, other than the collapse of buildings, is fire. An important
contributor to this problem is that water pipelines can rupture,
making fire fighting harder. In the 1906 San Francisco earth-
quake, many buildings were damaged by the shaking, but fires
that lasted three days are thought to have done ten times more



Fig. 1.2-9 Failure of the lower Van Norman dam that occurred during the
February 9, 1971, San Fernando valley earthquake. Flooding did not
occur because the region had been experiencing a drought, and the water
level was low. (Courtesy of the US Geological Survey.)

Fig. 1.2-11 Aerial view of Valdez, Alaska, showing the inundation of the
coastline following the great 1964 earthquake. The resulting tsunami was
as high as 32 m in places. (National Geophysical Data Center. Courtesy of
the US Department of the Interior.)

1.2.4 Tsunamis, landslides, and soil liquefaction

Spectacular exceptions to the truism that “earthquakes don’t
kill people, buildings kill people” include tsunamis, landslides,
avalanches, and soil liquefaction. Earthquake hazard planning
thus includes identifying sites where these risks are present.

Tsunamis are large water waves that occur when portions of
the sea floor are displaced by volcanic eruptions, submarine
landslides, or underwater earthquakes (Fig. 1.2-11). Tsunamis
are not noticeable as they cross the ocean, but can be amplified
dramatically upon reaching the shore. The 1896 Sanriku
(Japan) earthquake caused 35 m-high tsunamis that washed
away 10,000 homes and killed 26,000 people. Hawaii is espe-
cially susceptible to tsunamis from earthquakes around the
Pacific rim. Tsunamis from the 1960 Chilean earthquake killed
61 people in Hawaii, and the 1946 Alaska earthquake created
a 7 m-high tsunami that washed over and short-circuited a
power station, plunging Hilo into darkness. To address these
risks, tsunami warning systems have been developed that assess

Fig. 1.2-10 Fires burning in San Francisco
five hours after the April 18, 1906,
earthquake. Many buildings received little
damage from the earthquake, but were
destroyed by the fires that burned out of
control for three days. (Courtesy of the
National Geophysical Data Center.)
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damage (Fig. 1.2-10). Following the 1923 Tokyo earthquake,
fires caused by overturned cooking stoves spread rapidly
through the city and were unstoppable, due to ruptured water
pipes. Many of the over 140,000 deaths resulted from fire,
including a fire storm that engulfed 40,000 people who fled to
an open area to escape collapsing buildings. In modern cities,
natural gas pipelines can rupture, allowing flammable gas to
escape and ignite. After the 1994 Northridge and 1995 Kobe
earthquakes, both of which happened at night, the wide
outbreaks of fires were the first way that rescue efforts could
identify the areas that sustained the greatest damage. People in
earthquake-prone areas are taught to turn off the gas supply to
their homes if they smell gas after a large earthquake.
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Fig. 1.2-12 Landslide along California State Highway 17 in the Santa
Cruz mountains, caused by shaking from the 1989 Loma Prieta
earthquake. The landslide blocked the major commuter route between
Santa Cruz and San Jose. (Courtesy of the US Geological Survey.)

the likelihood that a large earthquake will generate a tsunami
and issue warnings before the tsunami reaches distant areas.

Ground shaking in areas with steep topography can cause
destructive landslides and avalanches (Fig. 1.2-12). For ex-
ample, a 1970 earthquake in Peru caused rock and ice land-
slides that traveled downhill at speeds of 300 km/hr, burying
villages and killing 30,000 people.

Another earthquake hazard involves liquefaction, a process
by which loose water-saturated sands behave like liquids when
vigorously shaken. Under normal conditions, the sand grains
are in contact with each other, and water fills the pore spaces
between them. Strong shaking moves the grains apart, so the
soil behaves like a fluid slurry similar to “quicksand.” Build-
ings can sink, otherwise undamaged, during the few seconds of
peak ground shaking, and end up permanently stuck when the
shaking stops and the soil resolidifies. A classic example is the
tilting and sinking of buildings in Niigata, Japan, during a
1964 earthquake (Fig. 1.2-13).

Ground consisting of loose wet sediment is most suscept-
ible to liquefaction. Sometimes the sand is ejected out of the
surface as sand blows. This happened in the Marina district of
the San Francisco waterfront during the 1989 Loma Prieta
earthquake. Ironically, some of the material that erupted from
the ground was building rubble from the 1906 San Francisco
earthquake that had been bulldozed into the bay to make new
waterfront property.

Liquefaction can be widespread and devastating, involving
large downslope movements of soil called lateral spreading. In
the 1920 Kansu, China, earthquake, downslope flows traveled
over 1.5 km, killing 180,000 people. During the 1964 Alaska
earthquake, parts of the Turnagain Heights section of Anchor-
age liquefied and collapsed. A dramatic example occurred on

Fig. 1.2-13 Damage to apartment buildings caused by soil liquefaction
during the June 16, 1964, Niigata (Japan) earthquake. About a third of
the city sank by as much 2 m as a result of sand compaction. (Courtesy
of the National Geophysical Data Center.)

the island of Jamaica due to a magnitude 8 earthquake in 1692,
where much of the town of Port Royal, built upon sand, sank
about 4 m beneath the ocean. For years afterward, people on
boats in the harbor could see houses below.

1.2.5 Earthquake forecasting

Reducing earthquake risks via resistant construction relies on
identifying regions prone to earthquakes and estimating, even
if crudely, how likely earthquakes are to occur and what shak-
ing they might produce. Thus earthquake forecasting involves
both scientific issues and the related question of how society
can best use what seismology can provide.

Before addressing the predictions of earthquakes, it is useful
to consider predictions for other geophysical processes. For
example, severe storms are predicted in several ways. The first
are long-term average forecasts: Chicagoans expect winter
snowstorms, whereas Miamians expect fall hurricanes. Public
authorities, power companies, homeowners, and businesses use
the historical record of storms to prepare for them. Although
surprises occur, long-term forecasting is generally adequate to
ensure that needed resources (snow plows, salt) are available,
whereas funds are not wasted on unneeded preparations (snow
plows in Miami). Second, short-term weather forecasting often
can identify conditions under which a storm is likely to form
soon. Third, once formed, storms are tracked in real time,
so people are often warned a day or more in advance to make
preparations.

Similarly, volcanic hazard assessment begins with the loca-
tion of volcanoes that are active or have been so recently (in
geological terms). Based on the eruption history taken from
historical accounts and the geologic record, long-term forecasts



can be made. Short-term predictions are made using various
phenomena that precede major eruptions: rising magma causes
ground deformation, small earthquakes, and the release of
volcanic gases. Finally, small eruptions usually precede a large
one, making it possible to issue real-time warnings. Hence the
record of volcanic predictions, though not perfect,8 is reason-
ably good. The area around Mt St Helens was evacuated before
the giant eruption of May 18, 1980, reducing the loss of life
to only 60 people, including a geologist studying the volcano
and citizens who refused to leave. The largest eruption of
the second half of the twentieth century, Mt Pinatubo in the
Philippines, destroyed over 100,000 houses and a nearby US
Air Force base, yet only 281 people died because of evacuations
during the preceding days.

Seismologists would like to do as well for earthquakes. We
would like to be able to forecast where they are on average
likely to occur in years to come, predict them a few years to
hours before they occur, and issue real-time warnings after an
earthquake has occurred in situations where such a warning
would be useful. However, the record of seismology in these
areas is mixed. To date there has been some success in long-
term forecasting, little if any in short-term prediction, and
some in real-time warning.

Earthquake forecasting, discussed in Section 4.7.3, estimates
the probability that an earthquake of a certain magnitude will
occur in a particular area during a specific time. For instance,
a forecast might be a 25% probability of a magnitude 7 or
greater earthquake occurring along the San Francisco segment
of the San Andreas fault in the next 30 years. Forecasting uses
the history of earthquakes on the fault and other geophysical
information, such as the crustal motions measured using the
Global Positioning System, to predict its likely future behavior.
While forecasting is not relevant to short-term earthquake
preparations, it is important in the enactment of building codes
for earthquake-resistant construction, which are costly and
require justification. Such forecasting is already successful in
general ways; knowing that the San Andreas and nearby faults
will be the sites of recurrent earthquakes has prompted build-
ing codes that are a major reason why the 1989 Loma Prieta
and 1994 Northridge earthquakes caused few casualties.

Going beyond general forecasts is more difficult. For ex-
ample, the probabilistic hazard map for the USA in Fig. 1.2-3
predicts a general pattern of higher hazards in areas of known
past large earthquakes. Most of these, in California and
Nevada, the Pacific Northwest, and Utah, are in the western
USA, in the broad boundary zone between the Pacific and
North American plates. In addition, high hazards are predic-
ated in parts of the interior of the continent, near Charleston,

South Carolina, and the New Madrid seismic zone in the
Midwest. The map attempts to quantify this risk in terms of the
maximum expected acceleration (recall that 0.2 g corresponds
approximately to the onset of significant building damage)
during a time interval. Such maps are made by assuming where
and how often earthquakes will occur, how large they will be,
and then using ground motion models like those in Fig. 1.2-5 to
predict how much ground motion they will produce. Because
these factors are not well understood, especially in intraplate
regions where large earthquakes are rare, hazard estimates
have considerable uncertainties.9 For example, the high hazard
predicted for parts of the Midwest, exceeding that in San
Francisco or Los Angeles, results from specific assumptions,
and alternative assumptions yield quite different estimates
(Fig. 1.2-14).

Similarly, hazard estimates depend on the probability and
hence recurrence time considered. Where the largest earth-
quakes are expected about every 200 years a for example, near
a plate boundary as in California a a hazard map predicting
the maximum acceleration expected at a 10% probabil-
ity in the next 50 years, or at least once during the next 500
(50/0.1) years, will be similar to one for 2% probability in the
next 50 years, or at least once during the next 2500 (50/0.02)
years, because each portion of plate boundary is expected to
rupture at least once in 500 years. However, the two maps
would differ significantly where large earthquakes are less
frequent a for example, in an intraplate region like the New
Madrid zone (Sections 4.7.1, 5.6.3). This issue is important in
choosing building codes because typical buildings have a useful
life of about 50 years.

Because earthquakes are infrequent on a human time scale,
it will be a long time before we know how well such estimates,
which combine long-term earthquake forecasts and ground
motion predictions, actually describe future earthquakes.
Nonetheless, such estimates are used for purposes such as
developing building codes and setting insurance rates. As a
result, how to make meaningful predictions and hazard estim-
ates, communicate their uncertainties to the public, and best
use them for policy is a topic of discussion relevant not just
to seismology but to the other earth sciences as well.

A key scientific challenge for hazard estimation is that the
process determining when large earthquakes recur is unclear.
The underlying basis for seismic forecasting is the principle of
elastic rebound (Section 4.1). In this model, large-scale crustal
motions, in most cases due to plate motions, slowly build up
stress and strain across locked faults. When the stress reaches
a critical threshold, seismic slip occurs along the fault, and the
stress immediately drops. The process then begins again. The
repeat time for these earthquakes depends on the rate at which
crustal motions load the fault and the properties of the rocks
that control when it slips.8 In 1982, uplift of the volcanic dome and other activity near the resort town of

Mammoth Lakes, California, suggested that an eruption might be imminent. Geolo-
gists issued a volcano alert, resulting in significant tensions with local business leaders.
When no eruption occurred, geologists were the target of much local anger, and the
county supervisor who arranged for an escape route in the event of a volcanic eruption
was recalled in a special election.

9 Earthquake risk assessment has been described as “a game of chance of which we
still don’t know all the rules” (Lomnitz, 1989).
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This idea implies that the history of large past earthquakes
in an area should indicate the probable time of the next one.
Naturally, the longer the history available, the better. Unfortun-
ately, the duration of earthquake cycles is typically long com-
pared to the approximately 100-year history of instrumental
seismology. In some parts of the world, like China and Japan,
historical records extend well into the past, whereas in the
USA, the historic record is shorter. The earthquake history can
be extended by paleoseismology, a branch of geology that
studies the past history of faults. One of the best examples is the
use of geological data to infer the history of large earthquakes
on a major southern segment of the San Andreas fault. The last
major earthquake recorded at a site at Pallett Creek, Califor-
nia, the 1857 Fort Tejon earthquake, is known from historical
records to have caused shaking with an intensity of XI. The

faulting is recorded by disruptions of sedimentary strata,
including sand blows where material erupted during the
earthquake. Sand blows and other structures from previous
earthquakes were dated with radiometric carbon-14 methods,
giving the dates of previous earthquakes. Despite the many
uncertainties involved with these methods, including uncer-
tainties in radiometric dating and the effects of climate varia-
tions and burrowing animals, the data show that faulting has
recurred over the past thousands of years. However, assessing
the size of past earthquakes and whether some earthquakes
were missed is difficult.

The results can be surprising. For instance, large earthquakes
near Pallett Creek appear to have occurred approximately in
the years 1857, 1812, 1480, 1346, 1100, 1048, 997, 797, 734,
and 671. Because the average time between events is 132 years,
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Fig. 1.2-14 Comparison of the predicted
seismic hazard (peak ground acceleration
expected at 2% probability in 50 years)
from New Madrid seismic zone
earthquakes for alternative parameter
choices. Rows show the effect of varying
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Madrid fault earthquakes from 8 to 7,
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many of which seem to act for only a few earthquake cycles,
and others of which may be one-time events. Research, some
of which is discussed in Section 5.7, is going on to investigate
this complexity.

Even with the dates of previous major earthquakes, it is diffi-
cult to predict when the next will occur, as illustrated by the
segment of the San Andreas fault near Parkfield, California.
Compared to the southern segment just discussed, or the north-
ern segment on which the 1906 earthquake occurred, the
Parkfield segment is characterized by smaller earthquakes that
occur more frequently and appear much more periodic. Earth-
quakes of magnitude 5–6 occurred in 1857, 1881, 1901, 1922,
1934, and 1966. The average recurrence interval is 22 years,
and a linear fit to these dates made 1988 the likely date of the
next event. In 1985, it was predicted at the 95% confidence
level that the next Parkfield earthquake would occur before
1993, which was the USA’s first official earthquake prediction.
A comprehensive observing system was set up to monitor elec-
trical resistivity, magnetic field strength, seismic wave velocity,
microseismicity, ground tilting, water well levels and chem-
istry (especially radon content), and motion across the fault.
The well-publicized experiment10 hoped to observe precursory
behavior, which seemed likely because surface cracks were
observed 10 days before the 1966 earthquake and a pipeline
ruptured 9 hours before the shock, and to obtain detailed
records of the earthquake at short distances. As of 2002, the
earthquake had not yet happened, making the current interval
(35 years and growing) the longest yet observed between earth-
quakes there. The next Parkfield earthquake will eventually
occur, but its non-arrival to date illustrates both the limitations
of the statistical approaches used in the prediction (including
the omission of the 1934 earthquake on the grounds that it
was premature and should have occurred in 1944) and the fact
that even in the best of circumstances nature is not necessarily
cooperative or easily predicted. For that matter, it is unclear
whether the Parkfield segment of the San Andreas fault shows
such unusual quasi-periodicity because it differs from other
parts of the San Andreas fault (in which case predicting earth-
quakes there might not be that helpful for other parts), or
whether it results simply from the fact that, given enough time
and different fault segments, essentially random seismicity can
yield apparent periodicity somewhere. As is usual with such
questions, only time will tell.

Such seismic forecasting involves the concept of seismic
gaps, discussed further in Sections 4.7.3 and 5.4.3. The idea is
that a long plate boundary like the San Andreas or an oceanic
trench ruptures in segments. We would thus expect steady plate
motion to cause earthquakes that fill in gaps and occur at
relatively regular intervals. However, the Pallett Creek and
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Fig. 1.2-15 Paleoseismic time series of earthquakes along the San Andreas
fault near Pallett Creek, California, inferred from sedimentary deposits by
Sieh et al. (1989). The sequence shows earthquake clusters separated by
longer time intervals, illustrating the complexity of earthquake recurrence.
(Keller and Pinter, Active Tectonics: earthquakes, uplift, and the
landscape, © 1996. Reprinted by permission of Pearson Education.)

10 The costs involved (more than $30 million) led The Economist magazine
(Aug. 1, 1987) to argue that “Parkfield is geophysics’ Waterloo. If the earthquake
comes without warnings of any kind, earthquakes are unpredictable and science is
defeated. There will be no excuses left, for never has an ambush been more carefully
laid.”

we might have expected the next large earthquake around the
year 1989. However, the intervals between earthquakes vary
from 45 years to 332 years, with a standard deviation of 105
years. Thus, given these data right after the 1857 earthquake,
the simplest view would be that the earthquake would likely
recur between 1885 and 2093. However, the time history sug-
gests that something more complicated is going on (Fig. 1.2-
15), as illustrated by the fact that the standard deviation of the
recurrence time is similar to its mean. It looks as if the earth-
quakes are clustered: three earthquakes between 671 and 797,
then a 200-year gap, then three between 997 and 1100, fol-
lowed by a 246-year gap. Hence, using the earthquake history
to forecast the next big earthquake is challenging, and the
study’s authors concluded in 1989 that one could estimate
the probability of a similar earthquake before 2019 as only
somewhere in the range 7–51%. For example, if the cluster that
included the 1812 and 1857 earthquakes is over, then it may be
a long time until the next big earthquake there.

The variability of recurrence times is striking because these
data span for a long time history (10 earthquake cycles) on a
plate boundary where the plate motion causing the earthquake
is steady. The history of most faults is known only for the past
few cycles, and the Pallett Creek data imply that these may not
be representative of the long-term pattern. The recurrence may
be even more complicated for earthquake zones within plates,
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the process is complex. Earthquakes are at best only crudely
periodic, and sometimes appear instead to cluster in time.
Faults display a continuum of behavior from locking, to slow
aseismic creep, to earthquakes. Thus the theoretical and ex-
perimental study of rock deformation and its application to
earthquake faulting is an active field of research (Section 5.7).

1.2.6 Earthquake prediction

Earthquake prediction is defined as specifying within certain
ranges the location, time, and size of an earthquake a few years
to days before it occurs. Prediction is an even more difficult
problem than long-term forecasting. A common analogy is that
although a bending stick will eventually snap, it is hard to pre-
dict exactly when. To do so requires either a theoretical basis
for knowing when the stick will break, given a history of the
applied force, or observing some change in physical properties
that immediately precedes the stick’s failure.

Because little is known about the fundamental physics of
faulting, many attempts to predict earthquakes have searched
for precursors, observable behavior that precedes earthquakes.
To date, as discussed next, this search has proved generally un-
successful. As a result, it is unclear whether earthquake predic-
tion is even possible. In one hypothesis, all earthquakes start off
as tiny earthquakes, which happen frequently, but only a few
cascade via a random failure process into large earthquakes.11

Parkfield examples show that the earth is more complicated.
Some earthquakes may fit the gap idea; the 1989 Loma Prieta
earthquake and its aftershocks have been interpreted as filling
a gap along the San Andreas fault (Fig. 1.2-16), although the
fact that the earthquake differed from the expected fault
geometry has also been interpreted as making it different from
the expected gap-filling earthquake. In other areas, however,
the gap hypothesis has not yet proved successful in identifying
future earthquake locations significantly better than random
guessing. Faults deemed likely to rupture have not done so,
and earthquakes sometimes occur on faults that were either
unknown or considered seismically inactive. Understanding if,
where, and when the gap hypothesis is useful is thus an active
research area. Until it is resolved, it is unclear whether it is
better to assume that all segments of a given fault are equally
likely to rupture, making the probability of a major earthquake
independent of time, or whether the segment that ruptured
longest ago should have since accumulated the greatest elastic
strain, and therefore be most likely to rupture next. This issue is
important for hazard estimates.

In summary, several factors make earthquake forecasting
difficult. In the meteorological case, storms occur frequently on
human time scales, and we believe that we understand their
basic physics. By contrast, the cycle of earthquakes on a given
fault segment is long on a human time scale. Thus there are
only a few places with a time history long enough to formulate
useful hypotheses (recall that even the Pallett Creek 1000-year
history shows major complexity). Moreover, because forecasts
must be tested by their ability to predict future earthquakes, a
long time will be needed to convincingly test models of earth-
quake recurrence and hazards. Even worse, the fundamental
physics of earthquake faulting is not yet understood. Clearly,

11 This hypothesis draws on ideas from nonlinear dynamics or chaos theory, in
which small perturbations can grow to have unpredictable large consequences. These
ideas were posed in terms of the possibility that the flap of a butterfly’s wings in Brazil
might set off a tornado in Texas, or in general that minuscule disturbances do not
affect the overall frequency of storms but can modify when they occur (Lorenz, 1993).

Fig. 1.2-16 Cross-section of the seismicity along the San Andreas fault before (top) and after (bottom) the 1989 Loma Prieta earthquake. This earthquake,
whose rupture began at the large circle in the lower figure and is marked by the aftershocks (small circles), has been interpreted as filling a seismic gap along
the San Andreas fault, although other interpretations have also been made. (Courtesy of the US Geological Survey.)
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In this view, because there is nothing special about those tiny
earthquakes that happen to grow into large ones, the interval
between large earthquakes is highly variable, and no observ-
able precursors should occur before them. If so, earthquake
prediction is either impossible or nearly so.

Support for this view comes from the failure to observe a
compelling pattern of precursory behavior before earthquakes.
Various possible precursors have been suggested, and some
may have been real in certain cases, but none have yet proved to
be a general feature preceding all earthquakes, or to stand out
convincingly from the normal range of the earth’s variable
behavior. Although it is tempting to note a precursory pattern
after an earthquake based on a small set of data and to suggest
that the earthquake might have been predicted, rigorous tests
with large sets of data are needed to tell whether a possible
precursory behavior is real and correlates with earthquakes
more frequently than expected purely by chance. Most cru-
cially, any such pattern needs to be tested by predicting future
earthquakes.

One class of precursors involves foreshocks, earthquakes
that occur before a main shock. Many earthquakes, in hind-
sight, have followed periods of anomalous seismicity. In some
cases, there is a flurry of microseismicity: very small earth-
quakes like the cracking that precedes a bent stick’s snapping.
In other cases, there is no preceding seismicity. However, faults
often show periods of either elevated or nonexistent micro-
seismicity that are not followed by a large earthquake. Altern-
atively, the level of microseismicity before a large event can
be unremarkable, occurring at a normal low level. The lack of
a pattern highlights the problem with possible earthquake pre-
cursors: to date, no changes that might be associated with an
upcoming earthquake are consistently distinguishable from the
normal variations in seismicity that are not followed by a large
earthquake.

Another class of possible precursors involves changes in the
properties of rock within a fault zone preceding a large earth-
quake. It has been suggested that as a region experiences a
buildup of elastic stress and strain, microcracks may form and
fill with water, lowering the strength of the rock and eventually
leading to an earthquake. This effect has been advocated based
on data showing changes in the level of radon gas, presumably
reflecting the development of microcracks that allow radon
to escape. For example, the radon detected in groundwater
rose steadily in the months before the 1995 Kobe earthquake,
increased further two week before the earthquake, and then
returned to a background level (Fig. 1.2-17).

A variety of similar observations have been reported. In
some cases, the ratio of P- and S-wave speeds in the region of an
earthquake has been reported to have decreased by as much as
10% before an earthquake. Such observations would be con-
sistent with laboratory experiments, and would reflect cracks
opening in the rock (lowering wave speeds) due to increasing
stress and later filling (increasing wave speeds). However,
this phenomenon has not been substantiated as a general phe-
nomenon. Similar difficulties beset reports of a decrease in the

Fig. 1.2-17 Radon within groundwater before and after the January 16,
1995, Kobe earthquake in Japan. (Igarashi et al., 1995. Reprinted with
permission from Science, 269, 60–1. Copyright 1995, American
Association for the Advancement of Science.)

electrical resistivity of the ground before some earthquakes,
consistent with large-scale microcracking. Changes in the
amount and composition of groundwater have also been ob-
served. For example, a geyser in Calistoga, California, changed
its period between eruptions before the 1989 Loma Prieta and
1975 Oroville, California, earthquakes.

Efforts have also been made to identify ground deformation
immediately preceding earthquakes. The most famous of these
studies was the report in 1975 of 30–45 cm of uplift along
the San Andreas fault near Palmdale, California. This highly
publicized “Palmdale Bulge” was interpreted as evidence of an
impending large earthquake and was a factor in the US govern-
ment’s decision to launch the National Earthquake Hazards
Reduction Program aimed at studying and predicting earth-
quakes. However, the earthquake did not occur, and reanalysis
of the data implied that the bulge had been an artifact of errors
involved in referring the vertical motions to sea level via a
traverse across the San Gabriel mountains. Subsequent studies,
using newer and more accurate techniques including the
Global Positioning System satellites, satellite radar interfero-
metry, and borehole strainmeters have not yet convincingly
detected precursory ground deformation.

An often-reported precursor that is even harder to quantify
is anomalous animal behavior. What the animals are sensing
(high-frequency noise, electromagnetic fields, gas emissions) is
unclear. Moreover, because it is hard to distinguish “anoma-
lous” behaviors from the usual range of animal behaviors,
most such observations have been “postdictions,” coming
after rather than before an earthquake.

Despite these difficulties, Chinese scientists are attempting to
predict earthquakes using precursors. Chinese sources report
a successful prediction in which the city of Haicheng was
evacuated in 1975, prior to a magnitude 7.4 earthquake that
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damaged more than 90% of the houses. The prediction is said
to have been based on precursors, including ground deforma-
tion, changes in the electromagnetic field and groundwater
levels, anomalous animal behavior, and significant foreshocks.
However, in the following year, the Tangshan earthquake
occurred not too far away without precursors. In minutes,
250,000 people died, and another 500,000 people were
injured. In the following month, an earthquake warning in the
Kwangtung province caused people to sleep in tents for two
months, but no earthquake occurred. Because foreign scient-
ists have not yet been able to assess the Chinese data and the
record of predictions, including both false positives (predic-
tions without earthquakes) and false negatives (earthquakes
without predictions), it is difficult to evaluate the program.

In summary, despite tantalizing suggestions, at present there
is still an absence of reliable precursors. The frustrations of this
search have led to the wry observation that “it is difficult
to predict earthquakes, especially before they happen.” Most
researchers thus feel that although earthquake prediction
would be seismology’s greatest triumph, it is either far away
or will never happen. However, because success would be of
enormous societal benefit, the search for methods of earth-
quake prediction will likely continue.

1.2.7 Real-time warnings

Some recent efforts are directed to the tractable goal of real-
time warnings, where seismometers trigger an immediate
warning if a set of criteria is met. For tsunamis, the warning
may be several hours in advance, which is enough time for
preparations. This is because tsunamis travel more slowly
than seismic waves. A P wave travels from Alaska to Hawaii
in about 7 minutes, whereas a tsunami traveling at about
800 km/hr across the ocean takes 5.5 hours. After the damage
done to Hilo by the 1946 Alaska earthquake, the Seismic Sea
Wave Warning System was organized for countries that rim the
Pacific Ocean. Information from seismometers and tide gauges
was phoned to the Tsunami Warning Center in Honolulu,
Hawaii, which issued tsunami alerts if necessary.12 Tsunami
warning systems have since become more automated, using
real-time digital seismic data to locate large earthquakes and
derive information about their magnitudes, depths, and focal
mechanisms. An assessment can be made of the likelihood of
a tsunami, which usually results from vertical motion at the sea
floor.

The situation is much more complicated with seismic waves.
Although local seismic networks can automatically and imme-
diately locate an earthquake and assess if it is hazardous, the
warning time is short. For example, a warning after a major
earthquake on the New Madrid fault system instantly relayed
via Internet or radio to St Louis would arrive about 40 seconds

before the first seismic waves. Seismologists, engineers, and
public authorities are thus discussing what might be done with
such short warning times. Although such times would not per-
mit evacuations, certain steps might be useful. For example,
real-time warnings are used in Japan to stop high-speed trains,
and it may be practical to have gas line shut-off valves or other
automatic responses connected to such a system. The questions
are whether the improved safety justifies the cost and whether
the risk of false alarms is serious.

A related approach is to provide authorities with near-
real-time information, including data on the distribution of
shaking, immediately after major earthquakes. Seismic net-
works are working to provide emergency management services
with information that can help direct the needed response to
the most affected areas during the chaotic few hours after a
large earthquake, when the location and extent of damage are
often still unclear.

1.2.8 Nuclear monitoring and treaty verification

Another important societal application of seismology is the
monitoring of nuclear testing. Although atomic physics destab-
ilized world politics through the invention of the atomic bomb,
seismology has partially restabilized it. Throughout the cold
war between the USA and the Soviet Union, seismology helped
verify that treaties were being observed.

The role of seismology in nuclear monitoring began in 1957
when the USA detonated RAINIER, the first underground
nuclear explosion. By the early 1960s it became clear that
radioactive elements produced by atmospheric nuclear testing
posed significant health threats. In 1963, 116 nations signed
the Limited Test Ban Treaty, which banned nuclear testing
in the atmosphere, in the oceans, and in space, and required
testing to occur underground. At about this time, the US Air
Force helped fund the deployment of the World Wide Stand-
ardized Seismographic Network (WWSSN). WWSSN stations
provided important information for monitoring nuclear testing
and a wealth of data that played a major role in modern geo-
physical seismology.

In 1976, countries began to abide by the Threshold Test Ban
Treaty, which limited the size of underground nuclear tests to
150 kt (equivalent to 150 kilotons of TNT). Before then, the
largest atmospheric test had been 58 Mt, and the largest under-
ground test had been 4.4 Mt. Figure 1.2-18 shows the yields es-
timated seismologically for underground nuclear tests carried
out by the Soviet Union. Although it was initially thought that
some of the post-1976 explosions were greater than 150 kt,
this turned out to reflect the different geologies of the western
USA and central Asia. The conversion of seismic body wave
magnitude mb values into TNT yields was calibrated using the
Nevada test site, but the western US crust is more seismically
attenuating than the more stable Soviet sites in Kazakhstan
and Novaya Zemlya (see Section 3.7.10). The yields of
explosions in kilotons, Y, can be related to the observed seismic
magnitudes by

12 Serious or older television viewers may recall the episode of Hawaii 5-0 in which
criminals force the center to issue a spurious tsunami warning to prompt evacuation
of downtown Honolulu and facilitate a robbery.



13 A strategy described as “In God we trust, all others we verify.”

more surface wave energy (Ms), from the explosions, which
generate more body (P) wave energy (mb).

The challenge of seismic monitoring has increased in recent
years. Since 1996 the USA has abided by the Comprehensive
Test Ban Treaty (CTBT), which bans all nuclear testing, pre-
venting the development of new nuclear weapons. Thus the
focus of US monitoring efforts has expanded to include smaller
countries around the world.13 There is also the need to identify
possible smaller nuclear tests, including those by terrorists.
Hence seismic monitoring must identify explosions less than
1 kt, which have a magnitude of 4–4.5 (Eqn 2). This requires
locating and identifying more than 200,000 earthquakes and
additional mining explosions every year.

1.2 Seismology and society 27

0 60 120 180 240

Time (s)

May 11, 1998, Indian nuclear test
(magnitude 5.1)

April 4, 1995 Indian earthquake
(magnitude 4.8)

P

Surface wave

Fig. 1.2-19 Seismograms showing the differences
between an earthquake and an explosion. For shallow
earthquakes, in this case an mb 4.8 shock in India, the
P wave is much smaller than the surface waves. By
contrast, the initial P wave is the largest arrival for
explosions like this Indian nuclear test. Data recorded
at Nilore, Pakistan. (Courtesy of the Incorporated
Research Institutions for Seismology.)

mb = C + 0.75 log Y, (2)

but the constant differs for Nevada (C = 3.95) and Kazakhstan
(C = 4.45). With these corrections, it appears that the Soviet
Union complied with the treaty.

Monitoring nuclear tests requires distinguishing them from
earthquakes. Examples of the differences are shown in Fig. 1.2-
19 for an earthquake and an explosion in India. Earthquakes
occur by slip across a fault, generating large amounts of shear
wave energy and hence large surface waves. By contrast, explo-
sions involve motions away from the source, and so produce
far less shear wave energy. Hence, for bombs the surface waves
are dwarfed by the initial P wave. This difference is the basis for
discrimination between earthquakes and explosions. A plot of
Ms vs mb (Fig. 1.2-20) separates earthquakes, which generate

Fig. 1.2-18 Yields of underground nuclear tests carried
out by the Soviet Union, determined through seismically
observed mb magnitudes. After the Threshold Test Ban
Treaty (TTBT), seismology verified that the Soviet
Union was in general compliance with the 150-kiloton
limit. Data courtesy of P. Richards (personal
communication).
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of 120 broadband stations, distributed over 61 countries and
largely based on existing networks, will aid in discrimination
and replace malfunctioning primary stations.

Further reading

The seismological topics introduced in this chapter are discussed elsewhere
in the text, so references are given in the appropriate sections. Many other
references exist for the topics of societal interest discussed here.

Popular accounts of issues related to earthquakes include Gere and Shah
(1984), Bolt (1999), and Brumbaugh (1999). Introductory treatments
dealing with earthquakes and volcanoes from the point of view of the geo-
logy and hazards include Alexander (1993), Kovach (1995), and Sieh and
LeVay (1998). The World Wide Web contains a wealth of general earth-
quake information; sites to start at include http://www.scec.org, http://
www.seismosoc.org, http://www.iris.edu, and http://earthquake.usgs.gov.
Specific issues related to volcano prediction studies at Mammoth Lakes
are discussed by Sieh and LeVay (1998) and Hill (1998). For discussions
of paleoseismology and geological effects of earthquakes, see Keller and
Pinter (1996) and Yeats et al. (1997). The role of seismology in the plate
tectonic revolution is discussed by Cox (1973) and Menard (1986); the
general idea of scientific revolutions as “paradigm shifts” is given by Kuhn
(1962).

Issues of assessing probabilities and uncertainties are discussed by
Ekeland (1993); Henrion and Fischoff (1986) analyze the history of meas-
urements of physical constants. Probabilistic seismic hazard analysis is dis-
cussed by Reiter (1990), Hanks and Cornell (1994), and Hanks (1997).
The US Geological Survey National Seismic Hazard maps are described
by Frankel et al. (1996), and a global hazard map is described by Shedlock
et al. (2000). Uncertainties in earthquake probabilities for California are
discussed by Savage (1991). Real-time seismology applications to earth-
quake risk mitigation are discussed by Kanamori et al. (1997). Sarewitz
et al. (2000) discuss general issues of prediction and policy for the earth
sciences, including earthquake prediction. Geschwind (2001) reviews the
history of seismic risk mitigation and earthquake prediction policies in the
USA.

A considerable volume of scientific literature addresses earthquake pre-
diction, often arguing whether either a specific approach or any method
can predict earthquakes. Turcotte (1991) gives a general review of many
aspects of the topic, and Geller (1997) summarizes the history of earth-
quake prediction efforts, including that at Parkfield and the Palmdale
Bulge. Geller et al. (1997) and Evans (1997) argue that earthquakes are
unpredictable; Lomnitz (1994), Wyss et al. (1997), and Sykes et al. (1999)
argue the other side. The Parkfield earthquake prediction experiment
is summarized by Roeloffs and Langbein (1994); Davis et al. (1989) and
Savage (1993) discuss the limitations of the statistical approach used. The
controversy over the seismic gap hypothesis is discussed by Stein (1992);
Kagan and Jackson (1991) and Jackson and Kagan (1993) argue against
the hypothesis, and Nishenko and Sykes (1993) argue for it.

Earthquake engineering is discussed by Bray (1995), Chopra (1995),
Krinitzsky et al. (1993), and Wiegel (1970). A good World Wide Web site
to start at is http://www.eeri.org, which also provides an introduction to
earthquake insurance. Issues in natural disaster insurance are discussed by
Michaels et al. (1997).

Bolt (1976), Sykes and Davis (1987), Richards and Zavales (1990),
and Lay (1992) discuss seismic verification of nuclear testing. More
description of the Comprehensive Test Ban Treaty can be found at
http://pws.ctbto.org.

An important part of this effort is the International Mon-
itoring System (IMS), whose aim is to detect, locate, and ident-
ify nuclear detonations that occur underground, underwater,
or above ground. To do this, the IMS will combine seismolog-
ical, hydroacoustic, and infrasound networks. Underwater
nuclear tests create sound waves that travel efficiently through
the ocean (Section 2.5.8), so a network of hydroacoustic
stations will be established, with some sites using underwater
hydrophones and others on islands to observe seismic phases
that are generated when the oceanic acoustic waves reach
land. Nuclear tests in the atmosphere will be detected by the
infrasonic (frequencies less than 20 Hz, below the human
hearing range) sound waves they generate. The IMS infrasound
network will consist of small arrays of microphones that can
determine the direction in which the infrasonic waves are
traveling, so detection at multiple stations will identify the
source of the waves.

Because most clandestine tests would likely occur under-
ground, seismic stations will be a vital part of the IMS. The IMS
seismic network will have 50 primary stations with three-
component broadband seismometers. About half of these sites
will be augmented with local arrays of short-period vertical-
component sensors. Data will be telemetered in real time, so
that there is no delay in monitoring. An auxiliary network
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Fig. 1.2-20 Body wave magnitudes (mb) versus surface wave magnitude
(Ms) and seismic moment (M0) for a set of earthquakes and explosions in
the western USA. Because the P waves of explosions are very large, as
shown in the previous figure, they have anomalously high mb values for a
given source energy (represented by M0). A comparison of mb and M0 can
thus discriminate between earthquakes and nuclear explosions. (After Al-
eqabi et al., 2001. © Seismological Society of America. All rights reserved.)



We then introduce concepts of wave propagation in the
earth, with emphasis on how waves behave when they encoun-
ter changes in physical properties. These ideas give us the tools
for Chapter 3, which discusses how seismic waves are used
to study the interior of the earth, and Chapter 4, where we dis-
cuss how seismic waves are used to study earthquakes.

Although we focus on seismic waves, many of the concepts
are similar to ones for other types of waves, so we will some-
times draw analogies to familar behavior of light, water, and
sound waves.

2.2 Waves on a string

2.2.1 Theory

We consider an idealized mathematical string that extends in
the x direction. Initially the string is straight in response to
a tension force τ exerted along it, so u, the displacement from
the equilibrium position in the y direction, is zero everywhere.
After the string is plucked, portions of the string are displaced
from their equilibrium positions and disturbances move along
the string.

Our goal is to describe the displacement u(x, t) as a function
of both position along the string and of time. To do this, we
apply Newton’s second law of motion, F = ma, which states that
the force vector equals the mass times the acceleration vector,1

to a segment dx of the string. Once the string segment is dis-
placed, the string is stretched and the tension directed along the

2 Basic Seismological Theory

A very interesting example of sound waves in a solid, both longitudinal and transverse, are waves in the solid earth. Inside the earth,
from time to time, there are earthquakes so sound waves travel around in the earth. Therefore if we place a seismograph at some loca-
tion and watch the way the thing jiggles after there has been an earthquake somewhere else, we might get a jiggling, and a quieting
down, and another jiggling . . . By using a large number of observations of many earthquakes at different places, we know what is
inside the earth.

Richard Feynman, The Feynman Lectures on Physics, 1963

1 Bold face is commonly used to denote vectors; see Section A.3.1.

2.1 Introduction

We begin the study of seismic waves in the earth by addressing
two basic questions. First, what in the physics of the solid earth
allows waves to propagate through it? Second, how does the
propagation of seismic waves depend on the nature of the
material within the earth?

We will see that seismic waves propagate through the earth
because the material within it, though solid, can undergo
internal deformation. As a result, earthquakes and other dis-
turbances generate seismic waves, which give information
about both the source of the waves and the material they pass
through.

To motivate these ideas, we first discuss a stretched string, a
simple physical system that gives rise to waves analogous to
seismic waves in the earth. As for the solid earth, deforming the
string causes displacements that are functions of space and time
satisfying the wave equation. The velocity of the propagating
waves depends on the physical properties of the string in a way
similar to that for waves in the earth, and the waves respond to
changes in the physical properties of the string in ways
analogous to what occurs for waves in the earth.

After discussing the string, we develop basic ideas about the
mechanics of the solid earth. We introduce the stress tensor,
which describes the forces acting within a deformable solid
material, and the strain tensor, which describes the deforma-
tion. We then explore the relation between these tensors,
and show that the displacements within the material can be
described as functions of position and time satisfying the wave
equation. Specifically, we will see how two types of seismic
waves, P and S, propagate.
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Fig. 2.2-1 Geometry of a segment of a string subject to a tension τ.
A slight difference in the angles θ1 and θ2 provides a net force in the
y direction of F = τ sin θ2 − τ sin θ1, which accelerates the string.
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Fig. 2.2-2 “Snapshots” of a string showing a pulse f(x − 2t) traveling to
the right in the +x direction. Because the velocity is 2, the pulse moves two
distance units during each time unit. This pulse is one of many forms a
traveling wave can take.

string gives rise to forces (Fig. 2.2-1) in the y direction of
τ sin θ2 and −τ sin θ1 at the ends of the segment. The net force in
the y direction equals the inertial term, which is the accelera-
tion (second time derivative of the displacement) times the
mass, where the mass is the product of the density ρ and dx.
Hence, the vector equation F = ma becomes the scalar equation

F(x, t) = τ sin θ2 − τ sin θ1 = 
    
ρdx

u x t
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If the angles θ are small, sin θ ≈ θ ≈ tan θ can be approxim-
ated by the slope, so
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which can be expanded by forming a Taylor series and dis-
carding the higher-order terms:
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yielding the wave equation:
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where v = (τ/ρ)1/2.
This equation gives the relationship between the time and

space derivatives of the displacement u(x, t) along the string.
We will see that the coupling between the two partial derivat-
ives gives rise to waves propagating along the string with a
velocity v. Because (4) describes the propagation of the scalar

quantity u(x, t) in one space dimension, it is called the one-
dimensional scalar wave equation.

The wave equation is easily solved, because any function
with the form u(x, t) = f(x ± vt) is a solution. To show this, note
that the partial derivatives are

  

∂
∂

2

2

u x t
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 = f ″(x ± vt) and
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u x t

t

( , )
 = v2f ″(x ± vt), (5)

where f ″ is the second derivative of f with respect to its argu-
ment. Thus, although we often think of solutions to the wave
equation as sines and cosines, any function whose argument is
(x ± vt) is a solution.

To see that a function f(x − vt) describes a propagating wave,
consider how it varies in space and time. As time increases by
an increment dt, the argument stays constant provided that the
distance increases by vdt. Because the function’s value stays
the same when its argument is constant, f(x − vt) describes a
wave of constant shape propagating with velocity v in the
positive x direction (Fig. 2.2-2). Similarly, because (x + vt) is
constant if x decreases as time increases, f(x + vt) describes a
wave propagating with velocity v in the −x direction. The sign
relating the x and t terms thus shows which way the wave
travels. We follow seismological convention and use the vector
term “velocity” for v, although it is a scalar and thus better
termed a “speed.”

The velocity v = (τ/ρ)1/2 at which the waves propagate
depends on two physical properties of the string: the tension
with which it is stretched and its density. Equation 1 shows
how these properties interact. Because the tension provides
the force that tends to restore any displacement to the equilib-
rium position, greater tension gives higher acceleration and
thus faster wave propagation. In contrast, because the density
appears in the inertial term, higher density gives lower accelera-
tion and slower wave propagation.



The fact that the velocity depends on the density illustrates
one of the reasons why the string is a useful analogy for seismic
waves in the earth. One goal of seismology is to study the com-
position of the earth. For this purpose, we measure the time
that waves take to travel between sources and receivers, find
the velocity at which the waves propagated, and thus learn
about the properties of the earth.

2.2.2 Harmonic wave solution

Any function of the form f(x ± vt) describes a propagating wave
as a function of time and distance. A particularly useful form is
a harmonic or sinusoidal wave2

u(x, t) = Aei(ωt ± kx ) = A cos (ωt ± kx) + Ai sin (ωt ± kx). (6)

A harmonic wave is characterized by its amplitude A and two
parameters, ω and k, which we will discuss shortly. Substitut-
ing into the wave equation (4) and canceling the exponential
and constant show that the wave velocity is the ratio

v = ω /k. (7)

Although the exponential function u(x, t) in Eqn 6 is
complex, the physical displacement must be real. We thus
describe the displacement as the real part of u(x, t). The com-
plex exponential form can be used for most purposes, because
when a complex exponential appears in the solution of a
physical problem, its conjugate also appears, so their sum
yields a real displacement.

To understand the harmonic wave solution, consider the wave
given by the real part of u(x, t), which is A cos (ωt − kx). Fig-
ure 2.2-3 shows how this function varies with both distance
and time. The value of u is constant when the phase (ωt − kx)
remains constant, as for a crest or a trough. Such lines of con-
stant phase require that x increases when t increases. These
lines indicate waves propagating in the +x direction at a velo-
city shown by dx /dt, the slope of the line in the x–t plane.

Additional insight comes by examining u(x, t) at a point in
space, x0. In terms of Fig. 2.2-3, this is a slice of the function on
a plane parallel to the time axis, which intersects the distance
axis at x0. This gives a periodic function of time, u(x0, t) =
A cos (ωt − kx0) (Fig. 2.2-4, top). Because the function returns
to the same value when ωt changes by 2π, the oscillation is
characterized by the period, T = 2π /ω, the time over which it
repeats. The periodicity can also be described by the frequency,
f = 1/T = ω /(2π), the number of oscillations within a unit time,
or by the angular frequency, ω = 2π f. The period has the dimen-
sions of time, so the frequency and angular frequency have
dimensions of time−1. In Fig. 2.2-3, for example, u(x, t) =
A cos (π t − 2πx), so the angular frequency is π (time units)−1,
the frequency is 1/2 (time units)−1, and the period is 2 time units.

2 Properties of complex numbers are reviewed in Section A.2.

−25

3
3.5

2.5
2

1.5
1

0.5

t Time

0

100

75

50

25

0

−50

−75

−100

u(
x,

 t
)

0.
5

1
1.

5
2

2.
5

3
3.

5
4

x D
ist

an
ce

Fig. 2.2-3 Displacement as a function of position and time for the
harmonic wave u(x, t) = A cos (πt − 2πx) propagating in the +x direction.
A line following a peak (or any part of the wave) in space and time
represents the wave’s velocity.

Fig. 2.2-4 A harmonic wave u(x, t) = A cos (ωt − kx) shown at a fixed
position as a function of time (top) and at a fixed time as a function of
position (bottom).
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Thus the interval shown, 4 time units, includes two full cycles
of the oscillation. Equivalently, 1/2 a cycle occurs in a unit time.

Alternatively, we can examine u(x, t) at a fixed time, t0,
and plot u(x, t0) = A cos (ωt0 − kx) as a function of position
(Fig. 2.2-4, bottom). In terms of Fig. 2.2-3, this is a slice of the
function on a plane parallel to the distance axis, which inter-
sects the time axis at t0. The displacement is periodic in space
over a distance equal to the wavelength, λ = 2π /k, the dis-
tance between two corresponding points in a cycle. How
the oscillation repeats in space can also be described by k,
the wavenumber or spatial frequency, which is 2π times the
number of cycles occurring in a unit distance. The wavelength
has units of distance, so the wavenumber has dimensions of
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which physical properties vary with depth, we need to treat
waves on a string with variable properties along its length.
The simplest situation is a string composed of segments with
uniform properties. If the segments are long enough, we treat
the displacement in each segment as composed of propagat-
ing waves described by the solution for a uniform string with
the appropriate properties, and then match solutions across the
boundaries between segments.

To illustrate this approach, consider a junction between
strings of different properties (Fig. 2.2-5). The junction at
x = 0 separates string segment 1 on the left with density ρ1 and
velocity v1 from string segment 2 on the right (x > 0) with
density ρ2 and velocity v2. A wave arriving at the junction from
the left yields two new waves. Some of the incident wave
reflects from the junction, and thus travels to the left in string
segment 1. The remainder of the incident wave is transmitted
across the junction and travels to the right in string segment 2.
We will show that the relative amounts of reflected and trans-
mitted energy depend on the difference in properties across the
interface.3

For the joined string segments, we write the total displace-
ment in the left string segment as the sum of two harmonic
waves

u1(x, t) = Aei(ωt−k1x) + Bei(ωt+k1x). (8)

The signs of the complex exponentials indicate that the incident
wave, with amplitude A, travels in the +x direction, whereas

Table 2.2-1 Relationships between wave variables.

Quantity Units

Velocity distance/time v = w /k = fl = l /T
Period time T = 2p /w = 1/f = l /v
Angular frequency time−1 w = 2p /T = 2pf = kv
Frequency time−1 f = w/(2p) = 1/T = v/l
Wavelength distance l = 2p /k = v/f = vT
Wavenumber distance−1 k = 2p /l = w /v = 2pf/v

Fig. 2.2-5 A wave pulse incident from the left on a junction between
two strings of different properties gives rise to transmitted and reflected
wave pulses. The fact that the reflected wave is inverted shows that the
impedance is greater in the right string. Similarly, the fact that the
transmitted pulse has a smaller length shows that the velocity is
lower in the right string.

Incident

Transmitted

Reflected

x = 0

3 The wave’s simultaneous reflection and transmission is analogous to shining a
flashlight out of a window at night; you see the light reflected by the window, whereas
someone outside sees the light transmitted through the window.

distance−1. In Fig. 2.2-3 the wavelength is 1 distance unit, four
cycles occur in the 4-distance unit interval shown, and the
wavenumber is 2π (distance units)−1. Note that the wavelength
and wavenumber are analogous, for constant time, to the
period and angular frequency for constant x.

Table 2.2-1 summarizes the relationships between the differ-
ent wave parameters. All these relations can be derived from
v = ω /k and the definitions of the other quantities. Note the
analogy between period and angular frequency, which describe
the wave in time at a fixed point in space, and wavelength and
wavenumber, which describe the wave in space at a fixed time.
Although the different relations may seem confusing, they are
easy to remember using the dimensions of the quantities. For
example, velocity must be the ratio of wavelength to period,
not their product.

Thus Aei(ωt ± kx) represents a wave field that is a function of
both space and time. Often we hold one quantity fixed and
observe the variation in the other. We can pick a point on a string
and record a seismogram (“stringogram”) of the displacement
as a function of time. By contrast, a “snapshot” picture of the
waves on the string shows the displacement as a function of
position, at a given time. These ideas apply to other wave
phenomena, such as water waves incident on a beach. A life-
guard, looking over the water at an instant of time, sees a wave
field that varies in space. A swimmer, at a location in the water,
encounters waves that vary in time. Both are observing, in
different ways, a wave field that varies in both space and time.
We will see that the same concept applies to seismic waves.

The harmonic wave solution describes a sinusoidal wave of
a particular frequency. This might seem to make it a specific
solution, not applicable to more complicated propagating
waves. In particular, the sinusoid is defined for all times and
distances, whereas in physical situations we deal with waves
that exist only for a limited span in space and duration in time.
Fortunately, as we will discuss later, an arbitrary wave shape
can be decomposed into a set of harmonic waves using Fourier
analysis. As a result, solutions describing the simple case of
harmonic waves can be applied to more complicated cases.

2.2.3 Reflection and transmission

So far, we have discussed waves traveling along a string of uni-
form velocity. To use this as an analogy for the earth, within



the reflected wave, with amplitude B, travels in the −x direc-
tion. In the right-hand string segment there is only a trans-
mitted wave going in the +x direction

u2(x, t) = Cei(ω t −k2 x). (9)

The waves in the two string segments have different waven-
umbers because of the different velocities in the two segments.

The amplitudes of the reflected and transmitted waves are
found using two boundary conditions that the physics of the
string imposes on the solution at the junction x = 0. First, be-
cause the two segments at the junction stay joined, the displace-
ment must always be continuous across the junction, so

u1(0, t) = u2(0, t),

Aeiωt + Beiωt = Ce iωt. (10)

For this to occur at all times, the angular frequency of the three
waves must be the same, as we have assumed, and the ampli-
tudes must satisfy

A + B = C. (11)

Second, the y components of the tension forces acting on
the two sides of the junction must always be equal, or the un-
equal forces would tear the string apart. Thus, by analogy to
Eqn 2, we have another boundary condition

  
τ τ∂

∂
=

∂
∂

u t

x

u t

x
1 20 0( , )

  
( , )

. (12)

Taking the derivatives and canceling terms gives

τk1(A − B) = τk2C, (13)

or, because the velocities on the two sides are vi = (τ/ρi)
1/2 and

ki = ω /vi,

ρ1v1(A − B) = ρ2v2C. (14)

We now have two equations (11 and 14) for the three con-
stants A, B, and C, giving the amplitudes of the incident,
reflected, and transmitted waves. We can eliminate C and find
the ratio of the amplitudes of the reflected and incident waves,
known as the reflection coefficient,
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Similarly, eliminating B yields the transmission coefficient, the
ratio of transmitted and incident wave amplitudes,

  
T

C

A

v

v v12
1 1

1 1 2 2

2
    

  
.= =

+
ρ

ρ ρ
(16)

The “12” subscripts indicate that the reflection and trans-
mission coefficients describe a wave incident from segment 1
upon segment 2; the corresponding coefficients for a wave
incident from the right have subscripts “21.” These can be
derived by interchanging the subscripts, showing that

R12 = −R21, T12 + T21 = 2. (17)

The reflection and transmission coefficients depend on the
product of the density and velocity for each string, ρi vi, a
quantity called the acoustic impedance. Because the amount
reflected depends on the difference in impedances between the
two sides, the strongest reflections occur at boundaries where
properties change significantly. One limiting case is if the
materials on both sides of the junction are identical (ρ1 = ρ2 and
v1 = v2), the reflection coefficient is zero and the transmission
coefficient would be one. Hence, as expected, all the wave is
transmitted, and none reflects. The other limiting case, total
reflection and no transmission, occurs at the end of a string.
The fixed end of a string, where no displacement occurs, can be
treated as a junction with a string of infinite impedance. Hence
the reflection coefficient is
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so the entire incident wave pulse reflects with the opposite
polarity. Similarly, a string whose end is free to move is de-
scribed by the condition that the derivative ∂u/∂x is zero,
because there is no force applied. This can be treated as a junc-
tion with a string of zero impedance, so the reflection coeffi-
cient is +1, and the entire incident pulse reflects with the same
polarity. For values between the limiting cases, Eqn 15 shows
that the polarity of the reflection depends upon whether the
wave leaves or enters a string of greater impedance. If the
impedance of segment 2 exceeds that of segment 1, waves
going from segment 1 toward segment 2 reflect with reversed
polarity, whereas waves going the other way reflect with-
out changing polarity. Reflections at free and fixed ends are
extreme cases of this property. Hence the amplitudes of reflec-
tions from boundaries can be used to infer changes in physical
properties.

To illustrate these ideas, consider the reflection and trans-
mission of waves on a string divided at x = 10 into two
segments (Fig. 2.2-6). The left segment has ρ1 = 1, v1 = 3, and
the right segment has ρ2 = 4, v2 = 1.5. At time 0 the string
is plucked for a very short time by a source at the position
marked by the triangle, so waves spread out in either direction.

At time 1, the first time shown, the wave traveling to the right
has just encountered the junction (marked by a vertical dashed
line). The reflection and transmission coefficients depend on the
impedances ρ1v1 = 3 and ρ2v2 = 6. Thus for waves going from
left to right R12 = −0.33 and T12 = 0.67. A small reflected pulse
is generated, with a downward polarity opposite that of the
incident pulse, because the reflection coefficient is negative. At
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the middle again (time 8), it gives rise to the small reflection
with amplitude R12(−1)R12 = −0.11 and a transmitted pulse
with amplitude R12(−1)T12 = 0.22.

By time 14, the original pulse that traveled to the right has
been transmitted to segment 2, inverted by reflection off the
right boundary (time 8), and is now incident on the junction
from the right. The reflection and transmission coefficients for
a wave incident from segment 2 are R21 = 0.33, T21 = 1.33.
Thus the reflected and transmitted pulses have the same down-
ward polarity as the incident wave and amplitudes T12(−1)R21
= −0.22 and T12(−1)T21 = −0.89.

It may seem curious that, because T21 is greater than 1,
waves transmitted to the left have larger amplitude than the
incident wave that generated them. This effect, although not
appealing intuitively, is possible so long as the energy in the
transmitted wave does not exceed that in the incident wave. We
will show later that this is the case.

When a pulse is transmitted across the junction, its length
as well as its amplitude changes. For example, the transmitted
pulse at time 2 is shorter than the incident pulse. This results
from the different velocities. To see this, recall that for a har-
monic wave the angular frequencies of the transmitted and
incident waves in the two strings are the same because the
strings stay joined (Eqn 10). Thus

ω = v1k1 = v2k2 = v12π /λ1 = v22π/λ2, (19)

so the wavelength is shorter in the slower string. Another way
to see this is from the time needed for an incident pulse to be
transmitted (Fig. 2.2-7). If the pulse in segment 1 has length λ1,
it takes a time λ1/v1 to pass through the junction. The length
of the transmitted pulse in segment 2 is the distance v2λ 1/v1
traveled by the leading edge of the transmitted pulse when the
trailing edge of the incident pulse reaches the boundary.

A point worth noting is that the displacement at a point
on the string is the sum of the displacements of all the waves
passing by that point. For example, at time 10 (in Fig. 2.2-6)
two waves, one traveling in either direction, add up to give
a large pulse. At the next time step, the two waves have
separated. Thus a wave has no lasting effect after crossing
another; the waves “go through” each other. The concept that
the waves can be added up without affecting each other is
called linear superposition. This is generally assumed to be
valid unless the amplitudes of the waves are so large that the
material behaves nonlinearly, or differently from the simple
elastic assumptions used to derive the propagating wave equa-
tion. Superposition allows us to form waves of arbitrary shape
from harmonic waves of different frequencies using a Fourier
series, as was done to form the pulses in this example. This
posed no difficulty because in our derivation neither the velo-
city nor the reflection and transmission coefficients depended
on frequency.

The fact that the amplitudes of waves on a string change as
they are reflected and transmitted at interfaces where the prop-
erties of the string change illustrates a concept important for

Fig. 2.2-6 Wave propagation on a string composed of two segments
of different properties: the left (segment 1) with ρ1 = 1, v1 = 3, and the
right (segment 2) with ρ2 = 4, v2 = 1.5. The triangle marks the position of
the source (distance 6.5) that plucked the string at time 0. The traces are
successive snapshots of the string one time unit apart. The vertical dashed
line indicates the position of the junction. Both ends of the string are fixed,
so reflections there have unchanged amplitude but reversed polarity.
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time 2 we see this reflected wave traveling to the left and a
larger transmitted wave traveling to the right. Note that,
because of the different velocities, the reflected wave is further
from the junction than the transmitted wave.

At time 2 the original pulse traveling to the left has reached
the left end of the string. What happens to it depends on the
boundary condition at the end. Here, we assumed that the
ends were fixed, so at time 3 the pulse is inverted and reflected.
Similarly at time 5 the first reflection off the junction has been
inverted at the left end and now travels to the right.

When a pulse arrives at the junction, part is reflected and
part is transmitted. For example, at time 6, the original pulse
reflected from the left end has been converted at the junction
into a transmitted wave with downward polarity and a re-
flected wave with positive polarity. As time goes by, many
pulses develop, each with an amplitude that is the product of its
history. Thus, if the initial pulses had unit amplitude, the first
reflection has amplitude R12. Once inverted by reflection off the
fixed left end, this pulse has amplitude R12(−1). When it reaches



where the last step used the Taylor series (1 + a2)1/2 ≈ 1 + a2/2
for small a. The potential energy stored in the string is the prod-
uct of the tension and the strain integrated over the entire
length L,
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We characterize the energy of a traveling wave by the kinetic
and potential energy averaged over a wavelength. If u(x, t)
= A cos (ωt − kx), then the kinetic energy averaged over a
wavelength is

   

KE
u

t
dx

A
t kx dx    sin (   ) .=

∂
∂

⎛

⎝⎜
⎞

⎠⎟
= −

ρ
λ

ρ ω
λ

ω

λ λ

2 2
0

2
2 2

0

2� � (24)

The integral of the sinusoid squared over a period is
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so the kinetic energy is

KE = A2ω2ρ/4. (26)

Similarly, the potential energy averaged over a wavelength is
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which, using Eqn 25, becomes

PE = τA2k2/4 = A2ω 2ρ/4, (28)

the same as the kinetic energy.
Hence the total energy transported, averaged over a wave-

length, is the sum of the potential and kinetic energies:

E = PE + KE = A2ω 2ρ /2. (29)

Another way to state this is in terms of the energy flux, the rate
at which the wave transports energy past a point on the string.
The average flux is just the averaged energy times the velocity

Fig. 2.2-7 An incident wave pulse of length λ1 on a string with velocity v1
generates a transmitted pulse of length λ2 in a string with velocity v2.
The change in pulse length results from the distance the transmitted
pulse travels while the incident pulse passes through the junction. If the
amplitude of the incident pulse is 1, then the reflected and transmitted
pulses have amplitudes R12 and T12.
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seismic waves in the earth. We will use this approach to show
how we study changes in physical properties at depth in the
earth from the amplitudes of reflected and transmitted waves.

2.2.4 Energy in a harmonic wave

We noted earlier that in some cases the transmission coeffici-
ent exceeds 1. To see how this occurs, we consider the energy
transported by the traveling waves. It turns out that although
amplitudes are easier to visualize, energy is often more useful
for understanding wave behavior because energy is conserved,
whereas amplitude is not. Hence, when a result for amplitudes
is hard to understand, considering the energy can provide
insight.

By analogy to the kinetic energy mv2/2 of a point mass, the
kinetic energy, KE, of a segment dx of the string is found from
the velocity, the time derivative of the displacement, so
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because the mass of the string is m = ρdx.
The string also stores potential energy, because it is stretched,

or deformed, from its equilibrium position. We will see shortly
that a measure of the deformation is the strain, e, which for
the string is the ratio of the change in the length to the original
length. Hence for an element of the string (Fig. 2.2-1) with
initial length dx, the strain due to the displacement du is
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by substituting this form into the wave equation (Eqn 4).5

Taking the derivatives and canceling the common factor yields
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One solution of this equation is

U(x, ω) = sin (ωx/v). (35)

If the string has fixed ends at x = 0 and x = L, then Eqn 35 must
satisfy the boundary conditions

U(0, ω) = U(L, ω) = 0. (36)

The solution already satisfies the boundary condition at x = 0,
so all that is needed is to satisfy the boundary condition at
x = L,

U(L, ω) = sin (ωL/v) = 0, (37)

which occurs for angular frequencies ωn such that

ωn L/v = nπ or ωn = nπv/L. (38)

Thus the zero displacement boundary conditions at the string’s
ends require that it vibrate only at specific frequencies, called
eigenfrequencies. The eigenfrequencies each correspond to a
solution

Un(x, ωn) cos (ωnt), (39)

where the spatial term

Un(x, ωn) = sin (ωn x/v) = sin (nπx/L) (40)

is known as the spatial eigenfunction.
To interpret these solutions physically, note that ω = vk

= v2π/λ, so the eigenfrequencies correspond to

ωn = nπv/L = 2πv/λ or L = nλ /2. (41)

Thus each spatial eigenfunction has an integral number of half
wavelengths along the string’s length L, so the displacement
at both ends is zero. The solutions are standing waves, known
as the normal modes, or free oscillations, of the string, each of
which has a characteristic spatial eigenfunction and vibrates at
a characteristic eigenfrequency. Because the string is finite, it
can vibrate only in these discrete modes that satisfy the bound-
ary conditions. The eigenfrequencies are spaced πv/L apart, so

0 = A2ω 2ρv/2. (30)

For a string of a given density, the energy flux is proportional
to the amplitude and angular frequency squared, so higher-
frequency waves transport more energy.

Consideration of the energy explains how in Fig. 2.2-6 the
transmitted wave can have higher amplitude than the incident
wave. To see that an incident wave converting into reflected
and transmitted waves conserves energy, assume that a wave
in segment 1, described by cos (ωt − k1x), is incident on the
junction. It gives rise to a reflected wave in segment 1, described
by R12 cos (ωt + k1x), and a transmitted wave in segment 2,
described by T12 cos (ωt − k2x). Using Eqns 15 and 16 for R12
and T12, the net energy flux for the reflected and transmitted
waves is the sum

0R + 0T = R2
12ω 2ρ1v1/2 + T2

12ω 2ρ2v2/2

= (ω 2/2)[R2
12v1ρ1 + T2

12v2ρ2]

= ω 2ρ1v1/2 = 0I, (31)

which equals the energy flux in the incident wave. Thus, even
if the amplitude of the transmitted wave exceeds that of the
incident wave, the energy of the transmitted wave is less than
that of the incident wave.4

2.2.5 Normal modes of a string

So far, we have discussed waves propagating along a string.
Additional insight into propagating waves can be gained by
considering standing waves, which are known as the normal
modes, or free oscillations, of the string.

Recall that we began by applying Newton’s second law to a
string, and found that the displacement u(x, t) as a function of
position and time satisfied the scalar wave equation
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2
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2
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x v
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( , )
  

( , )
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We saw that this equation had solutions like

u(x, t) = A cos (ωt ± kx), (32)

which describes harmonic waves with angular frequency ω
and wavenumber k = 2π /λ, propagating at velocity v such that
v = ω /k.

An alternative approach is to seek solutions of (4) with a
cos (ωt) time dependence, such that

u(x, t) = U(x, ω) cos (ωt), (33)

5 This procedure amounts to taking the Fourier transform of the equation in
frequency, and then using a Fourier series in space. Fourier analysis is discussed in
chapter 6.

4 An analogous phenomenon occurs at beaches, where waves increase in amplitude
as they approach the shore because the wave speed is proportional to the square root
of water depth.



the longer the string is (i.e., the larger L gets), the closer the
eigenfrequencies become.

A traveling wave can be expressed as the weighted sum of the
string’s normal modes, so it is the sum of the eigenfunctions,
each weighted by the amplitude An and vibrating at its eigen-
frequency ωn,

u(x, t) = 

    n =

∞
∑

0

AnUn(x, ωn) cos (ωnt). (42)

An important feature of this solution is that the modes are
orthogonal, meaning that the integral over the string of the
product of two different eigenfunctions is zero,
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where δmn, the Kronecker delta symbol defined in Eqn A.3.37,
is zero unless m = n. Each mode is independent and cannot be
constructed by combining other modes. Thus we can think
of the displacement of the string as a vector in a vector space
(Section A.3.6) whose basis vectors are the eigenfunctions. Any
particular set of waves is given by the amplitudes An, which are
the weighting factors of the eigenfunctions or the components
of the basis vectors.

The amplitude for each eigenfunction depends on the posi-
tion of the source that generated the waves and on the behavior
of the source as a function of time. The spatial part of An has
the same form as Un (Eqn 40), so

An = sin (nπxs /L)F(ωn), (44)

where xs is the position of the source, and F(ωn) is a weighting
factor describing how different frequencies contribute to the
time history of the source. Thus the normal mode expression
for the displacement (Eqn 42) can be written

u(x, t) = 

    n =

∞
∑

0

sin (nπxs/L)F(ωn) sin (nπx/L) cos (ωnt). (45)

Figure 2.2-8, computed in this way, illustrates how the first
40 modes of a string with fixed ends and a uniform velocity
combine to give traveling waves. The source, at xs = 8, is
described by

F(ωn) = exp [−(ωnτ)2/4] (46)

with τ = 0.2. The computer program used is similar to that
discussed in Section A.8.1. The mode sum shows two waves,
one propagating to the right and one propagating to the left,
at the expected positions. Hence the mode sum correctly gives
the propagating waves. In addition to the propagating waves,
we see some small oscillations along the string because only the
first 40 modes were summed.
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Fig. 2.2-8 Displacement of a string with fixed ends computed using
the normal mode formulation. The string has length 20, velocity 3,
and was plucked at time 0 by a source at position 8 (triangle). The bottom
trace shows the displacement of the string at time 1.5, computed by
summing the first 40 modes. The mode sum generates both the right-
and the left-propagating waves at the appropriate positions. Spatial
eigenfunctions for the individual modes, each of which corresponds to
an integral number of half wavelengths, are also shown above the sum.
The traces are normalized to unit amplitude.
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We now have two ways to think of the displacement of the
string as a function of time: either as propagating waves or as
normal modes. Neither is more “real” — both are ways of rep-
resenting how the displacement evolves. Thus comparing the
two gives interesting insights. For example, consider studying
the properties of the string. In the traveling wave formulation,
we measure travel times and thus infer velocity. In the normal
mode formulation, we measure eigenfrequencies and then infer
velocities. Thus the eigenfrequencies are analogous to the travel
times.
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The normal mode solution (Eqn 45) gives insight into the
relation between the medium in which waves propagate and
the source that generates them. The waves are expressed as
the sum of eigenfunctions weighted by amplitudes that depend
on the source. The physical properties of the string control its
velocity and thus its eigenfrequencies and spatial eigenfunctions.
The displacement due to any particular source corresponds to a
different weighting of the eigenfunctions. By analogy, we use
the eigenfrequencies of the earth’s normal modes to study the
properties of the medium (earth structure), and the displace-
ment (the specific weighting of eigenfunctions) to study the
source (generally an earthquake) that excited them.

The normal mode solution generates all the incident, reflected,
and transmitted waves, although they do not appear individu-
ally as they do in a traveling wave solution like Eqn 8. The
mode solution is thus less intuitive, and individual modes are
not physically meaningful, although their sum is. For example,
each mode mathematically starts vibrating along the entire
string at time zero, even though no waves have reached the
string ends. When the modes are summed, the resulting waves
propagate at the correct velocity.

The solution also illustrates an important relation between
the positions of the source and the receiver. The fact that
Eqn 45 depends in the same way on the positions of the source
(xs) and the receiver (x) illustrates the principle of reciprocity,
which states that under appropriate conditions the same dis-
placement occurs if the positions of the source and the receiver
are interchanged. This principle is important for studying earth
structure because it is often convenient to place the source or
the receiver at a particular site. We can do this knowing that
the same ray paths and thus waves result.6 Equation 45 also
illustrates an important point about the relation of the source
position to the waves generated: namely, a source at a point
where a particular mode has no displacement will not excite
that mode. For example, in Fig. 2.2-8, modes with numbers
that are multiples of five give zero displacement because the
source term sin (nπxs/20) is zero. Analogously, in the earth,
surface waves whose displacements are largest near the surface
are not excited well by deep earthquakes.

Finally, although we have discussed the normal modes of
a uniform string, we could generalize these ideas to find the
modes of a non-uniform string. One way to do this is to extend
the method used to find the reflection and transmission coef-
ficients (Section 2.2.3). We treat the string as a set of uniform
pieces, use the harmonic wave solution in each piece, and
impose displacement and traction boundary conditions at the
junctions. We then numerically find eigenfrequencies that
satisfy the fixed boundary condition at the string’s end. The
normal modes of the non-uniform string are then summed to
give the traveling waves. The waves on the non-uniform string
in Fig. 2.2-6 were calculated in this way.

2.3 Stress and strain

2.3.1 Introduction

By applying Newton’s second law of motion, F = ma, to a string,
we found that deforming the string gave rise to propagating
waves. Similarly, deforming the solid earth produces seismic
waves. We study these waves using concepts from continuum
mechanics, which describes the behavior of a continuous
deformable material made up of particles packed so closely
together that density, force, and displacement can be thought
of as continuous and differentiable functions. This approxima-
tion breaks down on an atomic distance scale, but is adequate
for most seismological problems.

For these applications, we write Newton’s second law in
terms of the force per unit volume and the density, the mass per
unit volume. If the density does not change with time, the force
per unit volume f(x, t) equals the inertial term, the product
of the density ρ and the second derivative of the displacement
vector u(x, t) with time. Thus F = ma becomes

f x
u x

( , )  
( , )

.t
t

t
= ρ ∂

∂ 2

2

(1)

This vector equation can be written as a set of three equations,
one for each component of the force and displacement vectors1

      
f t

u t

t
i

i( , )  
( , )

.x
x

= ρ ∂
∂ 2

2

(2)

In seismic wave propagation, both the displacement and the
force vectors can vary in space and time. Although this depend-
ence is generally not written explicitly, we will sometimes do
so to remind ourselves that the solutions depend on space and
time.

The goal of this section is to use Newton’s second law to
characterize a continuous medium and its response to applied
forces. We first introduce the stress tensor that describes the
forces acting on a deformable continuous medium. We then
formulate the equation of motion, the version of Newton’s law
appropriate for a continuous medium, which relates the stress
to the displacement. The variation in displacement within the
material, described by the strain tensor, gives rise to internal
deformation. This deformation is related to the stress via the
constitutive equation that characterizes the properties of the
material. Our brief discussion covers some basic results of
continuum mechanics necessary for introductory seismology.
The suggested reading listed at the end of the chapter provides
further treatment of these and related topics.

6 A familiar version for light waves, seen on the back of large trucks, warns other
drivers that “If you can’t see my mirrors, I can’t see you.”

1 The three equations are written as one using index notation (Section A.3.5) in
which the index i ranges from 1 to 3 over the coordinate axes. Index notation makes
cumbersome vector equations shorter, clearer, and often easier to solve. These equa-
tions are often made even more compact using a dot superscript to indicate differen-
tiation with respect to time, so the acceleration is üi.



Fig. 2.3-1 Surface force on a volume element V within a material. The
surface force F due to the material outside V acts on each element of
surface dS, which has an outward-pointing unit normal vector 4.

V

dS

F

n̂

Fig. 2.3-2 Traction vectors acting on three faces of a volume element
which are perpendicular to the coordinate axes. The superscript on
T indicates the direction of the normal to the face on which T acts.
The three components T i

(2) are shown.

2.3.2 Stress

Two types of forces can act on an object. The first is a body
force, which acts everywhere within an object, resulting in a
net force proportional to the volume of the object. A familiar
example is the body force g due to gravity; the net force on an
infinitesimal body with density ρ and volume dV is ρgdV. The
units of a body force are force per unit volume.

A second type of force is a surface force, which acts on the
surface of an object, yielding a net force proportional to the
surface area of the object. For example, an object in a pool
of fluid is subject to a pressure equal to the weight (a force)
per unit area of the fluid above the object. At any point on the
object’s surface, the pressure is directed along the normal to
the surface. Thus a surface force like pressure acts in different
directions on different parts of an object, in contrast to gravity,
which is a body force that always points down. Surface forces
have units of force per unit area.

We now consider the forces acting on a small volume V, with
surface S, within a larger continuous medium (Fig. 2.3-1). The
material inside V is affected by body forces acting on every-
thing inside V and surface forces, due to the material outside,
acting on the surface S. If the surface force F acts on each ele-
ment of surface dS, whose outward unit normal vector is 4, we
define the traction vector, T, as the limit of the surface force per
unit area at any point as the area becomes infinitesimal:

T(4) = 
      
lim .

dS dS→0

F
(3)

The traction vector has the same orientation as the force, and is
a function of the unit normal vector 4 because it depends on the
orientation of the surface.

The system of surface forces acting on a volume is described
by three traction vectors. Each acts on a surface perpendicular
to a coordinate axis (Fig. 2.3-2), and is thus parallel to the
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plane defined by the other two axes. We define T( j) as the trac-
tion vector acting on the surface whose outward normal is in
the positive êj direction. The components of the three traction
vectors are T i

(j), where the upper index (j) indicates the surface
and the lower (i) index indicates the component. For example,
T 3

(1) is the x3 component of the traction on the surface whose
normal is ê1.

This set of nine terms that describes the surface forces can be
grouped into the stress tensor, σji. The tensor’s rows are the
three traction vectors, such that
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Thus the stress component σji is the ith component of the trac-
tion vector acting on the surface whose outward normal points
in the êj direction. The stress gives the force per unit area that
the material on the outside (the side to which 4 points) of the
surface exerts on the material inside. In the special geometry of
Fig. 2.3-2, where the surfaces are along coordinate axes, it is
easy to see that σji = T i

( j).
In some applications, it is more convenient to write the co-

ordinate axes as x, y, and z, so the stress tensor is written
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σ σ σ
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The stress tensor gives the traction vector T acting on any
surface within the medium. To illustrate this, we examine the
traction on an arbitrary element of surface dS, whose normal 4
is not along a coordinate axis. Consider the material inside an
infinitesimal tetrahedron of volume dV formed by this surface
and three other faces, each perpendicular to a coordinate axis,
with normal in the −êj direction (Fig. 2.3-3). The area of the
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Fig. 2.3-3 Stress components on three faces of a tetrahedron, with
normals parallel to coordinate axes. Summing the resulting forces
yields the net force on the fourth (slanted) side.
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Fig. 2.3-4 The sense of positive stress components for a volume with faces
perpendicular to the coordinate axes. σji is the stress component acting in
the êi direction on the face with outward normal in the ê j direction.

face with its normal in the −ê j direction is given by using the
scalar product to find the cosine of the angle between 4 and êj,

(4 · êj)dS = njdS. (6)

Because traction is force per unit area, the net surface force in
a given direction is found by multiplying each component of
the traction by the area of the face it acts on and summing over
the faces. Thus the total force in the êi direction is that due to
this component of the traction, those resulting from the stress
on the other three faces, and the component of the body force
f in this direction. This total force equals the mass ρdV of
the tetrahedron times the component of acceleration in the êi
direction,
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Dividing by the area and letting dV/dS go to zero, we see that
the stress tensor is related to the traction and normal vectors by

Ti = 
j=
∑

1

3

σjinj = σjinj, (8)

where the last form uses the index notation convention that a
repeated index indicates summation (Section A.3.5). Because
this equation gives the traction on an arbitrary surface, the
stress tensor describes the surface forces acting on any volume
within the material.

The sign convention for stress components comes from the
relation between the outward normal and the basis vectors.
Figure 2.3-4 shows the positive stress components acting on a
cube of material with faces perpendicular to the coordinate axes.
For example, on the face with outward normal ê3 = (0, 0, 1), σ33
is positive in the ê3 direction, and σ31 is positive in the ê1 direc-
tion. Because the tractions are Ti = σ3i, positive σ33 and σ31
yield forces in the x3 and x1 directions. By contrast, on the
opposite face with outward normal −ê3 = (0, 0, −1), σ33 is posit-
ive in the −x3 direction, and σ31 is positive in the −x1 direction.
Thus the tractions are Ti = −σ3i, and positive σ33 and σ31 yield
forces in the −x3 and −x1 directions.

The three diagonal components of the stress tensor, σ11, σ22,
and σ33, are known as normal stresses, and the six off-diagonal
components are called shear stresses. The corresponding com-
ponents of the traction vector are called normal and shear
tractions. Figure 2.3-4 shows that positive normal stresses
tend to expand the volume, whereas negative normal stresses
make the volume smaller. Thus positive values of the normal
tractions correspond to tension, whereas negative normal trac-
tions correspond to compression. At most points within the
earth, because material is under compression from the weight
of rock above, the normal stress components are negative.
Geophysicists thus often speak of the “maximum compressive
stress,” the most negative and largest in absolute value, and the
“minimum compressive stress,” the least negative and smallest
in absolute value.

An important property of a stress tensor is that it is
symmetric,

σij = σji. (9)

To show this, consider the torque (Eqn A.3.32) τ3 about the x3
axis on a rectangle of material with sides dx1, dx2, along the
coordinate axes (Fig. 2.3-5). If the torque is zero, the angular
momentum of the block remains constant, so the block will not



ents, only the three normal ones and three of the six shear ones
are independent.

Because the stress tensor is symmetric, we usually write (8) as

Ti = 
j=
∑

1

3

σijnj = σij nj, (11)

or, in terms of the vectors rather than their components,

T = σ4. (12)

Stress has units of force per area. In the cgs system of units
based on the centimeter, gram, and second, force is given
in dynes (dyn), with 1 dyn = 1 g-cm/s2, so stress is given in
dyn/cm2, or bars, a unit equal to 106 dyn/cm2. The bar has the
convenient property that atmospheric pressure at sea level is
1.01 bars. In SI units based on the meter, kilogram, and second
(mks), force is given in Newtons (N), with 1 N = 1 kg-m/s2, so
stress is given in Pascals (Pa), a unit equal to 1 N/m2. The two
sets of units can be related by noting that 1 Pa = 105 dyn/
104 cm2 = 10 dyn/cm2 = 10−5 bars, so 1 MPa equals 10 bars.

2.3.3 Stress as a tensor

We have been using the term “tensor” without defining it. Al-
ready, we saw that it came from a relation between the traction
and normal vectors, and is an entity with two subscripts that
has properties similar to those of vectors. Vectors are entities
that are independent of coordinate system, so that physical
laws written using them do not depend on the coordinate
system and can be analyzed using any convenient coordinate
system. We now show that tensors are similar entities.

Specifically, a vector is an entity that remains the same in two
coordinate systems (Section A.5.1), such that its components
in two different Cartesian coordinate systems are related by the
transformation matrix A. Hence, given two sets of axes (x1, x2,
x3) and (x′1, x′2, x′3), the components of a vector u are related by

u′ = Au. (13)

The relation between the components of the stress tensor
in two Cartesian coordinate systems can be found using the
fact that it relates the traction and normal vectors in each
coordinate system. The components of the traction and normal
vectors in the two coordinate systems satisfy

T′ = AT, 4′ = A4. (14)

The reverse transformation can be written using the inverse of
A which, because A is orthogonal, equals its transpose:

4 = A−14′ = AT4′. (15)

In the primed coordinate system, the traction is related to the
normal vector and the stress tensor by
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 11 +         dx1σ
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Fig. 2.3-5 Clockwise and counterclockwise torques about the x3 axis on a
rectangle due to the stress components and body forces. If the stress tensor
were not symmetric, σ12 = σ21, a net torque would arise.

start to rotate if it is not already doing so. The net body force, if
any, is fidx1dx2, where fi is the force at the center of the block.
Because a torque is the product of a force and a lever (or
moment) arm, the shear stresses σ21 and σ12 acting on the faces
along the x1 and x2 axes contribute no torque. The other stress
components cause torques equal to the product of the lever arm
and the traction, the stress component times the area of the
face. Thus the total counterclockwise torque is the sum of that
due to the shear tractions on the other two faces, with lever
arms dx1 and dx2, the normal tractions on all four faces, with
lever arms dx1/2 and dx2/2, and the two body force com-
ponents acting at the center of the block, with lever arms dx1/2
and dx2/2:
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Dividing by the area and letting dx1 and dx2 go to zero, we see
that for there to be no torque, σ12 = σ21. The same argument for
the torque about the other two axes shows that σ13 = σ31 and
σ23 = σ32. Thus, although the stress tensor has nine compon-
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T′ = σ′4′, (16)

so, by Eqns 14 and 15,

T′ = AT = Aσ4 = AσAT4′. (17)

Comparison of Eqn 16 and the last term in Eqn 17 shows that

σ′ = AσAT. (18)

This equation defines a tensor in Cartesian coordinates. Recall
that what makes a vector more than a set of three numbers is its
transformation properties: the numerical values of the com-
ponents that describe it transform between coordinate systems
in a way that preserves the vector as an entity independent of
coordinate system. Similarly, a matrix of numbers is a tensor
only if it transforms between coordinate systems according
to Eqn 18. We derived this transformation by assuming that a
tensor, in this case stress, is an operator relating two vectors, in
this case the normal and traction, in a specific way regardless of
coordinate system. The tensor’s components transform between
coordinate systems, so the tensor as an entity does not change.
Because one application of the transformation matrix trans-
forms a vector, two applications transform a tensor that relates
two vectors. Unfortunately, tensors are harder to visualize than
vectors. Although the stress tensor may seem puzzling, it is one
of the easier tensors to interpret physically.

To illustrate these ideas, we consider an example of how a
stress tensor’s components change between coordinate systems.
Assume that a block of material, with faces perpendicular to
the x1 and x2 axes, is subject only to normal stresses σ1 and σ2
(Fig. 2.3-6), so the stress tensor is diagonal,
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Fig. 2.3-6 An example of the stress tensor’s different components in
different coordinate systems. In the x1, x2 axis coordinate system, the
stress tensor is diagonal. In contrast, shear stresses act on a volume with
faces normal to the x′1 and x′2 coordinate axes, which are rotated by θ
with respect to the x1, x2 axes.

Now, consider the stress acting on a smaller block, with faces
of a different orientation, within the larger one. To find the
tractions on the second block’s sides, we define a second
coordinate system in which the x′1 and x ′2 axes are normal to the
faces and rotated by θ with respect to the x1 and x2 axes,
whereas the x3 and x′3 axes coincide. Although the stress is
the same in both blocks, the components of the stress tensor
expressed in the two coordinate systems differ. The relation
between the components is given by

σ′ = AσAT
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For example, if σ1 = 1, σ2 = −1, and θ = 45°,

 

σ ′  .=
−

−
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 1 0
1 0 0
0 0 0

(21)

Thus, although the large block is oriented such that the stress
tensor causes only normal tractions, giving compression along
the x2 axis and tension along the x1 axis, only shear tractions
act on the smaller block because its sides are oriented differ-
ently. The negative shear stress values yield tractions in the −x2′
direction on the face with normal ê1′, and in the x2′ direction on
the opposite face with normal −ê1′, consistent with what we ex-
pect from the normal tractions on the larger block. Although the
components of the stress tensor in the two coordinate systems
differ, they represent the same entity, the physical state of stress.

2.3.4 Principal stresses

For a given state of stress, the traction vector acting on most
surfaces within a material has components both normal to the
surface and tangential to it. There are, however, some surfaces
oriented such that the shear tractions on them vanish. These
surfaces can be characterized by their normal vectors, called
principal stress axes; the normal stresses on these surfaces are
called principal stresses. The concept of principal stress axes is
important for discussion of earthquake source mechanisms
(Section 4.2).

To find the principal stresses, we use the concepts of
eigenvalues and eigenvectors (Section A.5.2). The shear com-
ponents of the traction will be zero if the traction and normal
vectors are parallel, such that they differ only by a multiplicat-
ive constant, λ,

Ti = σijnj = λni. (22)



Thus the principal stress axes 4 are the eigenvectors of the stress
tensor, and the principal stresses λ associated with each one are
the eigenvalues. The eigenvalues and eigenvectors can be found
by solving the system of homogeneous linear equations

(σij − λδij)nj = 0

  

σ λ σ σ
σ σ λ σ
σ σ σ λ

11 12 13

21 22 23

31 32 33

1

2

3

0
0
0

  
  

  
   ,

−
−

−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

n
n
n

(23)

where the Kronecker delta symbol δij = 0 except when i = j,
in which case it equals 1 (Eqn A.3.37). A nontrivial solution
exists only for values of λ such that the matrix is singular (has
no inverse), which occurs when its determinant is zero (Section
A.4.3),
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Multiplying out the determinant gives the characteristic
polynomial

λ3 − I1λ2 + I2λ − I3 = 0, (25)

whose coefficients, the invariants of the stress tensor, are
independent of the coordinate system. In particular, I1 is the
trace, or sum of the diagonal elements, which has physical
significance, as discussed in Section 2.3.6.

The roots λ of Eqn 25 are the eigenvalues or principal
stresses, denoted σm, which are often ordered by decreasing
value σ1 ≥ σ2 ≥ σ3. In geology, where all stresses are com-
pressive (negative), we usually order the principal stresses by
magnitude, so | σ1 | ≥ | σ2 | ≥ | σ3 |. Each eigenvalue is then sub-
stituted into Eqn 23 to find the components of the associated
eigenvector 4(m). Because the stress tensor is symmetric, the
three eigenvectors are automatically orthogonal if the roots are
distinct (Section A.5.3), so there are three mutually perpendi-
cular surfaces on which there is no tangential traction. Even
if there are multiple roots, it is still always possible to find
orthogonal 4(m).

The principal stress axes are perpendicular and can be used
as basis vectors for a useful coordinate system in which the
stress tensor is diagonal. To transform vectors into this new
coordinate system, we use a rotation matrix (Section A.5.1)
whose rows are the components of the basis vectors of the new
coordinate system written in the old coordinate system. In this
case the rows are the eigenvectors, and the transformation
matrix is

A
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Defining the diagonal matrix containing the eigenvalues as Λ,
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we can describe all the eigenvalue–eigenvector pairs by writing
Eqn 22 as a matrix equation,

σAT = ATΛ (28)
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Carrying out the tensor transformation (Eqn 18) shows that
the stress tensor in the new coordinate system is now diagonal,

σ ′ = AσAT = Λ, σ ′ij = σiδij, (29)

where summation over i is not implied. To see why the stress
tensor is diagonal, recall that each row of the stress tensor
contains the components of the traction vector acting on a
plane perpendicular to a coordinate axis. The new coordinate
axes were chosen to be the principal stress axes, so on surfaces
with these as normals the normal traction is the only nonzero
component of the traction vector.

2.3.5 Maximum shear stress and faulting

An important seismological application of the principal stresses
is that the simplest theory for rock fracture predicts that
faulting will occur on the plane on which the shear stress is
highest (Section 5.7.2). Although this is not exactly true, it
gives insight into the relation between fault orientations and
regional tectonics.

Given a state of stress, we can find the plane of maximum
shear stress using the diagonalized stress tensor (Eqn 29), and
thus a coordinate system whose basis vectors are the principal
stress axes. By Eqn 11 the traction on a plane with normal
vector 4 is

Ti = σ ′ij nj = σiδij nj = σini , (30)

where summation over i is not implied. The squared magnitude
of the traction normal to the surface is (T · 4)2 = (Ti ni)

2,
so, using the triangular geometry (Fig. 2.3-7), the squared
magnitude of τ, the tangential traction along the surface can be
written as a function of the components of the normal vector

τ 2(n1, n2, n3) = TiTi − (Tini)
2

= (σ1n1)2 + (σ2n2)2 + (σ3n3)2

− (σ1n2
1 + σ2n2

2 + σ3n2
3)2. (31)
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Fracture occurs

Rock

 1σ

 3σ

This equation shows that of the three possible local maxima of
the tangential traction, the largest value is

τ = (σ1 − σ3)/2, (35)

where σ1 is the maximum principal stress and σ3 is the
minimum principal stress. This occurs on the planes with unit
normal vectors

4 = (1/ 2 , 0, 1/ 2 ) and 4 = (−1/ 2 , 0, 1/ 2 ). (36)

Thus the planes of maximum shear stress are halfway between
the maximum (1, 0, 0) and minimum (0, 0, 1) principal stress
axes, and contain the intermediate principal stress axis. The
derivatives (Eqn 33) are also zero at local minima, correspond-
ing to the principal stress axes where τ 2 = 0.

To apply this theory, consider an experiment in which a rock
is compressed (Fig. 2.3-8) such that the principal stresses are
negative, with | σ1 | ≥ | σ2 | ≥ | σ3 |. We expect fracture on the
planes of maximum shear stress. By Eqn 36, there are two such
planes, each 45° from the maximum and minimum principal
stress axes and including the intermediate principal stress axis.
Either plane is equally likely to fracture. Alternatively, if the
experiment is conducted in a common laboratory situation
known as uniaxial compression, where | σ1 | ≥ | σ2 | = | σ3 |,
failure should occur on any plane 45° from the maximum
principal stress (σ1) axis. Experiments (Section 5.7.2) support
the idea that fracture is controlled by shear stress, but in a
more complicated way such that the fracture plane is often

Fig. 2.3-7 Traction vector T acting on the surface dS, decomposed into
two components. The normal traction is parallel to the normal, 4, whereas
τ is the tangential traction parallel to the surface.

T

ds

n̂

τ

This expression lets us find planes, characterized by their
normal vectors 4, on which τ2 is a maximum. We eliminate n3
using the fact that n2

3 = 1 − n2
1 − n2

2, so

τ 2(n1, n2) = n2
1(σ 2

1 − σ 2
3) + n2

2(σ 2
2 − σ 2

3) + σ 2
3

− [n2
1(σ1 − σ3) + n2

2(σ2 − σ3) + σ3]2. (32)

At the maxima of τ 2, its derivatives with respect to n1 and n2
are zero:

0 = 2
1

τ τ∂
∂n

= 2n1(σ1 − σ3){(σ1 + σ3) − 2[n2
1(σ1 − σ3)

+ n2
2(σ2 − σ3) + σ3]},

0 =
    
2

2

τ τ∂
∂n

= 2n2(σ2 − σ3){(σ2 + σ3) − 2[n2
1(σ1 − σ3)

+ n2
2(σ2 − σ3) + σ3]}. (33)

The first equation is satisfied if n1 = 0, in which case n2
2 = 1/2

satisfies the second equation because the term in braces is zero.
For these values n2

3 = 1/2, yielding a plane with unit normal
4 = (0, 1/ 2 , 1/ 2 ). A second plane is found by setting n2 = 0,
so the first equation yields 4 = (1/ 2 , 0, 1/ 2 ). Eliminating n1
from Eqn 31 using the method used for n3 yields two similar
equations that can be solved for the third solution, 4 = (1/ 2 ,
1/ 2 , 0).

Each of these planes bisects the 90° angle between a pair of
principal stress axes. Because two such planes can be defined
for each pair of axes, there are other solutions. For example,
because the condition for n1 = 0 was that n2

2 = n2
3 = 1/2,

4 = (0, −1/ 2 , 1/ 2 ) is also a solution.
To find the value of τ 2 as a function of 4, we rewrite Eqn 31

τ 2(n1, n2, n3) = n2
1n2

2[σ1 − σ2]2 + n2
2n2

3[σ2 − σ3]2

+ n2
1n2

3[σ1 − σ3]2. (34)

Fig. 2.3-8 Schematic illustration of an experiment in which a cylindrical
rock sample is compressed along the direction of the maximum principal
stress σ1 until fracture occurs. The minimum principal stresses σ2 and σ3
are approximately equal. If fracture occurs on a plane of maximum shear
stress, the rock breaks on a plane 45° from the direction of maximum
principal stress.
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Fig. 2.3-9 Stress fields associated with three types of faulting, assuming
that the earthquake occurred on a plane of maximum shear stress. Normal
(a), reverse (b), and strike-slip (c) faulting involve different orientations of
the principal stresses.

2 Seismologists sometimes use the terms reverse and thrust fault interchangeably,
whereas structural geologists reserve the term thrust for a shallow-dipping reverse
fault.
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about 25°, rather than 45°, from the maximum principal stress
direction.

For simplicity, however, assume that faults in the earth form
on the planes of maximum shear stress. We will see (Section
2.3.10) that the earth’s surface is a free surface, where tractions
must be zero. Hence, at the surface one principal stress axis
must be vertical, and the other two must be parallel to the
surface. The three basic fault geometries — strike-slip, normal,
and thrust — are related to the stress axes (Fig. 2.3-9). If the ver-
tical principal stress is the most compressive, the fault dips at
45°, and normal faulting occurs. If, instead, the vertical princi-
pal stress is the least compressive, the fault geometry is the
same, but reverse or thrust faulting occurs.2 When the vertical
principal stress is the intermediate principal stress, strike-slip
motion occurs on a fault plane 45° from the maximum prin-
cipal stress. Thus the geometry of faults, which can be mapped
geologically or inferred from seismograms of earthquakes, can
be used to study stress orientations. This model is subject
to limitations, especially because earthquakes often occur on
preexisting faults (Section 5.7.2). Nonetheless, the approach
is useful, especially when integrated with other methods of
estimating stress directions.

2.3.6 Deviatoric stresses

Large compressive stresses occur at depth within the earth
due to the weight of the overlying rock. It is convenient in many
applications to remove the effect of the overall compressive
stress and consider only the deviations from it. We thus define
the mean stress

M = (σ11 + σ22 + σ33)/3 = σii /3 (37)

as B of the sum of the normal stresses, the trace of the stress
tensor. The mean stress can be related to the principal stresses,
because the trace of the stress tensor is independent of the
coordinate system.

To see that the trace does not change, we write the trans-
formation of the stress tensor between two coordinate systems
(Eqn 18) in terms of the components, using the summation
convention (Section A.3.5)

σ ′ij = Aikσkl A
T
lj = Aikσkl Ajl. (38)

The trace can be written

σ ′ii = σ ′ijδij = Aikσkl Ail = δklσkl = σkk, (39)

because A is an orthogonal matrix, so that Aik Ail = δkl. Thus the
trace is invariant under an orthogonal transformation, and so
is known as the first invariant of a tensor. The other two invari-
ants (Eqn 25) are also preserved by such transformations.

The mean stress can thus be written in terms of the trace of
the diagonalized stress tensor (Eqn 29)

M = (σ1 + σ2 + σ3)/3 (40)

as B of the sum of the principal stresses. The deviatoric stress
tensor is defined by removing the effect of the mean stress

Dij = σij − Mδij

  

D
M

M
M

  
  

  
  

.=
−

−
−

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

σ σ σ
σ σ σ
σ σ σ

11 12 13

21 22 23

31 32 33

(41)

Thus, when the principal stresses are large and nearly equal,
the deviatoric stress tensor removes their effect and indicates
the remaining stress state. The deviatoric stress tensor can be
diagonalized and has the same principal stress axes as the stress
tensor.

This concept is important in discussing processes in the
earth, because the deviatoric stresses result from tectonic forces
and cause earthquake faulting and seismic wave propagation
effects like anisotropy. At depths greater than a few kilometers,
we often assume that a lithostatic state of stress exists, where
the normal stresses are equal to minus the pressure of the over-
lying material and the deviatoric stresses are zero. Because
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Fig. 2.3-10 Stress components contributing
to force in the x2 direction.

3 A field is a quantity that varies in space (Section A.6.1).

the two faces, dx1dx3, and use a Taylor series to obtain the net
force due to these two faces,
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We then do the same for the force in the x2 direction due to the
pairs of faces with normals ±ê1 and ±ê3. Summing the three
terms, adding the body force component, and equating this net
force to the density times this component of the acceleration
yields
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The first three terms give the net force from the tractions on
opposite faces of the cube. As we saw, each stress component
canceled with its value from the opposite face, so only the par-
tial derivative of that component contributes to the net force.
Hence the spatial variation of the stress field,3 rather than the
stress field itself, causes a net force. Dividing by the volume of
the block yields
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the weight of a column of material of height z and density
ρ is ρgz, the pressure at a depth of 3 km beneath a column
of rock with density 3 g /cm3 is

P = (3 g/cm3)(980 cm/s2)(3 × 105 cm)

≈ 9 × 108 dyn/cm2 = 0.9 kbar. (42)

The approximation that the pressure at 3 km depth is about
1 kbar (100 MPa) is useful to remember.

The pressure causes compression and thus negative values of
the principal stresses. If the state of stress at depth is lithostatic,
the mean stress equals the negative of the pressure. Because
deviatoric stresses exist, this relation is only approximate, but
it is useful because the mean stress is usually thought to be
much greater than the deviatoric stress.

2.3.7 Equation of motion

Now that we can describe the forces acting on the surface of a
material element in terms of the stresses, we write Newton’s
second law (Eqn 1) in terms of body forces and stresses. This is
the first step to deriving the equations describing seismic wave
propagation.

Consider the forces acting on a block of material of density ρ
and volume dx1dx2dx3 with sides perpendicular to the coordin-
ate axes (Fig. 2.3-10). The net body force, if any, is fidx1dx2dx3,
where fi is the force per unit volume at the center of the block.
The total force is the sum of the surface forces on each face plus
the body force within the material.

For example, the net surface force in the x2 direction is
the sum of three terms, each of which describes the net force
due to the difference in traction between opposing faces. The
first term involves the difference between the traction in the ê2
direction resulting from the stress on the face with normal ê2
and that on the opposite face with normal −ê2. Because stress
is force per unit area, we multiply this difference by the area of
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Similar equations apply for the x1 and x3 components of
the force and acceleration. The set of three equations can be
written simply using the summation convention
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Here the fact that the stresses, forces, and displacements can
vary in both space and time is explicitly written. Alternatively,
because the stress tensor is symmetric, we can write

   

∂

∂
∂

∂

σ
ρij

j
i

i
t

x
f t

u t

t

( , )
  ( , )  

( , )
.

x
x

x
+ =

2

2
(47)

Note that the force in the i direction is obtained by summing
over the faces j of the block. If the partial derivative with
respect to xi is denoted by a comma, Eqn 47 becomes

σij,j(x, t) + fi(x, t) = 
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(48)

This equation, called the equation of motion, is satisfied
everywhere in a continuous medium. It expresses Newton’s
second law, F = ma, in terms of surface and body forces. The
acceleration results from the body force and σij,j, the diver-
gence of the stress tensor. A stress field that does not vary with
position has no divergence, and hence produces no force. It is
interesting to note that the divergence of the stress tensor gives
rise to a force, which is a vector, just as the divergence of a
vector yields a scalar (Section A.6.3).

An important form of the equation of motion describes a
body at equilibrium, whose acceleration is zero, so the diver-
gence of the stress tensor exactly balances the body forces

σij, j(x, t) = −fi (x, t). (49)

This equation of equilibrium must be satisfied for any static
elasticity problem, such as finding the stresses due only to
gravity.

Another important form, if no body forces are applied, is
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This is called the homogeneous equation of motion, where
“homogeneous” refers to the lack of forces, as in the termino-
logy of linear equations (Section A.4.4). This equation describes
seismic wave propagation except at a source, such as an earth-
quake or an explosion, where a body force generates seismic
waves.

2.3.8 Strain

If stresses are applied to a material that is not rigid, points
within it move with respect to each other, and deformation

Fig. 2.3-11 Geometry showing how deformation arises from the relative
displacement δu between two points originally separated by δx.

results. The strain tensor describes the deformation resulting
from the differential motion within the body.

Consider an element of solid material within which displace-
ments u(x) have occurred. If a point originally at x is displaced
by u (Fig. 2.3-11), we describe the displacement of a nearby
point originally at x + δx by expanding the components of the
displacement vector in a Taylor series,

ui(x + δx) ≈ ui(x) + 
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so that the relative displacement near x, δui, is to the first order
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where the partial derivatives are evaluated at x.
Although we are interested in deformation that distorts

the body, there can also be a rigid body translation or a rigid
body rotation, neither of which produces deformation. To dis-
tinguish these effects, we add and subtract ∂uj /∂xi to Eqn 52
and then separate it into two parts

  

δ δ δu
u

x

u

x
x

u

x

u

x
xi

i

j

j

i
j

i

j

j

i
j= +

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ + −

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟      

1

2

1

2

∂
∂

∂

∂
∂
∂

∂

∂
= (eij + ωij)δxj.

(53)

The ωij term corresponds to a rigid body rotation without
deformation. To see this, note that because ωij is antisymmetric
(ωij = −ωji), the diagonal terms are zero, and there are only three
independent components. We can then form a vector ω with
components

ωk = εstkωst /2, (54)

where εstk is the permutation symbol (Eqn A.3.39). Using the
identity
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The off-diagonal components describe changes along a co-
ordinate axis of displacement in another direction. A simple
case (Fig. 2.3-12c) is when only u1 ≠ 0, but u1 changes only
along the x2 axis, so only e12 and e21 are nonzero. We can also
have both ∂u1/∂x2 and ∂u2/∂x1 nonzero (Fig. 2.3-12d, e).
Depending on the relative values of the derivatives, the strain
components describe various deformations.

The strain tensor can be characterized by its eigenvectors,
the principal strain axes, and associated eigenvalues, the prin-
cipal strains. The strain tensor is diagonal when expressed in a
coordinate system whose basis vectors are the principal strain
axes. The trace or sum of diagonal terms of the strain tensor,

θ = eii = 
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known as the dilatation, equals the divergence of the displace-
ment field u(x). The dilatation has physical significance because
it gives the change in volume per unit volume associated with
the deformation. To see this, note that in the principal strain
axes coordinate system a block of material with initial volume
dx1dx2dx3 has a volume after deformation (Fig. 2.3-13) of
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which, to first order,
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Thus, if we define the initial volume as V = dx1dx2dx3,

V + ∆V = (1 + θ)V, so θ = ∆V/V, (63)

and the dilatation is the change in volume per unit volume.
It is worth noting that we have discussed the strain tensor in

Cartesian coordinates. This tensor is more complicated when
formulated in other coordinate systems, because it involves
spatial derivatives of the basis vectors (Section A.7.4).

2.3.9 Constitutive equations

Various materials respond differently to an applied stress. For a
given stress, a more rigid material responds with smaller strains
than occur in a less rigid material. The relation between stress
and strain is given by the material’s constitutive equation.

The simplest types of materials are linearly elastic, such that
there is a linear relation between the stress and strain tensors.
We will see that when the earth behaves as linearly elastic, it
gives rise to seismic waves. Linear elasticity is valid for the short
time scale involved in the propagation of seismic waves, but not
for longer time scales. On time scales of thousands of years or
longer, the mantle rock flows as a viscous fluid (Section 5.7.3).

εijkεstk = εkij εkst = δisδjt − δitδjs, (55)

we find that

εijkωk = εijkεstkωst /2 = (ωij − ωji)/2 = ω ij. (56)

Thus the last term in Eqn 53 can be written as

ωijδxj = εijkωkδxj = −ω × δx, (57)

which is the displacement from a rigid rotation of |ω| about an
axis in the ω direction (Eqn A.3.31). Hence this term does not
reflect deformation.

The other term in Eqn 53, eij, is the strain tensor, a sym-
metric tensor describing the internal deformation. Its tensor
components
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are spatial derivatives of the displacement field, u(x). If the dis-
placement field does not vary, its derivatives are zero, so there
is no deformation, only a rigid body translation.

The strain tensor can be written in terms of the x, y, z axes
using the derivatives of the displacement vector components
(ux, uy, uz):
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The components of the strain tensor are dimensionless
because they have units of length divided by length. The com-
ponents are of two different types. The diagonal components
show how the displacement in the direction of a coordinate axis
varies along that axis. For example, if displacement occurs
only in the x1 direction (u2 = 0, u3 = 0) and u1 changes only in
that direction, then the only nonzero term in the tensor is e11.
Extension occurs along the x1 axis if ∂u1/∂x1 > 0 (Fig. 2.3-12a),
whereas contraction occurs if it is negative (Fig. 2.3-12b). If e11
were constant within the material, it would equal the change in
length per unit length along the x1 axis. The other diagonal
terms, e22 and e33, represent similar strains along their coordin-
ate axes.
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Fig. 2.3-13 Change in volume of a small block of material with faces
normal to the coordinate axes, due to the principal strains. The fractional
change in volume is the dilatation, the sum of the principal strains.

In assuming that material is elastic, we also assume that the
displacements from an unstrained initial state are small. This
assumption, known as infinitesimal strain theory, is generally
valid for seismic waves. For example, a body wave may have a
displacement on the order of 10 microns, and a wavelength on
the order of 10 km. Expressing all quantities in meters, the res-
ulting strain is about (10−5/104) = 10−9, certainly small enough
for infinitesimal theory to be valid. However, for strains greater
than about 10−4, the linear relation between stress and strain
fails. This occurs in regions of the earth’s mantle under very
high pressure, or when rocks break during an earthquake
(Section 5.7.2).

The stress and strain for a linearly elastic material are related
by a constitutive equation called Hooke’s law,

σij = cijklekl, (64)

written here using the summation convention. The constants
cijkl, the elastic moduli, describe the properties of the material.
To understand how the elastic moduli affect the equation of
motion, we write the constitutive equation (64) using the fact
that the strains are derivatives of the displacement,

Fig. 2.3-12 Some possible strains for a two-dimensional element.
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σij = cijkluk,l. (65)

Substituting this expression in Eqn 48 gives the equation of
motion in terms of the displacements:

σij,j(x, t) + fi(x, t) = (cijkluk,l), j(x, t) + fi(x, t) = 
      
ρ

∂
∂ 2

2u t

t
i( , )

.
x

(66)

Thus the elastic moduli control how displacements evolve in
time and space in response to an applied force, and so, as we
will see in the next section, determine the velocity of seismic
waves.

The elastic moduli cijkl form a more complicated tensor than
we have dealt with so far. It has four subscripts and relates
the stress and strain tensors, each of which have two sub-
scripts. This situation is analogous to the way in which the
stress tensor, with two subscripts, relates the normal and trac-
tion vectors, each with one subscript. Because the subscripts
each range from 1 to 3, cijkl has 34, or 81, components. Fortun-
ately, the number of independent components is reduced by
symmetry considerations. The stress and strain tensors are
symmetric

cijkl = cjikl, cijkl = cijlk, (67)

so the number of independent components is 36 because there
are 6 independent components of the stress and strain tensors.
A further symmetry relation

cijkl = cklij, (68)

based on the idea of strain energy, which we will discuss later,
reduces the number of independent components that charac-
terize a general elastic medium to 21.

On a large scale, material within the earth has approxim-
ately the same physical properties regardless of orientation, a
condition known as isotropy. For an isotropic material, the cijkl
have further symmetries, so there are only two independent
elastic moduli, which can be defined in various ways. One
useful pair are the Lamé constants λ and µ, which are defined
such that

cijkl = λδijδkl + µ(δikδjl + δilδjk). (69)

In terms of the Lamé constants, the constitutive equation
(Eqn 64) for an isotropic material is written

σij = λekkδij + 2µeij = λθδij + 2µeij, (70)

where θ is the dilatation. So, for example, σ11 = λθ + 2µe11, and
σ12 = 2µe12. We will use this constitutive relation to study
seismic waves in the next section. We will also see that the
velocities of seismic waves depend on the elastic moduli, so
in an isotropic material the velocities of seismic waves do not

depend on the direction in which they propagate. Deviations
from isotropy occur in many parts of the earth, notably in the
oceanic lithosphere and at the base of the mantle (Section 3.7).

Although the cijkl completely describe the behavior of an
elastic material, they are hard to visualize. This is also true for
the Lamé constant λ.4 By contrast, µ, called the rigidity or shear
modulus, has a simple physical interpretation. Consider the
response of an isotropic elastic body to an applied shear stress
σ12. In this case, the term in the constitutive equation (Eqn 70)
involving the dilatation is zero (recall that δ12 = 0), so only a
shear strain, e12 = σ12/2µ, results. The response to shear is thus
described by the rigidity. µ must be nonnegative, so the sense
of strain is consistent with the applied stress (consider Fig.
2.3-12c). A material with large µ is quite rigid and responds to
a given stress with a small strain. By contrast, a given shear
stress produces a larger strain in a material with lower rigidity.
A material in which µ is zero cannot support shear stresses, and
corresponds to a perfect fluid, one with zero viscosity. In such a
fluid, the stress tensor is diagonal in any coordinate system, and
the pressure equals the negative of the mean stress. Although
perfect fluids do not exist,5 the ocean can generally be treated
this way for seismic waves incident on the sea floor. Even more
surprisingly, the hot iron fluid thought to comprise the earth’s
outer core can be described as an ideal fluid for seismological
purposes.

Other elastic constants that can be defined in terms of simple
experiments are often useful. The incompressibility, or bulk
modulus, K, is defined by subjecting a body to a lithostatic
pressure dP, such that

dσij = −dPδij. (71)

For an isotropic elastic body, the resulting strains, from Eqn 70,
are

−dPδij = λdθδij + 2µdeij. (72)

Setting i = j and summing yields

−3dP = 3λdθ + 2µdθ, (73)

because δ ii = 3. The bulk modulus is thus the ratio of the pres-
sure applied to the fractional volume change that results:
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= +

θ
λ µ2

3
(74)

The term incompressibility is apt because the larger the value of
K, the smaller the volume change produced by a given pressure.
K is greater than zero, because otherwise objects would expand

4 Unfortunately, this Lamé constant is not only hard to interpret; it has no
common name and is denoted by the same symbol as is used for wavelength.
5 Perfect fluids have been called “dry water” to illustrate that no real fluid behaves
exactly this way.



when compressed.6 In an ideal fluid, K = λ, so in this case λ has
an easy physical interpretation.

Writing the constitutive equation (70) in terms of K and µ,

σ ij = Kθδij + 2µ(eij − θδij /3) (75)

shows that the response to an applied stress has two parts: a
volume change characterized by K and a shear deformation,
or change in shape, characterized by µ.

Two other elastic constants are defined by pulling the mater-
ial along only one axis, leading to a state of stress called
uniaxial tension. If the tension is applied along the x1 axis, then
by Equation 70,

σ11 = (λ + 2µ)e11 + λe22 + λe33

σ22 = 0 = λe11 + (λ + 2µ)e22 + λe33

σ33 = 0 = λe11 + λe22 + (λ + 2µ)e33. (76)

Subtracting the last two equations shows that e22 = e33, so
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where ν, defined as Poisson’s ratio, gives the ratio of the con-
traction along the other two axes to the extension along the
axis where tension was applied. Substituting in the first line in
Eqn 76 yields

σ µ λ µ
λ µ
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where E is called Young’s modulus, the ratio of the tensional
stress to the resulting extensional strain.

The elastic constants E, ν, and K are often used in engineer-
ing because they are easily measured by simple experiments.
However, for seismic wave propagation, λ, µ, and sometimes
K are more natural constants.7 Box 2.3-1 gives conversions
between the various elastic constants.

Many seismological problems are simplified by assuming
that λ = µ. Such a material, called a Poisson solid, is often
a good approximation for the earth. In this case, Poisson’s
ratio equals 0.25, Young’s modulus E = (5/2)µ, and the bulk
modulus K = (5/3)µ.

Because strain is dimensionless, the elastic constants λ, µ, E,
and K all have dimensions of stress. For the earth’s crust, µ is
approximately 3 × 1011 dyn/cm2. For comparison, the rigidity
of steel is about 8 × 1011 dyn/cm2. Young’s modulus for the
crust, assuming a Poisson solid, is 7.5 × 1011 dyn/cm2, com-
pared to 5 × 109 dyn/cm2 for rubber.

Box 2.3-1 Relations between moduli
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2.3.10 Boundary conditions

For a string (Section 2.2.3), wave propagation across an
interface depends on boundary conditions that relate the dis-
placements and tractions across the interface. In the earth, we
conduct similar analyses for three types of interface.

The boundary conditions at the earth’s surface are derived
for most seismological purposes by neglecting the atmosphere
and treating the surface as a boundary between a solid and a
vacuum. In this approximation, the earth’s surface is a free
surface, not subject to any force. At a free surface with normal
4 the traction vector is zero, giving a constraint on those stress
components that affect the components of the traction:

Ti = σijnj = 0. (79)

Thus, in a coordinate system in which the surface is horizontal,
the normal vector is ni = δi3, and Ti = σi3n3, so

σ13 = σ23 = σ33 = 0. (80)

The components of the stress tensor that do not affect the
tractions, in this case σ11, σ12, and σ22, are unconstrained.
Similarly, no restriction is placed on the displacements. A free
surface corresponds in the one-dimensional case to a string
whose end is free to move.

There are also interfaces between two solids, a solid and
a liquid, and between two liquids. Their boundary conditions
are obtained by considering a volume, sometimes called a
Gaussian pill box, along the interface between different mater-
ials (Fig. 2.3-14). The volume’s long axis is along the interface,
so the surface area, S, is large relative to the volume, V. We
integrate the homogeneous equation of motion (Eqn 50) over
the volume
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6 Such strange materials have been manufactured synthetically.
7 In engineering the shear modulus µ is often termed G.
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Table 2.3-1 Boundary conditions.

Interface Boundary conditions

solid–solid T +
i = T −

i
u +

i = u −
i

solid–liquid T +
3 = T −

3
T2 = T1 = 0
u +

3 = u −
3

free surface Ti = 0

V

n̂−

Medium 2

Medium 1

S

n̂+

Fig. 2.3-14 “Gaussian pill box” used to formulate the boundary
conditions across an interface. Application of the divergence theorem
shows that the traction vector must be continuous across the interface,
but that the entire stress tensor need not be.
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and use the divergence theorem (Eqn A.6.10) to transform the
first term to a surface integral, giving
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where nj is the j component of the unit outward normal vector
at each point on S. In the limit as the thickness approaches zero,
the volume integral becomes negligible, so

�σij(x, t)nj dS = 0. (83)

Because the thickness goes to zero, we neglect the ends, so that
for the integral to be zero, the contributions from the top (+)
and bottom (−) surfaces must satisfy

(σijnj)
+ + (σijnj)

− = 0. (84)

Hence, because the unit normal on top is opposite that on the
bottom (n+

j = −n−
j ), the three components of the traction vector,

Ti = σijnj, must be continuous across the interface.
The continuity of traction leads to conditions on specific

stress components, depending on the orientation of the inter-
face. For example, if the interface is horizontal, then nj = δj3, so

Ti = σijδj3 = σi3 (85)

must be continuous. If, instead, the boundary between two
solids were vertical, then nj = δj1, so

Ti = σijδj1 = σi1 (86)

would be continuous. Because the continuity conditions are
for tractions rather than stresses, the stress components not
involved in the traction condition need not be continuous.

At the interface between two solids, sometimes called a
“welded” interface, all components of the displacement are
continuous because no overlaps or tears occur. For the same
reason, the tractions are continuous. This is the condition we
used at the junction between two strings in Section 2.2.3.

At the interface between a solid and a perfect fluid the fluid
can slip along the interface because its rigidity is zero, so it
cannot support shear stress. Hence the components of traction
tangential to the interface are zero in the fluid and, by the
condition of continuity, in the solid as well. Thus the tan-
gential displacement components need not be continuous, but
the normal components of the traction and displacement are
continuous.

Table 2.3-1 summarizes the boundary conditions for a
horizontal interface between different media.

2.3.11 Strain energy

Because applying a force to an elastic material causes deforma-
tion, potential energy is stored within the material, as we saw
for waves on a string (Section 2.2.4). To motivate this elastic
strain energy, consider a spring with a restoring force f = −kx.
Compressing the spring a distance dx requires work against
the spring, equal to the integral of the force applied times the
distance. If the spring is initially at equilibrium, the work is

W kxdx kx

x

    ,= =

0

21

2� (87)

which equals the potential energy stored in the spring.
By analogy, the strain energy stored in a volume is the integ-

ral of the product of stress and strain components summed

W = 
  

1

2�σijeijdV = 
  

1

2�cijkleijekl dV. (88)

The strain energy is symmetric in ij and kl, providing the
rationale for the statement (Eqn 68) that the tensor of elastic
constants has the symmetry cijkl = cklij.



2.4 Seismic waves

2.4.1 The seismic wave equation

The ideas of elasticity in the last section let us show that the
equation of motion has solutions that describe the two types
of propagating seismic (or elastic) waves, compressional and
shear waves. We will see that these wave types propagate
differently, with velocities that depend in different ways on
the elastic properties of the material. Our approach to show-
ing that the equations of elasticity have propagating wave
solutions is conceptually similar to the way we showed (Sec-
tion 2.2) that the physics of a string gives rise to traveling
waves. In that analysis, we first demonstrated that waves
occur on a uniform string, and then considered how waves
propagate between strings of differing properties. That ana-
lysis considered propagating waves without regard to how
they were generated.

Following that approach, we consider a homogeneous1 re-
gion, one of uniform properties, within an elastic material. We
assume that the region contains no source of seismic waves,
which requires a body force. Once the waves propagate away
from the source, the relation between the stresses and dis-
placements is given by the homogeneous equation of motion,
which includes no body force term, so F = ma becomes
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Before solving the equation, two points are worth noting.
The equation of motion can be written and solved entirely in
terms of displacements, because the stress is related to the
strain, which is formed from derivatives of the displacement.
The stress and strain are related by the constitutive relation,
which characterizes the material. Thus, although the equa-
tion of motion does not depend on the elastic constants, the
solution does. Second, the equation of motion relates spatial
derivatives of the stress tensor to a time derivative of the dis-
placement vector. The resulting solutions give the displacement
vector and hence the strain and stress tensors as functions of
both space and time. Often, for simplicity, these dependences
are not explicitly written.

We solve Eqn 1 in Cartesian (x, y, z) coordinates, beginning
with the x component,
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To express this in terms of displacements, we use the constitut-
ive law for an isotropic elastic medium (Eqn 2.3.70),

1 Unfortunately, this word is used for two different concepts: a homogeneous
medium has properties that do not vary with position, whereas a homogeneous equa-
tion has no forcing function or source term.

σij = λθδij + 2µeij, (3)

and write the strains in terms of displacements, which yields

σxx = λθ + 2µexx = λθ + 2µ
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We then take derivatives of the stress components
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using the fact that for a homogeneous material the elastic
constants do not vary with position. Finally, substituting the
derivatives into the equation of motion and using the defini-
tions of the dilatation
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and of the Laplacian (Section A.6.5)
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yields
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for the x component of the equation of motion (1).
Similar equations can be obtained for the y and z compon-

ents of displacement. The three equations can be combined,
using the vector Laplacian of the displacement field

∇∇∇∇∇2u = (∇2ux, ∇2uy, ∇
2uz), (9)

into a single vector equation:

(λ + µ)∇∇∇∇∇(∇∇∇∇∇ · u(x, t)) + µ∇∇∇∇∇2u(x, t)
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( , )
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2

2

u x t

t
(10)
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2 Although ΨΨΨΨΨ is often used for the vector potential, we use ϒϒϒϒϒ (upsilon) to avoid con-
fusion with the SV potential in the text section.
3 This decomposition into scalar and vector potentials, known as Helmholtz decom-
position, can be done for any vector field.

This is the equation of motion for an isotropic elastic medium
written entirely in terms of the displacements, with the depend-
ence on position and time explicitly written to remind us that
we seek a solution that varies in this way. Equation 10 can be
rewritten using the vector identity (Eqn A.6.23)

∇∇∇∇∇2u = ∇∇∇∇∇(∇∇∇∇∇ · u) − ∇∇∇∇∇ × (∇∇∇∇∇ × u) (11)

to obtain

(λ + 2µ)∇∇∇∇∇(∇∇∇∇∇ · u(x, t)) − µ∇∇∇∇∇ × (∇∇∇∇∇ × u(x, t))
      
= 

( , )
.ρ ∂

∂

2

2

u x t

t
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Rather than solve Eqn 12 directly, we express the displace-
ment field in terms of two other functions, φ and ϒϒϒϒϒ, which are
known as potentials;

u(x, t) = ∇∇∇∇∇φ(x, t) + ∇∇∇∇∇ × ϒϒϒϒϒ(x, t). (13)

In this representation, the displacement is the sum of the gradi-
ent of a scalar potential, φ(x, t), and the curl of a vector poten-
tial,2 ϒϒϒϒϒ(x, t), both of which are functions of space and time.
Although this decomposition appears to introduce complexity,
it actually clarifies the problem, because the vector identities
(Section A.6.4)

∇∇∇∇∇ × (∇∇∇∇∇φ) = 0 ∇∇∇∇∇ · (∇∇∇∇∇ × ϒϒϒϒϒ) = 0 (14)

separate the displacement field into two parts. The part associ-
ated with the scalar potential has no curl or rotation and gives
rise to compressional waves. Conversely, the part associated
with the vector potential has zero divergence, causes no volume
change, and corresponds to shear waves. Because taking the
curl discards any part of the vector potential that would give a
nonzero divergence, we require that the vector potential satisfy
∇∇∇∇∇ · ϒϒϒϒϒ(x, t) = 0.3

Substituting the potentials into Eqn 12 and rearranging
terms using Eqn 14 yields

(λ + 2µ)∇∇∇∇∇(∇2φ) − µ∇∇∇∇∇ × ∇∇∇∇∇ × (∇∇∇∇∇ × ϒϒϒϒϒ) = 
  
ρ ∂

∂

2

2t
(∇∇∇∇∇φ + ∇∇∇∇∇ × ϒϒϒϒϒ). (15)

Using Eqn 11, the second term of Eqn 15 simplifies to

∇∇∇∇∇ × ∇∇∇∇∇ × (∇∇∇∇∇ × ϒϒϒϒϒ) = −∇∇∇∇∇2(∇∇∇∇∇ × ϒϒϒϒϒ) + ∇∇∇∇∇(∇∇∇∇∇ · (∇∇∇∇∇ × ϒϒϒϒϒ))

= −∇∇∇∇∇2(∇∇∇∇∇ × ϒϒϒϒϒ), (16)

because the divergence of the curl is zero. After this substitu-
tion, the terms in Eqn 15 can be regrouped to give

   

∇∇ (   ) ( , )  
( , )λ µ φ ρ φ

+ ∇ −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

2 2 x
x

t
t

t

∂
∂

2

2

   

= − × −
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

   ( , )  
( , )

,∇∇ ∇∇ ϒϒ
ϒϒµ ρ2 x

x
t

t

t

∂
∂

2

2
(17)

because the elastic constants do not vary with position, and
the order of differentiation has no effect.

One solution of the equation can be found if both terms in
brackets are zero. In this case, we have two wave equations,
one for each potential. The scalar potential satisfies

      
∇ =2

2

1φ
α

φ
( , )  

( , )
,x

x
t

t

t

∂
∂

2

2
(18)

with the velocity

α = [(λ + 2µ)/ρ]1/2. (19)

As we will see shortly, this solution corresponds to P, or com-
pressional, waves. Similarly, the vector potential satisfies
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with velocity

β = (µ/ρ)1/2, (21)

and corresponds to S, or shear, waves.
Equations 18 and 20 are wave equations that are slightly

different from those that we have previously encountered.
Waves on a string (Section 2.2) satisfied the wave equation
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describing the propagation of a scalar quantity in one space
dimension. The scalar potential satisfies a similar scalar wave
equation, with the difference that the space variable x is in
three dimensions. The vector potential, a vector quantity, satis-
fies the analogous vector wave equation in three dimensions.

The wave equations in Eqns 18 and 20 are strictly valid only
for a homogeneous medium because they were derived assum-
ing that all derivatives of the elastic constants were zero. Al-
though these equations were derived in Cartesian coordinates,
they are valid in any coordinate system. We next discuss solu-
tions of the wave equation, and then return to these two types
of waves.

2.4.2 Plane waves

The scalar wave equation in three dimensions,
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4 When the arguments of exponentials become lengthy, we sometimes use the nota-
tion exp (x) = ex for clarity.

Fig. 2.4-1 Wave fronts for a harmonic plane wave traveling in the
direction indicated by the wave vector k. The wavelength is λ = 2π/| k |.
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describes how the scalar field φ(x, t) propagates in three dimen-
sions. By analogy to the equation of motion (Eqn 2.3.50),
Eqn 23 is a homogeneous wave equation, with no forcing
function to act as a source of the waves. If there were, the
inhomogeneous scalar wave equation in three dimensions with
a source term f(x, t),
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would apply.
The harmonic wave solution to the scalar wave equation in

one dimension (Eqn 2.2.6)

u(x, t) = Aei(ωt±kx) (25)

can be generalized to solve the three-dimensional scalar wave
equation. This solution, known as a harmonic plane wave, is
written4

φ(x, t) = A exp (i(ωt ± k · x))

= A exp (i(ωt ± kxx ± kyy ± kzz)), (26)

where x is now the position vector, and k = (kx, ky, kz) is now
the wave vector, sometimes also called the wavenumber vector.
This solution describes a plane wave propagating in an arbit-
rary direction given by the wave vector, in contrast to the
one-dimensional solution that describes propagation along a
coordinate axis. To demonstrate this, we write k = | k | 3, where
3 is a unit vector in the direction of k; so Eqn 26 becomes

φ(x, t) = A exp (i[ωt − | k |(3 · x)]), (27)

a plane wave propagating in the 3 direction with velocity

v = ω / | k |. (28)

Thus the wave vector describes two important features of a
propagating wave. Its magnitude gives the wavenumber, the
spatial frequency, and its direction gives the direction of pro-
pagation. The wave fronts, which at any time are surfaces
of constant phase (ωt − k · x) and thus constant values of
φ(x, t), are planes perpendicular to the direction of propagation
(Fig. 2.4-1). To see this, note that all points on a plane perpen-
dicular to the wave vector have the same value of k · x, because
this scalar product is the projection of k on x. The phase is
periodic over a distance along the propagation direction equal
to the wavelength, 2π/ | k |. As for the waves on a string, we can
use the complex exponential formulation so long as we ensure
that the displacement is purely real, either by taking the real
part of the complex exponential or by also using the complex
conjugate.

This solution to the three-dimensional scalar wave equation
can be generalized to solve the vector wave equation in three
dimensions,
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which describes the propagation of a vector field. In Cartesian
coordinates this breaks up into three scalar wave equations:
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The harmonic plane wave solution to the vector wave equation
is then

ϒϒϒϒϒ(x, t) = A exp (i(ωt − k · x)), (31)

which is like Eqn 26 except that ϒϒϒϒϒ(x, t) and the constant A are
vectors.

2.4.3 Spherical waves

A second solution to the three-dimensional scalar wave equation
yields waves with spherical, rather than planar, wave fronts.
To obtain this solution, we express a scalar potential, φ(r, t),
and its Laplacian in spherical coordinates (Eqn A.7.17). We
consider spherically symmetric solutions where φ is a function
only of time and the radius r, so only the ∂φ/∂r term in the
Laplacian is nonzero. The spherically symmetric waves satisfy
the homogeneous wave equation
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Source

Spherical
wave
front

Local plane wave
approximation

Fig. 2.4-2 As a spherical wave front moves far from the source, it can be
locally approximated by a plane wave front due to the decreased curvature
of the spherical wave.
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where the space variable is the radius r rather than the position
vector r. To solve this equation, we substitute

φ(r, t) = ξ(r, t)/r (33)

and obtain
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Because the term in brackets is the scalar wave equation in one
dimension, any function of the form ξ = f(r ± vt) satisfies Eqn 34
when r ≠ 0. Thus any function of the form

φ(r, t) = f(t ± r/v)/r (35)

is a spherically symmetric solution to the scalar wave equation.
This solution describes spherical wave fronts centered about

the origin r = 0, whose amplitude depends on the distance from
the origin. When the minus sign is used, Eqn 35 represents
waves diverging outward from a source at the origin, with the
amplitude decaying as 1/r. The plus sign yields an incoming
spherical wave, growing in amplitude as 1/r and converging at
the origin. It is common to impose a radiation condition that
waves not enter the region of study from far away, and thus to
discard the incoming wave solution.

However, Eqn 35 is not a solution to the homogeneous
equation everywhere in space, because it is infinite at r = 0.
Physically this is because a wave spreading out from a point
must have been generated by a seismic source there. Thus the
outgoing wave, φ(r, t) = f(t − r/v)/r, is actually a solution to the
inhomogeneous wave equation
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This represents a point source at the origin with a time function
f(t). The delta function δ(r) (Section 6.2.5) is zero except at
r = 0, but its integral over a volume including the origin is 1.
Thus, integrating over a volume including the origin shows
that Eqn 35 is a solution to the inhomogeneous scalar wave
equation (36) even at the origin. Hence, in seeking a solution to
the homogeneous equation that yielded spherical waves, we
have found a solution to the inhomogeneous equation which is
used to study waves radiated by a seismic source.

The fact that the spherical wave solution (Eqn 35) repres-
ents an outgoing wave generated at the origin explains the
distance-dependent amplitude factor 1/r, which had no coun-
terpart for the plane wave solution. As a spherical wave
propagates away from its source, the area of the wave front,
4πr2, increases. Because, as we will see shortly, the energy per
unit area of the wave front transported by a propagating wave

is proportional to the amplitude squared, the energy per unit
wave front decays as 1/r2. This decay, called geometric spread-
ing, conserves energy. Similarly, the energy of spherical light
waves decays with distance from a lamp as 1/r2.

A plane wave can be regarded as a limit of a spherical wave
far from the source, because the spherical wave front becomes
almost planar (Fig. 2.4-2). This approximation is often used in
seismology when seismometers are far from an earthquake.

2.4.4 P and S waves

We found earlier in this section (Eqn 13) that the displacement
can be separated into a scalar potential corresponding to P
waves that satisfies the scalar wave equation
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and a vector potential corresponding to S waves that satisfies
the vector wave equation
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To understand the displacements caused by the two types of
waves, consider a plane wave propagating in the z direction.
The scalar potential for a harmonic plane P wave satisfying
Eqn 37 is

φ(z, t) = A exp (i(ωt − kz)), (39)

so the resulting displacement is the gradient

u(z, t) = ∇∇∇∇∇φ(z, t) = (0, 0, −ik) A exp (i(ωt − kz)), (40)

which has a nonzero component only along the propagation
direction z (Fig. 2.4-3). The corresponding dilatation is nonzero,
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∇∇∇∇∇ · u(z, t) = −k2A exp (i(ωt − kz)), (41)

so a volume change occurs. As the wave propagates, the dis-
placements in the direction of propagation cause material to be
alternately compressed and expanded. Thus the P wave gener-
ated by the scalar potential is called a compressional wave.

By contrast, for the S wave, or shear wave, described by the
vector potential

ϒϒϒϒϒ(z, t) = (Ax, Ay, Az) exp (i(ωt − kz)), (42)

the resulting displacement field is given by the curl

u(z, t) = ∇∇∇∇∇ × ϒϒϒϒϒ(z, t) = (ikAy, −ikAx, 0) exp (i(ωt − kz)), (43)

whose component along the propagation direction z is zero
(Fig. 2.4-3). Thus the only displacement associated with a
propagating shear wave is perpendicular to the direction of
wave propagation. A shear wave causes no volume change,
because the dilatation, ∇∇∇∇∇ · u(z, t), is zero.

Comparison of the displacements for the P and S waves
illustrates that a wave is characterized by two directions. One
is the direction in which the wave propagates; the other is
the direction in which the field that propagates changes. A com-
pressional wave is an example of a longitudinal wave, because
the propagating displacement field varies in the direction of
propagation. A familiar example is a sound wave in air, which
can be described as a compressional (elastic) wave in an ideal
fluid. By contrast, a shear wave is an example of a transverse
wave, because the propagating displacement field varies at
right angles to the direction of propagation. The waves we
considered on the string were transverse waves, because waves
moved along the string, but their displacement was normal to
the string. Electromagnetic waves are another familiar example
of transverse waves.

The component of ϒϒϒϒϒ(z, t) in the direction of wave propaga-
tion (Az) has no effect on the displacement field because
taking the curl discards it. Thus, setting Az to zero to satisfy the

requirement that ∇∇∇∇∇ · ϒϒϒϒϒ(z, t) = 0 imposes no additional re-
striction on the displacement. Only Ax and Ay contribute to the
displacement. Because each component of the displacement
depends on only one of these terms, there can be two independ-
ent shear wave fields. For example, if Ax or Ay is zero, there will
be only a y or an x component of displacement. Thus shear
waves can have two independent polarizations, as is the case
for other transverse waves, such as light.

In real applications, we often define the z axis as the vertical
direction and orient the x–z plane along the great circle con-
necting a seismic source and a receiver. Plane waves traveling
on the direct path between the source and the receiver thus pro-
pagate in the x–z plane. The shear wave polarization direc-
tions are defined as SV, for shear waves with displacement in
the vertical (x–z) plane, and SH, for horizontally polarized
shear waves with displacement in the y direction, parallel to the
earth’s surface. Both have displacements perpendicular to the
propagation direction and the other polarization (Fig. 2.4-4,
overleaf ). Although we could choose any two orthogonal
polarizations in the plane of the shear wave displacements,
using SV and SH is particularly convenient. We will see that
P and SV waves are coupled with each other when they interact
with horizontal boundaries, whereas SH waves remain
separate.

Seismometers record horizontal motions in the north–south
and east–west directions, which rarely correspond exactly to the
SH and SV polarizations. As a result, data from the horizontal
components of seismometers are often rotated. The direction
connecting the source and the receiver, corresponding to SV
displacements, is called the radial direction, so a seismo-
gram rotated to this direction is called the radial component.
Similarly, the orthogonal direction corresponding to SH dis-
placements is called the transverse direction, so a seismogram
rotated to this direction is called the transverse component.

Because seismograms record components of the displace-
ment vector, they can be rotated to give their components in a
new coordinate system using Eqn A.5.9. If the back azimuth
direction from the receiver to the source (Section A.7.2) is ζ ′,

Fig. 2.4-3 Displacements produced by
plane compressional and shear waves,
shown by a “snapshot” in time. P waves
produce displacement in the direction of
wave propagation and a volume change. S
waves produce displacement perpendicular
to the direction of wave propagation and
distort the material without any volume
change.
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with θ = 3π/2 − ζ ′. Figure 2.4-5 shows seismograms recorded at
an angular distance of 110° from a deep earthquake, where the
top three traces are the components recorded at the station, and
the bottom two are the radial and transverse components.
Various P and S wave phases (Section 3.5), corresponding to
different ray paths between the source and the seismometer,
can be seen. Because the back azimuth is 323°, SH and SV
energy is evenly distributed between the north–south and east–
west components, so the S-wave phases are roughly com-
parable on both components. When rotated, however, phases
like SKS, SKKS, and PS that involve conversions from P waves
to SV waves appear primarily on the radial component. Con-
versely, phases like Sdiff that involve primarily SH energy are
largest on the transverse component.

The relative amplitudes on the radial and transverse com-
ponents are shown by a particle motion plot of the amplitudes
as a function of time (Fig. 2.4-6). As shown for two time seg-
ments from Fig. 2.4-5, the SKS and SKKS waves are primarily
on the radial or SV component, whereas Sdiff is primarily on the
transverse or SH component.

The definitions of the P-wave velocity, termed α or vP,

α = [(λ + 2µ)/ρ]1/2 = [(K + 4µ /3)/ρ]1/2, (45)

Source

Surface

Receiver

SH
SV

P

Wave propagation
direction k̂

Fig. 2.4-4 Displacement fields for plane P and S waves propagating in the
x–z plane containing the source and the receiver, where the z axis is
vertical. The P-wave displacement is along the wave vector k. The S wave
can be decomposed into two polarizations, SV and SH, perpendicular
to the wave vector. The SH displacement is purely horizontal (in the y
direction, out of the page), whereas the SV displacement is in the x–z plane.
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Fig. 2.4-5 Seismograms for a deep (597 km)
earthquake on August 23, 1995, in the Mariana
trench, recorded 110° away at Harvard,
Massachusetts. P-wave phases are best seen on the
vertical component, SV-wave phases are best seen
on the radial component, and SH-wave phases are
best seen on the transverse component.

we rotate the north–south (NS) and east–west (EW) compon-
ents into radial (R) and transverse (T) components using
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Fig. 2.4-6 Particle motion plots for two time
segments of the radial and transverse components
shown in Fig. 2.4-5. SKS and SKKS, which are
primarily SV waves, are strongest on the radial
component (left), whereas Sdiff is primarily an
SH wave, and so is strongest on the transverse
component (right).

5 The transverse waves we see at a beach are not seismic waves in the water, but
instead propagate at the water surface and involve a rolling motion in two dimensions
similar to Rayleigh waves (Section 2.7.2).
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and S-wave velocity, termed β or vS,

β = (µ /ρ)1/2, (46)

show that the seismic velocities depend in different ways on the
elastic constants of the material. Because the rigidity µ and the
bulk modulus K (Eqn 2.3.74) are positive, P waves travel faster
than S waves. Thus the first wave arriving from an earthquake
is always a compressional wave. As a result, the nomencla-
ture P originally denoted the first-arriving, “primary” wave,
whereas S denoted the “secondary” wave.

Although both velocities depend on the rigidity, the shear
velocity does not depend on the bulk modulus K, because these
waves involve no volume changes. Because the shear velocity
is proportional to the square root of the rigidity, shear waves
cannot propagate through an ideal (µ = 0) fluid. However,
compressional waves propagate in an ideal fluid with a velocity
proportional to K1/2. Thus only compressional waves can
travel through the earth’s outer core or the ocean.5

To get a feel for these wave velocities, consider typical values
for various parameters. The earth’s crust is approximately a
Poisson solid, with elastic constants λ ≈ µ ≈ 3 × 1011 dyn/cm2.
Thus, for a density of 3 g/cm3, the P-wave velocity is 5.5 ×
105 cm/s, or 5.5 km/s. Similarly, the S-wave velocity is 3.2 ×
105 cm/s, or 3.2 km/s. Hence a P wave propagating with a
velocity of 5.5 km/s and a period of 2 s has a wavelength
(Section 2.2) of (5.5 km/s × 2 s) or 11 km. The frequency
is 0.5 s−1 (the unit s−1 is called a Hertz, or Hz), and the
wavenumber is 2π/11 = 0.57 km−1. On the other hand, a wave
with a period of 10 s and the same velocity has a wavelength of
55 km, and a frequency of 0.1 Hz. The longer-period wave has
a longer wavelength and a lower frequency.
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Fig. 2.4-7 Seismic spectrum showing the frequencies at which various
analyses are conducted.

The “seismic spectrum,” showing seismic waves of various
frequencies and types, is shown in Fig. 2.4-7. Studies of earth-
quakes typically use the period range from approximately 0.1 s
to more than 3000 s, or frequencies from 10 Hz to 3 × 10−4 Hz
(0.1 mHz). Higher-frequency waves of 20–80 Hz generated by
explosions or other artificial sources are used in reflection
seismology to explore the earth’s crust. Still higher frequencies,
3–12 × 103 Hz (3–12 kHz), propagating primarily in the ocean,
are used by marine geophysicists to map the sea floor. At the
other end of the spectrum, ground motions with periods longer
than 104 s are due to slow crustal motions (Section 4.5) rather
than propagating seismic waves.

Earthquake sources generate both P and S waves, with the
S waves generally significantly larger. Figure 2.4-8 shows
seismograms of the three components (vertical, or up–down,
north–south, and east–west) of ground motion from seismic
waves generated by an earthquake ~280 km beneath two
seismic stations in Japan. The seismic waves are coming up
vertically toward the surface. The first arrival, a P wave, has
displacement along the direction of propagation, and therefore
appears primarily on the vertical component. The large later
arrival, a shear wave, has displacement perpendicular to the
direction of propagation, and thus appears most on the hori-
zontal components.
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Fig. 2.4-8 Three-component seismograms
at two stations from an earthquake beneath
Japan. Because the stations are nearly above
the earthquake, the P wave has its largest
amplitude on the vertical (U–D, “Up”–
“Down”) components. (Ando et al., 1983.
J. Geophys. Res., 88, 5850–64, copyright
by the American Geophysical Union.)
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Fig. 2.4-9 Three-component seismogram of
a magnitude 4.9 shallow-focus earthquake
recorded 64 km away at Mina, Nevada. The
difference in the arrival times of the P and S
waves, tS − tP, can be used to estimate the
distance between the earthquake and the
seismometer.

These data also show an interesting effect. The S wave
on the north–south components arrives earlier than on the
east–west components. This observation has been interpreted
as indicating that material beneath the seismic stations is
~5% anisotropic, such that in this region shear waves with
displacements in the N–S direction propagate faster than those
with displacements in the E–W direction. The anisotropy
(Section 3.6) may reflect the presence of the mineral olivine,
in which seismic waves propagate at different speeds depend-
ing on their direction with respect to the crystal structure.
If enough olivine crystals are oriented in a consistent fashion,
significant anisotropy can result. A second effect that could
cause significant anisotropy is the presence of a region of
aligned cracks.

Figure 2.4-9 shows a different type of seismogram: a record
of a shallow earthquake in Nevada from a seismic station
within 100 km of the source. The times when the P and S waves
arrive can be measured from the seismograms. With a number
of such observations at different locations, we will see (Chapter
7) that the location and origin time of the earthquake can be
determined. Even with one seismic station, something about
the location of the earthquake can be learned. Although the
arrival times of the seismic waves cannot be converted to travel
times without knowing when the earthquake occurred, we can
learn something from the difference between the P and S arrival
times. For typical values of the compressional and shear velo-
cities in the crust, α = 5.5 km/s and β = 3.2 km/s, the times
required for S and P waves to travel a distance of x km are



ts = x/3.2, tp = x/5.5. (47)

The difference in travel times, which is also the difference in
arrival times,

ts − tp = x(1/3.2 − 1/5.5) = x/7.6, (48)

is thus a function of the distance between the source and the
receiver. Because the S wave arrives about 8 s after the P wave,
the earthquake is about 60 km away, in agreement with the dis-
tance found by an earthquake location program using arrival
times from many seismic stations. This S − P travel time tech-
nique gives an estimate of the distance from the seismometer to
the earthquake, but does not yield the azimuth and hence the
location.1 Given S − P times at several stations, the location can
be found from the requirement that the earthquake must be a
specific distance from each station. Schematically, this method
can be thought of as locating the point on a map where arcs
of circles with the appropriate radii intersect. The problem is
actually more interesting, because the earthquake need not
have occurred at the earth’s surface.

2.4.5 Energy in a plane wave

Like waves on a string (Section 2.2.4), seismic waves transport
energy both as kinetic energy and as strain, or potential, energy.
To find this energy, consider harmonic plane S and P waves
traveling in the z direction. An SH wave with displacement in
the y direction is

uy(z, t) = B cos (ωt − kz), (49)

where this expression is written directly in terms of displace-
ment, rather than potential. We will see shortly that this is a
useful approach for SH waves.

The kinetic energy in a volume V is the integral of the sum
of the kinetic energy associated with each component of the
displacement
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because the mass is m = ρdV. Hence for the plane wave
(Eqn 49), the kinetic energy per unit wave front averaged over a
wavelength λ is
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The strain energy (Eqn 2.3.88) is

   

W e dV

V

ij ij   .=
1

2 �σ (52)

Because the only nonzero strain components are

e32 = e23 =
    

1

2

∂

∂

u

z
y = Bk sin (ωt − kz)/2, (53)

The only nonzero stress components are

σ32 = σ23 = µBk sin (ωt − kz), (54)

and the strain energy per unit area of wave front averaged over
a wavelength in the propagation direction is

W =

    

1

2
0

λ

λ

 � µB2k2 sin2 (ωt − kz)dz = µB2k2/4 = B2ω 2ρ /4, (55)

where the last expression used the fact that µ = β2ρ and
βk = ω. Thus the strain energy and kinetic energy averaged
over a wavelength are equal, as we found for the string. Hence
the total energy averaged over a wavelength is

E = KE + W = B2ω 2ρ /2, (56)

and the average energy flux in the propagation direction is
found by multiplying by the velocity

0 = B2ω2ρβ/2. (57)

The total energy and flux are proportional to the square of
the amplitude and the frequency, so for waves of the same
amplitude, the higher-frequency wave transports more energy.

Similarly, a plane P wave propagating in the z direction,
described by the scalar potential

φ(z, t) = A exp (i(ωt ± kz)) (58)

has a displacement which is the gradient of the potential,

u(z, t) = ∇∇∇∇∇φ(z, t) = (0, 0, −ik) A exp (i(ωt − kz)), (59)

with real part

uz(z, t) = Ak sin (ωt − kz). (60)

Using Eqn 50, the kinetic energy per unit wave front averaged
over a wavelength is

KE = 
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2
2 2 2

0

λ
ρ ω

λ

A k  �cos2 (ωt − kz)dz = A2ω2k2ρ/4. (61)

To find the strain energy (Eqn 52), we note that the only
nonzero stress component is

σzz = (λ  + 2µ)ezz = ρα2ezz, (62)
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1 An analogous method is used to estimate that a thunderstorm is a mile away for
every 5 s between seeing lightning and hearing thunder, because light travels much
faster than sound (about 330 m/s in air).
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2.5 Snell’s law

2.5.1 The layered medium approximation

In the last section, we saw that the equation of motion for a
homogeneous elastic medium has solutions in which the dis-
placement is described by potentials satisfying the wave equa-
tion. We now begin to use these solutions to describe seismic
wave propagation in the earth. Applying results derived for
an infinite homogeneous medium to a real planet with a com-
plicated internal structure might seem like a large leap. None-
theless, some significant problems can be explored using this
approach.

For seismological purposes, we characterize the internal
structure of the solid earth by the distribution of physical prop-
erties that affect seismic wave propagation and can be studied
using seismic waves. We thus deal with the distribution of elas-
tic properties and density, or, equivalently, of seismic velocities
and density. A seismological model of elastic earth structure is
the set of functions α(r), β(r), ρ(r) showing how the velocities
and density depend on the position vector r, and hence the
radius, latitude, and longitude. Seismological results indicate
that this distribution is complicated and difficult to charac-
terize. For example, downgoing slabs of lithosphere extend
to considerable depths at subduction zones. Fortunately, we
can often make a series of useful approximations (Fig. 2.5-1).
Because the solid earth’s physical properties vary significantly
more with depth than they do laterally, they can be approxim-
ated as spherically symmetric functions α(r), β(r), ρ(r) that
depend only on the radius r. A medium whose properties vary
only with depth is called laterally homogeneous or stratified, in
contrast to a laterally heterogeneous medium where velocities
vary laterally as well as with depth.

When the characteristic length of the region under consid-
eration is small compared with the radius of the earth—as, for
example, in local crustal studies—the earth’s curvature can be
neglected. The earth is thus further approximated as a laterally
homogeneous halfspace, with velocities and density character-
ized by functions α(z), β(z), ρ(z) varying only with the depth z.
A further useful simplification is to treat the earth as a halfspace
consisting of finite thickness layers, each of uniform properties
αi , βi, ρi .

An attractive feature of the layered model is that the solu-
tions of the equation of motion discussed in the last section
apply exactly only to a homogeneous medium. When a layered
earth model is appropriate, it is possible to take the homo-
geneous medium solutions in each layer and “patch” them
together at the interfaces to account for the propagation of seis-
mic waves between layers. This can be done when plane waves
adequately represent the wave fronts, an assumption that
applies far enough away from the source that wave fronts
can be considered planar. Treating a stratified medium as a set
of uniform layers is analogous to the way we divided a string
into uniform segments and matched solutions across their
boundaries.
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Fig. 2.4-10 Seismograms showing the ground displacement at two
locations in the Marina district of San Francisco from a magnitude
5 aftershock of the 1989 Loma Prieta earthquake. The shaking on the
filled land is about an order of magnitude larger than on bedrock.
(Courtesy of the US Geological Survey.)

where the last form eliminates the Lamé constant λ and lets us
reserve the symbol λ for wavelength. Thus the strain energy per
unit wave front averaged over a wavelength is

W = 

    

1

2
0

λ

λ

 � ρα2A2k4 cos2 (ωt − kz)dz = A2ω2k2ρ/4, (63)

which equals the kinetic energy. Hence the total energy averaged
over a wavelength is

E = KE + W = A2ω2k2ρ/2, (64)

and the average energy flux in the propagation direction is
found by mutiplying by the P velocity

0 = A2ω2k2ρα /2. (65)

These expressions differ from those for the energy of the SH
wave by a factor of k2, because A is the amplitude of the poten-
tial, whereas in Eqns 56 and 57 B is the amplitude of the dis-
placement. If we used the potential amplitude for a shear wave,
the k2 factor would be needed.

The energy flux gives insight into how waves behave when
they change media. For example, as water waves travel into
shallower water, their velocities decrease, so their amplitudes
increase to conserve energy. Eventually the amplitudes exceed
a critical level, and the wave breaks. Similarly, when seismic
waves pass from bedrock into soft soil with lower velocity and
density, their amplitudes increase. This effect is shown by
Fig. 2.4-10, comparing seismograms of an aftershock of the
Loma Prieta earthquake from the Marina district of San Fran-
cisco. The ground motion recorded by a seismometer located
on a layer of soft landfill (bottom) is much larger than that on a
nearby seismometer installed on bedrock (top). As a result,
earthquake damage varies between structures built in soils and
bedrock.
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v = f(r, θ, φ)θ  φ v = f(r)
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vi = fi (z)v = f(z)

Fig. 2.5-1 Schematic illustration of some types of earth models used in
seismology. The most accurate model, a laterally heterogeneous sphere,
is often approximated as being spherically symmetric, with properties
varying only with radius. A spherically symmetric model can be further
approximated for many purposes as a stratified halfspace, in which
properties vary only with depth, or as a layered halfspace composed
of discrete uniform layers.

The real earth is not laterally homogeneous, much less com-
posed of uniform layers, and seismic wave fronts do not extend
as planes to infinity. The test of whether these approximations
are useful is whether results derived by applying them to
seismological data yield geologically meaningful inferences.
We will see that this is surprisingly often the case. Laterally
homogeneous models are thus useful both as representations
of average earth structure and as starting models for more
detailed investigations.

2.5.2 Plane wave potentials for a layered medium

Our first goal is to analyze what happens when a plane P or S
wave is incident on the boundary between two halfspaces of
homogeneous and isotropic elastic materials with different
elastic constants and hence seismic velocities. We will derive
Snell’s law, the famous relation that describes the bending of
wave fronts as a plane wave goes from one medium to the
other. Once we can handle a single boundary, we generalize
this solution to a stack of homogeneous layers. The layered
approximation can be used, even when the elastic properties
vary smoothly, by using a large number of thin layers.

Fig. 2.5-2 Two halfspaces in contact, composed of materials with
different elastic properties. The horizontal interface is in the x–y plane.
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The geometry of the problem is shown in Fig. 2.5-2. We
consider a plane wave with its direction of propagation, and
thus wave vector, in the x–z plane. The displacements can be
written using potentials that are functions only of x and z. Two
halfspaces of different materials are in contact along a bound-
ary that is the x–y plane, and the z axis, the normal to the inter-
face, is positive downwards. This geometry has the attractive
feature that the shear waves can be separated into the two
polarizations discussed in the previous section: SV waves,
whose displacement is only in the x–z plane, and SH waves,
whose displacement has only a y component. Moreover, the
displacement and hence potentials do not vary with y, and so
can be written as functions of x, z, and t.

In Eqn 2.4.13 we saw that the displacement field can be
decomposed into a scalar potential describing P waves and a
vector potential for S waves. To separate the SV and SH waves,
we split the vector potential ϒϒϒϒϒ into two terms,

ϒϒϒϒϒ(x, z, t) = ΨΨΨΨΨ(x, z, t) + ∇∇∇∇∇ × χχχχχ(x, z, t). (1)

The displacement vector can now be written using the scalar
potential, φ(x, z, t), and the two vector potentials:

u(x, z, t) = ∇∇∇∇∇φ(x, z, t) + ∇∇∇∇∇ × ϒϒϒϒϒ(x, z, t)

= ∇∇∇∇∇φ(x, z, t) + ∇∇∇∇∇ × ΨΨΨΨΨ(x, z, t) + ∇∇∇∇∇ × ∇∇∇∇∇ × χχχχχ(x, z, t). (2)

We choose the vector potentials to be

ΨΨΨΨΨ(x, z, t) = (0, ψ(x, z, t), 0) and

χχχχχ(x, z, t) = (0, χ(x, z, t), 0). (3)

Each potential has zero for its x and z components, and the y
components are the scalar functions ψ(x, z, t) for SV waves
and χ(x, z, t) for SH waves. Thus the displacement vector is
described by three scalar functions, one for each potential.

To find the resulting displacements, we carry out the vector
operations in Eqn 2. Because the two vector potentials have
only a y component, and neither φ, ψ, nor χ depend on y, the
y derivatives are zero. Hence the P, SV, and SH terms give rise
to displacement vectors with (x, y, z) components
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P–SV waves have no effect on the SH waves, and vice versa,
so there is no coupling between P–SV waves and SH waves.
However, P waves and SV waves are coupled, because both
affect the same components of displacement and traction. Thus
at interfaces, P waves convert to SV waves, and vice versa,
whereas SH waves do not convert to either P or SV waves.

When treating the earth as a horizontally layered medium,
we assume that P–SV and SH waves propagating between
any two points are decoupled and can be treated separately.
The situation is more complicated when dipping interfaces are
present. P–SV and SH are coupled at a dipping interface if its
normal is not in the plane of propagation, the vertical plane
containing the source and the receiver. Thus, for dipping inter-
faces, the waves will be coupled for most pairs of source and
receiver positions.

As a result, in most applications we treat the P–SV system of
propagating waves as distinct from SH. In the last section, we
saw that P waves are described by the scalar potential that
satisfies the scalar wave equation (Eqn 2.4.37), whereas the S
waves are described by the vector potential ϒϒϒϒϒ satisfying the
vector wave equation (Eqn 2.4.38). To see that the SV and
SH potentials each satisfy the vector wave equation separately,
we substitute Eqn 1 into it:

∇∇∇∇∇2[ΨΨΨΨΨ(x, z, t) + ∇∇∇∇∇ × χχχχχ (x, z, t)] = 
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and regroup the terms:
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so the two potentials can be treated separately. Thus the P–SV
system is described by
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Both of these are scalar wave equations, because ψ is the scalar
function forming the y component of the SV vector potential
(Eqn 3).

For SH waves we have two choices. Interchanging the curl
and the other derivatives in the right side of Eqn 9 shows that
the scalar function χ, the y component of the SH vector poten-
tial, satisfies a scalar wave equation. Alternatively, we can take
the curl and recognize that by Eqns 4 and 5

uy = ∇∇∇∇∇ × ∇∇∇∇∇ × χχχχχ (x, z, t), (11)
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Thus P and SV contribute to the x and z components of dis-
placement, whereas SH contributes only to the y component.
The divergences ∇∇∇∇∇ · Ψ and ∇∇∇∇∇ · χ equal zero because only their
y components are nonzero, and ∂/ ∂y of these components is
zero. Hence, as expected, neither SH nor SV gives rise to a
volume change.

The components of the displacement vector are found by
grouping the components from Eqn 4:
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These equations demonstrate that P–SV waves are independent
of SH waves. The x and z components of displacement depend
on both the P-wave potential φ and the SV-potential ψ. Thus
for waves propagating in the x–z plane, the P and SV waves
form a coupled system, which gives rise to two components
of displacement. Neither the P nor the SV potentials contribute
to the y component of displacement. Hence SH waves, which
alone contribute to the y component of displacement, are
decoupled from P and SV waves.

This coupling and decoupling persists when these waves
interact with a horizontal interface parallel to the x–y plane.
The boundary conditions at the interface constrain the dis-
placements and tractions (Section 2.3.10). Because the normal
to the interface has only a z component,

4 = (0, 0, 1), nj = δ j3, (6)

the tractions on the interface are given by

Ti = σijnj = σi3 = (σxz, σyz, σzz). (7)

The P–SV system gives rise to nonzero components of dis-
placement ux and uz, and hence tractions σxz and σzz. For these
waves, both uy = 0 and σyz = 0. By contrast, the SH waves
contribute only a y component of displacement, and their only
nonzero traction component is σyz. Thus, at the interface, the
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Fig. 2.5-3 The wave vector, k, is normal to the wave front and points in
the direction of propagation. Top: For a plane wave traveling in the
x–z plane, the propagation direction is given by the wave vector (kx, kz)
or the incidence angle, i, between the wave vector and the vertical. In a
time increment ∆t the wave front moves a distance v∆t, where v is the
medium velocity, and sweeps out a distance along the surface cx∆t, where
cx is the apparent velocity along the surface. Middle: For a plane wave
traveling vertically, the incidence angle i = 0°, k equals kz, and cx is infinite.
Bottom: For a plane wave propagating horizontally, i = 90°, k equals
kx, and cx equals the medium velocity.

1 Because seismological observations are made at the earth’s surface, the apparent
velocity along the earth’s surface is sometimes written as c rather than cx, and k is
sometimes used to denote kx.

incidence angle i in a medium with velocity v moves forward a
distance v∆t and moves across the horizontal surface a distance
cx∆t. Thus the horizontal apparent velocity is

cx = v/sin i. (16)

The apparent velocity is always greater than or equal to the
medium velocity, α for P waves and β for S waves. A horizont-
ally propagating wave, with i = 90°, has an apparent velocity
equal to the medium velocity. A vertically incident plane wave
arrives everywhere on the surface at the same time, so it has an
infinite apparent velocity.

The horizontal apparent velocity1 can be written in terms of
the horizontal component of the wave vector using Eqns 15
and 16:
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Thus the SH-wave displacement satisfies a scalar wave equa-
tion, and can be found without using the SH potential.

2.5.3 Angle of incidence and apparent velocity

We now consider P–SV waves propagating in the x–z plane
that are described by harmonic plane wave solutions of the
scalar wave equations (10),

(P) φ(x, z, t) = A exp (i(ωt − kxx ± kzα
z)) (13)

(SV) ψ(x, z, t) = B exp (i(ωt − kxx ± kzβ
z)).

The direction of wave propagation is described by the wave
vector, which is the normal to the wave fronts. For pro-
pagation in the x–z plane, the direction is given by kx and kz
because ky is zero. Thus Eqn 13 represents waves propagating
in the +x direction (because of the negative sign in −kxx), and
in both the +z and −z directions.

Subscripts on k and kz are needed because the magnitude of
the wave vector differs for P and SV waves. We will see shortly
that in this geometry kx is the same for the P and the SV waves.
The components of the wave vectors satisfy

| kα |2 = kx
2 + k2

zα
 = ω 2/α2 | kβ |2 = kx

2 + k2
zβ

 = ω 2/β2. (14)

Because ky = 0, kx is the horizontal component of the wave
vector.

The direction of propagation can also be expressed by the
angle of incidence that the wave vector makes with the vertical
(Fig. 2.5-3). Because the wave vectors, and therefore incidence
angles, differ for P and S waves, we adopt the convention that
i refers to P-wave incidence angles and j to S-wave incidence
angles. Thus
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We will see shortly that plane waves change direction when
they cross an interface into a material with different seismic
velocity (Fig. 2.5-4), so the orientation of the wave vector and
the angle of incidence change. Hence the propagation of a
plane wave is characterized by the changing orientations of the
wave vector. We thus speak of a seismic ray that follows this
ray path. Figures like Fig. 2.5-4 are often drawn showing only
the ray paths and omitting the wave fronts that are normal to
the ray.

It is useful to define the apparent velocity, cx, the velocity
at which a plane wave appears to travel along a horizontal
surface. Figure 2.5-3 shows that in a time ∆t a plane wave with
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Fig. 2.5-4 A plane wave changes direction as it enters a material with different seismic velocity. The change in direction is represented by the change in
the orientation of the wave vector k, or by a ray path showing successive orientations of the wave vector. The wave fronts, which are often not shown,
are normal to the ray path.

Fig. 2.5-5 Snell’s law for plane waves propagating into a higher-velocity medium. Left: An incoming P wave generates transmitted and reflected P and
SV waves. The reflected P wave has the same incidence angle, i1, as the incoming P wave. Because in each medium the P-wave velocity exceeds the S-wave
velocity, j1 < i1 and j2 < i2. Right: The same situation for an incoming SV wave. The incidence angles of the incoming and reflected SV waves, j1, are equal.
The relationships between the other incidence angles are the same as for an incident P wave.

cx = ω /kx. (17)

Thus we define the ratios of vertical to horizontal wave-
numbers as

rα = kzα
/kx = (cx

2/α2 − 1)1/2 = cot i,

rβ = kzβ
/kx = (cx

2/β2 − 1)1/2 = cot j, (18)

so that the potentials (Eqn 13) can be written

(P) φ(x, z, t) = A exp (i(ωt − kx x ± kxrα z))

(SV) ψ(x, z, t) = B exp (i(ωt − kx x ± kxrβ z)). (19)

2.5.4 Snell’s law

We now consider the relation between the angles of incidence
for transmitted and reflected harmonic plane P–SV waves
at an interface. In the geometry of Fig. 2.5-5, an interface at

z = 0 separates medium 1 with P and S velocities α1 and β1 from
medium 2 that has velocities α2 and β2. We first assume that
α1 < α2 and β1 < β2.

A P wave incident from medium 1 generates reflected and
transmitted P waves. In addition, part of the P wave is con-
verted into a reflected SV wave and a transmitted SV wave.
Each of these waves can be described by an appropriate poten-
tial. In medium 1 we have upgoing and downgoing P waves
and an upgoing SV wave, so the potentials are

φ(x, z, t) = incident P + reflected P

= A1 exp (i(ωt − kxx − kxrα1
z))

+ A2 exp (i(ωt − kxx + kxrα1
z))

ψ (x, z, t) = reflected SV = B2 exp (i(ωt − kxx + kxrβ1
z)). (20)

The form of each potential describes the wave. Terms like kxrα1
,

the z component of the wavenumbers, indicate which medium
(1 or 2) and what wave type (P or S) this potential describes.



The direction of propagation for each wave is given by the
components of the wave vector k. For example, the signs of
the kx and kxrα1

 terms show that the incoming P wave with
amplitude A1 travels in the +x and +z directions as time in-
creases. Similarly, the reflected P wave with amplitude A2 and
the reflected SV wave with amplitude B2 travel in the +x and
−z directions.

The downgoing P wave and SV waves in the second
medium are given by the potentials

φ(x, z, t) = transmitted P = A′ exp (i(ωt − kxx − kxrα2
z))

ψ(x, z, t) = transmitted SV = B′ exp (i(ωt − kxx − kxrβ 2
z)). (21)

A′ and B′ are the amplitudes of the transmitted P and SV waves,
which travel in the +x and +z directions. We generally write
the amplitudes of P waves as A and the amplitudes of S waves
as B.

We can find the incidence angles of the transmitted and
reflected waves from the incidence angle of the incoming wave.
The boundary conditions for the solid–solid interface at z = 0
are that the components of the displacement and traction
vectors are continuous (Section 2.3.10). Because all of the
potentials contain the phase factor, exp (i(ωt − kxx)) times a
factor independent of x and t, all of the displacement and trac-
tion components have this phase factor. For the displacement
and traction to be continuous at the interface for all x and all t,
(ωt − kxx) must be equal for each of the potentials. Thus the
horizontal wavenumber kx, and hence the apparent velocity
along the interface cx = ω/kx, must be the same for each wave.
As a result, the waves travel along the interface at the same
speed and stay in phase.

This condition and the definition of cx (Eqn 16) give the
familiar form of Snell’s law:
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the ratio of the sine of the angle of incidence for each wave to
the corresponding velocity is constant. Hence the incident and
reflected P waves have the same incidence angle i1. The trans-
mitted P and S waves change direction by a factor depending on
the velocities in the two media. A change in direction upon
transmission into a medium with a different velocity is called
refraction, so the waves in the second medium are called
refracted or transmitted waves. Figure 2.5-5 illustrates the ray
paths for the different waves.

The S wave reflected from the boundary satisfies

sin j1 = sin i1(β1/α1). (23)

Because in any medium P waves travel faster than S waves,
Snell’s law requires that j1 < i1. Hence the reflected S ray is
closer to the vertical, or further from the interface, than the P
ray in the same medium. Physically, this is because the S wave

must be closer to the vertical than the P wave to have the same
apparent velocity along the interface.

The angle of incidence for the refracted P wave is related to
that for the incident P wave by

sin i2 = sin i1(α2/α1). (24)

If the second medium has a higher velocity, then i2 > i1, so the
transmitted ray is further from the vertical than the incident
ray. It travels more horizontally, so the apparent velocities
along the interface are equal. On the other hand, if α1 > α2,
then the refracted P wave would be closer to normal incidence.
(This effect, for light waves, makes a pencil appear to bend at
the surface of a glass of water.)

The transmitted S wave satisfies

sin j2 = sin i1(β2/α1). (25)

Hence for β2 > β1, we get j2 > j1, so the transmitted S wave
is more nearly horizontal than the reflected S wave. Similar
relations apply for an incident SV wave (Fig. 2.5-5). The
reflected P ray is bent further from the normal than the incid-
ent or reflected SV rays.

The fact that an incident P wave generates both P and SV
waves, and vice versa, is a consequence of the displacement
and traction boundary conditions at the interface, as we will
see in Section 2.6. Some insight into why this should be can be
obtained by considering Fig. 2.5-6, in which an incident SV
wave disturbs the boundary, which then generates P waves in
addition to the transmitted and reflected SV waves.

2.5.5 Critical angle

When a P wave impinges on a horizontal boundary, Eqn 24
shows that the incidence angle for the transmitted P wave in the
second medium is

i2 = sin−1 [sin i1(α2/α1)], (26)

where the notation sin−1 indicates the inverse sine function.
If the second medium has a higher velocity, the transmitted
P ray is further from the vertical than the incident ray. As the
angle of incidence increases, the transmitted ray approaches
the horizontal interface (Fig. 2.5-7, overleaf ). Eventually, the
incidence angle i1 reaches a value ic where i2 = 90° and the argu-
ment of the sin−1 term becomes 1, so

sin ic(α2/α1) = 1 or sin ic = α1/α2. (27)

Thus for a wave incident at this critical angle of incidence, the
transmitted wave grazes the interface.

Once the incidence angle exceeds the critical angle, which is a
situation called postcritical incidence, no transmitted plane
wave exists in the second medium. This phenomenon is some-
times called total internal reflection. In this case, as we will see

2.5 Snell’s law 67
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Fig. 2.5-7 Illustration of the critical angle ic for P waves incident on a
faster medium. The transmitted S and the reflected P and S waves are not
shown. As the angle of incidence increases, the incoming waves become
more nearly horizontal, and the refracted P waves approach the interface.
For waves incident at an angle exceeding (more horizontal than) the
critical angle, no traveling P wave is transmitted into medium 2.

in the next section, the P-wave potential for the second medium
has a z-dependent real exponential term, exp (−kzz), instead of
a purely imaginary exponential term, exp (−ikzz). Hence the
displacement in the second medium is not a propagating plane
wave, but occurs as an evanescent wave that travels along the
interface and decays away from the interface.

Although for angles of incidence beyond the critical angle
there is no transmitted P wave, there can still be a transmitted
S wave. If the S velocity in medium 2 is greater than the P velo-
city in medium 1 there is a second critical angle

sin ic2
 = α1/β2 (28)

beyond which no transmitted P or S waves occur.

2.5.6 Snell’s law for SH waves

Snell’s law also applies to SH waves. Because for SH waves the
displacement satisfies the wave equation, SH waves in the first
medium are described by

uy(x, z, t) = B1 exp (i(ωt − kxx − kxrβ1
z))

+ B2 exp (i(ωt − kxx + kxrβ1
z)), (29)

where B1 and B2 are the amplitudes of the incoming and
reflected SH waves (Fig. 2.5-8). In the second medium, the
transmitted SH wave is

uy(x, z, t) = B′ exp (i(ωt − kxx − kxrβ 2
z)). (30)

As before, Snell’s law

cx = β1/sin j1 = β2/sin j2 (31)
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Fig. 2.5-6 Cartoon demonstrating how an SV wave (shown by the
light grey wave front) incident at a boundary generates reflected and
transmitted P (dark grey wave front) and SV waves, for the case shown
in the bottom half of Fig. 2.5-5. a: The incident SV wave disturbs the
boundary. b: The displaced boundary generates reflected and transmitted
P and SV waves. c: As the incident SV wave advances, its intersection with
the boundary moves, continuously generating reflected and transmitted
waves.
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Fig. 2.5-9 Geometric interpretation of P-wave propagation in terms of the
relation between the angle of incidence, i, the wave vector, kα, the
slowness vector, s, the ray parameter or horizontal slowness, p, and the
vertical slowness, ηα .
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applies, because (ωt − kxx) must be equal for all three waves for
the traction and displacement to be continuous at the interface.
The critical angle for SH waves is thus

sin jc = β1/β2. (32)

2.5.7 Ray parameter and slowness

A useful way to characterize a wave’s ray path is via its ray
parameter, p, the reciprocal of the horizontal apparent velocity,

p = 1/cx = sin i/v = kx /ω, (33)

where i is the incidence angle of either a P or an S wave, and v
is the corresponding velocity. The harmonic plane wave solu-
tion can be written in terms of the ray parameter. To illustrate
this, consider the potential for a P wave propagating in the
x–z plane, and factor out the angular frequency:

exp (i(ωt − kxx − kxrαz)) = exp (iω (t − (kx /ω)x − (kx/ω)rα z))

= exp (iω (t − px − ηαz))

= exp (iω (t − s · x)). (34)

Here we define the slowness vector,

s = (p, ηα), (35)

whose components are the ray parameter p and ηα = (kx /ω)rα =
prα = rα /cx = (1/α2 − p2)1/2.

We can interpret ηα geometrically using the components of
the wave vector, because by Eqn 18 rα = kz α

/kx, so

ηα = kzα
/ω = kzα

/( | kα |α) = cos i /α. (36)

ηα and the ray parameter p are closely related because both are
functions of the angle of incidence divided by the velocity.
Hence the magnitude of the slowness vector is

| s | = (p2 + ηα
2)1/2 = (sin2 i/α 2 + cos2 i/α2)1/2 = 1/α. (37)

Thus the reciprocal of the velocity, 1/α, is called the scalar
slowness, an apt term because a low-velocity medium is very
slow (has a high slowness), whereas a fast-velocity medium has
low slowness. The slowness vector (Fig. 2.5-9) is directed along
the ray (parallel to the wave vector) with a magnitude equal
to the slowness, and can be written s = 3α /α. Its compon-
ents are the ray parameter p, also called horizontal slowness,
and ηα, called the vertical slowness. Similarly, for S waves the
slowness is

s = (p, ηβ) = 3β /β,

ηβ = (1/β2 − p2)1/2 = cos j/β = prβ = rβ /cx. (38)

Writing a harmonic plane wave in terms of slowness gives
several insights. In the argument of the exponential in Eqn 34
(iω(t − s · x)), the slowness term, s · x, has the dimension
of time, and shows the net travel time due to the vertical and
horizontal propagation times, each of which is described by
the corresponding component of the slowness. The slowness
formulation also gives another view of Snell’s law. We derived
Snell’s law by considering a harmonic plane wave incident
on a horizontal interface and the resulting reflected and trans-
mitted plane waves. The horizontal component of the wave
vectors kx, and hence the horizontal apparent velocity cx, were
continuous at the interface. By contrast, the terms related to
the vertical component of the wave vectors like kz = kxrα varied
between layers and for P and S waves. The corresponding
formulation in terms of slowness says that the ray parameter or
horizontal slowness p is the same for the incident, reflected, and
transmitted waves, whereas the vertical slowness depends on the
medium and the wave type. Snell’s law can thus be stated as: p
is constant for a ray and any rays that it produces at interfaces.

An important application of the ray parameter is in describ-
ing the evolution of a ray that encounters a number of inter-
faces (Fig. 2.5-10). Each of the four rays generated at the first
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interface in turn generates another four rays at the next inter-
face, and so on. Because Snell’s law applies at each interface, all
these rays have the same ray parameter. As a result, p is
constant along any ray path, no matter how many transmis-
sions, reflections, or conversions the ray has undergone. This
gives a way of tracing the ray path for a ray that began its
travels with a certain ray parameter. In doing this on a com-
puter, an advantage of the ray parameter is that it is zero for a
vertically incident wave, whereas cx is infinite.

2.5.8 Waveguides

Snell’s law is one of seismology’s most important tools,
because seismic waves encounter variations in velocity due to
changes in the physical properties of the materials, including
the effects of composition, temperature, and pressure. In gen-
eral, the velocity increases with depth, so seismic waves turn
toward the horizontal as they go deeper. Eventually the ray
“bottoms,” turns upward, and reaches the surface (Fig. 1.1-3).
Such ray paths can be modeled using Snell’s law, either with
many layers or with a version (Section 3.4) accommodating
velocities that vary smoothly with depth and so give smooth
ray paths. The ray path and the travel time along it thus provide
information about the distribution of seismic velocities and
physical properties with depth.

However, in some regions velocity decreases with depth,
yielding a low-velocity medium between higher-velocity media
(Fig. 2.5-11, top). If seismic waves are generated in the low-
velocity medium, then total internal reflection will trap much
of the seismic energy in the low-velocity channel, which acts
as a waveguide.2 One such waveguide occurs in the oceans,
because the speed of sound in seawater is proportional to both
temperature and pressure. The combination of temperature
decreasing with depth and pressure increasing with depth

Fig. 2.5-10 A P wave incident on a stack of flat layers generates four
waves, two reflected and two transmitted, at each interface. Each of these
waves generates four more at each interface, and so on. All these waves
have the same ray parameter, so their paths can be traced by applying
Snell’s law at each interface.
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2 Similarly, fiber optic cables transmit light signals by trapping them in a low-
velocity material surrounded by high-velocity materials.
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Fig. 2.5-11 Top: A low-velocity layer surrounded by high-velocity
material acts as a waveguide. Rays incident on either interface at angles
exceeding the critical angle undergo total internal reflection. Bottom:
The SOFAR channel, a low-velocity zone (right) in the ocean, acts as a
waveguide, as shown by ray paths from a source in the channel (left).
Note the non-SI units for distance and velocity. (Ewing et al., 1957)

produces a low-velocity region known as the SOFAR (SOund
Fixing And Ranging) channel at a depth of ~1000 meters. Rays
leaving a source in the channel at angles up to ±12° from the
horizontal are internally reflected (Fig. 2.5-11, bottom). The
ray paths are curved because of the smooth velocity structure.
The SOFAR channel transmits sound very efficiently, allowing
explosions, submarines, and whales to be detected at great
distances. As a result, the speed of sound waves in the channel
is being used to search for changes in ocean temperature that
may be due to global warming. Similarly, earthquakes can be
studied using seismic waves in the SOFAR channel that cause
arrivals called T waves (Fig. 2.5-12, top), that can be detected
by hydrophones in the water, or by seismometers when a T
wave hits land. The ringing quality of T waves (Fig. 2.5-12,
bottom) is due to the internal reflections within the SOFAR
channel. Waveguides are also associated with fault zones due
to their low velocities relative to the surrounding rocks.

2.5.9 Fermat’s principle and geometric ray theory

As our discussions so far show, we can gain insight into the beha-
vior of seismic waves by considering the ray paths associated
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with them. This approach, studying wave propagation using
ray paths, is called geometric ray theory. Although it does not
fully describe important aspects of wave propagation, it is
widely used because it often greatly simplifies the analysis and
gives the correct answer or a good approximation.

The most obvious application of rays is for computing travel
times. To find when a plane wave generated at one position will
arrive at another, we use the travel time, which is the length
of the ray path divided by the velocity. Thus, if waves follow
complicated paths, their travel time is the sum of the travel
times for each portion of the ray path. The travel time for a ray
that has traveled through several media, sometimes as a P wave
and sometimes as an S wave, is found using the appropriate
path length and velocity for each segment.

The concept underlying this approach is Fermat’s principle,
a famous result from optics, the study of light. Fermat’s prin-
ciple states that the ray paths between two points are those
for which the travel time is an extremum, a minimum or max-
imum, with respect to the nearby possible paths. The simplest
case is two points in a homogeneous halfspace; the time needed
to traverse the straight line connecting the points is less than
for adjacent paths (Fig. 2.5-13). A second ray path for which
the time is a minimum compared to adjacent paths is that of the
reflected ray satisfying Snell’s law. The direct ray path cor-
responds to an absolute minimum of the travel time, whereas
the reflected ray corresponds to a local minimum.

Snell’s law can be derived from Fermat’s principle. Consider
the possible ray paths (Fig. 2.5-14) between the point (0, a) in
medium 1, with velocity v1, and the point (b, −c) in medium 2,
with velocity v2. The ray paths can be parametrized by the
point (x, 0) where they cross the interface. The travel time as
a function of x is

Fig. 2.5-14 Derivation of Snell’s law for refraction using Fermat’s
principle. The ray path between points on opposite sides of the interface
is that for which the travel time is a minimum.

Source

Receiver

Fig. 2.5-13 Two ray paths (solid lines), one for the direct ray and
one for the reflection obeying Snell’s law, connecting two points in a
homogeneous halfspace. The travel time for these paths is less than
for nearby paths (dashed), in accord with Fermat’s principle.
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Fig. 2.5-15 Figure adapted from Huygens’ original (1690) analysis
showing how circular wave fronts can be generated by treating each point
on the initial wave front as a point source of wave energy. (Reprinted from
Huygens, Treatise on Light, trans. S. P. Thompson (Dover, New York).)
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To find the path for which the travel time is an extremum, we
differentiate with respect to x and set the result equal to zero,
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which yields Snell’s law

v1/sin i1 = v2/sin i2. (41)

In most seismological applications the ray paths and travel
times derived using Snell’s law yield results in reasonable
accord with observations, because most seismic energy propag-
ates as though it followed ray paths. However, geometric ray
theory is only an approximation to the solutions of the elastic
equation of motion that describes the generation and propaga-
tion of seismic energy. As a result, ray theory has two major
limitations. First, it does not directly provide information
about wave amplitudes. Hence, although deriving Snell’s law
using ray theory gives the angles of the reflected and transmit-
ted waves, we need wave theory to find their amplitudes. In
some cases, this limitation can be circumvented by tracing rays
from a source and using the resulting density of rays to infer
amplitudes (Sections 2.8.4, 3.4.2, 3.7.3). Second, in other
applications, as discussed next, geometric rays fail to describe
the wave’s behaviour.

2.5.10 Huygens’ principle and diffraction

In some applications treating propagating waves as geomet-
ric rays fails to explain what we observe. For example, waves
bend or diffract around the earth’s core and so reach places
to which Snell’s law predicts no ray path. Similarly, although
ray theory says that no energy is transmitted when a wave is
incident on an interface at an angle greater than the critical
angle, some energy is in fact transmitted. Addressing such
issues requires explicitly considering the fact that seismic
energy propagates as waves. To do this, we draw on results
from both seismology and other wave phenomena, especially
light waves, which are easier to study and have been invest-
igated for many years.

One important approach, known as Huygens’ principle, is
illustrated in Fig. 2.5-15. Each point on a wave front is consid-
ered to be a Huygens’ source that gives rise to another circular
wave front. These wave fronts interfere constructively to give
a circular wave front, and interfere destructively everywhere
else. In three dimensions, the wave fronts are spherical.

Fig. 2.5-16 Demonstration of Huygens’ principle for the propagation
of a straight wave front. Successive wave fronts are generated by drawing
a circular wave from each point on the previous wave front and then
drawing a line tangent to the circles. The circular wave fronts are assumed
to interfere destructively everywhere else.
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Although the point sources, known also as diffractors or
scatterers, need not have a physical interpretation, in some
cases they do. For example, heterogeneities in the crust and
mantle scatter incident seismic waves. Hence, migration
methods in exploration seismology (Section 3.3.7) improve
images of the subsurface by undoing this scattering. Similarly,
seismic energy that arrives before PKP waves that traverse the
earth’s core is thought to have been scattered by heterogeneities
in the mantle.

Huygens’ principle gives another way of thinking about
phenomena we have discussed. It explains why a straight wave
front generates subsequent straight wave fronts, as shown in
Fig. 2.5-16. It is also another way of deriving Snell’s law.
Assume, as in Fig. 2.5-17, that a wave front A–A′ in medium 1
is incident upon a boundary with medium 2. When the wave
front reaches point A, energy begins to radiate outward, but if
the velocity in the second medium is less, the radius of the cir-
cular wave front some time later is smaller in medium 2. Sim-
ilarly, as the wave front reaches other points along the interface
(for example, point B), circular wave fronts of different sizes
spread out in the two media. By the time the initial wave front
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Fig. 2.5-17 Derivation of Snell’s law using
Huygens’ principle. As an incident plane
wave A–A′ interacts with the boundary, the
Huygens’ sources combine to form a reflected
wave front C–C′ and a transmitted wave front
C –D. Because the radii of the circular wave
fronts are proportional to the velocity in each
medium, the angles of the incident (O–A),
reflected (A–C′), and transmitted (A–D)
rays yield Snell’s law.

3 Interference and diffraction are terms for closely related wave phenomena between
which there is no sharp distinction. Effects involving a few sources are typically called
interference, whereas those involving many sources are often called diffraction.
4 This analysis uses Fourier transforms, and so yields the (sin ζ)/ζ function that
commonly appears in Fourier analysis, as we will see in Section 6.3.

reaches point C, one planar wave front, drawn as the tangent
to the circular wave fronts in medium 1, is the reflected wave,
and another gives the refracted wave. The directions of the
waves, taken as the perpendiculars to the planar wave fronts,
are those expected from Snell’s law. Thus we have three ways
of understanding how Snell’s law comes about: Huygens’ prin-
ciple, Fermat’s principle (Section 2.5.9), and the application of
the interface boundary conditions to plane waves (Section
2.5.4). Each approach offers different insight into the phenom-
enon of reflection and refraction.

Huygens’ principle also explains the phenomenon of dif-
fraction, in which waves bend around obstacles. Although the
phenomenon is complicated, the simple example of diffraction
at a slit (Fig. 2.5-18, top) gives considerable insight. We assume
that an incident planar wave front acts like a set of Huygens’
sources, so the transmitted wave field is the superposition of
waves from these sources. In front of the slit, the sources
combine to give a planar transmitted wave front. In addition,
energy propagates to the sides, and thus can be detected around
the corners, although there is no geometric ray path to there.
The analogous process occurs with shear waves that cannot
pass through the liquid outer core, and so diffract around it
(Section 3.5.2).

Although evaluating the amplitude of the diffracted waves
requires going beyond Huygens’ principle, a simple construc-
tion (Fig. 2.5-18, middle) shows some important aspects. If the

slit has width d, then waves from either side of the slit will be
out of phase by 90° and so interfere3 destructively at distance
D when the path difference is a half wavelength. Hence the
amplitude will be zero at a distance x0, or an angle θ, from the
middle of the slit. By this condition

λ/2 = d sin θ ≈ dx0/D, (42)

assuming D >> d. Thus the amplitude decays from its max-
imum at θ = 0 to zero at x0 = λD/2d. A more sophisticated
analysis4 shows that the amplitude varies as

(sin ζ)/ζ, where ζ = 2πdx/λD, (43)

which is shown in Fig. 2.5-18 (bottom). This function has
a central lobe of width 2x0 and a series of decreasing side lobes.

The slit illustrates general properties of diffraction, because
diffraction around an obstacle is in many ways similar. An
important point is that diffraction depends on the wavelength,
so longer wavelengths have broader lobes and thus are more
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affected by diffraction. For example, we can hear around open
doorways but not see around them, because sound has a wave-
length of about 0.1 m, compared to 10−7 m for visible light.
Similarly, seismic waves that diffract around the core lose their
high-frequency components. Hence the longer the wavelength,
the poorer an approximation geometric ray theory becomes.

Specifically, the diffraction depends on the ratio of the wave-
length to the slit width. If the slit is less than a half wavelength
wide, the side lobes vanish. Hence, if an obstacle is less than
half a wavelength wide, waves impinging on it are insensitive to
the details of its structure. Conversely, if the slit is very wide
compared to the wavelength, diffraction occurs only at the slit’s
edges. Thus, for example, seismic reflection images show waves
that diffracted around the ends of interfaces (Section 3.3.7).

Similar effects occur when wave fronts encounter a circular
(or spherical) obstacle (Fig. 2.5-19a). Geometric ray theory
predicts that no energy will arrive behind the obstacle, so a hole
in the wave front will develop and never close. In reality, the
wave diffracts around the sphere, closing the gap behind it. The
successive wave fronts illustrate why it is difficult to seismically
observe an obstacle or a low-velocity zone. As the wave fronts
continue after passing the sphere, the break in the wave front
fills in with energy from either side until at large distances the
delay from the obstacle is no longer observable. This process,
called waveform annealing, also occurs if the obstacle has a
lower velocity (Fig. 2.5-19b), so much of the energy arriving
behind the obstacle diffracts around the obstacle rather than
passing slowly through it. This effect can also be interpreted
using Fermat’s principle, because the resulting wave is that
which traveled for the least time.

This example illustrates one possible reason why it has
proved very difficult to seismologically observe plumes, up-
wellings from deep in the mantle that have been proposed
to give rise to island chains like Hawaii. A seismic wave
front encountering a narrow conduit of hot, slow rock
diffracts around it, causing little travel time delay. By contrast,
anomalously fast rock is easy to “see” seismologically. Hence
seismology is very good at detecting subducting lithosphere at
trenches (Section 5.4), because the cold material has a higher
seismic velocity. This effect is illustrated by Fig. 2.5-19c, which
shows a spherical anomaly faster than the surrounding
material. By Fermat’s principle, the anomaly is the fastest path
between a source and a receiver. From the Huygens’ principle
view, the wave front moves further ahead through the fast
material, and then spreads out laterally, advancing the rest of
the wave front. The waves thus lose their planar appearance
and appear to have emanated from a point source.

These analyses show that Huygens’ principle describes the
general features of diffraction. However, it does not provide
direct information about amplitudes. For instance, although
the wave fronts in Fig. 2.5-19 lose amplitude as they diffract
around the sphere, this decay cannot be obtained from
Huygens’ principle. To go further requires an extension of
Huygens’ principle known as the Kirchhoff integral, which is
beyond our scope.

Incident
plane
waves

Huygens’
wavelets

Barrier

d
θθ

D

x

−3π −π π 3π

−2π 2π

1

Fig. 2.5-18 Top: Use of Huygens’ sources to describe waves diffracting at
a slit. Energy diffracts around the corners to reach areas with no geometric
ray paths leading to them. (Klein and Furtak, 1986. Copyright © 1986.
Reprinted by permission of John Wiley & Sons, Inc.) Middle: Geometry
for the analysis of diffraction by a slit of width d, observed at a distance D.
Bottom: The (sin ζ )/ζ function describing the amplitude of the diffracted
wave, showing the central lobe and side lobes.



a. Spherical obstacle b. Spherical slow anomaly c. Spherical fast anomaly

Fig. 2.5-19 Waves interacting with a
spherical anomaly. a: A straight wave front
diffracts around a circular or spherical
obstacle, as described by Huygens’ principle.
Only the leading wave front is shown. This
formulation shows the locations of the wave
fronts, but not their amplitudes. b: Plane
waves interacting with a low-velocity
anomaly 30% slower than the surrounding
material. The waves slow within the
anomaly and diffract around it. After passing
the obstacle, the wave front shows little
perturbation, illustrating the difficulty
of seismically observing low-velocity
anomalies. c: Plane waves interacting with an
anomaly 50% faster than the surrounding
material. The overall speed of the wave field
increases, demonstrating that seismically fast
anomalies are easy to observe.
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2.6 Plane wave reflection and
transmission coefficients

2.6.1 Introduction

Seismic waves propagating in the earth encounter several types
of interface (Fig. 2.6-1) at which physical properties change
over short distances. For example, the earth’s surface is a free
surface, and the sea floor is a liquid–solid interface. Variations
in velocity and density cause solid–solid interfaces such as the
Mohorovibia discontinuity, or Moho, separating the crust and
the mantle (Section 3.2). The upper and lower mantles are
divided by regions of rapid velocity changes (Section 3.5),
which can be described for many purposes as solid–solid inter-
faces. The core–mantle boundary is an interface between the
solid mantle and fluid outer core, and the base of the outer core
is an interface with the solid inner core. Nearly all our know-
ledge of these interfaces comes from observing their effects
on seismic wave propagation.

In the last section we derived Snell’s law, relating the bend-
ing of waves at an interface to the velocity contrast across it.
We now discuss the amplitudes of the reflected and transmitted
waves. We first consider two simple cases, SH waves at a
boundary and P–SV waves at a free surface, and then outline
how the same approach is applied for P–SV waves at an inter-
face between solids. It turns out that although the angles of
reflection and transmission, and hence the ray paths and travel
times, depend only on the velocities, the amplitudes depend on
the elastic constants in a more complicated way. As a result,
the amplitudes of waves provide information beyond that
conveyed by travel times, and so are valuable for studying the
earth’s interior.

Fig. 2.6-1 Illustration (not to scale) of some of the interfaces within the
earth that affect seismic waves.
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β1, ρ1, µ1ρβ µ The other condition comes from the requirement that the
traction vector, Ti = σijnj, be continuous. Because the unit
normal vector for the interface is (0, 0, 1), the stress compon-
ents σxz, σyz, σzz are continuous. For SH waves ux and uz are
zero, so σxz = σzz = 0, and σyz is continuous. To use this con-
dition we substitute
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At points infinitesimally above and below the interface z = 0,
the stress satisfies

σ −
yz(x, 0, t) = σ +

yz(x, 0, t),

µ1ikxrβ1
(B2 − B1) exp (i(ωt − kxx))

= −µ2ikxrβ2
B′ exp (i(ωt − kxx)). (6)

Canceling the factors common to both sides gives the second
condition

(B1 − B2) = B′(µ2rβ 2
)/(µ1rβ 1

). (7)

Solving Eqns 4 and 7 simultaneously yields the amplitudes of
the reflected and transmitted waves. First, we eliminate B2 and
find the transmission coefficient,
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the ratio of the amplitude of the transmitted wave in medium 2
to that of the incident wave in medium 1. Similarly, eliminating
B′ from Eqns 4 and 7 gives the reflection coefficient
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the ratio of the amplitudes of the reflected and incident waves
in medium 1.

The reflection and transmission coefficients depend on the
angle of incidence because, by Eqn 2.5.38

rβ i
 = cx cos ji /βi. (10)

Hence, using Eqn 10 and recognizing that from the definition
of the S-wave velocity, µi

 = ρiβ i
2, the reflection and transmission

coefficients can be written
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2.6.2 SH wave reflection and transmission coefficients

We first consider the amplitudes of SH waves reflected and
transmitted at a horizontal interface. Figure 2.6-2 illustrates
the geometry of an SH wave propagating in the x–z plane incid-
ent on a boundary in the x–y plane between media with shear
velocities, rigidities, and densities βi, µi, and ρi. For SH waves,
the only nonzero component of displacement, uy, satisfies the
wave equation (Eqn 2.5.12), so we write the displacements for
harmonic plane waves on either side of the boundary. Because
z is defined positive downward, exponentials with −kxrβi

z
represent downgoing waves in medium i, and those with
+kxrβi

z represent upgoing waves. In medium 1 (z < 0) there is a
downgoing incident wave with amplitude B1 and an upgoing
reflected wave with amplitude B2,

u−
y(x, z, t) = B1 exp (i(ωt − kxx − kxrβ1

z))

+ B2 exp (i(ωt − kxx + kxrβ1
z)). (1)

In medium 2 (z > 0) there is only a transmitted wave with
amplitude B′,

u+
y(x, z, t) = B′ exp (i(ωt − kxx − kxrβ2

z)). (2)

To find the amplitudes, we use the solid–solid interface con-
ditions (Section 2.3.10) that the displacement and traction are
continuous on the boundary z = 0 for all x and t. The continuity
of displacement requires that

u−
y(x, 0, t) = u+

y(x, 0, t)

(B1 + B2) exp (i(ωt − kxx)) = B′ exp (i(ωt − kxx)). (3)

When deriving Snell’s law, we found that (ωt − kxx) is the same
for all three waves, so we cancel the exponentials and obtain
one condition on the amplitudes,

B1 + B2 = B′. (4)

Fig. 2.6-2 Geometry for an SH wave in medium 1 incident on a solid–solid
interface with medium 2. B1, B2, and B′ are the amplitudes of the incident,
reflected, and transmitted SH waves. The displacement is in the y direction.



Thus the reflection and transmission coefficients depend
on the acoustic impedances ρiβi, as did those for waves on a
string (Section 2.2.3), but with an angle dependence that could
not occur for a one-dimensional string. If the media are inter-
changed, the reflection coefficient reverses polarity, R12 = −R21,
and the transmission coefficients satisfy T12 + T21 = 2. Due to
the displacement continuity condition (Eqn 3), 1 + R12 = T12.
Large impedance contrasts favor reflection, whereas small con-
trasts favor transmission. In the limit of identical media there is
no reflection (R12 = 0), and everything is transmitted (T12 = 1).

An interesting effect occurs for an SH wave incident on the
earth’s free surface. Because β2 = 0, the reflection coefficient
equals 1 regardless of the incidence angle, so the displace-
ment is twice that of the upgoing wave. This also occurs at
solid–liquid interfaces, such as the sea floor or the core–mantle
boundary, which act as free surfaces for SH because no SH
waves propagate in the liquid.

The transmission and reflection coefficients have a particu-
larly simple form for vertical incidence (j1 = j2 = 0):
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These vertical incidence forms are easy to remember and are a
useful approximation for nonvertical incidence.

The fact that the transmission and reflection coefficients
depend on the contrast in both density and velocity, whereas
the angles made by the waves depend only on velocity, makes
the amplitudes valuable for studying elastic properties from
seismological observations. Although each medium has three
quantities of interest, βi, µi, and ρi, only two are independent,
because the velocities depend on the rigidities and densities. For
example, if we regard the velocity and rigidity as independent,
the angles of reflection and transmission give information about
the velocity, and the amplitudes provide additional informa-
tion about the rigidity.

2.6.3 Energy flux for reflected and transmitted SH waves

In some cases the transmission coefficient exceeds 1. For ex-
ample, when an SH wave impinges on a higher-velocity medium
at critical incidence, the transmitted wave becomes horizontal
(j2 = 90°) and Eqn 11 shows that the transmission coefficient is
2. As for the string (Section 2.2.4), this puzzling effect can be
explained by examining how the incident wave energy divides
between the reflected and transmitted waves.

We saw (Section 2.4.5) that the flux of energy per unit wave
front in the propagation direction associated with a harmonic
SH plane wave u(x, t) = A cos (ωt − kx) is the product of the
energy density and the velocity

0 = A2ω2ρβ /2. (13)

Because no energy accumulates at an interface, the flux of
energy in the length of wave front incident on an element dx of

Fig. 2.6-3 The lengths of the incident, reflected, and transmitted wave
fronts contributing to the energy flux though an element dx of an interface
depend on the cosine of the angle of incidence for each wave.
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the interface equals that of the reflected and transmitted waves
removing energy from the interface. The length of the wave
fronts contributing to the flux depends on the angles of incid-
ence. Figure 2.6-3 shows that the relevant lengths are cos j1dx
for the incident and reflected waves, and cos j2dx for the trans-
mitted wave. Thus, for an incident wave of unit amplitude, the
energy fluxes for the incident, reflected, and transmitted waves
are

0I = ω 2ρ1β1 cos j1dx/2

0R = R2
12ω 2ρ1β1 cos j1dx/2

0T = T 2
12ω 2ρ2β2 cos j2dx/2. (14)

These satisfy the conservation of energy

0I = 0R + 0T, (15)

as proved in one of this chapter’s problems. The ratios of the
transmitted and reflected energy fluxes to the incident energy
flux are
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Because the energy ratios are proportional to the squares of
the amplitudes, small amplitudes represent very small energies.
For example, a reflected wave with R12 = 0.1 has an energy
ratio of 0R/ 0I = 0.01.

To see the angle dependence, consider an interface between
media with β1 = 3.9 km/s, ρ1 = 2.8 g/cm3, and β2 = 4.5 km/s, ρ2
= 3.3 g/cm3, which approximates the continental Mohorovibia
discontinuity. Figure 2.6-4 shows the reflection and transmis-
sion coefficients and the ratio of energy fluxes for angles of incid-
ence between vertical and critical (58°). The energy flux ratios
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To see the effect on the transmitted wave of an apparent
velocity less than that of medium 2, recall that the transmitted
wave (Eqn 2) is described by

u+
y(x, z, t) = B′ exp (i(ωt − kxx − kxrβ 2

z)). (18)

If cx < β2, the quantity (Eqn 2.5.8)

rβ 2
 = (c2

x /β 2
2 − 1)1/2 (19)

becomes an imaginary number. As a result, kxrβ 2
, the z com-

ponent of the wavenumber, also becomes imaginary, so Eqn 18
no longer describes a plane wave propagating in the +z direc-
tion. The square root, which describes the imaginary number,
has two possible signs. We pick the negative sign and define

rβ 2
 = −ir*β2

, r*β 2
 = (1 − c2

x/β 2
2)1/2 (20)

so that the z term in the displacement,

exp (−ikxrβ 2
z) = exp (−kxr*β2

z), (21)

decays exponentially away from the interface in medium 2 as
z → ∞. Thus, instead of being a propagating wave, the trans-
mitted wave becomes an evanescent or inhomogeneous wave
“trapped” near the interface. Choosing the negative sign in
Eqn 20 is a radiation boundary condition, because the opposite
choice gives displacement increasing with depth as z → ∞, as if
energy originated there.

The behavior of the reflected wave for postcritical incidence
results from the fact that the reflection coefficient (Eqn 9)
becomes a complex number. Using Eqn 20 shows that
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This a complex number divided by its conjugate, so the mag-
nitude of the reflection coefficient is 1, but there is a phase shift
of 2ε :

R12 = ei2ε,
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The phase shift depends on the angle of incidence. At critical
incidence, cx = β2, so r*β2

 = 0 and ε = 0°. As the angle of incidence
increases beyond critical, ε increases until grazing incidence,
j1 = 90°, where cx = β1, rβ1

 = 0, and ε = 90°. A 90°  phase shift
turns a sine wave into a cosine wave, and vice versa, whereas a
180° phase shift is multiplication by −1. If the incident wave is
made up of different frequencies, the phase shift affects each
frequency, so the reflected wave can be computed using the
Fourier transform. Figure 2.6-5 illustrates how the reflected
wave would appear due to different phase shifts.

1 The wave angles and amplitudes can be shown by a simple experiment using
beams of light (Klosko et al., 2000).

Fig. 2.6-4 For an SH wave incident on a solid–solid boundary,
displacement reflection and transmission coefficients and the ratios of
reflected and transmitted energy fluxes to that of the incident wave are
given as functions of the angle of incidence of the incident wave. The
critical angle for these values is 58°.

sum to one, so, as the reflected energy increases, the transmitted
energy decreases.

At vertical incidence and for most of the range of incidence
angles less than the critical angle, most of the energy is trans-
mitted. In this range, the vertical incidence reflection and
transmission coefficients and energy flux ratios are good ap-
proximations for nonvertical incidence. The behavior near the
critical angle illustrates the value of considering the energies as
well as the reflection and transmission coefficients. As the angle
of incidence approaches the critical value, the transmission
coefficient goes to 2, but the wave front factor cos j2 goes to
zero, so the energy in the transmitted wave vanishes and all of
the energy reflects.1

2.6.4 Postcritical SH waves

The transmitted and reflected waves behave differently for
angles of incidence greater than the critical angle. Snell’s law,

cx = β1/sin j1 = β2/sin j2, (17)

shows that for incidence angles less than the critical angle, the
apparent velocity exceeds the velocity of the second medium,
β2. At critical incidence, sin j2 = 1, so the apparent velocity
equals β2. For incidence angles greater than the critical angle,
sin j1 > sin jc, so the apparent velocity cx = β1/sin j1 is less than
β1/sin jc = β2.
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Fig. 2.6-5 The effect of phase shifts on a seismic waveform shown in the
upper trace. (Choy and Richards, 1975. © Seismological Society of
America. All rights reserved.)

Fig. 2.6-6 Geometry for a P wave in a halfspace incident upon a free
surface. A1, A2, and B2 are the amplitudes of the incident P, reflected P,
and reflected SV waves.

At the free surface, the traction vector, and hence the stress
components σxz, σyz, σzz, must be zero for all x and t. σyz is
automatically zero for P–SV waves in this geometry. Using
Eqn 26, we express the other two stress components in terms of
the potentials

σ µ µ µ φ ψ ψ
xz xz

x ze
u

z

u

x x z x z
= = +

⎛

⎝
⎜

⎞

⎠
⎟ = + −

⎛

⎝
⎜

⎞

⎠
⎟          2 2

2 2

∂
∂

∂
∂

∂
∂ ∂

∂
∂

∂
∂

2 2 2

σ λθ µ λ φ φ µ φ ψ
zz zze

x z z x z
= + = +

⎛

⎝
⎜

⎞

⎠
⎟ + +

⎛

⎝
⎜

⎞

⎠
⎟          .2 2

2 2 2

∂
∂

∂
∂

∂
∂

∂
∂ ∂

2 2 2 2
(27)

We then substitute the wave potentials from Eqns 24 and 25
into Eqn 27 and evaluate them at z = 0:

σxz(x, 0, t) = 0

= µ[2rα(A1 − A2) + (r2
β − 1)B2]k2

x exp (i(ωt − kxx))

σzz(x, 0, t) = 0

= −[λ(1 + r2
α)(A1 + A2) + 2µ(r2

α(A1 + A2)

+ rβB2)]k2
x exp (i(ωt − kxx)). (28)

Regrouping terms shows that the ratios of the amplitudes of
the reflected P and SV waves to that of the incident P wave can
be found by solving the two equations
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be simplified to
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Solving Eqns 29 and 31 using (1 + r2
β) = (c2

x /β2) = c2
xρ/µ gives the

amplitude ratios
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2.6.5 P–SV waves at a free surface

Determining the amplitudes of reflected and transmitted waves
is more complicated for the P–SV system because waves con-
vert from one type to the other. To illustrate this, we consider
the simple case when a harmonic plane P wave incident on a
free surface generates two reflected waves, one P and one SV
(Fig. 2.6-6). To determine their amplitudes, we use potentials
for both P and SV, in contrast to the SH case, where we used
the displacements directly, and find solutions that satisfy the
free surface boundary conditions.

There are two scalar potential terms, one for the upgoing
incident P wave and one for the downgoing reflected P wave,

φI(x, z, t) + φR(x, z, t) = A1 exp (i(ωt − kxx + kxrαz))
+ A2 exp (i(ωt − kxx − kxrαz)). (24)

The downgoing reflected SV wave with amplitude B2 is de-
scribed by a vector potential with y component

ψR(x, z, t) = B2 exp (i(ωt − kxx − kxrβ z)). (25)

Using Eqn 2.5.5, the two nonzero components of the displace-
ment are given by a combination of the P and SV potentials

u
x z

u
z xx z= − = +   ,    .

∂
∂

∂
∂

∂
∂

∂
∂

φ ψ φ ψ
(26)
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Fig. 2.6-7 The length of the incident and reflected wave fronts
contributing to the energy flux at an element dx of a free surface
depends on the cosine of the angle of incidence for each wave.
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These can be written in many forms, including
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The last form has the advantage that at vertical incidence the
vertical slownesses are ηα = 1/α and ηβ = 1/β, whereas rα and
rβ are infinite (Eqn 2.5.36).

These amplitude ratios are the reflection coefficients for the
P and SV potentials. In general, both reflected P and SV result.
At vertical incidence the ray parameter p is zero, and Eqn 33
shows two interesting features. First, none of the incident P
wave converts to reflected SV energy (B2 = 0). Second, the
reflected P wave is inverted because A2/A1 = −1. These effects
also occur at grazing incidence, i = 90°, because ηα is zero.

The ratios of the displacement for the incident P and re-
flected P and SV waves can be found from the potentials using
Eqn 26:

Incident P: (ux, uz)PI = (−ikx, ikxrα)φI

Reflected P: (ux, uz)PR = (−ikx, −ikxrα)φR

Reflected SV: (ux, uz)SR = (ikxrβ, −ikx)ψR. (34)

Because the displacements are real numbers, they can be found
by taking the real part of the complex expressions or by adding
the complex conjugates.

Using these expressions, the amplitude of any component of
the displacement can be found from the potential reflection and
transmission coefficients. Thus the ratio of the displacements
can differ by either a sign or a scale factor from the potential
reflection and transmission coefficients. To see this, consider
the ratios of the magnitudes of the displacements. Because the
components of the wave vectors for P and SV waves satisfy

kα = [k2
x + (kxrα)2]1/2 = ω /α, kβ = [k2

x + (kxrβ)2]1/2 = ω /β, (35)

the ratio of the magnitudes of the displacements for the
reflected and incident P waves is
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and the ratio of the magnitudes of the reflected SV and incident
P displacements is
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We can gain further insight by considering how the incident
wave’s energy is partitioned between the two reflected waves.
From Eqn 2.4.65, a harmonic plane P wave has an energy flux
in the propagation direction

0 = A2ω2k2
αρα/2, (38)

and a similar result applies for an SV wave. The lengths of wave
fronts contributing to the flux at an element dx of the free
surface (Fig. 2.6-7) are cos i dx for the P waves and cos j dx for
the S wave. Thus the energy fluxes for the incident, reflected P,
and reflected SV waves are

0PI = A2
1ω2k2

αρα cos i dx/2

0PR = A2
2ω2k2

αρα cos i dx/2

0SR = B2
2ω2k2

β ρβ cos j dx/2, (39)

so the ratios of the reflected energy fluxes to the incident energy
flux are
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Because energy does not accumulate at the free surface, these
ratios always sum to 1.

Figure 2.6-8 shows an example of reflection coefficients and
energy flux ratios as a function of the angle of incidence of the
incoming P wave. Although there is no reflected SV wave at
the limits, vertical and grazing incidence, there is a wide range
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Fig. 2.6-8 For a P wave incident on a free surface, potential reflection and
transmission coefficients and the ratios of reflected and transmitted energy
fluxes to that of the incident wave are shown as functions of the angle of
incidence of the incident P wave.
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of angles over which most of the energy reflects as SV. At two
angles, the incident P wave converts entirely to SV.

2.6.6 Solid–solid and solid–liquid interfaces

The approach we used for P–SV waves at a free surface can be
extended to a solid–solid interface. Consider the usual geo-
metry (Fig. 2.6-9) in which P–SV waves propagating in the x–z
plane interact with a horizontal interface at z = 0. An incident
wave generates two reflected waves and two transmitted waves.
The four ratios of the amplitudes of the reflected P and SV and
transmitted P and SV waves to that of the incident wave are
found from the boundary conditions. There are four equations
because the x and z components of the displacement and trac-
tion are continuous at the interface. The resulting solutions are
complicated and are not given here. Instead, we consider some
general principles and examples.

Fig. 2.6-9 Geometry for a P wave incident on a solid–solid interface. A1,
A2, B2, A′, and B′ are the amplitudes of the incident P wave, the reflected P
and SV waves, and the transmitted P and SV waves.
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The solutions are simple for vertical incidence. For a vertic-
ally incident P wave, no SV waves are generated. The displace-
ment is only in the z direction, and the ratio of the displacement
of the transmitted P wave to that of the incident wave is
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The corresponding ratio for the reflected P wave is
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These ratios, the vertical incidence transmission and reflection
coefficients for displacements, satisfy 1 + R12 = T12, as required
by continuity of displacements. As for the SH case (Section
2.6.2), the vertical incidence transmission and reflection coeffi-
cients depend only on the acoustic impedances. For the incident
SV case, no P waves are generated, and the ratios of the dis-
placement component ux have the same form, but in terms of
the shear velocity β.

Figure 2.6-10 illustrates an intriguing effect that occurs for a
P wave vertically incident on an interface where ρ1α1 > ρ2α2, so
R12 is positive. If the incident P wave is a pulse in the +z direc-
tion of propagation with unit amplitude, then the reflected P
wave is a pulse with amplitude R12 in the +z direction. Hence
the motion in the incident wave is in its direction of propagation
(+z), whereas the motion in the reflected wave is opposite to
its direction of propagation (−z). Often the motion in a P wave
is called compressional if it is in the direction of propagation,
and dilatational if it is opposite the direction of propagation.
Thus an incident P wave with a compressional motion yields
a reflection with dilatational motion. Sometimes the positive
amplitude of motion for a P wave is defined to be in the

Fig. 2.6-10 Directions of propagation (solid line) and displacement
amplitudes (dashes) for vertically incident, reflected, and transmitted
P waves at a solid–solid interface.
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Fig. 2.6-11 Interactions at a solid–solid
interface between media having α1 =
6.8 km/s, β1 = 3.9 km/s, ρ1 = 2.8 g/cm3,
and α2 = 8.0 km/s, β2 = 4.6 km/s,
ρ2 = 3.3 g/cm3. These values correspond
approximately to the continental crust and
mantle at the Mohorovibia discontinuity.
Ray paths and ratios of reflected and
transmitted energy fluxes to that of the
incident wave are shown as a function
of incidence angle for P and SV waves
incident from above and below.

propagation direction, so the reflection coefficient is defined
with the opposite sign from Eqn 42.

The amplitudes of the reflected and transmitted waves vary
with the angle of incidence, as we illustrate by considering how
the energy is partitioned between the four waves. Figure 2.6-11
shows an example for velocities and densities approximating
the continental Mohorovibia discontinuity. Ray paths and
energy flux ratios for P and SV waves incident from above
and below are plotted. The four ratios are between 0 and 1, and
sum to 1 because energy is conserved.

For a P wave vertically incident from above, the impedances
ρ1α1 = 19.0, ρ2α2 = 26.4, yield reflection and transmission
coefficients R12 = −0.16, T12 = 0.84, and energy flux ratios of
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These ratios are a good approximation for angles of incidence
less than the critical angle sin−1 (α1/α2) = 58° because almost
all the energy is transmitted as P. However, as the angle of
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incidence approaches the critical value, the transmitted P
energy goes to zero, and most of the energy reflects as P. For
most postcritical incidence angles, up to ~10% of the energy
converts to SV, of which approximately half reflects and half is
transmitted. In the limit of grazing incidence, however, all the
energy is in the reflected P wave.

For a P wave incident from below, the situation is similar
except that there is no critical angle behavior. For vertical incid-
ence, the reflection and transmission coefficients are R21 = 0.16,
T21 = 1.16, and the energy flux ratios are the same as before,
because
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At high angles of incidence, >70°, the energy is increasingly in
the reflected P wave.

The behavior of an S wave incident from above is analogous
to that for a P wave incident from above. For this example,
the S wave impedances are ρ1β1 = 10.9, ρ2β2 = 15.2, and the
vertical incidence reflection and transmission coefficients are
the same as for P waves. Hence at vertical incidence, almost all
the energy is transmitted as S, a little reflects as S, and none
converts to P. For near-vertical incidence, < ~20°, this pattern
changes slowly. At shallower angles of incidence, however, the
situation is more interesting, because there are three critical
angles. Approaching the critical angle for the transmitted P
wave, sin−1 (β1/α2) = 29°, the transmitted P energy increases
somewhat. Beyond this angle there is no transmitted P wave,
but the reflected P wave behaves in a similar way because it
vanishes for sin−1 (β1/α1) = 35°. For larger angles of incidence,
only the reflected and transmitted S waves exist, and the energy

in the transmitted S wave falls off to zero at the critical angle
sin−1 (β1/β2) = 58°. Beyond this angle, the incident S wave
undergoes total internal reflection.

The final case, an S wave incident from below, is analogous
to that for a P wave incident from below. At vertical incidence
almost all the energy is transmitted as S, a little is reflected as S,
and none converts to P. There is a small reflected P wave near
its critical angle, sin−1 (β2/α2) = 35°. More noticeably, the
transmitted P wave is enhanced near the critical angle for the
S-to-P conversion, sin−1 (β2/α1) = 42°. At higher angles of incid-
ence, the transmitted S wave decreases as the reflected S wave
increases.

This example bears out the complexity of interactions at a
solid–solid interface. The detailed behavior depends on the four
velocities and two densities. A useful approximation is that for
media with similar impedances, most of the energy goes into
the transmitted wave of the same type (P or S) as the incident
wave. This makes sense, because if the materials were identical,
all the energy would be transmitted. For a wave incident from
a lower-velocity medium, this is approximately the case for
angles of incidence less than the critical angle for those two
waves. For a wave incident from the higher-velocity medium,
most of the energy is transmitted in the same type of wave until
near-grazing incidence. Because the incident wave is not ser-
iously affected by small impedance changes, waves propagat-
ing through the earth change direction continuously according
to Snell’s law, but change amplitude significantly only at inter-
faces where the impedance contrasts are large. If this were not
the case, we would not see distinct arrivals.

The approach used for the reflection and transmission coeffici-
ents at a solid–solid interface can be extended to a solid–liquid
interface. Because there are no shear waves in the liquid, there
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Fig. 2.6-12 Ray paths and energy flux ratios for an interface between the ocean, with α1 = 1.5 km/s, β1 = 0.0 km/s, ρ1 = 1.0 g/cm3, and an underlying crust
with α2 = 5.0 km/s, β2 = 3.0 km/s, ρ2 = 3.0 g/cm3. Three cases, P waves incident from above and P and SV waves incident from below, are shown.
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Fig. 2.6-14 Schematic illustration of a seismic reflection experiment,
in which vertically incident waves reflect from a region with a variable
velocity structure. The vertical ray paths are offset for clarity. The
media have α1 = 2.6 km/s, ρ1 = 2.5 g/cm3, α2 = 1.7 km/s, ρ2 = 2.0 g/cm3,
α3 = 2.2 km/s, ρ3 = 2.2 g/cm3, α4 = 2.3 km/s, ρ4 = 2.3 g/cm3. Impulse
seismograms showing the arrivals resulting from an incident P-wave
pulse of unit amplitude are plotted with time increasing downward.
The resulting arrivals have amplitudes R12 = 0.3, T12R23T21 = −0.2,
T12T23R34T32T21 = −0.02, and are separated by the time required to
traverse the layers. The corresponding reflection from a point to one side
of the region has amplitude R14 = 0.1. (After Dobrin, 1976.)
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Fig. 2.6-13 Schematic illustration of a marine seismic experiment, in
which a P wave generated in the water converts to P and S in the crust. The
upgoing crustal S waves partially reconvert to P at the sea floor. Although
no S waves travel through the water, the experiment can determine the
S-wave properties of the crust. Not all reflected and transmitted waves
are shown.

are three amplitude ratios. Similarly, because the fluid’s shear
velocity and rigidity are zero, there are three boundary con-
ditions at the interface: continuity of vertical displacement and
traction, and vanishing of the shear traction in the solid.

Figure 2.6-12 shows the three possible cases at the sea floor:
P waves incident from above and P and SV waves incident from
below. Because the impedance contrast at the sea floor is much
greater than in the Mohorovibia discontinuity example, the
relative amplitudes of the reflected and transmitted waves are
quite different from those in Fig. 2.6-11. First, consider a P
wave incident from above. At vertical incidence, R12 = −0.82,
T12 = 0.18, so two-thirds of the incident energy reflects and
only one-third is transmitted. As the angle of incidence increases,
the fraction of reflected energy remains approximately the
same, but the transmitted S wave grows at the expense of trans-
mitted P. The first critical angle behavior occurs for transmit-
ted P near sin−1 (α1/α2) = 17°. Beyond this angle, a significant
transmitted S wave exists until the critical angle for the P-to-S
conversion, sin−1 (α1/β2) = 30°. For larger angles of incidence,
the incident P wave is totally reflected.

Comparison of this case with that of the P wave incident
from above in the Moho example (Fig. 2.6-11) shows several
differences. In both examples P waves impinge on a medium
of higher velocity. Because the sea floor impedance contrast is
much greater, most of the energy reflects at vertical incidence,
and this situation persists for all angles of incidence. By con-
trast, for the Moho example, most of the energy is transmitted
until the critical angle. The critical angle for transmitted P
occurs for much steeper incidence at the sea floor because the P-
velocity contrast is much greater. The transmitted S behavior
is very different in the two examples: α1 > β2 for the Moho,
so there is no critical angle for transmitted S. By contrast, at
the sea floor a significant portion of the incident energy is
converted and transmitted for angles less than the critical angle
for transmitted S.

The results for waves incident from below also differ signi-
ficantly between the two examples. A P wave incident on the
sea floor from below is primarily reflected downward, largely

as a P wave for angles less than ~20°, and largely as an S wave
for angles greater than ~30°. Less than one-third of the energy
is ever transmitted. By contrast, for the Moho example, almost
all the incident P energy is transmitted until near-grazing incid-
ence. For an S wave incident from below, all the energy reflects
as S at vertical incidence, because there is no transmitted S in
the water. At low angles of incidence, the fraction of reflected P
increases until near the critical angle sin−1 (β2/α2) = 37°. For
most angles of incidence, a significant portion of the incident
upgoing S wave is converted to upgoing P and transmitted.
This strong converted transmission does not occur in the Moho
example.

The facts that P waves incident from the water give rise to
significant S waves in the crust and that S waves incident from
the crust yield substantial transmitted P waves in the water
have important consequences for marine seismology. Seismic
sources in the water can generate transmitted S waves in the
crust, whose propagation can be studied using P waves re-
converted at the sea floor from upcoming S waves. Thus the
oceanic crust and upper mantle can be studied with both P
waves and S waves, using sources that generate only P waves
and receivers that detect only P waves (Fig. 2.6-13).



have amplitude R14. The lateral variation in impedance con-
trasts causes a significant difference in the amplitude of the
reflected waves.

For a second example, consider the downgoing slab of
lithosphere at a subduction zone. As discussed in Chapter 5,
the slab is colder than the surrounding mantle, and hence has
higher seismic velocity. Seismic waves propagating in several
geometries (Fig. 2.6-15) are used to study the upper surface of
the slab. In one, ScS, an S wave reflected at the core–mantle
boundary, is partially converted to a P wave, ScSp, at the slab
surface. The ray paths can be found by using Snell’s law at
the dipping interface. Assume that the downgoing slab and
overlying mantle have velocities α1, β1 and α2, β2 and the slab
dips at angle θ. A vertically traveling ScS wave impinges on
the interface at an angle j1 = θ, so the angles of incidence for
transmitted ScS and ScSp are j2 = sin−1 [(β2/β1) sin j1] and
i2 = sin−1 [(α2/β1) sin j1]. The amplitude of ScSp is enhanced
because the ScS incidence angle is close to the critical angle
for the conversion. ScSp travels faster than ScS and appears
at seismometers primarily on the vertical component, whereas
ScS arrives later and is primarily on the horizontal compon-
ent. Additional information is obtained from P waves that
reflect off the interface and appear at seismometers above
the subduction zone later and with higher apparent velocity
(steeper incidence) than the direct arrival. The travel times and
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Fig. 2.6-15 Study of a subducting slab
using seismic waves reflected and converted
at its upper surface. Top: Ray paths for the
conversion of upcoming ScS to ScSp and the
reflection of P waves. (Helffrich et al., 1989.
J. Geophys. Res., 94, 753–63, copyright by
the American Geophysical Union.) Lower
left: Application of Snell’s law at the
dipping interface for the ScS to ScSp
conversion. Lower right: Seismograms
showing ScS and ScSp recorded in
Hokkaido, Japan, for an earthquake in
Honshu, Japan. ScSp arrives on the vertical
component before ScS appears on the
horizontal components. (Snoke et al.,
1979.)

2.6.7 Examples

Using the amplitudes of reflected, converted, and transmitted
waves to study interfaces is common in seismology, as we illus-
trate with two examples. In reflection seismology, P waves gen-
erated by near-surface sources and reflected from interfaces at
depth are used to study the crust and uppermost mantle. We
will see in the next chapter that the downgoing waves impinge
on the reflectors at steep angles of incidence, and the data
are often processed to simulate vertical incidence. Because the
impedance contrasts are small, it is common to neglect P-to-S
conversions and estimate the amplitudes of the reflected and
transmitted P waves using vertical incidence reflection and
transmission coefficients. The reflection and transmission coef-
ficients inferred from seismic data are combined with the travel
times to yield information about the subsurface geology.

Consider (Fig. 2.6-14) a hypothetical region where natural
gas, oil, and saltwater are trapped in the pores of a sand unit.
To describe the response of this region to a P wave impulse of
unit amplitude, we consider only the first, or primary, reflec-
tion from each layer, because subsequent multiple reflections
would be smaller. The resulting arrivals have amplitudes R12,
T12R23T21, and T12T23R34T32T21, and are separated by the
time required to traverse the layers. By contrast, the corres-
ponding reflection from a point to one side of the region would
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Fig. 2.7-1 Three-component seismogram of a magnitude Mw 7.7 shallow earthquake in the Vanuatu trench recorded 12,250 km away at station CCM.
Note the large size of the surface waves compared to the preceding body waves. The Love wave is observed on the transverse component, and the Rayleigh
wave is primarily seen on the vertical and radial components.

1 Lord Rayleigh (1842–1919), best known among seismologists for pioneering
work in wave propagation, was awarded the Nobel prize for the discovery of argon.
A. E. H. Love (1863–1940) made fundamental contributions to both seismology and
geodynamics.

amplitudes of these waves are used to estimate the depth to the
interface and the velocity contrast there, and hence to draw
inferences about its thermal and mineralogical state.

2.7 Surface waves

2.7.1 Introduction

After our discussions of P and S waves, we might expect that
the seismogram resulting from an earthquake would consist of
pulses when P and S waves arrive, with later arrivals reflected
and converted at interfaces within the earth. Generally, how-
ever, seismograms (Fig. 2.7-1) are dominated by large longer-
period waves that arrive after the P and S waves. These waves
are surface waves whose energy is concentrated near the earth’s
surface. As a result of geometric spreading, their energy spreads
two-dimensionally and decays with distance r from the source
approximately as r−1, whereas the energy of body waves

spreads three-dimensionally and decays approximately as r−2

(Section 2.4.3). Thus, at large distances from the source, sur-
face waves are prominent on seismograms.

Two types of surface waves, known as Love waves and
Rayleigh waves after their discoverers,1 propagate near the
earth’s surface. Figure 2.7-1 shows a large surface wave train
arriving on a seismometer’s transverse component, followed by
another wave group on the vertical and radial components. We
will see that the first wave train contains Love waves resulting
from SH waves trapped near the surface. The second wave
group contains Rayleigh waves, which are a combination of
P and SV motions. In our usual geometry (Fig. 2.7-2) of waves
propagating in the x–z plane, the Rayleigh wave displacement
is in this plane, and the Love wave displacement is parallel to
the y axis. In this section, we examine the simplest cases of



2.7.2 Rayleigh waves in a homogeneous halfspace

Rayleigh waves are a combination of P and SV waves that can
exist at the top of a homogeneous halfspace. To describe them,
we define the free surface as z = 0, measure z downward, and
use potentials for waves propagating in the x–z plane. We
consider only P and SV waves, because they can satisfy the free
surface boundary conditions and do not interact with SH
waves. The P and SV potentials are

φ = A exp (i(ωt − kxx − kxrα z)),

ψ = B exp (i(ωt − kxx − kxrβ z)). (1)

For a combination of these potentials to describe energy
trapped near the free surface, two conditions must apply. The
solution must both ensure that the energy does not propagate
away from the surface and satisfy the free surface boundary
conditions.

For the energy to be trapped near the surface, the exponen-
tials exp (−ikxrα z) and exp (−ikxrβ z) must have negative real
exponents, so that the displacement will decay as z → ∞. Because

rα = (c2
x /α2 − 1)1/2, rβ = (c2

x /β2 − 1)1/2, (2)

this radiation condition requires that cx < β < α, so that both
square roots become imaginary, with a choice of sign such that

rα = −i(1 − c2
x/α2)1/2, rβ = − i(1 − c 2

x /β2)1/2. (3)

Thus cx, the apparent velocity along the surface, must be less
than the shear velocity.

The other condition, the vanishing of traction at the free
surface, arose for the P–SV reflection at a free surface (Section
2.6.5). The difference here is that the boundary conditions are
satisfied with no incident wave. Using Eqn 2.6.28 without an
incident wave shows that when the stress components are ex-
pressed in terms of the potentials, the amplitudes A and B must
satisfy the continuity equations

σxz(x, 0, t) = 0 = 2rαA + (1 − r2
β)B,

σzz(x, 0, t) = 0 = [λ(1 + r2
α) + 2µr2

α]A + 2µrβB. (4)

Eliminating the Lamé constants from the second equation
using (1 + r2

α) = c2
x/α2 and the definitions of the velocities α and

β gives a system of two homogeneous linear equations for
A and B,

2(c2
x/α2 − 1)1/2A + (2 − c 2

x/β 2)B = 0,

(c2
x /β2 − 2)A + 2(c2

x/β2 − 1)1/2B = 0. (5)

This system has nontrivial solutions if the determinant of the
system is zero (Section A.4.4), such that

Fig. 2.7-2 Geometry for surface waves propagating in a vertical plane
containing the source and receiver. Rayleigh (P–SV ) waves appear on the
vertical and radial components. Love (SH) waves appear on the transverse
component.

Fig. 2.7-3 Multiple surface waves circle the earth. Right: Odd-numbered
arrivals (R1, R3, etc.) take the shortest path from the earthquake to the
station, whereas even-numbered arrivals (R2, R4, etc.) travel in the
opposite direction. Left: Travel times for multiple Rayleigh (Rn) and
Love waves (Gn).
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Rayleigh and Love waves, and use them to demonstrate some
general ideas about surface waves.

An interesting difference between surface and body waves,
due to their different rates of decay, is that surface waves can
circle the globe many times after a large earthquake. Figure 2.7-
3 shows such multiple surface waves, which are denoted as
Rayleigh waves (Rn) and Love waves (Gn). The travel time plot
(Fig. 2.7-3, left) illustrates the increasing time required for
successive paths, indexed by n, from the earthquake to the
station. An important feature of surface waves is dispersion,
the fact that waves of different periods travel at different
velocities. As a result, the surface wave arrivals are not sharp
lines, but are spread out in time. These effects are shown in Fig.
2.7-4 (overleaf ) by a record section composed of many vertical
component seismograms at different distances from earth-
quakes, which yields an observed travel time plot. The data show
the arrivals of R1, R2, R3, and R4, and a comparable 6-hour
plot for the transverse component would show G1 through G5.

R5

R3

R1

R4

R5
G6

G5

R4

G4

R3

G3

R2

G2

R1 G1

Ti
m

e 
(h

ou
rs

)

6

4

2

0
0

Distance (°)

50 100 150

Earthquake

Station

Earthquake

Station

R2



88 Basic Seismological Theory

Ti
m

e 
(h

ou
rs

)

3

2

1

0
0 60 120 180

Range (°)

R1

R2

R4

R3

0 60 120 180

Range (°)

3

Ti
m

e 
(h

ou
rs

)

6

5

4

Fig. 2.7-4 Record section formed from
vertical seismograms at stations of the
IDA (International Deployment of
Accelerometers) network. The R1 through
R4 arrivals are spread out in time due to
dispersion and contain lines of energy
that cross the largest amplitudes at
small angles. As discussed later, the
lines show the phase velocity, and the
overall amplitude pattern shows the group
velocity. Body wave arrivals appear before
and after R1. (Shearer, 1994. Eos, 75, 449,
451, 452. Copyright by the American
Geophysical Union.)

The coefficients of the potentials (Eqn 1), which can be found
from Eqn 5, are

B = A(2 − c2
x /β2)/(2rβ) (8)

and can be substituted into the potentials and used to find
the displacements (Eqn 2.6.26). Taking the real parts of the
exponentials and using the numerical values of cx /β and cx /α
for a Poisson solid gives

ux = Akx sin (ωt − kxx)[exp (−0.85 kx z)

− 0.58 exp (−0.39 kx z)],

uz = Akx cos (ωt − kx x)[−0.85 exp (−0.85 kxz)

+ 1.47 exp (−0.39 kxz)]. (9)

The displacement can be characterized by its variation in
depth and distance along the surface. Both components are

(2 − c2
x /β2)2 + 4(c2

x /β2 − 1)1/2(c2
x /α2 − 1)1/2 = 0. (6)

For a halfspace with given velocities α and β, this equation
gives the values of cx that satisfy the free surface boundary con-
dition. Of the four roots, one is zero, and only one is consistent
with the requirement that 0 < cx < β. For a Poisson solid, in
which α2/β2 = 3, the determinant becomes

(c2
x /β2)[c6

x /β6 − 8c4
x/β4 + (56/3)c2

x /β 2 − 32/3] = 0. (7)

If we reject the trivial solution c2
x /β2 = 0, the equation is a

cubic in c2
x /β2, with roots 4, 2 + 2/ 3  (≈ 3.155) and 2 − 2/ 3 

(≈ 0.845). Only the last root satisfies cx < β, the condition for
waves to be trapped at the surface. Thus the apparent velocity
of the Rayleigh wave in a halfspace that is a homogeneous
Poisson solid is cx = (2 − 2/ 3 )β = 0.92 β, slightly less than the
shear velocity.



(Fig. 2.7-5), so the depth to which a Rayleigh wave has signific-
ant displacement is proportional to its horizontal wavelength.

At the surface, z = 0, and the displacement components are

ux = 0.42 Akx sin (ωt − kxx),

uz = 0.62 Akx cos (ωt − kxx). (10)

To visualize these, consider the motion of a particle of material
at x = 0 as a function of time. At t = 0, uz is a maximum (z is
positive downward), and ux = 0. As time increases, the x and z
displacements combine to give counterclockwise, or “retro-
grade”, motion about an ellipse (Fig. 2.7-6, left). For a Poisson
solid, the maximum vertical displacement at the surface is
about 1.5 times the maximum horizontal displacement. The
particle motion becomes “prograde” below a depth of about a
fifth of the wavelength, because the decaying exponential term
in ux becomes negative.

The phase relation between the horizontal and vertical com-
ponents of Rayleigh wave motion can be seen on seismograms,
as shown in Fig. 2.7-6 (right). When the vertical displacement
is at a negative maximum (e.g., about 785 s), the radial dis-
placement is zero, corresponding to t = 0 in Fig. 2.7-6 (left). A
quarter-period later (e.g., about 790 s) the vertical displacement
is zero, and the radial displacement is at its positive maximum,
corresponding to t = T/4.

Rayleigh waves also exist when the medium is more complic-
ated than a homogeneous halfspace. In this case, rather than
having a single apparent velocity for all frequencies, cx is a
function of frequency. We illustrate this idea next using Love
waves.

Fig. 2.7-5 Variation with depth of the x and z components of
displacement for a Rayleigh wave in a halfspace composed of a Poisson
solid. Both components decay with depth, plotted here normalized by the
horizontal wavelength.

Fig. 2.7-6 For a Rayleigh wave, the horizontal (radial) and vertical components of ground motion are out of phase in a characteristic fashion.
Left: Because the components are out of phase, the particle motion at a point on the free surface as a function of time is a retrograde ellipse. The particle
moves opposite the direction of wave propagation at the top of the ellipse. Right: Comparison of the displacement components from seismograms of an
earthquake in the Kuril Islands recorded in Micronesia, showing that one peaks when the other is zero.
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sinusoidal functions of (ωt − kxx), and thus harmonic waves
propagating in the +x direction. Because the harmonic wave
solution applies only in the x direction, the meaningful
wavelength is the horizontal wavelength along the surface,
λx = 2π/kx. The displacement decays with depth as exp (−kxz)
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B1[exp (−ikxrβ1
h) + exp (ikxrβ 1

h)] = B′ exp (−ikxrβ 2
h). (15)

Similarly, the stress component σyz must also be continuous at
the interface for all x and t, so

µ1(−ikxrβ1
)B1[exp (−ikxrβ1

h) − exp (ikxrβ1
h)]

= µ2(−ikxrβ2
)B′ exp (−ikxrβ2

h). (16)

By combining the complex exponentials into sine and cosine
functions (Eqn A.2.10), conditions 15 and 16 can be written

2B1 cos (kxrβ 1
h) = B′ exp (−ikxrβ 2

h),

2iµ1rβ1
B1 sin (kxrβ 1

h) = −µ2rβ2
B′ exp (−ikxrβ 1

h). (17)

Dividing the second condition by the first gives

tan (kxrβ 1
h) = (−µ2rβ 2

)/(iµ1rβ1
) = (µ2r*β 2

)/(µ1rβ 1
). (18)

This equation has a special significance. It gives a relation
between the horizontal wavenumber, kx, and the horizontal
apparent velocity, cx, that must be satisfied for the Love
wave to exist. Because cx = ω /kx, this means that, for a given
horizontal apparent velocity, Love waves must have specific
horizontal wavenumbers and thus angular frequencies. Altern-
atively, for a particular period or angular frequency, Love
waves can have only certain horizontal apparent velocities
or wavenumbers. Hence different frequencies have different
apparent velocities, a phenomenon that is called dispersion.
Relations like Eqn 18, which give the apparent velocity, cx,
as a function of ω or kx, are called dispersion relations, or
period equations.

Before examining the dispersion relation further, we derive
it in a different way. The apparent velocity condition cx < β2
(Eqn 13) also arose (Section 2.6.4) for SH waves incident on an
interface at angles exceeding the critical angle, sin−1 (β1/β2). In
the geometry of Fig. 2.7-7, these waves are totally reflected
both at the interface and at the free surface, and so are trapped
in the layer.

Consider the portion of the ray path ABQ along which a
downgoing wave with incidence angle j1 reflects at the interface
and then at the free surface. If the phase of the wave changes by
an integral multiple of 2π, the downgoing wave front normal
to the ray path at Q will be in phase with, and thus interfere
constructively with, the downgoing wave front normal to the
ray path at A. The phase change in going from A to Q consists
of two terms, one due to the reflections and one due to the
propagation. By Eqn 2.6.23, the postcritical reflection causes a
phase change of 2 tan−1 [(µ2r*β2

]/(µ1rβ1
)], whereas the free sur-

face reflection does not change the phase. In addition, because
the wave propagated a distance AB + BQ, the phase changes by
−(AB + BQ)kβ1

. The distance can be written as

AB + BQ = BQ cos 2j1 + h/cos j1
= (cos 2j1 + 1)(h/cos j1) = 2h cos j1, (19)
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Fig. 2.7-7 Layer over a halfspace geometry for Love waves. Love waves
exist if the layer’s shear wave velocity is less than the halfspace velocity.
The waves can be treated as constructive interference between SH waves
incident on the interface beyond the critical angle.

2.7.3 Love waves in a layer over a halfspace

A second type of surface wave, a Love wave, results from the
interactions of SH waves. The simplest geometry (Fig. 2.7-7) in
which a Love wave occurs is a layer of thickness h of material
with velocity β1, underlain by a halfspace of material with a
higher velocity β2. Love waves require a velocity structure that
varies with depth, and so cannot exist in a halfspace, in con-
trast to Rayleigh waves.

To describe the Love waves, we write the SH-wave displace-
ment in the layer as the sum of an upgoing and a downgoing
wave:

u−
y(x, z, t) = B1 exp (i(ωt − kxx − kxrβ1

z))

+ B2 exp (i(ωt − kxx + kxrβ1
z)). (11)

In the halfspace we need only one term:

u+
y(x, z, t) = B′ exp (i(ωt − kxx − kxrβ 2

z)). (12)

As before, we impose a radiation boundary condition that
ensures that energy not travel into the halfspace as a pro-
pagating wave. Energy will be trapped near the interface
if exp (−ikxrβ 2

z) is a negative real exponential that decays as
z → ∞. This condition occurs if the apparent velocity is less
than the shear velocity in the halfspace, cx < β2, so

rβ2
 = (c2

x /β2
2 − 1)1/2 = −i(1 − c2

x /β2
2)1/2 = −ir*β 2

. (13)

The amplitudes B1, B2, and B′ are found using the boundary
conditions at the free surface and at the interface between the
layer and the halfspace. At the free surface, z = 0, the traction
must be zero for all x and t,

σyz(x, 0, t) = 

    

µ1

∂

∂

u

z
y
−⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ (x, 0, t)

= µ1(ikxrβ1
)(B2 − B1) exp (i(ωt − kxx)) = 0, (14)

so B1 = B2. At the interface z = h, the displacement must be
continuous for all x and t, so



using cos 2j1 = cos2 j1 − 1. The condition for constructive inter-
ference is thus that the total phase change

−2kβ1
h cos j1 + 2 tan−1 [(µ2r*β2

)/(µ1rβ1
)] = 2nπ, (20)

or, because tan (nπ) = 0,

tan (kβ1
h cos j1) = tan (kxrβ1

h) = (µ2r*β2
)/(µ1rβ1

). (21)

Thus the Love wave dispersion relation that we derived from
the boundary conditions can also be viewed as an interference
criterion for post-critically reflected SH waves, corresponding
to propagating waves in the layer and an evanescent wave in
the higher-velocity halfspace.

2.7.4 Love wave dispersion

The dispersion relation (Eqn 21) can be written as a function
of any two of the three related parameters cx, ω, and kx. To
find solutions, we write it in terms of frequency and apparent
velocity as

tan [(ωh/cx)(c2
x /β2

1 − 1)1/2]
    
=

−
−

 
(   / )

( /  )
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/

/

µ β
µ β

2
2

2
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1
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1
2 1 2

1

1

c

c
x

x

(22)

Because the tangent function is defined for real values, the
square roots must be real, so the apparent velocity is bounded
by β1 < cx < β2. A graphical solution can be derived by defining a
new variable,

ζ = (h/cx)(c2
x/β 2

1 − 1)1/2, (23)

so that over the allowable range of the apparent velocity,
ζ = 0 at cx = β1, and ζmax = h(1/β2

1 − 1/β2
2)1/2 at cx = β2. Hence,

Eqn 22 becomes

    
tan ( )  

(   / )
.

/

ωξ
µ β

µ ξ
=

−⎛

⎝⎜
⎞

⎠⎟
⎛

⎝⎜
⎞

⎠⎟
2

2
2
2 1 2

1

1 c h

c
z

z

(24)

As shown in Fig. 2.7-8, the left side of the equation, tan (ωζ),
has zeroes at ζ = nπ/ω and goes to infinity at ζ = π/2ω, 3π/2ω,
etc. The right side of the equation, which has a hyperbolic ap-
pearance because of the 1/ζ dependence, is infinite for cx = β1,
where ζ = 0, and decays monotonically to zero at cx = β2, where
ζ = ζmax. Solutions exist where the two curves intersect, giving
the values of ζ and thus cx for which a Love wave with a given ω
occurs. The solutions are called modes, so that for a given fre-
quency there are several modes, each with a different apparent
velocity. The leftmost solution, with the lowest cx, is called the
fundamental mode; the others are higher modes, or overtones,
numbered 1 through n.

Figure 2.7-8 illustrates Eqn 24 for three different periods
using a model for the continental crust and mantle of a 40 km-
thick layer with β1 = 3.9 km/s and ρ1 = 2.8 g/cm3 underlain by

Fig. 2.7-8 Graphical solution of the dispersion relation for Love waves
in a layer over a halfspace. The left side of Eqn 24 is represented by
the solid curves, tan (ωζ ), with zeroes at nπ/ω. The decreasing dashed
hyperbolas represent the right side of Eqn 24. The intersections of the
curves (dots) are the roots of the equation and give the apparent velocities
for a given period. The apparent velocities range between the shear
velocities of the layer (β1) and the halfspace (β2). For longer periods there
are fewer solutions and thus fewer modes.
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a halfspace with β2 = 4.6 km/s and ρ2 = 3.3 g/cm3. For waves
with a period of 5 s, there are three solutions within the allowed
apparent velocity range: cx = 3.92, 4.13, and 4.55 km/s.

Consider now what happens for longer periods or lower fre-
quencies. The zeroes of the tangent curve ζ = nπ/ω increase,
so the spacing between the tangent curves, π/ω, also increases.
As a result, there are fewer tangent curves within the allowable
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u+
y(x, z, t) = B′ exp (i(ωt − kx x)) exp (−kxr*β2

z), (27)

so, by the continuity of displacement at the interface z = h,

B′ = 2B1 cos (kxrβ1
h)/exp (−kxr*β2

h). (28)

Thus, in both the layer and the halfspace, we have a wave
propagating in the x direction, with horizontal wavenumber
kx = 2π /λx = ω /cx. In the layer, the displacement varies with
depth as cos (kxrβ1

z), and so oscillates. In the halfspace, the dis-
placement decays exponentially with depth as exp (−kxr*β2

z).
The variation in displacement in the x and z directions is

illustrated in Fig. 2.7-10 for the three periods whose apparent
velocities were found in Fig. 2.7-8. The horizontal variation
is shown in the upper panels. Because the apparent velocity
increases with period (Fig. 2.7-9), the horizontal wavelength
increases with period for a given branch. Thus, for the funda-
mental mode (n = 0) cases shown, the longest period (30 s)
has the highest apparent velocity and thus the longest hori-
zontal wavelength. At a given period (Fig. 2.7-9), the higher
the mode, the higher the apparent velocity, and thus the longer
the horizontal wavelength. Hence for the three modes shown
for period 5 s, n = 2 has the longest horizontal wavelength.

The variation with depth, known as the mode’s vertical
eigenfunction, is different for each mode. For a given branch,
the depth of penetration in the halfspace increases with period,
so, of the fundamental mode periods shown, the longest (30 s)
“sees” deepest into the higher velocity halfspace, and thus has
the highest apparent velocity. Conversely, the shortest period
modes on a given branch penetrate to the shallowest depth, and
thus have the lowest apparent velocity. At a given period, the
higher modes oscillate more rapidly with depth in the layer,
and so change sign more frequently. In the halfspace, however,
the higher modes decay more slowly and penetrate deeper. The
eigenfunction for a mode with order n has n zero crossings, or
nodes, with depth.

The fact that the displacement behaves differently with depth
for various modes and periods makes Love waves dispersive.
In our derivation, the intrinsic shear velocities of the layer
and halfspace do not depend on frequency. Nonetheless, the
resulting apparent velocity along the free surface depends on
frequency. This dispersion results from the fact that Love waves
of different periods have different displacements with depth,
and the intrinsic medium velocity varies with depth. As a result,
surface wave dispersion is valuable for studying earth structure.

By contrast, the halfspace Rayleigh wave does not show this
dispersion. This wave is a “true” surface wave because it can
exist in a homogeneous halfspace due to the interaction of P
and SV waves. By contrast, the Love wave in a layer over a
halfspace exists because the properties of the medium vary with
depth, and so cause interference between SH waves. Dispersive
Love waves and Rayleigh waves also occur in media whose
properties vary with depth in a more complicated way. The dis-
persion curves for Love and Rayleigh waves in such media can
be calculated by several methods. One approach is to extend
the method used in Section 2.7.3 by treating the medium as a
set of homogeneous layers underlain by a halfspace. As for the

Fig. 2.7-9 Dispersion curves giving the relationship between apparent
velocity and period for Love waves in a layer over a halfspace. For each
mode, the apparent velocities range from the layer velocity β1 to the
halfspace velocity β2. The bottom curve is the fundamental mode branch,
and the overtone branches are above it, with higher velocities for any
period. Dots show the modes from Fig. 2.7-8.
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range of ζ, which is nπ /ω < ζmax. Thus, because the decaying
curve does not depend on ω, there are fewer solutions, cx, for
longer periods. For any given angular frequency, the solution
with the largest possible value of ζ occurs when the nth solution
is ζmax, so cx = β2. In this case, tan ωζmax = 0, so ωζmax = nπ, and

ω = ωcn = nπ/[h(1/β2
1 − 1/β2

2)1/2]. (25)

This angular frequency, called the cutoff angular frequency for
the nth higher mode, is the lowest ω at which this mode exists.
Tangent curves with larger values of n are beyond the allowed
range of ζ. Thus, for sufficiently long periods, only the funda-
mental mode exists.

Using this method, we can compute the apparent velocity
values for different periods. Figure 2.7-9 shows the resulting
curves, known as mode or overtone branches, for the funda-
mental mode and the first two higher modes. At the longest
periods only the fundamental mode exists, whereas for shorter
periods higher modes occur. For example, at a period of 5 s
there are three modes, for 10 s there are two modes, but at 30 s
only the fundamental mode occurs. The longest-period modes
for each branch have cx → β2, so their apparent velocity
depends on the shear velocity in the halfspace and is essentially
unaffected by the shear velocity in the layer. Thus at long
periods the branches in Fig. 2.7-9 approach the velocity in the
halfspace, β2 = 4.6 km/s. Similarly, the shortest-period modes
for each branch have cx → β1 = 3.9 km/s, so their apparent
velocity approaches the layer velocity.

This variation in apparent velocity reflects differences in dis-
placement among the modes. In the layer, because the ampli-
tudes B1 and B2 of the upgoing and downgoing waves are
equal, the displacement (Eqn 11) can be written

u−
y(x, z, t) = 2B1 exp (i(ωt − kxx)) cos (kxrβ1

z). (26)

In the halfspace, the displacement (Eqn 12) is
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Fig. 2.7-10 Variation in displacement along
the surface (top) and as a function of depth
(bottom) for Love waves in a layer over a
halfspace. The figure shows the modes for
the three periods from Figs 2.7-8 and 9.
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because its apparent velocity along the surface varied with
frequency. To explore dispersion further, we first consider the
simplest example, the net effect of two harmonic waves with
slightly different frequencies and wavenumbers. We next con-
sider dispersion in general terms, and discuss some features of
surface wave and tsunami dispersion.

Consider the sum of two harmonic waves with slightly dif-
ferent angular frequencies and wavenumbers

u(x, t) = cos (ω1t − k1x) + cos (ω2t − k2x). (1)

The angular frequencies and wavenumbers can be written in
terms of the differences from their average values ω and k:

one layer case, we assume that the displacement in each layer is
given by the exponential solutions, and find combinations of
frequency and horizontal apparent velocity that satisfy the
boundary conditions at the free surface, at each layer bound-
ary, and in the halfspace. Another approach is to view surface
waves as the normal modes of the spherical earth (Section 2.9).

2.8 Dispersion

2.8.1 Phase and group velocity

In the last section, we saw that the Love wave was dispersive,
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ω1 = ω + δω, ω2 = ω − δω, ω >> δω,

k1 = k + δk, k2 = k − δk, k >> δk. (2)

Using this substitution, we add the two cosines and simplify,
yielding

u(x, t) = cos (ωt + δωt − kx − δkx)

+ cos (ωt − δωt − kx + δkx)

= 2 cos (ωt − kx) cos (δωt − δkx). (3)

Thus the sum of the two harmonic waves is a product of two
cosine functions (Fig. 2.8-1). By their arguments, both corres-
pond to propagating harmonic waves. Because δω is less than
ω, the second term has a lower frequency, and so varies more
slowly with time than the first. Similarly, because δk is less than
k, the second term varies more slowly in space. Thus we have a
carrier wave with angular frequency ω and wavenumber k, on
which a slower varying envelope with angular frequency δω
and wavenumber δk is superimposed.1

Examination of when the phase of each term remains con-
stant shows that each describes waves traveling at a different
speed. The envelope, or beat pattern, propagates at the group
velocity

U = δω /δk, (4)

whereas the carrier moves at the phase velocity,

c = ω /k. (5)

The difference between these two velocities is illustrated by
Fig. 2.8-1. Comparison of the signal at different times shows
that the envelope propagates at a different speed from the car-
rier. This difference explains why in the surface wave data of
Fig. 2.7-4 individual lines had a slope (phase velocity) differing
from the slope (group velocity) of the overall wave pattern.

2.8.2 Dispersive signals

Because dispersive waves of different frequencies propagate at
different speeds, this process is best viewed by using Fourier
analysis to decompose a wave into the frequencies that
compose it. Hence, although we discuss Fourier analysis in
Chapter 6, we introduce some key concepts here without
proof. For a function of time f(t), multiplication by the com-
plex exponential e−iωt and integration over all time yields a
function of angular frequency ω :

F(ω) =

  

�
− ∞

∞

f(t)e−iω tdt (6)

1 This derivation also describes the amplitude modulation (AM) transmission
method used in radio, where the amplitude of the carrier is changed or modulated by
the envelope, the signal of interest.

(a) cos (   1t − k1x)ω 1 =      +      ,ω ω δω k1 = k +   kδ

cos (   2t − k2x)ω 2 =      −      ,ω ω δω k2 = k −   kδ

(b)

t1

t2

t3

x

Envelope Carrier

U c

Fig. 2.8-1 Two sinusoidal waves with slightly different frequencies and
wavenumbers (a). Their sum as a function of time (b) yields a beating
pattern, or long-period envelope, which propagates at the group velocity,
U. The carrier, the high-frequency oscillation whose amplitude is
modulated by the envelope, propagates at the phase velocity, c.

known as the Fourier transform of f(t). Because the integral
involves a complex exponential, F(ω) is generally a complex
function. Similarly, f(t) and F(ω) are related by the inverse
Fourier transform:

f(t) = 

    

1

2π �
− ∞

∞

F(ω)eiωtdω. (7)

Thus the time function f(t) can be written as an integral over
angular frequency of the complex exponentials eiωt, weighted
by the value of the transform at that angular frequency, F(ω).
Because the Fourier transform is complex, it can be written

F(ω) = A(ω)eiφ(ω) (8)

in terms of its magnitude, A(ω) = | F(ω) |, and phase, φ(ω).
Thus the Fourier transform represents a time series by two real



functions of angular frequency: the amplitude spectrum, A(ω),
and the phase spectrum, φ(ω).

The inverse Fourier transform lets us express a displacement
field u(x, t) as an integral over harmonic plane waves of all
frequencies

u(x, t) = 

    

1

2π �
− ∞

∞

A(ω) exp i [ωt − k(ω)x + φi(ω)]dω. (9)

In this formulation, the wavenumber k(ω) and the amplitude
A(ω) of each harmonic plane wave are functions of the angular
frequency. At each angular frequency, the phase

Φ(ω) = ωt − k(ω)x + φi(ω) (10)

has two parts. The term ωt − k(ω)x gives the variation in the
phase due to the propagation of the harmonic wave. Hence,
as shown in Fig. 2.2-3, the propagation depends on both time
(ωt) and space (k(ω)x). Surfaces of constant phase travel with a
phase velocity

c(ω) = ω /k(ω) (11)

that may vary as a function of angular frequency. The other
phase term, φi(ω), includes effects such as the initial phase of
the wave when it was generated by a seismic source, which
depends on the earthquake focal mechanism.

If the harmonic waves of different angular frequencies mak-
ing up the displacement (Eqn 9) propagate with different phase
velocities, the velocity at which a wave group propagates
differs from the phase velocity at which individual harmonic
waves travel. To find the group velocity of energy propagation
in the angular frequency band between ω0 − ∆ω and ω0 + ∆ω,
we first approximate the wavenumber k(ω) by the first term
of a Taylor series about ω0,

    

k k
dk

d
( )  ( )  (   ).ω ω

ω
ω ω

ω
≈ + −0 0

0

(12)

Substituting Eqn 12 in the inverse Fourier transform (Eqn 9)
shows that the displacement due to harmonic waves with angu-
lar frequencies near ω0 can be approximated by

      

u x t A i t k x
dk

d
x( , )  ( ) exp    ( )   (   )  ≈ − − −

⎛

⎝
⎜⎜

⎡

⎣
⎢
⎢

−

+

1

2
0

0

0

0 0π
ω ω ω

ω
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ω ω

ω
�

∆

∆

di ( )  .+
⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥

φ ω ω (13)

Adding and subtracting ω0t and regrouping gives
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u x t A i t
dk

d
x( , )  ( ) exp  (   )   ≈ − −

⎛

⎝
⎜⎜

⎞

⎠
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∆

t k x di (   ( ) )  ( )  .+ − +
⎞

⎠
⎟⎟

⎤

⎦
⎥
⎥0 0ω ω φ ω ω (14)

The argument of the exponential has three terms, the first
two of which describe traveling waves. The second term, (ω0t −
k(ω0)x), describes a wave with average angular frequency ω0
propagating at the phase velocity c(ω0) = ω0/k(ω0). By con-
trast, the first term describes a wave group with average angu-
lar frequency ω0 propagating at a group velocity U(ω0) given
by the condition that

    

t
dk

d
x  −

ω ω0

(15)

remain constant, so

    

U
dk

d

d

dk
( )   .ω

ω
ω

ω ω
0

1

0 0

=
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =

−

(16)

If the signal has energy over a wide range of angular frequen-
cies, similar expansions for each angular frequency band give
the group velocity as a function of angular frequency

    
U

d

dk
( )  .ω ω

= (17)

Although the group velocity can always be defined by Eqn 17,
it does not always yield the velocity of energy propagation as
a function of angular frequency. For example, if the wave-
number is a very rapidly varying function of angular frequency,
then using only the first two terms in the Taylor series (Eqn 12)
may not be adequate, and Eqn 17 may yield negative group
velocities. In this case, the group velocity is no longer a useful
concept. Fortunately, these approximations are generally valid
for seismic surface waves.

At any angular frequency, the group velocity is related to the
phase velocity by

U
d

dk

d ck

dk
c k

dc

dk
    

( )
    .= = = +

ω
(18)

It is sometimes easier to think in terms of wavelength, restating
Eqn 18 as

U c
dc

d
    .= − λ

λ
(19)

If a wave is not dispersive, different wavelengths travel at the
same phase velocity, so dc/dλ = 0, and the phase and group
velocities are equal.
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Fig. 2.8-2 Fundamental mode Love wave phase and group velocities
for a model of the continental crust and mantle, a 40 km-thick layer with
β1 = 3.9 km/s, ρ1 = 2.8 g/cm3 underlain by a halfspace with β2 = 4.6 km/s,
ρ2 = 3.3 g/cm3. The group velocity has a minimum where the phase
velocity curve becomes steep, as longer-period waves sample more of
the velocity in the underlying halfspace.

For a dispersive wave, such as the Love wave in the previous
section, the group velocity can be found from the dispersion
relation. If the dispersion relation is

f(ω, k) = 0, (20)

then the change in f for a small change in ω and k is given by the
Taylor series,

f(ω + dω, k + dk) = f(ω, k) +
    

∂
∂

∂
∂

f
d

f

k
dk

kω
ω

ω
  .+ (21)

Because ω and k define a mode, they satisfy the dispersion rela-
tion, f(ω, k) = 0. If ω + dω, k + dk, is also a solution, then f(ω +
dω, k + dk) must also be zero, so the group velocity is given by

    
U

d

dk

f

k

f

k
    .= = −

⎛
⎝⎜

⎞
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⎛
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ω
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∂
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∂

(22)

2.8.3 Surface wave dispersion studies

It is useful to distinguish two types of dispersion. The familiar
case is that of light, where the different frequencies travel
through material such as a lens or a prism at different speeds.
This phenomenon, known as physical dispersion, occurs in the
earth but is a small effect (Section 3.7). In seismology, a more
significant effect is that shown for Love waves in the previous
section, where the apparent velocity along the surface varied
with frequency although the intrinsic shear wave velocity in the
layer and the halfspace did not. This type of dispersion, called
geometrical dispersion, is noticeable and is frequently studied
for surface waves. Because for surface waves the horizontal ap-
parent velocity, cx, and wavenumber, kx, vary with frequency,
these are sometimes written simply as c and k. Similarly, we
usually speak of “phase velocity” or “group velocity” when we
mean horizontal apparent phase or group velocity.

Figure 2.8-2 illustrates phase and group velocity curves for
the fundamental mode Love wave in the layer over a halfspace
geometry of the previous section. Although the phase velocity
increases monotonically with period, as longer period waves
“feel” the halfspace velocity, the group velocity curve has a
minimum. This minimum occurs at a period (about 15 s) where
the slope of the phase velocity curve becomes very steep. This is
because, by Eqn 19, U decreases when the dispersion term dc/
dλ becomes large.

The fact that the surface wave velocities vary depending on
the depth range sampled by each period makes surface wave
dispersion valuable for studying earth structure. These stud-
ies are conducted both with Love waves, whose dispersion
depends on the shear velocity, and Rayleigh waves, whose dis-
persion depends on both the compressional and the shear
velocities.

Both phase and group velocity dispersion measurements are
used. Group velocities are easier to measure because they are

the velocities at which a wave group visible on a seismogram
travels. As shown by the Love waves in Fig. 2.8-3, the period
can be measured from the time between successive peaks or
troughs. Generally, the waves with longest periods travel fast-
est, and therefore appear first on seismograms. The group velo-
city is found by dividing the distance between the source and
the receiver by the travel time of the wave group. Hence the
wave group with a period of about 45 s arrived about 1145 s
after the earthquake, and thus has a group velocity of about
3.7 km/s (4200 km in 1145 s). The later-arriving wave group
with a period of about 35 s has a group velocity of about
3.6 km/s (4200 km in 1170 s). This method can be applied in
a more sophisticated way by using the Fourier transform of
a seismogram to isolate wave groups of different periods
(Fig. 2.8-4). When the original record (top) is filtered at a suc-
cession of narrow frequency bands, energy is seen arriving at
different group velocities.

To use such data, the results are typically plotted as a func-
tion of period and are compared to theoretical dispersion
curves for different structures. For example, the group velocit-
ies for the seismogram in Fig. 2.8-3 are lower than predicted
for the simple structure in Fig. 2.8-2. A better fit to the data is
obtained for a model with lower layer and halfspace velocities.

This example illustrates a theme that we will encounter
repeatedly: using seismological observations at the earth’s
surface (in this case dispersion curves), to study the velocity at
depth. As noted in Section 1.1.2, this is an inverse problem, in
contrast to the forward problem of predicting the observations
expected for a given velocity structure. Although solving the
forward problem is straightforward, it can be more difficult to
find a model or models consistent with the observations. For
the moment, we assume that such a model can be found, if only
by trial and error, and defer more detailed discussion until
Chapter 7.

Dispersion data are used to study more complicated velocity
structures. Figure 2.8-5 shows the observed dispersion curves
and inferred S-wave velocity structure for a study of the Walvis
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ridge, a linear elevated region in the South Atlantic. There are
noticeable group velocity differences between two paths from
an earthquake on the Mid-Atlantic ridge, one along the Walvis
ridge and one off the ridge. For periods greater than about 20 s
the off-ridge path is faster, indicating the presence of higher-
velocity upper mantle material to a depth of about 45 km. This
difference may reflect the processes that formed the Walvis
ridge, which is thought to have been generated by a hot spot
(Section 5.2.4), a fixed source of magma beneath the Mid-
Atlantic ridge.

For periods less than about 50 s the group velocity increases
with period, because the longer periods sample material whose
velocity increases with depth. By contrast, for periods greater
than about 50 s, the group velocity decreases with period.
This decrease is interpreted as evidence for a low-velocity zone
beneath the higher velocity “lid.” The surface wave data thus

provide evidence for the idea that the mechanically strong and
cold (hence higher-velocity) plates of the earth’s lithosphere
are underlain by a low-velocity zone (Section 3.5.3) where tem-
peratures approach the melting point of rock (Section 3.8.2).

Earth structure is also studied using phase velocities. These
are more difficult to measure than group velocities, because
they are defined for harmonic waves of a single frequency.
Taking the Fourier transform of a seismogram yields the phase
at each angular frequency, Φ(ω). We assume that this phase,
on a seismogram recorded at a distance x from an earthquake
at time t after the earthquake, has three terms

Φ(ω) = [ωt − k(ω)x] + φi(ω) + 2nπ

= [ωt − ωx/c(ω)] + φi(ω) + 2nπ. (23)

The ωt − k(ω)x term is the phase due to the propagation of the
wave in time and space. The φi(ω) term includes the initial
phase at the earthquake and any phase shift introduced by the
seismometer. The final term, 2nπ, reflects the periodicity of the
complex exponential, because adding an integral multiple of
2π to the argument yields the same value.

The phase velocity can be found from observations in two
ways. One method uses seismograms recorded at two stations,
at distances x1 and x2 from an earthquake. If the waves arrive
at times t1 and t2, taking the Fourier transform at each station
gives the phase as a function of angular frequency:
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Φ1(ω) = ω t1 − ωx1/c(ω) + φi(ω) + 2nπ,

Φ2(ω) = ω t2 − ωx2/c(ω) + φi(ω) + 2mπ. (24)

We then form the difference Φ21 = Φ2 − Φ1, and solve for the
phase velocity:

c(ω) = ω (x2 − x1)/[ω (t2 − t1) + 2(m − n)π − Φ21(ω)]. (25)

The initial phase is common to both stations, so the φi(ω) term
drops out if the seismometers have the same response, and so
contribute the same phase shift. If the seismometers have dif-
ferent responses, a correction term is added. The 2(m − n)π
term is found empirically by ensuring that the phase velocity at
long periods is reasonable.

Alternatively, a single-station measurement of phase velocity
can be made by predicting the phase at the earthquake from its
focal mechanism (Section 4.3). If φi(ω) is assumed to be known,
the phase velocity is

c(ω) = ωx/[ω t + φi(ω) + 2nπ − Φ(ω)]. (26)

Figure 2.8-6 shows an example of using phase velocity data
to study the evolution of the oceanic lithosphere. Various evid-
ence shows that the oceanic lithosphere cools and thickens
as it moves away from the spreading ridge where it formed
(Section 5.3.2). As a result, surface wave velocities depend
on the age of the lithosphere. Thus the Rayleigh wave phase
velocity for the two paths shown is slowest for the path to
TUC, approximately parallel to the East Pacific rise, which
includes primarily young lithosphere. The other path to ARE,
which includes older lithosphere, shows higher velocities. Sim-
ilar effects are observed from group velocities.

Such studies yield an average dispersion curve, and hence
average velocity along the great circle path traveled by the
wave. However, the actual structure varies along the path. To
study the evolution of the lithosphere, we would like to know
the velocity of the lithosphere at each age. Unfortunately, the
distribution of earthquakes and seismic stations is such that
paths between earthquakes and seismic stations are rarely in
lithosphere of a single age. Instead, we measure surface wave
velocity on paths including different ages, as in Fig. 2.8-6.

Determination of the variable velocity structure along a
path is a complicated inverse problem. The simplest approach,
known as the “pure path” method, divides the study area into
regions, in this case regions formed during age intervals, in
which the velocity at each angular frequency is assumed to
be constant. We then take a set of paths between individual
earthquakes and seismic stations, such that the i th path has
length Li, and determine the phase or group velocity vi(ω) for
each path as a function of angular frequency. The total time
required for the wave to travel the entire path is assumed to be
the sum of the times required to traverse each of the regions
along the path. Thus, if path i contains segments of lengths Lij
in each region j with velocity vj(ω),

    

L v L vi i ij j
j

n

/ ( )  / ( ).ω ω=
=
∑

1

(27)

We find the velocity in each region vj(ω) by writing this as a
vector–matrix equation

d = Am (28)

where the matrix Aij = Lij and the data vector di = Li /vi(ω) are
known, and the model vector mj = 1/vj(ω) is to be found.



premultiplying both sides, first by the transpose matrix and
then by the inverse of ATA,

m = (ATA)−1ATd. (29)

The results of such an analysis for Rayleigh wave phase
velocity on many paths crossing the Pacific are shown in
Fig. 2.8-7. As the lithosphere ages, the velocity and the depth
to the low-velocity zone increase, presumably due to the
cooling and thickening of the lithosphere.

Such studies, on both a global and a regional scale, have
contributed greatly to our understanding of the earth’s inter-
ior and processes. As we noted, finding velocity structure as
a function of depth from dispersion data is an inverse problem,
which exploits the fact that waves of different periods sample
the structure at depth differently. The pure-path study illus-
trates a more complicated inverse problem, studying variations
of velocity laterally as well as in depth. Our ability to study
lateral structure comes from the fact that different source–
receiver paths sample different regions. Hence these studies
have the common feature of using observations on the bound-
aries of a region (either laterally or at depth) to learn about the
structure within it, via observations resulting from sampling
the region in different ways. Such approaches are examples of
tomography, which we will discuss in Chapter 7.

2.8.4 Tsunami dispersion

Dispersion is also observed for tsunamis, the water waves
generated by earthquakes that were discussed in Section 1.2.4.
Tsunamis are like wind-driven water waves, in that they involve
gravitational potential energy stored by vertical displacements
of the water.2 Although the underlying physics of the propaga-
tion differs, there are similarities in the way tsunamis and
surface waves propagate.

As shown in Fig. 2.8-8 (left), tsunami dispersion is similar to
that of Rayleigh and Love waves, in that the waves with longer
periods travel faster and thus arrive earlier. The dispersion
relations (Fig. 2.8-8, right) show two effects that depend on the
period, and thus on the wavelength. At long periods, where the
wavelengths are much greater than the ocean depth, d, the phase
velocities are essentially nondispersive and are given by

    c gd  ,= (30)

where g is the acceleration of gravity. Thus tsunami velocit-
ies depend on ocean depth, as shown. However, at shorter
periods, where the wavelengths are much less than the ocean
depth and so do not “feel” the ocean floor, the tsunami velo-
cities depend on wavelength as
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Fig. 2.8-6 Application of Rayleigh wave phase velocity data to study
the evolution of the oceanic lithosphere. Top: Sample paths between
earthquakes on the East Pacific Rise and seismic stations, which traverse
lithosphere of various ages, as shown by the isochrons. The hatched
regions are lithosphere younger than 3 million years. Bottom: Dispersion
curves for the paths shown. The path to station TUC is through younger,
hence lower-velocity, lithosphere than the path to ARE. (Data from
Forsyth, 1975.)

2 Although tsunamis are often called “tidal waves,” they have no connection to
tides.
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Typically, because the study area is divided into a number of re-
gions smaller than the number of paths, the number of observa-
tions exceeds the number of model parameters sought. Hence
the data vector has more elements than the model vector, so the
matrix A has more rows than columns and cannot be inverted.
Such overdetermined systems of equations are common in
seismology, especially in determining earth structure from
observations. As we will see in Chapter 7, the best solution in a
least squares sense to such systems of equations is found by
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c = (λg/2π)1/2, (31)

so shorter-period waves travel more slowly.
Like surface waves, tsunamis travel across the earth’s sur-

face, so their amplitudes decay roughly according to     1/  r  due
to two-dimensional spreading. However, applying Snell’s law
to their horizontal propagation shows that the paths of surface
waves and tsunamis deviate from the shortest great circle path
if there are large lateral velocity variations. This effect, called
multipathing because waves arrive at a receiver from several

directions, can cause large changes in the waves’ amplitudes
due to the effects of focusing and defocusing (Section 3.7.3). As
a result, the amplitude variations can be inferred from the con-
centration of ray paths that left the source uniformly spaced.
Denser paths show rays focusing and increasing amplitudes,
whereas sparser paths indicate defocusing and lower ampli-
tudes. Figure 2.8-9 shows focusing and defocusing for the
tsunami in Fig. 2.8-8 (left), due to variations in ocean depth.
We will also use this method to study body wave amplitudes in
Chapter 3.



reasons. First, normal mode calculations are more complicated
than those for rays and plane waves. Second, by representing
all seismic waves simultaneously, mode solutions do not select
specific seismic phases. Hence a phase like ScS emerges from
a computation summing many modes, whereas simpler ray or
plane wave calculations often directly give the information (for
example, travel times and amplitudes) that we seek. However,
there are applications in which modal solutions are useful,
making the topic worthy of study for reasons beyond its phys-
ical elegance, although the latter may well be what draws many
seismologists (ourselves included) to it.

2.9.2 Modes of a sphere

The earth’s modes show many features seen for the one-
dimensional string, so we begin by recalling some basic results.
We saw in Section 2.2.5 that once a one-dimensional string is
excited, its motion can be described as

    

u x t A U x tn n n n
n

( , )  ( , ) cos ( ),=
=

∞
∑ ω ω

0

(1)

which is the sum of standing waves or eigenfunctions,
Un(x, ωn), each of which is weighted by the amplitude An
and vibrates at its eigenfrequency ωn. The eigenfunctions and
eigenfrequencies depend on the physical properties of the
string, whereas the amplitudes depend on the position and
nature of the source that excited the motion. We saw that
eigenfunctions that satisfy the wave equation in one dimension
are sine and cosine functions. For a homogeneous (uniform)
string of length L and velocity v, the boundary conditions of
zero displacement at the fixed ends require that

Un(x, ωn) = sin (nπx/L) = sin (ωnx/v), (2)

so the eigenfrequencies are

ωn = nπv/L. (3)

Because the frequency, velocity, and wavelength of a traveling
wave are related by ω = 2πv/λ (Section 2.2.2), Eqn 3 requires
that L = nλ/2, so each spatial eigenfunction has an integral
number of half wavelengths along the string. A finite string can
vibrate only in these discrete modes, which satisfy the bound-
ary conditions. The eigenfrequencies are spaced πv/L apart in
frequency, so if the string were infinite, the eigenfrequencies
would be continuous rather than discrete. Finally, we saw that
the amplitudes depend on the value of the eigenfunction at the
point where the source excited the motion.1

Fig. 2.8-9 Ray paths for the tsunami in Fig. 2.8-8 (left). Tick marks show
the travel times in increments of hours. Variations in ocean depth, and
therefore in tsunami velocities, cause multipathing that results in large
variations in amplitudes. (Woods and Okal, 1987. Geophys. Res. Lett.,
14, 765–8, copyright by the American Geophysical Union.)
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2.9 Normal modes of the earth

2.9.1 Motivation

We started this chapter (Section 2.2) by considering the motion
of a string that resulted from applying a force, and saw that the
displacement could be viewed in two ways: either as waves
propagating along the string or as the sum of standing waves,
called normal modes. Both of these descriptions came from
applying Newton’s second law of motion, and are equivalent
because all the features of wave propagation, such as the velo-
cities and amplitudes of the reflected and transmitted waves,
come out the same. This concept, called mode–wave duality,
is useful in seismology because the two formulations provide
different insights and jointly lead to deeper understanding.
Neither formulation is more “real” — both are mathematical
ways of representing the displacement, which is the physical
quantity.

In a similar way, we end this chapter by extending the duality
to the three-dimensional earth. We discuss how all body and
surface waves can be described as the sums of the normal
modes, also called free oscillations, of the spherical earth.
These sums yield not only the reflections and transmissions
from all boundaries, but also waves produced by effects like
diffraction that are difficult to model because geometric optics
fails (Section 2.5.10). However, when we discuss seismological
investigations of earth structure in Chapter 3, it will turn out
that most studies do not use a normal mode approach, for two

1 Representing the displacement as a sum of sines and cosines, where the eigen-
functions have discrete eigenfrequencies, corresponds to a Fourier series, whereas a
continuous distribution of eigenfrequencies corresponds to a Fourier transform. We
use both concepts informally as needed throughout the text, and develop them more
formally in Chapter 6.



102 Basic Seismological Theory

Additional insight into the earth’s modes comes from the
two-dimensional problem of Love waves in a layer over a
halfspace (Section 2.7.3). The medium was semi-infinite,
extending vertically from the surface to all depths, and hori-
zontally in both directions. We wrote a solution of the wave
equation in both the layer and the halfspace as the product of
separate terms describing the vertical and horizontal behaviors.
We then used boundary conditions of zero traction at the free
surface, continuity of traction and displacement at the inter-
face, and energy decaying away from the interface downward,
and found that these conditions require that Love waves have
discrete eigenfrequencies that depend on the thickness of the
layer and the shear velocity of the layer and the halfspace. Each
of these eigenfrequencies thus corresponds to a vertical and
horizontal eigenfunction. Interestingly, the eigenfrequencies
form discrete overtone branches (Fig. 2.7-9), so that for a given
apparent velocity there are several possible eigenfrequencies.
Because the medium is two-dimensional, we need two para-
meters to list all the eigenfrequencies. One parameter, the
overtone number, varies discretely (0, 1, 2, . . . ) because the
thickness of the layer gives a discrete dimension. The other para-
meter, the frequency, varies continuously along an overtone
branch, because the horizontal dimension is infinite.

To extend one- and two-dimensional ideas to wave propaga-
tion in the three-dimensional spherical earth, we formulate the
normal mode solution in spherical coordinates (Section A.7).
Because waves propagate away from the seismic source, we put
the pole of the coordinate system there (Fig. 2.9-1). We then
write the displacement vector u(r, θ, φ) = (ur, uθ, uφ) that satis-
fies the equation of motion (Eqn 2.4.10) as a function of radius
r and surface position (θ, φ). A slight linguistic complication is
that in spherical coordinates the radial direction is the vertical,
whereas for plane waves the term “radial” (Fig. 2.7-2) denotes
the horizontal direction in the vertical plane containing the
source and the receiver. In this spherical geometry, uθ is in the
direction analogous to that of plane wave propagation, and uφ
is transverse to it.

By analogy to the string (Eqn 1), we write the displacement
as a normal mode sum

      
u x( , , )  ( ) ( , ) .r A y r e

n l
n

m
n l l

m i t

m

n l
mθ φ θ φ ω= ∑ ∑ ∑ l (4)

Because the medium is three-dimensional, each mode is de-
scribed by its radial (depth) order n, and two surface orders l
and m. All three indices have discrete integer values, because the
earth is a finite body. The eigenfrequency depends on all three,
and the spatial behavior is described by a radial (or vertical)
eigenfunction nyl(r), which is a scalar, and a surface eigen-func-
tion x l

m(θ, φ), which is a vector. The sum depends on the
weights for each eigenfunction, n Al

m, which are excitation
amplitudes that depend on the seismic source. Thus a mode’s
displacement varies along the earth’s surface depending on
both the excitation of that mode and the location relative to
the source, which combine to control the value of the surface

Receiver

Source
x3

ur

uφ

uθ

θ

φ

r

x2

x1

Fig. 2.9-1 Spherical coordinate geometry for normal modes. The
earthquake source is at the pole, so at a receiver the radial displacement
component ur is vertical, uθ is in the horizontal direction in the vertical
plane containing the source and the receiver, and uφ is in the transverse
direction.

2 As discussed in Section 6.2, the amplitude spectrum is the magnitude of the Fourier
transform, and its square shows how much energy is present at different frequencies.

eigenfunction. As with modes on a string, we can think of the
displacement as a vector in a vector space (Section A.3.6)
whose basis vectors are the eigenfunctions, which are weighted
and combined to describe the displacement.

Although Eqn 4 seems abstract, it turns out to be useful. If
we take the Fourier transform of a long seismogram, which
might extend for days or even weeks following a great earth-
quake, we find that the amplitude spectrum2 (Eqn 2.8.8) is made
up of normal modes that appear as peaks at certain distinct
frequencies (Fig. 2.9-2). Hence thinking about a seismogram as
a sum of modes gives additional insight into its nature.

Separating the radial and surface eigenfunctions in the nor-
mal mode sum (Eqn 4) has interesting consequences. The earth
is close to being spherically symmetric (sometimes termed
laterally homogeneous), because its structure varies much
more with depth than it does laterally at a given depth. By ana-
logy to Love waves, we expect the surface eigenfunction to be
an analytic form related to the wave equation. Moreover, if
the earth were laterally homogeneous (as assumed in our Love
wave example), the surface eigenfunction would not affect the
eigenfrequency. Thus, for a laterally homogeneous earth, we
can write the eigenfrequencies as nω l

m = nω l. We will see later
that this useful approximation also assumes that the earth is
perfectly spherical and not rotating.

The eigenfrequency depends on the radial eigenfunction,
which is found by solving the equation of motion in the spher-
ical earth subject to boundary conditions at different depths.
Although the boundary conditions (continuity of stress and
tractions) do not sound unduly formidable, they turn out to be
complicated because the tractions involve stresses and hence
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Fig. 2.9-2 Amplitude spectrum of the
radial component of a 35-hour seismogram
following the great June 9, 1994, deep focus
Bolivia earthquake, recorded at Pasadena,
California. Many peaks are labeled with
several modes, indicating coupling between
modes of similar frequencies. The solid line
is the observed spectrum, and the dashed line
is the spectrum predicted by a three-
dimensional earth velocity model. (Dahlen
and Tromp, 1998. Copyright © by Princeton
University Press. Reprinted by permission of
Princeton University Press.)
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the gradients of displacements. As noted in Section A.7.4, gra-
dients in spherical coordinates require taking the derivatives of
the unit basis vectors that vary with position, unlike those in
Cartesian coordinates that always point the same way. Thus
we leave the problem of finding the radial eigenfunctions, and
hence the eigenfrequencies, for advanced texts, just as we did
for a string and for surface waves. As a result, we will also not
address the issue of computing the excitation, which depends
on the radial eigenfunctions at the source depth.

2.9.3 Spherical harmonics

The surface eigenfunctions are based on spherical harmonics,
functions often used to expand a function on the surface
of a sphere, much as sines and cosines are used in Cartesian
coordinates. Because we use the seismic source as the pole,
θ is the angular distance from the pole, or colatitude, and φ
is the azimuth around the pole, or longitude (Fig. 2.9-1).

The angular variations are described by a set of functions
called Legendre polynomials, which are indexed by the degree,
or angular order, l,

P x
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!
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2
12 (5)

The first several polynomials are

P0(x) = 1, P1(x) = x, P2(x) = (1/2)(3x2 − 1),

P3(x) = (1/2)(5x3 − 3x), (6)

and some examples are shown in Fig. 2.9-3. For a sphere,
x = cos θ, so x ranges from −1 ≤ x ≤ 1. Legendre polynomials
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Fig. 2.9-3 Examples of Legendre polynomials for the interval 0–π used to
describe the displacements associated with normal mode oscillations.

are orthogonal over this interval, and so are a suitable basis set
for describing the angular variations.

The azimuthal variations are included by forming the associ-
ated Legendre functions,
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where the azimuthal order, m, varies over −l ≤ m ≤ l. The
azimuthal functions eimφ and associated Legendre functions
are combined to give the fully normalized spherical harmonics,
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2.9.4 Torsional modes

Using spherical harmonics, we can write the normal modes of
a sphere (Eqn 4) explicitly. You may recall that in Cartesian
coordinates we separated the displacements into P–SV and SH
motions, which are decoupled in the sense that they propagate
independently in a medium whose properties vary only in
depth along the plane containing the source and the receiver
(Section 2.5.2). In spherical geometry, we do a similar decom-
position with normal modes.

Analogous to SH waves, we have torsional, or toroidal,
modes. Their surface eigenfunctions are given by the vector
spherical harmonics with (r, θ, φ) components
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The vector spherical harmonics are vectors whose components
contain derivatives of spherical harmonics, which arise because
the equation of motion involves spatial derivatives of the
displacements.

The displacement vector u = (ur, uθ , uφ) that corresponds to
torsional modes is
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The radial eigenfunction nWl(r) varies with depth, even though
the resulting displacement has no radial component because ur
is always zero. Thus torsional modes have only horizontal
displacements and are analogous to SH waves. Similarly, their
divergence is zero, so they cause no volume change.

Torsional modes are denoted nT l
m, where n is the radial

order, l is the angular order, and m is the azimuthal order.
For given radial and angular orders, the 2l + 1 modes of dif-
ferent azimuthal orders −l ≤ m ≤ l are called singlets, and the
group of singlets is called a multiplet. If the earth were perfectly
spherically symmetric, and not rotating, then all the singlets in
a multiplet would have the same eigenfrequency. This condi-
tion is called degeneracy. For example, the period of nTl

0 would
be the same for nT l

±1, nT l
±2, nT l

±3, etc. In the real earth, the
singlet frequencies vary, which is an effect called splitting.
However, the splitting is small enough that for most applica-
tions we ignore it, dropping the m superscript and referring
to the entire nT l

m multiplet as nTl , with eigenfrequency nω l.
For torsional modes, the horizontal displacements, uθ and uφ,

are zero along nodal lines, because the angular displacements
uθ vanish where ∂Y l

m/∂φ = 0 and the azimuthal displacements uφ
vanish where ∂Yl

m/ ∂θ = 0. For example, consider the lowest-
frequency (longest-period or gravest) torsional normal mode
singlet, 0T2

0 (Fig. 2.9-5). There are no radial motions, and the
angular displacements are always zero, because m = 0. To see
this, note, from Eqn 10, that uθ is proportional to

Re(Y2
4)Re(Y3

3)Y 0
2

Fig. 2.9-4 Examples of spherical harmonics. Y 0
2 (left) is a zonal harmonic,

the real part of Y3
3 (middle) is a sectoral harmonic, and the real part of Y 2

4
(right) is a tesseral harmonic. (After Lapwood and Usami, 1981, reprinted
with permission of Cambridge University Press.)

3 As defined in Eqn A.3.37, δnm = 0 unless n = m.
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Spherical harmonics are always defined with the Pl
m(cos θ)eimφ

term, but various normalizing factors are used in the literature.
The angular variations from 0 to π are either symmetric

(when l + m is odd) or antisymmetric (when l + m is even) about
the equator (θ = π /2). The azimuthal variations are periodic
(φ + 2π = φ). Because spherical harmonics are generally com-
plex functions, we can plot their real or imaginary parts over
the sphere (Fig. 2.9-4). The angular order, l, gives the number
of nodal lines on the surface. If the azimuthal order m is zero,
the nodal lines are small circles about the pole. These are
called zonal harmonics, and do not depend on φ (i.e., they are
symmetric about the pole at θ = 0). The other extreme is for
m = l, where all the surface nodal lines are great circles
through the pole. These are called sectoral harmonics. When
0 < | m | < l, there are combined angular and azimuthal
(colatitudinal and longitudinal) nodal patterns called tesseral
harmonics (Fig. 2.9-4).

Spherical harmonics are orthogonal,
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l l m m′
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so that the integral of the product of one with the conjugate
of another over the sphere is zero.3 The spherical harmonics
therefore form an orthogonal set of basis vectors that can be
used to expand any function on the surface of a sphere, much
as we used sines for the string (and would do so for any
other Cartesian coordinate problem). Spherical harmonics
are used to represent planetary quantities, including lateral
variations in seismic velocity, surface topography, and gravita-
tional and magnetic fields. The shape of the field represented
depends on the amplitudes of the different spherical harmonic
components.



Fig. 2.9-5 Displacement associated with torsional mode 0T 0
2.

4 Because the outer core is liquid, the core–mantle boundary is a free surface for tor-
sional modes excited by earthquakes. These modes do not propagate into the outer
core, and therefore never reach the inner core, which theoretically has its own set of
torsional modes.
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Fig. 2.9-6 Examples of the displacements for several torsional modes. The
examples for 1T 0

2 and 1T1 schematically show the variation with depth.
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The only nonzero displacement component is the azimuthal
one, uφ, which is proportional to
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The azimuthal motions vanish at the poles (θ = 0° and 180°)
and at the equator (θ = 90°). The motions are in opposite direc-
tions across the equator because sin θ is an odd function. This
node is the surface expression of a nodal plane that bisects the
earth along the equator. The pattern of oscillations extends
throughout the mantle.4

The radial order describes how the mode varies with radius,
and the angular and azimuthal orders describe how it varies
with latitude and longitude. For torsional modes, n gives the
number of spherical nodal surfaces within the earth. If n = 0,
there are no nodal surfaces, and the direction of motion at a
given latitude and longitude is the same at all depths. For tor-
sional modes, l equals one more than the number of nodal lines
on the surface. The shape and distribution of these nodal lines
varies according to the azimuthal order, m, which gives the
number of vertical nodal planes that bisect the earth, passing
through the pole. For m = 0, the nodal lines are small circles
about the pole. If m = l − 1, the nodal lines are great circles
through the pole.

The 0T1
2 singlet has a longitudinal great circle node at the

surface (Fig. 2.9-6). The motions are shear displacements

about the pole that oscillate toward and away from the nodal
plane. The period of 0T2 is 44 minutes: 22 minutes rotating
in one direction, then 22 minutes rotating back again. For
higher angular orders l, more nodal planes occur. 0T 0

3 has two
latitudinal nodal lines at the surface, 0T1

3 has one, and 0T 2
3 has

none. As l increases, the number of divisions of the surface
increases.

Torsional modes with n = 0 (0T l
m) are called fundamental

modes, and have motions at depth in the same direction as at
the surface. This is not true, however, for modes with n > 0,
called overtones. As shown in the cutaway for 1T 0

2, there
is a spherical nodal surface within the mantle across which
displacements reverse. We will see shortly that an overtone
of order n has n radially symmetric nodal surfaces at depths
determined by the velocity structure of the mantle.

You may have wondered what happened to 0T1 and 0T0.
Because the number of nodal planes equals l − 1, 0T1 has no
nodal planes. Physically, this corresponds to rigid body rota-
tion. As we will discuss in Section 4.4.4, seismic waves gener-
ated by earthquakes are generally well described by treating the
source as a double couple of body forces, which generates no
net torque, and therefore no change in rotation. In rare cases,
giant earthquakes may cause enough vertical displacement of
rock to affect the rate of the earth’s rotation. However, because
torsional modes do not involve radial motions, even in these
cases conservation of angular momentum demands that 0T1
be zero. There are, however, overtones with l = 1 (1T1, 2T1,
etc.). These involve the entire top spherical shell of the earth

θ

u  ∝ sinθ cosθφ

T  :0   2
0
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oscillating in one direction, with deeper shells oscillating in
opposing directions. The mode 0T0 has no physical meaning
and is undefined.

2.9.5 Spheroidal modes

P–SV motions are described in a similar way by spheroidal
modes, also known as poloidal modes. These are more complic-
ated than torsional modes, because they combine radial and
transverse motions. The surface eigenfunctions are given by two
other vector spherical harmonics, with (r, θ, φ) components
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Each corresponds to a different radial eigenfunction, nUl(r)
and nVl(r), so the displacement vector u = (ur, uθ, uφ) for
spheroidal modes is
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Thus the radial eigenfunction nUl(r) corresponds to radial
motion, and nVl(r) corresponds to horizontal motion.

To see that the mode formulation separates P–SV from SH
and fully represents the displacement in three dimensions, note
that the three vector spherical harmonics are orthogonal,

Tl
m · Sl

m = Tl
m · Rl

m = Sl
m · Rl

m = 0. (16)

Spheroidal modes nSl
m follow a similar nomenclature as tor-

sional modes. The fundamental modes, with no internal nodal
surfaces, are described by n = 0. As n increases, the number of
internal nodal surfaces increases, although, unlike for torsional
modes, n is not the number of nodal surfaces. The angular
order l equals the number of nodal lines at the surface (rather
than l − 1 for torsional modes), and m represents the number
of great circle nodal lines passing through the pole. The spher-
oidal radial modes, which have l = 0 and thus only radial
motions, have no torsional analogue.

Some examples of spheroidal modes are shown in Fig. 2.9-7.
The “breathing” mode 0S0 involves radial motions of the entire
earth that alternate between expansion and contraction. The
gravest (lowest-frequency or longest-period) of earth’s modes
observed to date is 0S2, which has a period of 3233 s, or
54 minutes.5 The 0S0

2 singlet alternates between an oblate (flat
disk) and prolate (football) shape, and is accordingly referred
to as the “football” mode. Displacements for the 0S1

2 and 0S2
2

Fig. 2.9-7 Examples of the displacements for several spheroidal modes.
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5 The 1S1 Slichter mode due to lateral sloshing of the solid inner core through the
liquid iron outer core, which has yet to be observed, should in theory have a period of
about 5.5 hours.

singlets are also shown. There is no 0S1 mode, which would
correspond to a lateral translation of the planet. Increasing l
results in more surface nodal lines, as shown for 0S3, and
increasing n results in more internal nodal surfaces.

2.9.6 Modes and propagating waves

We can gain considerable insight into normal modes by con-
sidering their relation to traveling waves. To do this, we use
a mathematical approximation (that we will not derive) for the
associated Legendre functions. When the angular order
l is much greater than the azimuthal order m,

Pl
m(cos θ) ≈ (−1)mlm(2/lπ sin θ)1/2 cos [(l + 1/2)θ

+ mπ /2 − π/4)], (17)

so the spherical harmonics behave approximately like



Taking derivatives of Eqn 18 shows the ratio of the partial
derivatives,
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because l was assumed to be much greater than m. For
torsional modes, the T l

m vector spherical harmonic (Eqn 10)
generally has a φ component greater than its θ component, so
its displacement is primarily perpendicular to the plane con-
necting the source and the receiver, like an SH or a Love wave
(Fig. 2.9-1). By contrast, the spheroidal mode vector spherical
harmonic Sl

m (Eqn 14) generally has a θ component greater
than its φ component, and so causes displacement primarily in
the plane connecting the source and the receiver, like a P–SV or
a Rayleigh wave.

We can use these ideas to relate modes to specific body and
surface wave phases. A good place to start is to recall that for
Love waves in a layer over a halfspace, the boundary condi-
tions at the free surface and the interface require that the Love
wave have discrete eigenfrequencies that depend on the layer
thickness and the shear velocity of the layer and the halfspace.
We thus obtain a dispersion relation (Section 2.7.3) giving the
phase velocity as a function of frequency for these modes.
Because the dispersion relation depends on the earth structure
assumed in computing it, we can compare the observed dis-
persion of surface waves to the predictions of different earth
models, and invert the observations to derive earth models that
better fit the data (e.g., Fig. 2.8-3).

Analogous computations for the spherical earth predict
the normal mode eigenfunctions and eigenfrequencies, which
depend on the earth model assumed. Figure 2.9-9 shows a plot
of radial eigenfunctions for some modes. As for surface waves,
modes with different eigenfrequencies sample different depths
within the earth. For example, as noted in Fig. 2.9-6, Fig. 2.9-
9A shows that a torsional overtone of order n has n nodal
surfaces at depths determined by the velocity structure of the
mantle. Thus the observed eigenfrequencies can be inverted to
model the earth’s radial velocity structure. This process yields
earth models that match the observed eigenfrequencies quite
well, as illustrated by the dashed line in Fig. 2.9-2. Moreover,
the results can be checked by combining them with travel time
observations. For instance, before PKJKP body waves6 were
observed, the shear velocity of the inner core was constrained
using normal modes like 10S2 that have large displacements in
the inner core.

Figure 2.9-10 shows a plot of the eigenfrequency versus
angular order for torsional modes. The modes plot along dis-
tinct lines, corresponding to overtone branches. The lowest line
is the fundamental branch (radial order n = 0) with the lowest
eigenfrequency (longest period) for any given angular order. The

Propagating Rayleigh waves

Earthquake

A few minutes after
the earthquake

A few hours after
the earthquake

Standing waves
(oscillating mode)

0S25

Fig. 2.9-8 Cartoon of the equivalence of surface waves and normal
modes. Once surface waves from an earthquake make multiple passes
around the earth, they can be viewed as standing waves, or normal modes,
such that the mode with angular order l has l + 1/2 wavelengths around
the earth. This example is for 0S25.

6 As discussed in Section 3.5, PKJKP is an elusive body wave phase that propagates
in the inner core as a shear wave, and so provides information on the difficult-to-
constrain shear velocity there.
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Y l
m(θ, φ) ≈ A(2/lπ sin θ)1/2 cos [(l + 1/2)θ ]eimφ, (18)

where A contains the remaining factors. Using this approx-
imation and representing the cosine as complex exponentials
shows that terms in the mode sums (Eqns 11 and 15), which
involve the products Y l

m(θ, φ)ei
n
ω l

mt , give rise to terms corres-
ponding to propagating waves with horizontal wave vector
(Section 2.4.2)

kx = (kθ , kφ), kθ = (1/a)[(l + 1/2)2 − m2/sin2 θ]1/2,

kφ = m/(a sin θ), (19)

where the factor of the earth’s radius a converts the angular
terms to wavenumbers along the surface. Hence the mode with
angular order l and frequency nω l corresponds to a traveling
wave with horizontal wavelength

λx = 2π / | kx | = 2πa/(l + 1/2) (20)

that has l + 1/2 wavelengths around the earth (Fig. 2.9-8).
These waves travel at a horizontal phase velocity

cx = nω l / | kx | = nω l a /(l + 1/2). (21)

This equivalence is easily visualized a while after an earth-
quake, where globe-circling surface waves can be viewed as
standing waves, or modes. Waves corresponding to different
singlets propagate in different directions, as shown by the
various values of m.

This approximation also gives insight into the correspond-
ence between spheroidal and torsional modes and P–SV and
SH waves (or Rayleigh and Love waves). The spheroidal and
torsional mode displacements depend on vector spherical har-
monics, and thus on the derivatives of spherical harmonics.
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lines of successively higher eigenfrequencies (shorter periods)
define overtone branches with increasing n. On any branch, the
eigenfrequency increases for higher angular order l.

As we have seen, the angular order l relates modes to
traveling waves of a specific wavelength (Eqn 20) or phase
velocity (Eqn 21). Thus frequency–angular order plots for
normal modes as in Fig. 2.9-10 correspond to dispersion (phase
velocity–period) plots for surface waves (Fig. 2.7-8) and are
sometimes called normal mode dispersion plots.

Various regions of the torsional mode dispersion plot in
Fig. 2.9-10 correspond to different body and surface shear wave
(SH) phases, which are discussed further in the next chapter.
The horizontal phase velocity (Eqn 21) of the waves cor-
responding to a given mode can be related to the horizontal
phase velocity of a surface wave or the apparent velocity of
a body wave phase. The upper left of the figure, with high
frequency and low angular order l, contains modes that con-
tribute to body wave phases with high apparent velocities
and thus near-vertical incidence (recall from Section 2.5.3) that
cx = v/sin i), such as the core reflections (Figs 1.1-2 and 3.5-5)

ScS, sScS, and ScS2. The dashed line corresponds to modes with
a phase velocity around 7.3 km/s, which is the apparent velo-
city of shear waves that diffract around the core. We will see
that these SHdiff waves bottom and turn at the core–mantle
boundary, and so represent the transition between direct S and
ScS, which reflects at the core–mantle boundary. To the right
of the dashed line are modes corresponding to S wave phases
that bottom in the mantle, like S, SS, sS, sSS, and SSS. Modes
further to the right (higher l) for a given frequency have lower
phase velocity, and thus correspond to body wave phases (Sec-
tion 3.4) that bottom at shallower depths in the mantle. The
difference is shown by the radial eigenfunctions (Fig. 2.9-9b)
for torsional modes of about the same frequency. Modes to
the left of 9T43 have significant displacement throughout the
mantle, corresponding to phases that reach the core–mantle
boundary, whereas those to the right increasingly correspond
to phases that penetrate only to shallower depths.

We can also consider modes that are equivalent to surface
waves, bearing in mind a slight notational complexity that the
higher (n > 0) overtone branches are sometimes termed “higher

670 –

Displacements U, V

d 2S30 2S1302S40 2S50 2S60 2S70 2S80 2S90 2S100 2S110 2S120

– 670

670 –

Displacements W

c 2T30 2T1302T40 2T50 2T60 2T70 2T80 2T90 2T100 2T110 2T120

– 670

CMB –

Displacements W

b 13T7 4T6712T25 11T34 10T40 9T43 8T47 7T51 6T55

– CMB

670 – – 670

5T61

CMB –

Displacements W

a 0T2 9T21T2 2T2 3T2 4T2 5T2 6T2 7T2

– CMB

670 – – 670

8T2

Fig. 2.9-9 Radial (vertical) eigenfunctions for
various modes as functions of depth from the surface
to the core–mantle boundary. a: Torsional modes
with a low angular order of l = 2 for the fundamental
mode (n = 0) and higher overtones. The modes
sample fairly evenly across the whole mantle, with
the radial order giving the number of times the
displacements change sign. b: Torsional modes
with about the same frequency (14 mHz). When
l < ~ 4n, the modes correspond to ScSSH waves, and
the eigenfunctions span the whole mantle. When
l > ~ 4n, the modes correspond to SH waves that
bottom in the mid-mantle, and the eigenfunctions
tail off before reaching the core–mantle boundary.
c: Second-overtone branch of Love wave-equivalent
torsional modes. Because the radial order is always n
= 2, the curves always have two zero crossings, so the
displacement directions are always divided into three
regions. The eigenfunctions get shallower at higher
angular orders. d: Second-overtone branch of
Rayleigh wave-equivalent spheroidal modes.
As with b, the eigenfunctions get shallower at
higher angular orders. The solid lines show the
eigenfunction for radial displacements, U, and
the dashed lines show the eigenfunction for
tangential displacements, V. (Dahlen and Tromp,
1998. Copyright © by Princeton University Press.
Reprinted by permission of Princeton University
Press.)
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Fig. 2.9-11 Frequency–angular order
(dispersion) plot for spheroidal modes,
computed using the PREM model. All
spheroidal modes with periods of 50 s or
greater are shown. Note the complexity
of the branches compared to the toroidal
modes. The dashed lines show the phase
velocities of modes corresponding to the core
diffractions Pdiff and SdiffSV

 (also called SVdiff).
To the left of the Pdiff line are modes
corresponding to core reflected and
transmitted phases like PcP, PKiKP, and
the various branches of PKP. To the right
of this line are modes corresponding to P
waves that bottom in the mid-mantle. To the
left of the SdiffSV

 line are modes corresponding
to core reflected and transmitted phases like
ScS and SKS (mixed in with the PcP and PKP
modes to the left of the Pdiff line).
To the right of the SdiffSV

 line are modes
corresponding to SV waves that bottom in the
mid-mantle. The first few mode branches at
the right correspond to Rayleigh waves. (After
Dahlen and Tromp, 1998. Copyright © by
Princeton University Press. Reprinted by
permission of Princeton University Press.)
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modes” when discussing surface waves (Section 2.7.4). The
torsional modes furthest to the right in Fig. 2.9-10, which are
the lowest-overtone branches, can be viewed as Love waves.
The n = 0 branch with l greater than about 20 corresponds to
fundamental mode Love waves, that for n = 1 corresponds
to the first Love wave overtone, and so on. The radial eigen-
functions in Fig. 2.9-9c for the 2T (n = 2) branch show that

modes with successively higher l have displacements increas-
ingly concentrated near the surface. This is consistent with our
observation that higher-frequency (shorter-period) Love waves
for a given overtone branch n have displacements closer to the
surface (Fig. 2.7-10).

The situation for spheroidal modes is more complicated
(Fig. 2.9-11). The fundamental branch remains distinct, but

Fig. 2.9-10 Frequency–angular order
(dispersion) plot for torsional modes,
computed using the PREM model
(Dziewonski and Anderson, 1981). All
torsional modes (28,588) with periods of
12 s or greater are shown. They span 79
radial orders (branches) and 941 angular
orders (on the fundamental branch, where
n = 0). The boxed region at the lower left
is enlarged as an inset. Lines through the
origin have constant phase velocity, like that
shown for core-diffracted S waves Sdiff,
indicate the groups of modes that correspond
to the body and the surface wave phases
labeled.
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the overtone branches cross, because these modes include both
P and SV energy. Some spheroidal modes involve primarily
radial motion, and some involve primarily tangential motion,
with a full spectrum in between.

However, the basic patterns seen for torsional modes also
apply for spheroidal modes. For a given frequency, modes
to the left (low l) correspond to core phases, and those in the
center correspond to mantle body wave phases, with the core
diffraction (dashed lines) being the boundary between these
groups of modes. The modes furthest to the right correspond to
Rayleigh surface waves. The modes corresponding to P-wave
phases are further to the left than their SV counterparts because
P waves travel faster than S waves. These ideas can be visual-
ized by considering the radial eigenfunctions (Fig. 2.9-9d).
The two curves for each spheroidal mode represent the two
radial eigenfunctions U(r) (radial) and V(r) (tangential). Modes
with low l and higher n have larger deep displacements, so
superposition of modes with very low l yields the core phases.
For the low-order overtones (n = 2 is shown), the displacements
are closer to the surface as l increases. Thus the n = 0 branch
with l greater than about 20 corresponds to fundamental mode
Rayleigh waves, and the higher branches (n = 1, 2, etc.) cor-
respond to successively higher Rayleigh wave overtones.

The equivalence between normal modes and propagating
waves gives us a powerful tool. For example, in Section 3.5.5
we will see models of wave propagation in the mantle that were
computed using modes, and so include core reflections, diffrac-
tions, and many other phases. Similarly, in Section 4.3.4 the
radiation patterns showing how various faults radiate surface
wave energy in different directions are computed using modes.
Thus we use either mode or wave methods, depending on
which seems easiest for a particular calculation. It is often
useful to do both and compare the answers, using each method
to bring different insight.

2.9.7 Observing normal modes

As with many basic seismological concepts, the idea of the
planet’s modes developed long before instruments became
available to observe them. As the theory of elasticity was
developed in the mid-1800s, there were discussions of finding
the “pitch” of the earth.7 In 1882, Lamb modeled the earth as a
homogeneous steel ball, and calculated a fundamental mode of
78 minutes. In 1911, Love took into account the effect of grav-
ity on radial motions of the earth, and revised the predicted
fundamental period to 60 minutes, not far from the actual
54 minutes. However, because making seismometers that can
detect such long-period motions is difficult (Section 6.6), it was
only after the great 1952 Kamchatka earthquake that this
mode was actually observed on a strainmeter recording.

7 Earth’s gravest observed mode, 0S2 corresponds to a note of E, twenty octaves be-
low middle E on a piano. Johannes Kepler, among others, wrote about the “music of
the spheres,” and thought that each planet’s revolution around the sun corresponded
to a musical note. The earth’s 365.25 day revolution would correspond to a note of
C#, 33 octaves below middle C#.

8 Actually, because the earth vibrates at many frequencies, rather than just one, and
is laterally heterogeneous, a better but less poetic analogy would be that the earth
rattles like a dented garbage can.

Table 2.9-1 Some torsional and spheroidal modes.

Mode Period Description or associated phase

0T2 2,639.4 fundamental torsional

0T3 1,707.6 fundamental torsional

1T1 808.4 radial overtone

1T2 757.5 radial overtone

9T2 104.4 radial overtone

0T30 259.5 fundamental Love

0T130 68.9 fundamental Love

2T30 151.3 second-overtone Love

4T67 71.3 SH

10T40 71.4 SHdiff

13T7 71.6 ScSSH

0S0 1,228.1 fundamental radial

1S0 613.0 radial overtone

0S2 3,233.5 football

0S3 2,134.4 pear-shaped

0S30 262.1 fundamental Rayleigh

0S130 75.8 fundamental Rayleigh

1S30 160.9 second-overtone Rayleigh

10S6 203.5 inner core PKJKP

11S5 197.1 inner core PKIKP

14S3 184.9 mantle ScSSV

1S1 19,500 Slichter

Sources: Dziewonski and Anderson (1981); Wysession and Shore (1994);
Dahlen and Tromp (1998).

Advances in seismic instrumentation, together with the
occurrence of the great 1960 Chilean and 1964 Alaska earth-
quakes, made it possible to identify and study large numbers
of modes. Over 40 modes were identified from the 1960
Chilean earthquake. The number of modes that have been
observed is now several thousands, due to continued advances
in seismometry, which permit recording at very long periods
(Section 6.6), an increase in the number of stations, more
powerful analytical techniques, and many large earthquakes.
Although none of the earthquakes has come close in size to
the 1960 Chilean event, the advances in instrumentation and
processing largely compensate. Large earthquakes are needed
to excite the gravest modes, and long lengths of seismograms
are needed to resolve their properties. As discussed in Sec-
tion 6.3.3, this requires a seismogram that has significant en-
ergy extending over a time much longer than a mode’s period.
Fortunately this is the case for the largest earthquakes, leading
to the analogy that the earth rings like a bell after they occur.8

Seismograms extending for many days are analyzed after the
largest earthquakes.

Table 2.9-1 shows the periods of several modes, some of
which have been discussed earlier. Note that for the funda-
mental (0S and 0T) overtone branches, modes with angular
orders greater than about 20 correspond to the fundamental
mode Rayleigh and Love waves with those periods and are



often viewed as traveling waves. However, the longest-period
modes, like 0S2, 0S3, 0T2, 0T3, etc. have such long periods that
we think of them as modes. Higher-order modes are often
thought of in terms of a body wave phase to which they con-
tribute. Of course, the descriptions are equivalent.

2.9.8 Normal mode synthetic seismograms

As we will see in many places in this text, various techniques
are used to create theoretical, often called synthetic, seismo-
grams for the earth. One of these is normal mode summation,
analogous to the way the propagating waves on the string were
generated in Section 2.2. This summation is also the way that
a music synthesizer creates a particular sound by summing the
right combination of harmonic overtones (i.e., modes).9

For example, torsional mode displacements (Eqn 11) are
synthesized by
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To do this, we need to know the modes’ radial eigenfunctions,

nWl and eigenfrequencies nω l
m, which are determined by the

earth’s velocity and density structure. These modes are then
weighted by excitation amplitudes nAl

m, determined by the
depth, geometry, and time history of the seismic source and
the depth of the receiver. We also need to know the attenu-
ation, or quality, factor nQl, discussed in Sections 3.7 and 7.4,
which measures the rate at which the mode’s seismic energy is
lost by friction (without this effect, the earth would ring like a
bell forever). This formulation assumes that all singlets in a
multiplet have the same quality factor.

The modes of the earth are found by computing the
radial eigenfunctions and the corresponding eigenfrequencies.
Although this process is beyond our scope here, several
techniques have been developed to do this. Some involve
propagating the values of stresses and displacements from the
center of the earth to the surface, layer by layer, while satisfying
the boundary conditions at each layer. The frequency of the
mode is iterated until the final surface values satisfy the free
surface boundary conditions. This process is analogous to that
used to determine the periods of the Love waves in the layer
over the halfspace example (Section 2.7.3).

The amplitudes, or excitation coefficients, depend on the
earthquake’s fault geometry. One of the many advantages of
evaluating the normal modes in a coordinate system whose

pole is at the seismic source is that the radiated energy has
strong symmetry. As noted in Section 1.1 and discussed further
in Chapter 4, earthquakes radiate energy in a pattern with four-
lobed symmetry about the fault plane. Thus any given fault
geometry is reflected by various combinations of the m = 0, ±1,
and ±2 singlets. The excitation also depends on the depth of the
source, much as that for the string depended on the source posi-
tion.10 An earthquake at 600 km depth strongly excites modes
whose eigenfunctions are large at that depth, whereas other
modes are barely excited. However, the relative excitations
will be very different for an earthquake at 10 km depth. For
example, as previously discussed, fundamental mode surface
waves correspond to the fundamental (n = 0) branch of tor-
sional and spheroidal modes, for angular orders greater than
about 20. Because these modes’ radial eigenfunctions are small
at great depths, a 600 km-deep earthquake does not excite
surface waves efficiently.

The modes are summed at a specific receiver location. Thus
the displacements in Eqn 23 are expressed in terms of the
radius of the source rs, the radius of the receiver rr, and the
colatitude and azimuth of the receiver, θr and φr. A slightly
disturbing feature of the mode sum (Eqn 23) is that both the
time functions and the vector spherical harmonics are complex
numbers. However, the sum gives the displacement as a real
number. Similarly, although individual modes oscillate every-
where on earth at all times, even before a traveling wave from
an earthquake could arrive, the mode sum yields waves that
arrive after a finite time. Thus, although modes are mathemat-
ical objects that are hard to visualize, their sum gives rise to a
meaningful physical displacement (Fig. 2.9-12).

Figure 2.9-13 shows a comparison of observed seismo-
grams with synthetic seismograms created using normal mode
summation. The fits are good enough that many studies use
observed normal mode amplitudes to find the fault geometry
and focal depth of earthquakes, especially when they are large
and remote from seismometers. This process is an inverse
problem, corresponding to the forward problem of generating
a synthetic seismogram.

It is worth noting that while the synthetic receivers are usu-
ally placed at the surface (where seismometers are), they can
also be computed for any depth within the earth. Figure 2.9-14
shows a record section that would be recorded at a distance of
70° from an earthquake if seismometers could be placed a
depths ranging from the surface to the core–mantle boundary.
We will use this idea shortly to visualize shear wave propaga-
tion (Section 3.5.5) by evaluating normal mode synthetic
seismograms at 100,000 locations in the mantle.

2.9.9 Mode attenuation, splitting, and coupling

So far, we have discussed the modes of a spherically sym-
metric, nonrotating, purely elastic, and isotropic earth. This

9 Although the fundamental notes for a clarinet, trumpet, and flute might be the
same, playing each instrument excites a different suite of overtones, giving a different
sound. For instance, because the open end of the clarinet allows only odd-numbered
overtones, the absence of even-numbered overtones contributes to its warm, dark
sound. Early synthesizers added only a few overtones, producing a false, tinny sound.
Modern synthesizers sum overtones up to and beyond frequencies of 20,000 Hz, the
limit of human hearing, so the synthesized sounds can be indistinguishable from those
of the actual instruments.

10 This effect is analogous to the way in which bowing at different locations on a
violin string makes different sounds.
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Fig. 2.9-12 Synthesis of a body wave
seismogram using torsional normal modes.
The numbered lines are mode sums for
successive overtone branches, and their
sum gives a seismogram including the
core reflection ScS. (Figure by E. Okal.
Reprinted courtesy of E. Okal.)



Fig. 2.9-14 Shear wave synthetic
seismograms computed at a series
of depths, all at a distance of 70° from a
600 km-deep hypothetical earthquake.
(After Wysession and Shore, 1994.
Pure Appl. Geophys., 142, 295–310,
reproduced with the permission of
Birkhauser.)
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Fig. 2.9-13 Modeling data with normal
mode synthetic seismograms. The three pairs
are the vertical, north–south, and east–west
traces recorded at station ANMO 124.6°
from an earthquake in Indonesia. The top
trace in each pair shows the data, and the
bottom trace is the normal mode synthetic.
(Woodhouse and Dziewonski, 1984. J.
Geophys. Res., 89, 5953–86, copyright
by the American Geophysical Union.)

idealized body, sometimes called a SNREI (“sneery”) earth, is
a reasonable approximation, because the earth is approxim-
ately spherically symmetric and elastic, and its rotation period
is long compared to those of the normal modes. In this case, we
expect the normal mode spectrum of an earthquake to show
sharp peaks for each mode. However, when we look at data like
Fig. 2.9-2, we see that some peaks vary in width and that some
mode peaks overlap with others. These features reflect the com-
plexities of making measurements of the modes of the real earth.

The first effect worth noting is that seismograms are not
infinitely long. Thus each mode’s displacement is not a pure
sinusoid of single frequency extending for infinite time, but

instead stops when the seismogram ends. We will see in Section
6.3.3 that taking a finite portion of a sinusoid broadens its
spectrum from a sharp spectral line (a delta function) to a wider
peak. Physically, this is because other frequencies are needed
to make the time function end rather than go on forever. The
shorter the time we use, the worse the broadening is. This prob-
lem seems easy to solve, since we can take a seismogram for as
long as we want, and thus make peaks narrow. However, we
do not want to go on too long, because the longer we wait after
an earthquake, the more the earthquake’s signal will decay
relative to the ground noise, which can include signals from
other earthquakes.
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exploited the fact that individual singlets within the multiplet
have different surface eigenfunctions, so spectra at different
stations can be weighted and combined to enhance the desired
singlet and suppress others.

The causes of mode splitting can be visualized by considering
a mode multiplet to be a superposition of singlets correspond-
ing to waves traveling along different paths around the earth. If
the earth is spherical, nonrotating, and spherically symmetric,
all these paths are of the same length and have the same travel
times. However, if some paths take longer than others, the rela-
tion between the wave velocity and eigenfrequency (Eqn 21)
shows that the corresponding eigenfrequencies will differ.
Thus splitting occurs when waves traveling on different paths
encounter different velocities. Put another way, splitting occurs
when the actual positions on earth of the source and the
receiver, not just their relative positions, matter.

Mode splitting due to the rotation of the earth reflects two
effects. The direct effect is that the Coriolis force due to the
rotation causes splitting, because waves traveling in the direc-
tion of the rotation travel faster than those going the other way.
The splitting is proportional to the ratio of the mode’s period to
that of the earth’s rotation (24 hours), so this effect is largest
for 0S2 and decreases for shorter-period modes. An indirect
effect is that the rotating earth takes an elliptical shape (Sec-
tion A.7), so waves traveling across the poles travel a distance
67 km shorter than waves traveling around the equator, caus-
ing the multiplets to be split. Figure 2.9-16 shows rotational
and elliptical splitting for the 0S2 multiplet. The amplitudes of
the split singlets are predicted to be greatest for m = ±1, smaller
for ±2, and zero for 0. Interference between the singlets with
slightly different frequencies causes the time series for the
multiplet to show beating (Section 2.8.1).

Mode splitting can be caused by any other process that
causes some wave paths to be faster than others. Splitting
results from lateral variations in velocity, or inhomogeneity,
within the earth. Seismic velocities vary laterally at any given
depth by a few percent at most, but these variations are vital for
understanding tectonic effects, including mantle convection
(Section 5.1). Thus, just as the average frequencies of mode
multiplets are significant for determining the radial velocity
structure of the earth, so the frequencies of singlets help resolve
the three-dimensional structure. Splitting also results from
seismic anisotropy (Section 3.6), which occurs when waves
traveling in different directions through a region travel at
different velocities. For example, Fig. 3.6-13 shows splitting
resulting from anisotropy in the inner core.

A related effect is called mode coupling. Recall that in the
homogeneous string the modes were purely orthogonal and did
not interact with each other. Similarly, in the ideal SNREI
earth, energy is not transferred from the oscillations of one
mode to another. However, real-earth effects like rotation,
ellipticity, lateral inhomogeneity, and anisotropy affect not only
the eigenfrequencies, but also the eigenfunctions. As a result,
the eigenfunction of a given mode contains both the eigenfunc-
tion it would have for a SNREI earth and perturbations due to

Fig. 2.9-15 Amplitude spectra of the nine singlets of the split spheroidal
mode multiplet 18S4. The m = −4 singlet is in front, and the m = 4 singlet is
in back. (Widmer et al., 1992.)
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This consideration brings us to the next issue, that the
modes’ amplitudes decay with time because attenuation con-
verts the seismic wave energy to heat. As discussed in Section
3.7, attenuation (sometimes termed anelasticity) represents the
deviation of the earth from perfect elasticity. This effect is
modeled by describing the time history of a mode (Eqn 23) as
the product of a periodic oscillation and a decay term

e ei t
t

Qn l
m

n l

n lω
ω

−
2 , (24)

where nQl is the mode’s attenuation, or quality factor, which
we treat as the same for all singlets. Infinite Q corresponds to
no attenuation, so the oscillation would continue forever,
whereas lower Q (higher attenuation) causes the oscillation to
decay rapidly. We will see that this effect broadens the spec-
trum from a single line at frequency nω l

m to a wider peak, be-
cause additional frequencies are needed to describe the time
decay. The effects of attenuation on the spectrum are similar to
that of taking a finite length of seismogram. If we correct for
the finite seismogram, we can measure the Q of each mode.
These data can then be used to determine how anelasticity
within the earth varies with depth (Section 7.4).

Other factors can also affect spectral peaks. For a SNREI
earth, a mode’s frequency depends only on the radial order n
and the angular order l, so the 2l + 1 singlets of different
azimuthal order −l ≤ m ≤ l would have the same eigen-
frequency. However, in the real earth, the singlet frequencies
vary slightly, causing mode splitting. The split singlets broaden
the peak produced by the entire multiplet. Peaks due to indi-
vidual singlets can sometimes be resolved on high-quality
long-period seismograms (Fig. 2.9-15). To identify singlets,
the analysis shown used a stacking method (Section 6.5) that
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excite only the m = 0, ±1, and ±2 singlets because it radiates en-
ergy in a pattern with fourfold symmetry about the fault plane,
energy is transferred to the other singlets. Some coupling also
occurs between torsional and spheroidal modes, much as plane
P–SV and SH waves can be coupled at a dipping interface (Sec-
tion 2.5.2). Hence torsional modes can contribute to the radial
displacement, which would not be possible for a SNREI earth.
As a result, some spectral peaks in Fig. 2.9-2 have several mode
labels, corresponding to modes with similar frequencies that
are coupled. These composite modes are called supermultiplets.

Although the theory of mode splitting and coupling is bey-
ond our scope, it is worth noting that it is closely allied to con-
ceptually similar problems in other branches of science. The
splitting due to earth’s rotation is similar to that for waves in
a rotating bowl of water, or to the Zeeman effect in atomic
physics, where spectral lines are split by a magnetic field. The
normal mode problems are addressed by exploring how per-
turbations to the equation of motion due to rotation, ellipticity,
lateral heterogeneity, etc. change the eigenfrequencies and
eigenfunctions from those for an unperturbed (SNREI) earth.

In summary, the peaks in a normal mode spectrum reflect
the combined effects of the earthquake, spherical and elastic
earth structure, attenuation, rotation, ellipticity, lateral hetero-
geneity, and anisotropy. As a result of extensive studies, these
effects are surprisingly well modeled, as shown by the good
(though not perfect) agreement between the synthetic and ob-
served spectra in Fig. 2.9-2. Thus, as is so often the case, data
showing the deviations of the real earth from a simple model
are used to explore these deviations and better describe the real
earth.

Further reading

Further information about the topics of this chapter can be obtained from
many sources, a few of which are listed here. Basic wave concepts are dis-
cussed in books on wave propagation (e.g., Bland, 1988; French, 1971;
Main, 1978), classical mechanics (e.g., Feynman et al., 1963; Marion,
1970), and applied mathematics (e.g., Butkov, 1968; Morse and Feshbach,
1953; Menke and Abbott, 1990; Snieder, 2001). Introductions to topics
in continuum mechanics are given by Fung (1965, 1969) and Malvern
(1969). Fermat’s principle, Huygens’ principle, and diffraction are dis-
cussed in optics texts like Baker and Copson (1950) and Klein and Furtak
(1986).

Several introductory texts treat the seismological material in this chap-
ter, including Ewing et al. (1957), Officer (1958), Richter (1958), Bullen
and Bolt (1985), Lay and Wallace (1995), Shearer (1999), and Udias
(1999). Advanced treatments beyond our discussions are given by Aki and
Richards (1980), Hudson (1980), Ben-Menahem and Singh (1981),
Lapwood and Usami (1981), Kennett (1983), Bath and Berkhout (1984),
and Dahlen and Tromp (1998).

A number of sources discuss specific topics that we address. Geller and
Stein (1978) discuss string examples like those used here, including of the
source term and of the modes of a non-uniform string. Young and Braile
(1976) review the solutions for reflection and transmission at a solid–solid
interface, and give the computer program used to calculate the energies in
Fig. 2.6-11 and 12. Madariaga (1972) derives the equivalence between
modes and traveling waves.

Fig. 2.9-16 Splitting observations for the football mode 0S2 from
the great 1960 Chilean earthquake, recorded at station Isabella
(California). Splitting causes the singlets to stand out as distinct peaks
in the spectrum and the time series to show beating due to interference
between the singlets. A synthetic seismogram, computed by predicting the
singlet amplitudes and combining them in the time domain with the effects
of attenuation and finite seismogram length matches the data better than
a similar synthetic seismogram without rotational splitting. (Geller and
Stein, 1977; Stein and Geller, 1978. © Seismological Society of America.
All rights reserved.)

contributions from the eigenfunctions of some other modes
with very similar eigenfrequencies. Coupling can occur between
modes on separate branches, between modes on the same
branch, and even within a single mode multiplet between dif-
ferent azimuthal orders. Thus, although an earthquake should

Further reading 115
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Problems
11. For the strain tensor

    

e  =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3 0 0
0 1 1
0 1 2

(a) Find the corresponding stress tensor, assuming an isotropic
solid with Lamé constants λ and µ .

(b) Find the stored elastic strain energy, W = σijeij/2.
12. Give a physical interpretation of the fact that Young’s modulus for

rubber is less than that for steel.
13. An alternative to using potentials to find seismic wave solutions to

the equation of motion in terms of displacements is to formulate
wave equations for the dilatation and curl of the displacement
field. To see this:

(a) Take the divergence of Eqn 2.4.12 to obtain a wave equation
for the dilatation θ. At what velocity does θ propagate?

(b) Take the curl of Eqn 2.4.12 to obtain a wave equation for
∇∇∇∇∇ × u. At what velocity does ∇∇∇∇∇ × u propagate?

14. Derive the constitutive law (Eqn 2.3.70) for an isotropic and
linearly elastic material using the cijkl in Eqn 2.3.69.

15. Derive the ratio of P- and S-wave velocities in a Poisson solid.
16. Use the gradient operator in spherical coordinates (Eqn A.7.14) to

find the displacement field from the spherical wave scalar poten-
tial f(t − r/v)/r. How would you approximate the displacements
near the source? How would you approximate the displacements
far from the source?

17. On a seismometer located at an earthquake hypocenter, the phases
reflected from the core, PcP and ScS, arrive at 8 minutes, 31 sec-
onds, and 15 minutes, 36 seconds, respectively after the earth-
quake. If the earth’s radius is 6371 km, and the core’s radius is
3480 km:

(a) Find the average P- and S-wave velocities in the earth’s man-
tle.

(b) Use these average velocities to estimate how close the mantle
is to a Poisson solid.

18. Estimate the P- and S-wave velocities in the upper mantle by
assuming that it is a Poisson solid, and that the earthquake for
which seismograms are shown in Fig. 2.4-8 occurred at a depth of
280 km. Compare these velocities to the average mantle values.
Note that the seismograms do not start at the earthquake origin
time.

19. To get a feel for the distance and time scales in seismic wave pro-
pagation, consider waves propagating in a material with velocity
8 km/s.

(a) Find the wavelengths of waves with periods of 0.1 s, 1 s,
and 100 s.

(b) Find the periods and frequencies of waves with wavelengths
of 1 m, 1 km, and 100 km.

20. For waves propagating in an arbitrary direction given by the
wavenumber vector k,

(a) Show that the P-wave displacement due to the scalar poten-
tial

φ(x, t) = ei(ωt−k·x)

is parallel to the propagation direction.

1. What are the reflection and transmission coefficients for a junction
between two identical strings? Give a physical interpretation of the
result.

2. In Fig. 2.2-6, find the seismic velocities of the two different string
segments by measuring the distance versus time slope of the wave
pulses on the left and right sides of the figure. Are these velocities
the same as the velocities given in the figure caption?

3. For the stress tensor

  

σ   = − −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

2 1 3
1 1 2
3 2 5

find the traction on
(a) the x–y plane,
(b) the y–z plane,
(c) the plane with normal (3, 2, −1).

4. To derive the reflection coefficient for the end of a string:
(a) Express the total displacement due to incident and reflected

harmonic waves of unknown amplitudes.
(b) Find the relation between these amplitudes at a fixed string

end, where the displacement is zero, and at a free end, where
the traction is zero.

5. For the stress tensor

  

σ   =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 2 0
2 0 0
0 0 0

(a) Find the principal stresses and their associated directions.
(b) Find the surfaces on which the maximum tangential traction

occurs, and the value of this traction.
6. Estimate the pressure expected at a depth of 1000 km in the earth.
7. Given the stress tensor, whose elements are in kbar:

  

σ   =
− −

− −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

150 2 1
2 155 3
1 3 145

(a) What physical situation do the large negative values on the
diagonal represent?

(b) What is the mean stress?
(c) What is the deviatoric stress tensor?
(d) At what depth in the earth might this state of stress be

found?
8. Give an example of a strain tensor for which there is

(a) an increase in volume,
(b) a decrease in volume,
(c) shear strain but no volume change.

Which of these strains could result from a P wave, and which could
result from an S wave?

9. Estimate by what fraction the volume of a block of a Poisson solid
with the rigidity of crustal rock will be compressed at a depth of
30 km relative to its volume at the earth’s surface.

10. Determine whether the Lamé constant λ can be negative and, if so,
under what conditions.
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Fig. P2.1 See Problem 22.
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Fig. P2.2 See Problem 23.
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24. Fermat’s principle problems:
(a) Use Fermat’s principle to show that the angles of incidence

for the incident and reflected waves at the surface of a homo-
geneous halfspace (Fig. 2.5-13) are equal.

(b) Use the second derivative of the travel time to determine
whether the ray path in (a) is a minimum- or a maximum-
time path.

(c) Use the second derivative of the travel time to show that the
refracted ray path in Fig. 2.5-14 is a minimum-time path.

25. For an SV wave incident on a free surface:
(a) Write the potentials for the incident SV wave and reflected P

and SV waves.
(b) Derive the continuity equations at the interface in terms of

both the potentials and the amplitude coefficients.
(c) Assume that the potential reflection coefficients, the ratios of

the reflected SV and P potentials to that of the incident SV
wave, are
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Evaluate the potential reflection coefficients at vertical incid-
ence, and explain the result physically.

(d) Find the displacement magnitude ratios and energy flux
ratios for the two reflected waves relative to the incident
wave.

(e) Show that the energy fluxes satisfy conservation of energy.
26. Show that conservation of energy is satisfied by:

(a) The energy flux for the incident, reflected and transmitted
SH waves at an interface (Eqn 2.6.14).

(b) The energy flux for the incident P wave and reflected P and
SV waves at a free surface (Eqn 2.6.39).

27. For the ScSp conversion at the top of the downgoing slab (Fig. 2.6-
15), assume that ScS is traveling vertically in the slab, which dips
at 30°. Assume that the velocities in the slab are α = 9.3 km/s and
β = 5.2 km/s, and the overlying mantle between the slab and the
surface has velocities α2 = 8.0 km/s and β2 = 4.6 km/s.

(a) Find the angle of incidence for ScS and ScSp at the top of the
slab and at the earth’s surface.

(b) Use this result and the seismograms shown to estimate the
depth beneath the station to the top of the slab. Bear in mind
that the ScSp and ScS arrivals observed at a given station
originated from different points on the slab.

(b) Show that the S-wave displacement due to the vector
potential

ϒ(x, t) = Aei(ωt−k·x), A = (Ax, Ay, Az),

is perpendicular to the propagation direction.
21. For a medium composed of upper, middle, and lower layers with

velocities of 6, 8, and 10 km/s, calculate the angle of incidence in
the 8 and 10 km/s layers for a ray with an incidence angle of 10°
in the 6 km/s layer. What is the smallest angle of incidence in the
6 km/s layer that causes total internal reflection at the 8 km/s–
10 km/s interface?

22. For the two cases of an incident wave hitting a plane boundary
between two media shown in Fig. P2.1,

(a) Determine which waves are P waves and which are S waves.
(b) Determine which media are liquid and which are solid.
(c) For the two media in each case, determine which has the

higher P-wave velocity.
23. Consider two rays that originate from a source at x = 0, z = 0,

in a medium with velocity 1 km/s with angles of incidence 0°
and 30° (Fig. P2.2). Assume that these rays cross an interface at
z = 2 km into a medium with velocity 1.5 km/s and travel to the
boundary at z = 4 km. For each of the ray paths:

(a) Compute the angle of incidence in the upper layer, the ray
path length in each layer, and the total travel time.

(b) Compute the components and magnitude of the slowness
vector s = (p, η) in each layer. Check that the magnitude is
related to the velocity as expected.

(c) Derive the total travel time from the scalar product of slow-
ness and distance (s · x) for the ray path. Remember to use
the appropriate slowness components and horizontal and
vertical distances in each layer. Check that these travel times
agree with those from (a).
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mode is the average mantle shear wave velocity from prob-
lem 17 and find the period you would expect. How does this
compare to the actual period?

(b) Find the phase velocity for the mode 0T130 and compare it to
that for the Love wave of this period found in the dispersion
calculation (Section 2.7.4).

(c) Find the phase velocity for three modes with similar periods:

4T67, 10T40, and 13T7, and interpret the differences.
(d) Find the phase velocities and wavelengths of waves corres-

ponding to the modes 0S3, 0S30, and 0S130. Interpret the trend
of the velocities. Which of these modes would you expect to
be most affected by lateral heterogeneity in the earth, and
why?

36. (a) Show that the three vector spherical harmonics T l
m, Sl

m, Rl
m are

orthogonal, and explain this result’s physical significance.
(b) Show that there is no volume change associated with torsional

modes, and explain this result’s physical significance.
37. (a) Estimate the magnitude of the splitting of the 0S2 multiplet

in Fig. 2.9-16a as the ratio of the separation in frequency
between the m = ±2 singlets to the frequency of m = 0, which is
essentially that of the unsplit multiplet.

(b) We expect that the splitting would be of the order of the ratio
of the unsplit mode’s period to that of the earth’s rotation.
Compute this ratio and compare the result to the results of (a).

Computer problems
C-1. Write a subroutine to generate the values of the function

cos (ω t − kx). Use it to plot the function as a
(a) function of time from t = 0 to 10, at x = 1, for ω = 1, k = 1.
(b) function of time from t = 0 to 10, at x = 0, for ω = 4, k = 1.
(c) function of position from x = 0 to 10, at t = 0, for ω = 1,

k = 2.
(d) function of position from x = 0 to 10, at t = 0, for ω = 1,

k = 4.
C-2. Write a subroutine that uses the P and S velocities on either side of

a solid–solid interface and the angle of incidence for a wave of
a specific type to find the angles of reflection and transmission for
both P and S waves. The subroutine should calculate and list
any possible critical angles for that incident wave, and indicate
whether any of the reflected or transmitted waves are past the
critical angle.

C-3. Write a program that takes the velocities and densities on either
side of a solid–solid interface and finds the vertical incidence
displacement reflection and transmission coefficients, and energy
flux ratios, for P and S waves incident from either side. Use the
program to estimate these quantities for the core–mantle bound-
ary (although it is a solid–liquid boundary), if the lower mantle
has α = 13.7 km/s, β = 7.2 km/s, ρ = 5.5 g/cm3, and the core has
α2 = 8.0 km/s, β2 = 0.0 km/s, ρ2 = 9.9 g/cm3.

C-4. Write a program, using the result of C-2, to generate figures like
the ray paths in Fig. 2.6-11 for an interface with given velocities
on either side. Use the program to show the ray paths for the
possible incident wave types on either side of a planar interface
with the properties of the core–mantle boundary (problem C-3).

28. For a P wave incident on a horizontal solid–solid interface
(Fig. 2.6-9):

(a) Write the potentials for the incident P wave and reflected P
and SV waves.

(b) Derive the four continuity equations at the interface in terms
of the potentials.

29. For the Love waves in a layer over a halfspace, use the model in
Fig. 2.7-9 to derive the cutoff frequencies for the first and second
higher modes. Compare these results to the figure.

30. A second way to study the downgoing slab is to use observations
from Japan showing that earthquakes about 1300 km away can
give rise to two P-wave arrivals, a small direct one and a larger
one presumably reflected off the upper surface of the slab (Fig. 2.6-
15). Using the geometry and velocities assumed in problem 27:

(a) Determine the angles of incidence at the surface if the appar-
ent velocities of the direct and reflected arrivals are 8.5 and
16 km/s.

(b) Determine the angle of incidence at the slab top of the reflec-
tion. To see if the large amplitude of the reflection might oc-
cur because of near-critical incidence, compute this critical
angle and compare the two.

(c) Suppose that a P-to-S wave conversion also occurred at the
slab top. For the converted wave, find the angle of incidence
at the slab and the angle of incidence and apparent velocity
expected at the surface.

31. For Love waves in a layer over a halfspace, derive a vertical wave-
length to show how the displacement oscillates with depth in the
layer. Also, derive a vertical decay constant for the halfspace, a dis-
tance over which the displacement decays to e−1 of its value at the
interface. Show how these quantities vary with apparent velo-
city for a given period. For different modes at a given period, inter-
pret the result in terms of the rate at which the displacement
oscillates in the layer and the depth of penetration in the halfspace.

32. For a dispersive wave, derive the following relations between
group velocity, phase velocity, wavelength, frequency, and period:
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33. Find the displacements for 0T 0
3 as functions of θ and φ in the

manner done for 0T 0
2 in Eqns 2.9.12 and 2.9.13.

34. (a) Show that for m = 0,
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(b) Use (a) to find the spherical harmonic Y00 associated with
radial modes nS0.

(c) Evaluate the vector spherical harmonics associated with the
radial modes and explain what the results imply for these
modes’ displacements.

35. Using the relation between modes and traveling waves and the data
in Table 2.9-1:

(a) Because 0T2 samples the mantle fairly uniformly (Fig. 2.9-
9a), assume that the phase velocity appropriate for this



3 Seismology and Earth Structure

Ordinary language undergoes modification to a high pressure form when applied to the interior of the earth; a few examples of equi-
valents follow:

Ordinary meaning: High pressure form:
dubious certain
perhaps undoubtedly
vague suggestion positive proof
trivial objection unanswerable argument
uncertain mixture of all the elements pure iron

Francis Birch, 1952

3.1 Introduction

A major application of seismology is the determination of the
distribution of seismic velocities, and hence elastic properties,
within the earth. This distribution, known as earth structure,
gives the basic constraint on the mineralogical, chemical, and
thermal state of the earth’s interior. Seismological data are
important for this purpose because their resolving power is
generally superior to that of other geophysical methods. For
example, although gravity and magnetic data indicate the pre-
sence of a dense fluid core at depth, they provide only relatively
weak constraints on its density and size. By contrast, seismo-
logical data indicate the depth of the core–mantle boundary
and the sharp change in properties that occurs there. Above the
boundary, both P and S waves propagate in the solid mantle,
whereas in the liquid outer core no S waves propagate and the
P-wave velocity drops sharply. The observed velocities are the
primary basis for our models of the physical properties and
chemical composition of the material on either side of this
boundary. Similarly, the distinction between the crust and the
mantle and many inferences about their structure and composi-
tion come from seismological observations. More generally,
by establishing the essentially layered structure of the earth,
seismology provides the primary evidence for the process
of differentiation whereby material within planets became
compositionally segregated during their evolution. As a result,
many crucial issues about the other terrestrial planets could be
resolved if seismological data were available.

Constraints from seismology are crucial for other disciplines
of the earth sciences, and vice versa. Seismology gives earth
models describing the distribution of P- and S-wave velocities
and density. Going from an earth model to a description of
the chemical, mineralogical, thermal, and rheological state of
the earth’s interior requires additional information. There are
thus two types of uncertainty in our knowledge of the earth’s
interior. In some cases, such as the structure of the inner core,
the seismological results are still under discussion. In others —
for example, the nature of the 660 km discontinuity in the
mantle — the basic seismological results are generally accepted,
but their mineralogic and petrologic interpretations remain
under investigation. Given our scope here, we only summarize
the implications of seismological data for models of the earth’s
interior.

The fundamental data for seismological studies of the
earth’s interior are the travel times of seismic waves. The meas-
urements available are the arrival times of seismic waves at
receivers. To convert these to travel times, the origin time and
location of the source must be known. These parameters,
which are known for artificial sources, must be estimated from
the observations for earthquake sources. Hence travel time
data include information about both the source and the pro-
perties of the medium, and separating the two is a challenge
in many seismological studies.

The travel times are used to learn about the velocity structure
between the source and the receiver. As we saw in the last
chapter, waves follow paths that depend on the velocity
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velocity structure for the composition of the earth. Later, in
Chapter 7, we discuss further how seismic data can be used to
study laterally variable velocity structure.

3.2 Refraction seismology

3.2.1 Flat layer method

The simplest approach to the inverse problem of determining
velocity at depth from travel times treats the earth as flat layers
of uniform-velocity material. We thus begin by deriving the
travel time curves for such a model, which show when seismic
waves arrive at a particular distance from a seismic source.
The travel times, especially those of waves that are critically
refracted at the interfaces, are used to find the velocities of the
layers and underlying halfspace and the layer thicknesses. As a
result, this technique is called refraction seismology.

Refraction seismology is used on vastly differing scales.
Near-surface structure at depths less than 100 meters can be
studied using a sledge hammer or a shotgun as a source and a
single receiver. Similar methods are used to study the crust and
the upper mantle, with earthquake or explosion sources and
many receivers at distances of hundreds of kilometers.

The simplest situation, shown in Fig. 3.2-1, is a layer of
thickness h0, with velocity v0, overlying a halfspace with a
higher velocity, v1. We write the velocities as “v” to indicate
that the analysis applies for either P or S waves. There are three
basic ray paths from a source on the surface at the origin to a
surface receiver at x. The travel times for these paths can be
found using Snell’s law.

The first ray path corresponds to a direct wave that travels
through the layer with travel time

TD(x) = x/v0. (1)

This travel time curve (Fig. 3.2-2) is a linear function of dis-
tance, with slope 1/v0, that goes through the origin.

The second ray path is for a wave reflected from the inter-
face. Because the angles of incidence and reflection are equal,

structure. Hence the structure must be known to find the paths
that the waves took. To illustrate this, consider the travel time
between two points. If the velocity were constant, the ray path
would be a straight line, and the velocity could be found by
dividing the distance by the travel time. If, instead, an interface
separates media with different velocities, the ray path would
consist of two line segments, depending on the velocities, and
the travel time would be the sum of the time spent along each
segment. For a more complicated velocity distribution, the ray
path would also be more complicated.

This problem can be posed mathematically by writing the
travel time between the source (s) and receiver (r) as the integral
of 1/velocity, or slowness, along the ray path

   

T s r
v x

dx

s

r

( , )  
( )

.=� 1
(1)

In simple cases, where the ray path is a set of segments with
constant velocity, the integral is just a sum over the time
in each segment. Thus the travel time gives an integral con-
straint on the velocity distribution between the source and
the receiver, but does not indicate which of the many paths
satisfying the constraint the ray followed. As a result, an
individual measurement is inadequate to show the distribution
of velocities. Fortunately, as we shall see, a set of travel times
between different sources and receivers provides much more
information. In addition, useful information is derived from
the amplitudes and waveforms of seismic waves.

This example illustrates an interesting feature of determining
velocity structure from travel times. If the velocity structure is
known, the forward problem of finding the travel times and
amplitudes is straightforward. However, the inverse problem
of using the travel times and amplitudes measured at the sur-
face to find the velocity structure at depth is more difficult, and
various methods are used. For example, in addition to using
travel times directly, we have seen that velocity structure is
studied using the dispersion of surface waves (Section 2.8) and
the eigenfrequencies of normal modes (Section 2.9), quantities
that correspond to travel times.

In this chapter, we follow the approach discussed in Section
1.1.2 of treating the earth with a series of progressively more
complex and, hopefully, more accurate models. We begin with
the homogeneous, isotropic, elastic, layered halfspace used in
Chapter 2 to derive seismic wave propagation. This approx-
imation of uniform flat layers is often used in crust and upper
mantle studies, where the distance between source and receiver
is less than a few hundred kilometers. We then consider larger
source–receiver distances, for which spherical geometry is
required, and then the anisotropic and anelastic behavior of the
earth. Throughout these discussions, we will see that although
velocity varies primarily with depth, there are important lateral
variations, or heterogeneities. Finally, we consider the implica-
tions of the observed heterogeneous, anisotropic, and anelastic

Fig. 3.2-1 Three basic ray paths for a layer over a halfspace model. The
direct and reflected rays travel within the layer, whereas the head wave
path also includes a segment just below the interface. For the head wave
to exist, the layer velocity v0 must be less than the halfspace velocity v1.
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To simplify Eqn 4, we use trigonometric identities showing that

cos ic = (1 − sin2 ic)
1/2 = (1 − v2

0 /v2
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so Eqn 4 can be written

TH(x) = x/v1 + 2h0(1/v2
0 − 1/v2

1)1/2 = x/v1 + τ1. (8)

Thus the head wave’s travel time curve is a line with a slope
of 1/v1 and a time axis intercept of

τ1 = 2h0(1/v2
0 − 1/v2

1)1/2. (9)

This intercept is found by projecting the travel time curve
back to x = 0, although the head wave appears only beyond the
critical distance, xc = 2h0 tan ic , where critical incidence first
occurs.

Because 1/v0 > 1/v1, the direct wave’s travel time curve has a
higher slope but starts at the origin, whereas the head wave has
a lower slope but a nonzero intercept. At the critical distance
the direct wave arrives before the head wave. At some point,
however, the travel time curves cross, and beyond this point the
head wave is the first arrival even though it traveled a longer
path. The crossover distance where this occurs, xd , is found by
setting TD(x) = TH(x), which yields
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Hence the crossover distance depends on the velocities of the
layer and the halfspace and the thickness of the layer.1

Thus we can solve the inverse problem of finding the velocity
structure at depth from the variation of the travel times ob-
served at the surface as a function of source–receiver distance.
This simple structure is described by three parameters. The two
velocities, v0 and v1, are found from the slope of the two travel
time curves. We then identify the crossover distance and use
Eqn 10 to find the third parameter, the layer thickness, h0.
Alternatively, the layer thickness can be found from the reflec-
tion time or the head wave intercept (Eqn 9) at zero distance.
Each of these methods exploits the fact that there is more than
one ray path between the source and the receiver.

Fig. 3.2-2 Travel time versus source-to-receiver distance plot for the three
ray paths in Fig. 3.2-1. The direct wave is the first arrival for receivers
closer than the crossover distance xd. Beyond xd the head wave arrives
first. The head wave exists only beyond the critical distance xc.

1 A simple analogy is driving to a distant point by a route combining streets and a
highway. If the destination is far enough away, it is quicker to take a longer route
including the faster highway than a direct route on slower streets. The point at which
this occurs depends on the relative speeds and the additional distance required to use
the highway.
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the wave reflects halfway between the source and the receiver.
The travel time curve can be found by noting that x/2 and
h0 form two sides of a right triangle, so

TR(x) = 2(x2/4 + h2
0)1/2/v0. (2)

This curve is a hyperbola, because it can be written

T 2
R(x) = x2/v2

0 + 4h2
0/v2

0. (3)

For x = 0 the reflected wave goes straight up and down, with a
travel time of TR(0) = 2h0/v0. At distances much greater than
the layer thickness (x >> h), the travel time for the reflected
wave asymptotically approaches that of the direct wave.

The third type of wave is the head wave, often referred to as
a refracted wave. This wave results when a downgoing wave
impinges on the interface at an angle at or beyond the critical
angle. Its travel time can be computed by assuming that the wave
travels down to the interface such that it impinges at the critical
angle, then travels just below the interface with the velocity of
the lower medium, and finally leaves the interface at the critical
angle and travels upward to the surface. Thus the travel time is
the horizontal distance traveled in the halfspace divided by v1
plus that along the upgoing and downgoing legs divided by v0:
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The last step used the fact that the critical angle (Section 2.5.5)
satisfies
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Fig. 3.2-3 Generation of an upgoing head wave by Huygens’ sources due
to a refracted pulse propagating along a boundary. The head wave travels
in the upper layer at a slower velocity (v0) than the refracted wave creating
it, which travels in the layer below at velocity v1. (After Griffiths and King,
1981.)
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Fig. 3.2-4 Schematic of Mohorovibia’s results showing the existence of a
distinct crust and mantle. The travel time curves are labeled using modern
nomenclature: the direct waves are Pg and Sg, and the head waves are Pn
and Sn. (After Bonini and Bonini, 1979. Eos, 60, 699–701, copyright by
the American Geophysical Union.)

Despite this solution’s elegance, the basic assumption about
the travel time of the head wave may seem unsatisfying, because
it is unclear why energy should follow this path. However,
the result conforms with observations — the experiment
diagrammed in Fig. 3.2-1 yields an arrival whose travel time is
given by Eqn 8. To understand why, we can view the head wave
in several ways. As shown in this chapter’s problems, it cor-
responds to a minimum time path between the source and the
receiver, so, by Fermat’s principle (Section 2.5.9), we expect
such a wave. Another approach, using Huygens’ principle
(Section 2.5.10), is to consider the refracted wave traveling
horizontally below the boundary at the velocity of the half-
space, generating spherical waves that propagate upward in the
lower-velocity layer (Fig. 3.2-3). The spherical waves interfere
to produce upgoing plane waves that leave the interface at the
critical angle.2 However, our analysis of postcritical incidence
(Section 2.6.4), which showed that an evanescent wave pro-
pagates along the interface, does not fully describe the head
wave. A more sophisticated analysis than is appropriate here
shows that the geometry in Fig. 3.2-1 gives the head wave’s
travel time, but not its amplitude, because geometrical optics
are not applicable. Thus, although the energy propagation is
more complicated than along the geometric ray path, the travel
time predicted is correct.

Seismic refraction data led A. Mohorovibia3 in 1909 to
one of the most important discoveries about earth structure.
Observing two P arrivals (Fig. 3.2-4), he identified the first as
having traveled in a deep high-velocity (7.7 km/s) layer, and
the second as a direct wave in a slower (5.6 km/s) shallow layer
about 50 km thick. These layers, now identified around the
world, are known as the crust and the mantle. The boundary
between them is known as the Mohorovibia discontinuity,
or Moho. We now denote the head wave as Pn and the direct
wave as Pg (“g” for “granitic”). Corresponding arrivals are also
observed for S waves. The Moho, which defines the boundary

2 This situation is analogous to a bow wave from a boat or a supersonic wave from a
jet airplane, in that the energy source travels faster than the wave it produces.
3 Andrija Mohorovibia (1857–1936), working in Zagreb, Croatia (then part of the
Austro-Hungarian Empire), studied travel times from earthquakes in the region using
recently invented pendulum seismographs.

between the crust and the mantle, has been observed around
the world. One of the first steps in studying the nature of the
crust is characterizing the depth to Moho, or crustal thickness,
and the variation in Pn velocity from site to site.

Travel time plots for refraction experiments can be made by
displaying seismograms in record sections. Because seismo-
grams are functions of time, aligning several as a function of
distance yields a travel time plot showing the different arrivals.
Figure 3.2-5 shows a record section of a profile of seismograms
recorded in England from explosive sources. In addition to
Pn and Pg, the reflection off the Moho, known as PmP, is well
recorded. As expected, the direct and head wave travel times
are linear with distance, whereas the reflection has a hyperbolic
curvature. The figure is plotted as a reduced travel time plot,
in which the time shown is the true time minus the distance
divided by a constant velocity. This reduces the size of the plot,
and makes waves arriving at the reducing velocity appear as a
line parallel to the distance axis.

The geometry discussed here can correspond to different
physical experiments. A single source can be recorded simul-
taneously at receivers at different distances. Alternatively,
multiple sources at different distances can be recorded by a single
receiver at different times. A single receiver can be moved away
from a fixed source, so the same source is recorded at different
distances. Similarly, a source can be moved away from a fixed
receiver. Results of various experiments can be combined,
using the principle of reciprocity, which states that the travel
time is unchanged if the source and the receiver are inter-
changed. As a result, we can use travel time measurements
without considering whether the source was at one position
and the receiver at another, or the reverse. Moreover, because
earth structure presumably is not changing during the experi-
ment, data collected at different times can be combined.



Thus for two layers over a halfspace, the thickness of the
second layer is found by setting n = 2, so
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A few examples illustrate some other complexities of refrac-
tion experiments. If the velocity increases with depth, the travel
time curve for the head wave at the top of each successive
layer has a shallower slope. By contrast, a low-velocity layer
(Fig. 3.2-8) does not cause a head wave, so the travel time curve
does not have a first arrival with the corresponding velocity,
and depths to interfaces calculated using Eqn 13 are incorrect.
Another possible problem occurs if a layer is thin or has a small
velocity contrast with the one below it. Although a head wave
results, it may never appear as a first arrival (Fig. 3.2-9), caus-
ing a blind zone that can be missed in the interpretation.

3.2.2 Dipping layer method

The refraction method can also be applied if the interfaces be-
tween layers are not horizontal. Conducting a reversed profile
yields the travel times for ray paths in both the down-dip
and the up-dip directions. This can be done using receivers on
either side of a source, sources on either side of a receiver,
or both. In this geometry, the depths to the interface below the
source and the receiver differ due to the dip angle, θ. Consider
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Refraction data often show other arrivals in addition to Pg,
Pn, and PmP. Figure 3.2-6 shows a record section that also con-
tains head waves Pi and Pn2 from boundaries within the crust
and the mantle and Pi P, a reflection off a mid-crustal interface,
which is analogous to the PmP reflection off the Moho.

Such data require a model with multiple layers. Figure 3.2-7
shows a model in which a head wave arises at each interface
where the velocity increases with depth. The travel time curve
for a head wave at the top of the nth layer is a line with slope
1/vn, that can be extrapolated to its intercept on the t axis, τn,
and written

T x x vH n nn
( )  /  ,= + τ (11)

where, by analogy to the layer over the halfspace case (Eqn 9),
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The thickness of successive layers can be found by starting with
the top layer, whose thickness h0 is given by Eqn 9 or 10, and
continuing downward using the iterative formula
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Fig. 3.2-5 Seismograms from a refraction
profile, plotted with a reducing velocity of
6 km/s. The direct wave Pg , Moho head
wave Pn , and Moho reflection PmP are
observed. Pg does not asymptotically
approach PmP as in Fig. 3.2-2 because
the crust, instead of being homogeneous,
has increasing velocity with depth. (Bott
et al., 1970. From Mechanism of Igneous
Intrusion, ed. G. Newall and N. Rast,
© 1970 by John Wiley & Sons Ltd.
Reproduced by permission.)
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the down-dip ray path (Fig. 3.2-10) from a source, below
which the perpendicular distance to the interface is hd , to a
receiver at a distance x, below which the perpendicular dis-
tance to the interface is (hd + x sin θ ). The travel time for the
head wave in the down-dip direction is the sum of the distance

along the interface divided by v1 plus that for the upgoing and
downgoing legs divided by v0
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Fig. 3.2-6 Seismic refraction record
section, plotted with a reducing velocity
of 6 km/s. In addition to Pg, Pn, and PmP,
there are also arrivals Pi and Pn2 interpreted
as head waves from boundaries within the
crust and the mantle, and PiP, interpreted
as a reflection off a mid-crustal interface.
(Snelson et al., 1998.)
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which is a straight line with slope 1/vd and intercept τd.
Similarly, the travel time for the head wave in the up-dip

direction is
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where hu = hd + x sin θ is the perpendicular distance to the inter-
face below the receiver (Fig. 3.2-10). Thus the apparent veloci-
ties, corresponding to the slopes of the head wave travel time
curves, differ in the up-dip and down-dip directions by a factor
depending on the dip angle,

vu = v0/sin (ic − θ) vd = v0/sin (ic + θ). (18)

The apparent velocity in the up-dip direction is greater than
the halfspace velocity, and that in the down-dip direction is
smaller. The time axis intercepts

τu = 2hu cos ic /v0, τd = 2hd cos ic /v0, (19)

Fig. 3.2-7 Ray paths and travel times for a
multilayered model in which velocity
increases with depth. Each layer gives rise to
a head wave Hi, whose intercept on the time
axis is τi, and a reflection Ri. The direct wave
arrival is also shown.

Fig. 3.2-8 Travel time curves, showing first arrivals only, for
a model with three layers over a halfspace. Because the middle
layer is a low-velocity layer with v1 < v0, no head wave arises
at its top.

Fig. 3.2-10 Head wave ray path in the down-dip direction for a dipping
interface over a higher-velocity halfspace. The layer thickness is measured
perpendicular to the interface.

Fig. 3.2-9 Travel time curves, showing first arrivals only, for
a blind zone geometry where the head wave from the top of
layer 1 is never the first arrival because this layer is too thin.
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Fig. 3.2-11 Travel time plot for a reversed profile and its interpretation.
The up-dip and down-dip slopes and intercepts differ.

Same travel times
down-dip and up-dip

Source Receiver

Receiver Source

Receiver Source Receiver

Different travel times
down-dip and up-dip

Fig. 3.2-12 Left: If the source and the receiver are interchanged on a
reversed refraction profile, the travel time is unchanged. Right: Different
up-dip and down-dip travel times occur because, for a given source
position, waves going the same distance along the surface in opposite
directions sample the dipping interface differently.

also differ. The direct wave travel time is the same in both direc-
tions, so the crossover distances differ.

The results of a reversed profile are often displayed in the
form shown in Fig. 3.2-11. The time axis is common to both
directions, but distance is measured from one end of the axis
for the up-dip experiment and from the other for the down-dip.
The slopes of the direct and head wave travel times yield the dip
angle
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and the critical angle
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The halfspace velocity v1 is found from the critical angle and v0,
and the intercept times then yield the layer thickness.

Two additional points about reversed profiles are worth
noting. First, the different up-dip and down-dip head wave
travel time curves do not imply that for a given pair of loca-
tions, it makes a difference whether the source is up-dip and the
receiver down-dip, or the reverse (Fig. 3.2-12). By reciprocity,
the two experiments give the same travel time. Thus, for a ray
path connecting two points, it does not matter whether the
wave travels up-dip or down-dip. By contrast, for two receivers
at the same distance from a source, one up-dip and one down-
dip, the travel times differ because the ray paths encounter the
dipping interface at different depths. Similarly, the travel times

differ for two sources at the same distance from a receiver, one
up-dip and one down-dip. If the dip were zero, then the travel
times would be the same for all these cases because all ray paths
encounter the interface at the same depth. Another way to
view this is that for a flat geometry the travel time depends only
on the distance between the source and the receiver. For a dip-
ping geometry, the position as well as the separation matters,
because the depth to the interface varies.

Second, the dip found from a reversed profile is not a true
dip if the profile is not perpendicular to the strike of the layer.
Instead, the measured dip is an apparent dip along the profile.
The true dip can be found from the apparent dips along two
reversed profiles that cross at a reasonably large angle, using
a standard technique in structural geology.

3.2.3 Advanced analysis methods

Because the analysis above has been for simple geometries and
uniform-velocity layers, refraction seismology might seem of
little use in understanding the real earth. Fortunately, this is
not the case. The simple geometries give models that fit data
reasonably well and provide starting models for more sophistic-
ated analyses.

Data from experiments showing travel times more complex
than predicted by simple geometries can be interpreted with
a computer program to trace rays using Snell’s law through
possible velocity structures. The predicted travel time curve
is found by taking rays that arrive at a given distance, and
integrating the slowness along their paths (Eqn 3.1.1).
Figure 3.2-13 shows a record section and the inferred velocity
structure for a refraction survey in central California. Ray paths
calculated through the structure shown yield a good fit to the
complicated travel time data. For example, the late arrivals
about 8 km from the source are interpreted as resulting from a
low-velocity region associated with a set of faults. The model
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also fits the travel times showing several velocity increases
beyond this distance.

The restriction of uniform-velocity layers can also be sur-
mounted. Geological instincts (a useful but occasionally unreli-
able tool) lead us to expect that rock types, and thus velocities,
should often vary smoothly rather than in discrete jumps. Thus
we expect velocity gradients with depth, rather than sharp in-
terfaces. This possibility can be tested using advanced methods
of analysis that predict both the travel times and the amplitudes
of the expected arrivals. The amplitudes make it possible to
distinguish gradients from uniform layers, even if the travel
times predicted are the same. Although the methods are beyond
our scope here, we discuss some results briefly.

To illustrate the relation between velocity structure and
amplitudes, consider theoretical, or synthetic, seismogram re-
cord sections for the head wave, Pn, and Moho reflection, PmP,
predicted by two crustal models (Fig. 3.2-14). The seismo-
grams were computed using a method known as reflectivity,
which avoids the limitations of ray and plane wave analysis.
The travel times are reduced at 8 km/s, and the direct wave
is not shown. Both models have the same average velocity

structure, a 30 km-thick layer of 6.5 km/s material over an
8 km/s halfspace, so the travel times are similar. However, the
amplitudes of the arrivals differ noticeably because the models
have different fine structure near the Moho.

For the sharp Moho model (Fig. 3.2-14, top) the reflected
wave is small for distances less than the critical distance
(subcritical reflection), largest near the critical distance, and
large for distances greater than critical (supercritical, postcrit-
ical, or wide angle reflections). Because the boundary is sharp,
this amplitude behavior is similar to that predicted for plane
waves (Fig. 2.6-11). PmP also shows the expected phase shift
for reflection past critical incidence (Section 2.6.4). The head
wave first appears near the critical distance, 83 km, and is
small, as expected from the plane wave approximation that
predicts no transmitted wave past the critical angle.

Figure 3.2-14 (bottom) shows the effect of velocity gradients
above and below the Moho. Seismic energy trapped near the
Moho yields larger Pn amplitudes than for the sharp Moho
case. In addition, for subcritical distances, the reflection is
smaller than without a gradient above the Moho, because it
no longer reflects off a sharp interface. Hence the amplitudes

Fig. 3.2-13 Reduced travel time plot and
ray tracing results for a seismic refraction
survey. The solid line on the travel time
plot shows the travel times predicted
by the model. (Meltzer et al., 1987.
© Seismological Society of America.
All rights reserved.)
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of Pn and PmP indicate the presence or absence of gradients at
the Moho.

Figure 3.2-15 illustrates these ideas for the oceanic crust
and the mantle. Theoretical seismograms (Fig. 3.2-15, center)
computed for a layered model that fits travel times predict
strong reflections off the top of layer 3 (P3P) and the Moho
(PmP). The observed data (Fig. 3.2-15, bottom) show strong
PmP reflections, suggesting a sharp Moho transition. However,
strong P3P reflections are not observed, implying that the trans-
ition between layers 2 and 3 is a gradient rather than a sharp
jump. Thus, although the results of refraction studies are often
reported as layered models that fit the travel times, amplitude
studies are needed to show whether sharp interfaces exist.

An interesting point is that, because layers are distinguished
from gradients by interpreting the amplitudes of seismic waves,
this distinction depends on the wavelength of the wave used to
study the structure. A reasonable approximation is that waves
“see” only structures longer than their wavelengths. In other
words, waves are affected by the medium properties averaged
over their wavelengths. For example, the velocity structures
in Fig. 3.2-16 appear identical to waves with a wavelength
of 1 km, but look quite different for a wavelength of 1 m.
Thus profile 3 appears as a sharp interface for waves with

wavelength 1 km, a gradient for 100 m wavelength, and a stack
of layers for 10 m wavelength. The velocity structure depends
on the wavelengths under discussion, so a velocity “gradient”
is a structure that cannot be distinguished, with the wave-
lengths used, from one in which velocity changes smoothly.
Similarly, an “interface” is a region that cannot be distin-
guished from a sharp velocity change with the wavelengths
used.

3.2.4 Crustal structure

Information about crust and upper mantle structure around
the world has been acquired by refraction surveys conducted
on different scales. The size of the sources and the source-to-
receiver distances increase with the depth of the structures
being studied. Earthquakes or large explosions, including
nuclear weapons tests, have enough energy to reveal the Moho.
For example, the profile in Fig. 3.2-5, which showed clear
Moho arrivals, was almost 250 km long and used sources con-
taining 136 kg of explosive. Shorter profiles are used to study
structure within the crust, as in Fig. 3.2-13. The recording
stations are either permanent seismic stations or, in most cases,
portable seismometers. Refraction studies are also conducted

Fig. 3.2-14 Synthetic seismograms showing
how the amplitudes of the head wave, Pn,
and the reflected wave, PmP, depend on the
velocity structure at the Moho. Two cases
with the same average-velocity structure
are shown. At the top the Moho is a sharp
transition, and at the bottom there are
gradients above and below the Moho. The
velocity scale shows the slopes of arrivals
with different velocities. (After Braile and
Smith, 1975.)
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at sea. In some cases, disposable sonobuoys or retrievable
ocean bottom seismometers are deployed, and a ship steams
away firing “shots.” In other cases, two ships are used. Marine
refraction data (e.g., Fig. 3.2-15) are analyzed by treating
the water as an upper layer of known velocity. The refrac-
tion results are combined with those from seismic reflection
techniques, discussed in the next section, in which the velo-
city structure is derived from the travel times of subcritical
reflections, rather than refractions. Refraction and reflection
results are complementary and yield improved knowledge of
structure.

The oceanic crust is about 7 km thick, and is relatively uni-
form from site to site, except at mid-ocean ridges. As a result, a
single simple model like that in Fig. 3.2-15 is often applicable.
By contrast, the continental crust is thicker and variable, as
illustrated in Fig. 3.2-17 for a cross-section across the west
coast of the United States. The thin crust beneath the Pacific
Ocean thickens across the continent–ocean transition, such
that beneath the coast ranges the Moho is about 25 km deep.
Beneath the Sierra Nevada range, the depth to the Moho
reaches 35–40 km. The refraction data also show complicated
and variable-velocity structures within the crust. Thus the crust
is not a uniform layer, or even a uniform set of layers, because

Fig. 3.2-16 Different velocity profiles that are indistinguishable when
examined by using 1 km wavelength seismic waves, but distinguishable
with much shorter wavelengths. (Spudich and Orcutt, 1980.
Rev. Geophys. Space Phys., 18, 627–45, copyright by the
American Geophysical Union.)
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layer, it is better to view it as a zone where velocities increase
rapidly with depth to values above about 7.7 km/s.

Velocity structures are often interpreted in terms of com-
position, as in Fig. 3.2-17. To do this, seismological results are
combined with other geophysical data (e.g., gravity), geolog-
ical fieldwork, and laboratory studies of the seismic velocities
of rocks. The laboratory data show that velocity varies with
composition, as shown in Fig. 3.2-22 for igneous rocks of
the crust and upper mantle. Moreover, velocity increases with
pressure and decreases with temperature. Inferences about
composition are thus made by comparing predicted velocit-
ies to seismic observations. For pressures expected at greater
depths, as for the lower mantle and core, laboratory experi-
ments are more difficult, so thermodynamic calculations are
also used to extrapolate experimental data to higher temper-
atures and pressures.

Such analyses imply that the upper continental crust has
an average composition like granodiorite, whereas the upper
oceanic crust is gabbroic.4 Historically, two types of models
have been suggested for the Moho. In one, the Moho divides
chemically different rocks, whereas in the other, it is a phase
boundary separating rocks with the same bulk chemistry but
different minerals. These models correspond to different com-
binations of rocks on either side. Two candidates for the lower
continental crust are gabbro or rocks of intermediate composi-
tion in the granulite facies. The most popular candidate for the
upper mantle is peridotite, which would make the Moho a

in some places it contains velocity gradients. Although early
refraction studies suggested the existence of the Conrad dis-
continuity dividing the upper and lower crust, it now appears
that high (greater than about 6.5 km/s)-velocity lower crust
is present in some places but not in others. Furthermore, some
areas show low-velocity zones within the crust.

Refraction studies show regional variations in crustal
thickness and Pn velocities, as illustrated for North America
in Fig. 3.2-18. East of ~104°W, the crust is typically thick
(~42 km), and Pn velocities are high (~8.1 km/s). To the west,
the crust is often thinner, with lower Pn velocities. The thin
crust and low Pn velocities beneath the Basin and Range pro-
vince may reflect hotter material near the surface, consistent
with active extension. As seen here and globally (Fig. 3.2-19),
mountain ranges often have thick crust. The thick crust is
thought to be due to isostasy, whereby the excess mass of the
mountains is at least partially compensated by a crustal root
with density less than that of the mantle.

The continental Moho can be modeled as a simple inter-
face for the wavelengths used in most refraction studies. How-
ever, seismic reflection studies, with shorter wavelengths,
sometimes show a laminated structure of high- and low-velocity
layers (Fig. 3.2-20). In other cases, however, the Moho is not
observed in reflection data. Some of these complexities may
reflect difficulties associated with seismic reflection studies in
laterally varying media (Section 3.3). Nonetheless, the Moho
appears to be a complicated transition zone 0–5 km wide, with
properties varying between locations (Fig. 3.2-21). Rather than
regarding the Moho as the base of a homogeneous crustal 4 Some relevant rock and mineral nomenclature is summarized in Section 3.2.5.

Fig. 3.2-17 Crustal velocity model and
inferred geologic structure for a cross-
section across the west coast of the USA.
“SAF” denotes the San Andreas fault.
Dashed lines indicate low-velocity zones.
(After Mooney and Weaver, 1989.
From Geophysical Framework of the
Continental United States, ed. L. C. Pakiser
and W. D. Mooney, with permission of
the publisher, the Geological Society of
America, Boulder, CO. © 1989 Geological
Society of America.)
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Fig. 3.2-18 Crustal thickness (depth to
Moho) (top) and Pn velocity (bottom)
maps for part of North America. Contour
intervals are 5 km and 0.1 km/s. (Braile et
al., 1989. From Geophysical Framework
of the Continental United States, ed.
L. C. Pakiser and W. D. Mooney, with
permission of the Geological Society of
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compositional boundary. Another candidate is eclogite, a rock
with the same bulk chemistry as gabbro, but denser mineral
phases. If the upper mantle were eclogite and the lower con-
tinental crust gabbroic, the continental Moho would be a phase
boundary. However, although eclogite and peridotite have
similar seismic velocities, peridotite seems a more likely com-
position for the upper mantle. One of the reasons is that
olivine, a major component of peridotite, yields anisotropic
seismic velocities due to its crystal structure. Such anisotropic

Pn velocities are observed in the oceanic upper mantle and in
some locations in the continental upper mantle (Section 3.6).

The status of the lower continental crust is more contro-
versial. A granulite model is popular, but gabbro cannot be
ruled out. Similarly, the origin of the laminated structure of the
Moho is still unclear. Possible explanations include meta-
morphosed sediments, cumulate layering, tectonic banding,
and lenses of partial melt. In any event, this structure seems to
be laterally variable.
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Fig. 3.2-20 Seismic reflection profile from
the Wichita Mountains of southeastern
Oklahoma. The “ringing” Moho reflections
at 14.5–15 s in the middle of the section
suggest that the Moho has a laminated
velocity structure over several km. (Hale
and Thompson, 1982. J. Geophys. Res.,
87, 4625–35, copyright by the American
Geophysical Union.)

Fig. 3.2-19 Global map of crustal
thickness. (Mooney et al., 1998.
J. Geophys. Res., 103, 727–47. Copyright
by the American Geophysical Union.)

3.2.5 Rocks and minerals

Interpreting seismological results for the crust and mantle
in terms of composition requires knowing something about
rocks and the minerals that compose them. Although these are
complicated subjects, we summarize a few essential terms.

For our discussions of crust and upper mantle structure,
the most important rocks are the igneous rocks formed by
cooling a molten magma. These rocks are classified primarily
by the weight percent of silica, SiO2. A common nomenclature
describes rocks as acidic or silicic for a weight percent of SiO2 >
66%, intermediate for 66–52%, basic or mafic for 52–45%,
and ultrabasic or ultramafic for < 45%.

Physical properties of rocks, such as density and seismic
velocity, depend on their mineral composition. Figure 3.2-23

summarizes the major minerals in various rocks at near-
surface temperatures and pressures. Because rock names refer
to a range of compositions, those shown are averages. Rocks
of the same composition have different names depending on
whether they form at the earth’s surface (extrusive rocks) or
below it (intrusive rocks). Hence an extrusive rock of gabbroic
composition is a basalt.

Several important silicate (SiO2-bearing) minerals are
mentioned in the figure. Quartz is pure SiO2. Olivine is a
solid solution, (Mg, Fe)2SiO4, whose composition varies from
pure Fe2SiO4 (fayalite) to pure Mg2SiO4 (forsterite). Due to
its crystal structure, olivine has anisotropic seismic velocities.
Pyroxene is a solid solution with end members MgSiO3
(enstatite), FeSiO3 (ferrosilite), CaMg(SiO3)2 (diopside), and
CaFe(SiO3)2 (hedenbergite), though only certain ranges of
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Fig. 3.2-21 Schematic model for the
continental Moho as a laminated structure.
Refraction studies using relatively longer
wavelengths would show clear PmP and
Pn arrivals, whereas reflection studies
using shorter wavelengths would show
reverberations. (Braile and Chiang, 1986.
Reflection Seismology, 257–72, copyright
by the American Geophysical Union.)
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Mg, or Fe, and B is typically any of Al, Fe, or Cr. Garnets are
comparatively dense, and thus significant for discussions of
phase changes.

The figure describes rocks in terms of their mineralogy
at surface conditions. With increasing pressure due to increas-
ing depth in the earth, minerals transform to denser phases.
Thus, for example, a gabbro containing plagioclase feldspar,
pyroxene, and olivine transforms to a chemically identical
eclogite rock containing quartz, pyroxene, and garnet. Hence

compositions exist in nature. Feldspar is a solid solution
with end members CaAl2Si2O8 (anorthite), NaAlSi3O8 (albite),
and KAlSi3O8 (sanidine, orthoclase, and microcline). The
Na- and Ca-rich feldspars are called the plagioclase feldspars.
A similar mineral group, the amphiboles, include
hornblende, NaCa2(Mg,Fe)4(Al,Fe)(Si3AlO11)2(OH)2. Biotite,
K(Mg,Fe)3Si3AlO10(OH)2, and muscovite, KAl2Si3AlO10(OH)2,
are in a group of minerals called micas. Garnets are minerals of
the form A3B2(SiO4)3, where A is usually one of the ions Ca,
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an argument against eclogite being a major component of the
upper mantle is that, by contrast with peridotite, it does not
contain olivine and would not yield the observed anisotropic Pn
velocities. However, the gabbro-to-eclogite transformation
may occur in subducting slabs (Section 5.4.2) and play a role in
causing earthquakes there.

3.3 Reflection seismology

In the last section, we concentrated on the use of refracted
arrivals to infer velocity structure with depth, and noted that
reflected arrivals also contain valuable information for this
purpose. Studies using the reflected arrivals, known as reflec-
tion seismology, determine velocities within the crust, and
thus are essential in oil and gas exploration. As a result, data
acquisition and processing methods have often been developed
first by reflection seismologists. For example, digital data were
generally used in exploration before they became common
in earthquake studies. Similarly, because reflection data are
densely sampled in space and time, and the mathematics of
wave propagation in a layered medium is simpler than for
a spherical earth, techniques are often first developed with
reflection data. In this section we survey basic concepts in
reflection seismology, some of which we later apply to earth-
quakes and the spherical earth.

3.3.1 Travel time curves for reflections

We first consider the simplest geometry: a flat layer of uniform-
velocity material underlain by a halfspace with a higher
velocity (Fig. 3.2-1). Although most applications use P waves,
we write the velocity as “v” because the results also apply to
S waves. For a layer of thickness h0 with velocity v0, we saw
in Section 3.2.2 that the travel time as a function of source-to-
receiver distance, known as offset in reflection seismology, is

T(x)2 = x2/v2
0 + 4h2

0/v2
0 = x2/v2

0 + t2
0. (1)

The travel time curve T(x) is a hyperbola (Fig. 3.3-1) that
intercepts the T axis at t0 = 2h0/v0, the travel time at zero
offset. This time is called the two-way vertical travel time,
because the corresponding ray traveled vertically down to
the reflector and back. Although this curve is the same as the
“reflected wave” curve in Fig. 3.2-2, the convention in reflec-
tion seismology is to plot time increasing downward,1 because
later arrivals reflect deeper in the earth.

The layer velocity is found from the slope of the hyperbola.
Because the slope decreases with increasing velocity, “flatter”
travel time curves indicate higher velocities. To see this, note
that a plot of T(x)2 versus x2 has slope 1/v2

0. Alternatively, the
variation in travel time with offset is often stated in terms of

1 Earthquake seismologists generally follow the opposite convention.
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Fig. 3.3-1 The travel time curve for a reflection off a flat interface is a
hyperbola, with the minimum at x = 0 corresponding to a vertical ray
path. The slope is zero at x = 0 and increases with the offset distance.

Fig. 3.3-2 Two rays showing the relationship between the angle of
incidence, ray parameter, and the slope of the travel time curve for a
flat medium.
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normal moveout (NMO), the difference between the travel
time at some offset and that at zero offset,

T(x) − t0 = (x2/v2
0 + t2

0)1/2 − t0. (2)

Once the velocity is found, the layer thickness is given by the
vertical travel time.

To see the relation between the travel time curve and ray
paths, consider the ray paths to two points dx apart, which dif-
fer in travel time by dT (Fig. 3.3-2). Because the ray paths differ
in length by vdT, the angle of incidence can be found using

  
sin   i

vdT

dx
= (3)

or, in terms of the ray parameter p (Section 2.5.7),

  
p

i

v

dT

dx
  

sin
  .= = (4)

This is consistent with our earlier definition of the ray para-
meter as the reciprocal of the apparent velocity along the
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allow us to compute the corresponding travel time curve T(x),
consider a single layer, where x0 (= x/2) is the horizontal dis-
tance along each of the downgoing and upgoing legs. In this
case, Eqn 8 becomes

T(x) = 2[(x/2)2 + h2
0]1/2/v0, (9)

because

cos i0 = h0(x2
0 + h2

0)−1/2. (10)

Hence Eqn 8 yields Eqn 9, which is equivalent to the relation
we derived earlier showing that the travel time curve for the
reflection is a hyperbola (Eqn 1).

For multiple layers, we approximate the travel time curve
for the reflection Rn+1 off the top of the (n + 1)th layer as a
hyperbola,

T(x)2
n+1 = x2/E2

n + t2
n, (11)

and find the two parameters, En and tn. tn is the total two-way
(up and down) vertical travel time at zero offset, which is twice
the sum of the one-way vertical travel times ∆tj for each layer

t t h vn j j j
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n

j

n

= =
==
∑∑  ( / ).2 2

00

∆ (12)

The velocity term, En, is a little trickier. From the geometry, the
distance traveled by the downgoing ray in layer j is

xj = vj∆Tj sin ij = (vj
2/v0)∆Tj sin (i0), (13)

where the last step used Snell’s law (Eqn 6). Hence, by Eqn 7,
the total distance, x, can be written
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v
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Because the ray parameter is constant along a ray, the slope of
the travel time curve is, by Eqn 4,

dT

dx
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v
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For the hyperbolic approximation (Eqn 11), the slope of the
travel time curve is

   

dT

dx

x

Tn

  ,=
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(16)
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Fig. 3.3-3 Ray geometry for a reflection in a flat-layered medium. Layer
thicknesses are hj, horizontal distances traveled in the layers are xj, and
one-way travel times spent in the layers are ∆Tj.
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surface of the wave front, which moves a distance dx in time
dT, because

p = 1/cx = 1/(dx/dT). (5)

Thus the ray parameter and the angle of incidence of the ray
emerging at a distance x can be found from dT/dx, the slope
of the travel time curve evaluated at x. From Eqn 2, the slope
is zero at x = 0 and then increases with offset; so the angle of
incidence is nearly zero (vertical incidence) at short distances
and becomes closer to 90° (horizontal) at larger distances
(Fig. 3.3-1).

This lets us find the travel time curve for reflections in a
geometry with multiple horizontal layers. Figure 3.3-3 shows
that the reflection Rn+1 from the top of the (n + 1)th layer (or the
bottom of the nth layer) has traveled through n layers, each
of thickness hj and velocity vj. Such rays, which have been
reflected only once, are known as primary reflections. Because,
by Snell’s law, the ray parameter p is constant along a ray, the
incidence angles ij in each layer can be found from the incidence
angle i0 in the top layer,
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.= = 0
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(6)

A downgoing ray, which travels a horizontal distance xj in the
j th layer, spends a time ∆Tj in the layer. Thus, in going down
and up again, the ray travels a total horizontal distance
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We explicitly write x(p) and T(p), because the two sums are
formulated in terms of the ray parameter. To see how they
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Because this was derived for an arbitrary incidence angle,
vertical incidence can be used for simplifications, so in each
layer the travel time equals the one-way vertical travel time,

∆Tj = ∆tj, and the total travel time is T = 2 ∑
=j

n

0
∆tj. Hence
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En, the appropriate average velocity for the travel time curve, is
the time-weighted root mean square, or rms, velocity for the
first n layers. This hyperbolic approximation and the exact
solutions agree well except for large offsets.

These results let us find the layer velocities from the travel
time curves. Given a reflection from the top of the nth layer,
with vertical two-way travel time tn−1 and rms velocity En−1,
and a reflection from the top of the (n + 1)th layer, with vertical
two-way travel time tn and rms velocity En , the velocity in the
nth layer is
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This relationship is called the Dix equation.2 The resulting
velocity, called an interval velocity, is better determined for
larger offsets, where the slope of the travel time curve is greater.
Because the later reflections have higher velocities, and hence
flatter travel time curves (Fig. 3.3-4), larger offsets are required
to determine velocities at greater depths.

Travel time calculations are more complicated for dipping
layers. Figure 3.3-5 shows the geometry for a reflector of dip θ,
whose depth along the perpendicular to the reflector below the
origin is h. The travel times can by derived using an imaginary
source on the line from the surface source normal to the reflec-
tor, at the same distance below the layer, so that travel times
from the imaginary source to the receivers are the same as from
the true source. Applying the law of cosines to triangle RIS
shows that

T2 = [x2 + 4h2 − 4hx cos (θ + π /2)]/v2
0

= [x2 + 4h2 + 4hx sin θ]/v2
0. (20)

This travel time curve is a hyperbola with minimum at
−2h sin θ, so it is not symmetric about x = 0. Reflections from
a stack of dipping layers yield travel time curves of approxi-
mately this form.

It is sometimes useful to think of the earth as having a
continuous distribution of velocity with depth, v(z), rather
than a stack of discrete layers, each with uniform velocity. The
expressions for the ray path and travel time of a ray with ray
parameter p for discrete layers can be generalized. The ray path
(Fig. 3.3-6) is given by Snell’s law, because the ray parameter,
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Fig. 3.3-4 Travel time curves for reflections (left) from a layered structure
(right) corresponding to continental crust. Reflections from deeper
interfaces are flatter, or have shallower slopes, due to the increase of
velocity with depth.
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Fig. 3.3-5 The travel time curve for a reflection off a dipping interface can
be derived using an imaginary source (I) at depth that gives the same travel
times. The resulting hyperbola has a minimum at a nonzero offset. S and
R denote the source and the receiver.

p = sin i /v(z), (21)

is constant along a ray. If velocity increases with depth, sin i
and thus i increase, so the ray bends away from the vertical on
its way down. Once i = 90°, the ray turns, becomes horizontal,
and then goes upward. At the deepest point, the turning, or
bottoming, depth zp, the velocity is the reciprocal of the
ray parameter, p = 1/v(zp). If on some portion of the ray path
the velocity decreases with depth, the ray bends toward the

2 Named after its discoverer, pioneering exploration seismologist C. Hewitt Dix
(1905–84).
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Fig. 3.3-6 Ray path in a medium with velocity increasing smoothly with
depth. The ray parameter is constant along the ray path, so the angle of
incidence changes as the velocity changes. The incidence angle is smallest
at the surface, where velocity is lowest, and is 90° at the bottoming
depth, zp.

3 It is somehow harder to think of a zone of high slowness than a low-velocity zone.

vertical. The ray does not turn upward until it gets below the
low-velocity region.

We thus replace the sums over layer thickness hj with
integrals over depth, such that the expression for the distance
traveled by the ray (Eqn 7) becomes
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because

sin i = pv(z) and cos i = (1 − sin2 i)1/2 = (1 − p2v2(z))1/2. (23)

This is sometimes written in terms of the slowness, the recipro-
cal of velocity, as

u(z) = 1/v(z), (24)

so that
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Similarly, the travel time sum (Eqn 8) becomes

      

T p
dz

v z i

dz

v z p v z

z zp p

( )   
( ) cos

   
( )(   ( ))

 
/

= =
−

2 2
1

0 0

2 2 1 2� �

      

=
−

  
( )

( ( )  )
.

/
2

0

2

2 2 1 2�
zp

u z dz

u z p
(26)

This integral is valid everywhere except at the exact bottom of
the curve, where u(z) equals p. A useful way to view this is to
note that the ray path (Fig. 3.3-6) can be written as an integral
over ds, where dz = cos i ds. The travel time is thus

   
T p

ds

v z
u z ds( )  

( )
  ( ) ,= =� � (27)

the integral of the slowness along the ray path. Slowness,
though less intuitive to use than velocity,3 can lead to simpler
formulations.

3.3.2 Intercept-slowness formulation for travel times

So far, we have given travel time curves as T(x), the travel
time as a function of distance. We now develop an alternative
formulation that offers interesting insights and is useful for
data analysis. To do so, we note that ∆Tj, the one-way travel
time in the j th layer with velocity vj, is related to the thickness,
hj, and the horizontal distance traveled, xj (Fig. 3.3-3), by

vj∆Tj = (x2
j  + h2

j )1/2. (28)

The incidence angle ij for this ray satisfies
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We rewrite Eqn 28 as
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where

pj = (sin ij)/vj = sin ijuj and ηj = (cos ij)/vj = cos ijuj. (32)

Thus in layer j we have entities introduced in Section 2.5.7:
pj is the ray parameter, or horizontal slowness, and η j is the
vertical slowness. These are the components of the slowness
vector that has magnitude equal to the slowness, and points
in the direction of wave propagation. Hence uj, the slowness in
the layer, is

uj
2 = 1/vj

2 = pj
2 + η j

2. (33)

By Eqn 31, the travel time a ray spends in a layer is the sum of
the horizontal slowness times the horizontal distance traveled
and the vertical slowness times the vertical thickness. The total
travel time is the sum over all layers, with a factor of two to
account for both downgoing and upgoing legs,
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τ(p) = T(p) − px(p), (38)

and differentiate
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Thus, just as p is the slope of the travel time curve, T(x), the
distance, x, is minus the slope of the τ(p) curve.

To illustrate these ideas, we show that the τ(p) formulation
gives the travel time curve for the reflected wave in a layer over
a halfspace. Figure 3.3-3 shows that x0 = x/2, so, using Eqn 32,
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Hence, by Eqns 36 and 37, the travel time curve is
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which is the familiar hyperbola (Eqn 9).
To see how this travel time curve appears when written as

τ(p), we write Eqn 37 for a layer over a halfspace:

τ(p) = 2(1/v2
0 − p2)1/2h0. (42)

This can also be written as

(v2
0τ2)/(4h2

0) + v2
0 p2 = 1, (43)

which is an ellipse whose axes are the τ and p axes (Fig. 3.3-8).
It intersects the τ axis at (τ = t0 = 2h0/v0, p = 0), and the p axis at
(τ = 0, p = 1/v0). Both these points have significance. The first,
where the travel time curve has zero slope and the time axis
intercept is the vertical two-way travel time, corresponds to
the zero-offset point x = 0.

The second, where the travel time curve has slope 1/v0 and
time axis intercept 0, is the τ(p) position of the linear travel
time curve for the direct wave. Hence the line for the direct
wave maps to a point in the τ(p) plane that is on the ellipse
describing the reflected wave. To understand why this occurs,
we use the fact that distance is minus the derivative of the τ(p)
curve (Eqn 39) and differentiate Eqn 42, giving

x(p) = −dτ /dp = 2ph0(1/v2
0 − p2)−1/2, (44)

so at the point p = 1/v0, x = ∞. This makes sense, because as
x → ∞, the reflected wave is asymptotic to the direct wave
(Fig. 3.2-2).

The head wave is easily mapped into the τ (p) plane, because
its travel time curve (Eqn 3.2.8) is
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By Snell’s law, the horizontal ray parameter is constant along
the ray path, so pj = p, and
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where x = 2 ∑
=j

n

0
xj is the total horizontal distance traveled. This

formulation is equivalent to the way we formulated the travel
time as the scalar product of the distance and slowness vectors
(Eqn 2.5.34).

Formulating the travel time curve in this way gives interest-
ing insight. We define

T(x) = px + τ(p), (36)

where the function

τ η( ) ( /  ) (  ) ./ /p h v p h u p hj j
j

n

j j
j

n

j j
j

n

= = − = −
= = =
∑ ∑ ∑2 2 1 2

0

2 2 1 2

0

2 2 1 2

0

(37)

Because p is the slope of the travel time curve (dT/dx) and hence
of a line tangential to it at the point (T, x), τ is the intercept
of the tangent line with the time axis (Fig. 3.3-7). In general τ
and p differ for different points on the travel time curve, so the
travel time curve can be described by the values of either (T, x)
or (τ, p). Thus the function τ(p) is called the intercept-slowness
representation of the travel time curve. Although less intuitive,
the τ(p) formulation is equivalent to T(x).

Given that the slope of the travel time curve T(x) has special
significance, it is natural to investigate the slope of the function
τ(p). To do this, we write Eqn 36 with the ray parameter, rather
than the distance, as the independent variable,

Fig. 3.3-7 Relation between the travel time curve T(x) and the line
tangential to a point on it, which has a slope, or slowness, p and
a time axis intercept τ.
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a line with slope equal to the reciprocal of the halfspace
velocity, p = 1/v1, and intercept τ1. Thus the head wave maps
into a point on the ellipse describing the reflected wave, corres-
ponding to the critical distance xc where the head and reflected
waves are the same. To see this, note that for p = 1/v1, Eqn 44
gives

x(p) = −dτ/dp = 2h0v0(v2
1 − v2

0)−1/2 = xc. (46)

This point divides the ellipse describing the reflected wave into
a subcritical portion, between the τ axis and the head wave,
and a postcritical portion, between the head wave and the p
axis. We will see shortly that the fact that different arrivals
have distinct locations in the τ(p) plane provides the basis for
techniques that can separate these arrivals.

This analysis can be extended to more complex geometries.
For multiple layers, the τ(p) curves corresponding to reflec-
tions off successive layers are all portions of different ellipses
(Fig. 3.3-9). For a continuous velocity distribution, the summa-
tion for τ (Eqn 37) becomes an integral

Tau Travel
time

Ray
parameter

Head

Direct

Layer over a halfspace

Reflected

Head

Reflected

Direct

τ = 2h0/v0
p = 0

p = 1/v0
τ = 0

Ray parameter

Reflected

Direct p = 1/v0

Head p = 1/v1

Distance

xc

Fig. 3.3-8 Travel time curves T(x) for a layer over a
halfspace and their representation in the (τ, p) plane.
Each point on the T(x) curves has a slope (ray parameter)
p and intercept τ. The linear travel time curves for the
direct and head waves each map into a point (square and
circle) in the (τ, p) plane. The hyperbolic travel time curve
for the reflection maps into an ellipse in the (τ, p) plane.
Note how an arbitrary point on the reflection’s travel
time curve, marked by the diamond, maps into the other
two curves.

Fig. 3.3-9 Relation between the travel time curve T(x) and the
function τ(p) for multiple layers over a halfspace. D denotes the
direct wave; Ri and Hi are reflections and head waves at the top
of the ith layer; xc is the critical distance for H1. (After Diebold
and Stoffa, 1981. Reproduced by permission of the Society of
Exploration Geophysicists.)



140 Seismology and Earth Structure

CSP
gather

10

20

Offset
f = s − r

105 15 20

Receiver
r

0

5

10

15

20

10

5

15

20

Midpoint
m = (s + r)/2

Source
s

CMP gather

Horizontal
interface

D
ep

th

m srx = 0
x

r f

s

m

Offset = 2

x = 0 5 10

r = 7 s = 9

Offset = 4

r = 6 s = 10

Offset = 6

r = 5 s = 11

Offset = 8

r = 4 s = 12

Fig. 3.3-10 Schematic geometry of a multichannel seismic reflection
survey with a single source (star) and eight receivers (dots) moving along
a survey line. Each physical experiment produces eight seismograms
corresponding to ray paths (dashed lines) with a single source location
and a range of receiver locations. Four seismograms from different source
and receiver positions, corresponding to the ray paths shown by solid
lines, sample the same point at depth on a flat reflector. These have the
same midpoint halfway between source and receiver, but different
source-to-receiver offsets.
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Formulating travel time curves as τ(p) is useful for some tech-
niques that invert for velocity structure.

3.3.3 Multichannel data geometry

A feature of reflection seismology is multichannel geometry,
the use of multiple source and receiver locations, so that points
on reflecting interfaces are sampled repeatedly. Figure 3.3-10
illustrates how such coverage is accomplished by combining
experiments performed with a seismic source and an array of
eight receivers at fixed distances from the source. Each time the
source is activated, eight seismograms, or traces, are recorded.

Fig. 3.3-12 An individual trace is characterized by its position in a
two-dimensional diagram showing its source, receiver, midpoint, and
offset coordinates. Dots show the traces indicated in Fig. 3.3-10. Physical
experiments correspond to a common source point (CSP) gather; the four
traces in Fig. 3.3-10 with the same midpoint form the common midpoint
(CMP) gather shown.

Fig. 3.3-11 Relation between source, receiver, midpoint, and offset
coordinates measured along the survey line. Any two specify an
individual seismogram.

The source and the receivers are then moved, and the experi-
ment is repeated, giving eight more traces. Eventually each
point on the reflector is sampled four times, producing “four-
fold coverage.”

We assume initially that the velocity structure is layered and
varies only with depth. Even so, the four seismograms that
sample the same point are not identical, because they corre-
spond to different source and receiver positions, and thus differ-
ent offset distances between the source and the receiver. Hence
each trace is a record of displacement, or pressure, as a function
of time, t, u(s, r, t), characterized by the source and receiver
positions.
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Fig. 3.3-13 Schematic of the four different
gather types.
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Common receiver gather
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Common offset gather
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Common midpoint gather

r1 r1

4 In the previous section we focused on direct and head waves, illustrating the adage
that “one person’s signal is another’s noise.”

can simulate a reversed profile (Section 3.2.2) because, by
reciprocity, it gives the same data as a common source point
gather shot in the opposite direction.

Later in this section, we will discuss a few aspects of the
data collection process. The sources can be explosives, sound
sources in water, or vibration sources on land. The source co-
ordinate is thus sometimes referred to as a source point, shot
point, or vibration point. The receivers are typically single-
component vertical seismometers, known as geophones, for
land applications, and pressure transducers, or hydrophones,
for marine surveys. The receiver coordinate is thus often
termed the geophone coordinate. Generally large numbers of
receivers, which are themselves groups of receivers, are used.
Increasingly, data are collected over two-dimensional areas, and
so are processed to yield three-dimensional velocity structures.

3.3.4 Common midpoint stacking

Because the traces in a CMP gather have ideally sampled the
same subsurface point with different offsets, they can be com-
bined to enhance reflected arrivals. The process begins with a
set of traces showing the data as a function of offset and time.
The data contain “signals” of interest, primary reflections from
interfaces that are used to determine velocity structure with
depth. The data also contain “noise,” arrivals of no interest, in-
cluding direct waves, head waves,4 surface waves (sometimes
termed “ground roll”), and waves from the source that travel in
the air. The data may also contain arrivals (Fig. 3.3-14) that
have been reflected more than once, which are known as mul-
tiples, by contrast with the once-reflected primary reflections.

To enhance primary reflections and suppress everything
else, we exploit the fact that the arrival times of various signals

The data are analyzed by grouping the seismograms that
sampled the same point on the reflector. In this flat-layered
geometry, these seismograms have the same point, known as
the midpoint, halfway between the source and the receiver. For
each midpoint, there is a set of traces with different offsets. The
midpoint m and offset f are defined in terms of the source loca-
tion s and the receiver position r as

m = (s + r)/2, f = (s − r). (48)

Thus an individual seismogram is specified by either the source
and receiver positions, or the midpoint and offset (Fig. 3.3-11).
These are plotted using two perpendicular axes (Fig. 3.3-12),
one for the source location and one for the receiver position.
The midpoint and offset for each seismogram are indicated by
distance along axes 45° from the s and r axes. Note that the
scales on these axes differ from the other two.

To illustrate this relationship, consider the four experiments
in Fig. 3.3-10, with eight receivers and a single source. Each
experiment produced data at points, shown by dots, with
constant source position and successive receiver positions.
Successive experiments yielded data along a similar horizontal
line, but displaced by the motion of the source and the receiver.

The data can be sorted and combined in various ways that
need not correspond to an actual experiment (Fig. 3.3-13).
Each experiment corresponds to a set of records with the same
source position, a common source point, or CSP, gather. Traces
with the same midpoint and different offsets can be grouped
in a common midpoint, or CMP, gather. Similarly, common
receiver point and common offset gathers can be formed.

Ordering traces by midpoint and offset makes no distinction
between a source at position a and a receiver at position b,
or the reverse. This assumption is justified by the principle of
reciprocity, by which these two geometrices should produce
identical seismograms. Thus a common receiver point gather
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Fig. 3.3-14 Geometry of various multiple reflections. (After Kearey and
Brooks, 1984.)
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Fig. 3.3-15 Schematic example of the normal moveout correction,
shown for the three arrivals for a single layer. NMO aligns all traces
(lower panel) in a common midpoint gather by a time shift corresponding
to the hyperbolic travel time curve of a reflection. The desired reflection
is thus in phase between traces, whereas other arrivals are out of phase.
CMP stacking, which adds the traces after this time shift, enhances the
desired reflection and suppresses other arrivals.

that was aligned is in phase on all traces, and thus sums con-
structively and gives a strong arrival. By contrast, other arrivals
will have been shifted such that they are sometimes out of
phase, and thus sum destructively, yielding weaker arrivals.
The process of time shifting and then summing the traces with
different offsets for a given midpoint is called common mid-
point (CMP) stacking.
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Fig. 3.3-16 Schematic of CMP stacking and velocity
analysis. Left: Stacking is done for a range of stacking
velocities, each corresponding to a different hyperbola
in offset–time space. Right: The peak in the velocity
spectrum, or power in the resulting stack, shows the
best stacking velocity. (After Taner and Kohler, 1969.
Reproduced by permission of the Society of Exploration
Geophysicists.)

vary in different ways between traces as a function of offset
(Fig. 3.3-15). Reflections have hyperbolic travel time curves,
whereas direct waves, head waves, surface waves, and air
waves have linear travel time curves. Other noise may be
essentially incoherent between traces.

Consider a reflection whose variation in travel time with
offset is the normal moveout (NMO),

T(x) − t0 = (x2/E2 + t2
0]1/2 − t0, (49)

where t0 and E are the vertical two-way time and rms velocity.
If each trace is shifted forward in time by the appropriate
NMO, this reflection appears at the same time for all offsets
(Fig. 3.3-15). By contrast, arrivals with different moveouts,
such as the direct wave, do not align. Similarly, multiple
reflections do not align, because they reflected off shallower
interfaces than primary reflections with a similar arrival time,
and thus have a lower rms velocity. This method is similar to
forming reduced travel time plots (Section 3.2), where a linear
time shift lines up direct or head waves whose linear travel time
curve has apparent velocity equal to the reducing velocity. In
this case, the hyperbolic time shift lines up reflections with
hyperbolic travel time curves.

If the traces are added after this time shift, the resulting sum,
in theory, is the single trace that would have been recorded at
zero offset, with coincident source and receiver. The reflection
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Fig. 3.3-17 Example of CMP stacking and velocity analysis. Velocity analysis at different times yields the best stacking velocity as a function of time
(bottom). The stacking velocity increases with time because later arrivals reflected off deeper interfaces. (After Taner and Kohler, 1969. Reproduced by
permission of the Society of Exploration Geophysicists.)
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Real data contain more than one reflection, and the appro-
priate velocities are unknown. Thus the velocities are found by
stacking with a range of velocities and determining which gives
the best results. As illustrated in Fig. 3.3-16, traces are stacked
along hyperbolas corresponding to different velocities. The
stack output as a function of stacking velocity, known as a
velocity spectrum, has peak amplitude at the velocity that best
aligns arrivals on the different traces. This stacking velocity is
close to the rms velocity if the data are reasonably good and the
structure is approximately a set of flat layers.

Because later reflections have higher rms velocities, they
yield higher stacking velocities. Thus velocity analysis is con-
ducted as a function of time. In Fig. 3.3-17, the best stacking

velocity, indicated by the maximum in the velocity spectrum,
increases with time for deeper arrivals. This increase “tunes”
the stacking to bring arrivals with various stacking velocities
“into focus.” Peaks in the power of the velocity spectrum show
the arrival of strong coherent reflections. At later times there
are several peaks, as multiples arrive. Using the stacking veloci-
ties, interval velocities for different depths are found from the
Dix equation.

Figure 3.3-18 illustrates the CMP concept geometrically.
The traces give displacement or pressure as a function of mid-
point, offset, and time, u(m, f, t). CMP gathers can be thought
of as planes parallel to the offset and time axes, each with the
appropriate midpoint. Each gather is stacked over all offsets

Fig. 3.3-18 Schematic geometry illustrating
formation of a zero-offset section by
common midpoint stacking. Each CMP
gather is stacked over all offsets, as shown
by the dashed lines like B–B′, to produce a
single zero-offset trace for that midpoint.
Taken together, these traces form a zero-
offset section, a plane in midpoint–time
space, containing arrivals like that shown
by the solid curve A–F. (After Robinson,
1983. Migration of Geophysical Data,
© 1983, p. 24. Reprinted by permission
of Pearson Education.)
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Fig. 3.3-19 Top: Traces with a common midpoint sample the same point
on a reflector when a reflector and the structure above it are horizontal.
Bottom: If the structure dips, traces with a common midpoint do not
reflect at the same point. (After Kearey and Brooks, 1984.)

to produce a zero-offset trace for that midpoint. These traces
together form a zero-offset seismic section, u(m, 0, t), a func-
tion of midpoint and time. This section simulates moving along
the survey line with a single source and receiver at the same
location, and recording arrivals from below as a function of
time. Because this process reduces the volume of data dramatic-
ally, there is a tendency to conduct processing operations after,
rather than before, stacking when possible.

Often a CMP stack is referred to as a CDP, or common depth
point, stack. CMP is a better term, because traces with the same
midpoint have the same reflection point at depth only when a
reflector and the structure above it are flat-lying (Fig. 3.3-19).
This effect is generally small enough that CMP stacking is
useful. We will discuss shortly the limitations on reflection
studies due to deviations from the ideal flat geometry.

A seismic section is in some ways similar to a “picture” of the
subsurface. Major arrivals in the data generally represent sig-
nificant reflectors at depth, and can be correlated with geologic
structure. As a result, analysis of seismic reflection data is a
powerful geological tool. For example, Fig. 3.3-20 (top) shows
a seismic section across the Peru trench. Data of one polarity
are black, making coherent reflectors more visible. The inter-
pretation (bottom) indicates the top of the crust of the sub-
ducting Nazca plate, including small grabens, and complex
structures in the overlying accretionary prism.
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Fig. 3.3-20 Migrated seismic section across the Peru trench, showing the subducting Nazca plate dipping to the right. The data were collected with air gun
sources shot at 35 m intervals and recorded by a 1600 m-long array with 24 hydrophone groups. The data were sampled every 4 milliseconds. (After Von
Huene et al., 1985. J. Geophys. Res., 90, 5429–42, copyright by the American Geophysical Union.)
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Fig. 3.3-21 Reflection data (left), showing muting (right) to eliminate the head waves that arrive first and the large surface waves that arrive
later. (After Claerbout, 1985.)

3.3.5 Signal enhancement

The best hope of reducing artifacts in a seismic section due to
noise and other difficulties is to exclude them before stacking.
Thus, as in many signal processing applications, the idea is to
identify characteristics of the “noise” we seek to reject, and use
those characteristics to exclude it.

For example, variations in the thickness of a near-surface
low-velocity layer due to weathering produce arrival time
variations. Similar variations can result from sea floor topo-
graphy, because the water is a low-velocity material of varying
thickness, or from elevation changes along a land survey. These
shifts can cause the travel time of reflections to deviate from the
hyperbolic moveout with offset assumed in stacking, and hence
degrade a stacked section and produce spurious relief on a
deeper reflector. To minimize these problems, a static time cor-
rection, shifting traces back or forward in time, can be applied.

Direct waves, head waves, surface waves, air waves, and the
like are often identifiable on CSP gathers from their arrival
times and linear travel time curves. Data corresponding to the
time–distance ranges in which the undesired arrivals appear
can be set equal to zero, or muted before the gathers are stacked
(Fig. 3.3-21).

Another approach to isolating reflections uses the fact that
the apparent velocity along the surface,

cx = 1/p = v/sin i = ω/kx, (50)

is higher for reflections, which have angles of incidence close
to the vertical, than for surface or air waves. Hence the reflec-
tions have a longer apparent wavelength along the surface,
λx = 2πcx/ω. Thus the effects of surface waves can be reduced by
summing a group of receivers to produce a single trace. Arrivals

with wavelengths shorter than the length of the group interfere
destructively and are reduced in amplitude, enhancing the
longer-wavelength reflections. Hence traces from a single
source–receiver pair are often actually a sum of a number of
geophones or hydrophones. In this way, the data collection pro-
cess, rather than subsequent analysis, enhances the reflections.

Differences in the apparent velocity can also be used to en-
hance reflections after the data are collected. In this approach,
arrivals with different apparent velocities on common source
gathers are separated by velocity filtering, using a double
Fourier transform. As we saw in Section 2.8.2, and discuss fur-
ther is Chapter 6, the Fourier transform and inverse transform
relate a function of time f(t) and its transform F(ω), a function
of angular frequency,

   

F f t e dti t( )  ( )ω ω=

−∞

∞

−�
      

f t F e di t( )   ( )=

−∞

∞

1

2π
ω ωω� . (51)

Similarly, because the wavenumber is the spatial frequency
(Section 2.2.2), it is related to the distance in the same way
that angular frequency is related to time. Hence, a function of
the horizontal distance g(x) and its corresponding function
of horizontal wavenumber G(kx) are related by the Fourier
transform pair

G(kx) =  �
−∞

∞

g(x)eikxxdx g(x) = 
1

2π
 �
−∞

∞

G(kx)e−ikxxdkx. (52)

By convention, opposite signs are used in the exponentials for
the time and space transforms.
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Fig. 3.3-22 Velocity filtering by Fourier
transformation into the horizontal
wavenumber and frequency domain.
Top: Positions of reflected waves, noise,
air waves, and surface waves in the (kx, f )
plane. Slopes correspond to lines of
equal apparent velocity (in ft/s). (After
Kanasewich, 1981.) Bottom: Common
source gather before and after velocity
filtering. Surface waves have been
suppressed by removing low apparent
velocity data, thus enhancing reflections.
(Hosking Geophysical.)

A gather u(x, t) is the displacement as a function of hor-
izontal distance and time, so the double Fourier transform,

U(kx, ω) = 

    

  � �
−∞

∞

−∞

∞

u(x, t) exp [i(−ωt + kxx)]dxdt, (53)

converts it to the horizontal wavenumber and angular fre-
quency domains. Plotting the transform as a function of kx
and ω (or, equivalently, kx and frequency f ) separates the data
into portions of different apparent velocity, because a given
velocity, cx = ω/kx, plots as a straight line (Fig. 3.3-22). It is
thus possible to suppress arrivals with a given range of appar-
ent velocities by setting the data in some region of (kx, ω) space

to zero, and inverse transforming the data back to (x, t) space,
using the inverse of the double Fourier transform

u(x, t) = 
  

1

4 2π
    

  � �
−∞

∞

−∞

∞

U(kx, ω) exp [i(ωt − kxx)]dkxdω. (54)

Rather than having an abrupt boundary, the data at the edges
of the portion of the (kx, ω) space of interest are tapered
smoothly to zero for reasons discussed in Chapter 6.

Thus the double Fourier transform converts data contain-
ing arrivals that overlap in the (x, t) domain into the (kx, ω)
domain, where the arrivals have distinct properties that make
it easy to separate them. This separation is exploited to filter
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5 Claerbout (1985).

the data, which are then transformed back to (x, t). Velocity
filters are also called dip filters, because they separate arrivals
based on their slope (dip) in the (kx, ω) domain. A variant
of this method for data recorded in two spatial dimensions,
u(x, y, t), is to take the triple Fourier transform U(kx, ky, ω).
Because the transform is in terms of both components of the
horizontal wave vector, it can be filtered to suppress arrivals
coming from certain directions.

Another approach to transforming data such that compon-
ents are more easily separated uses the intercept-slowness
formulation of travel time curves. As discussed in Section 3.3.2,
the function τ(p) describes each point on a travel time curve
T(x) by the time axis intercept τ and the slope p of the line
tangential to the curve at that point. Thus seismic data can be
described as functions either of position and time, u(x, t), or of
slope and intercept, I(τ, p). To transform from one representa-
tion to the other, the data u(x, t) are summed along lines of
constant slope in the (x, t) plane, which correspond to values of
intercept τ  and slope p (Fig. 3.3-23),

I(τ, p) =  �
−∞

∞

u(x, τ + px)dx. (55)

This integral, which maps all the data along each slanted line in
(x, t) to a point in (τ, p), is called a slant stack, or Radon trans-
form of the data. It is also called a plane wave decom-
position, because it decomposes the data according to p,
the reciprocal of the apparent velocity of a plane wave. The in-
verse slant stack operation that transforms the slant stack back
into the (x, t) space can be written5

u(x, t) = 1/t2
* 

1

2π
    

 �
−∞

∞

I(t − px, p)dp, (56)

where “*” is the convolution operation, discussed shortly. This
expression is similar to a slant stack in the (τ, p) plane, because
data are summed along a line of constant τ.

All the data are mapped from one domain into the other,
so no data are lost by this transformation. Thus, after slant
stacking, we can use the fact that the τ(p) representation of
the travel time curve is in some ways simpler than the T(x)
representation. Because different arrivals fall in different parts
of the (τ, p) plane (Fig. 3.3-8), undesired arrivals can be sup-
pressed by zeroing portions of the data. For example, the
gather in Fig. 3.3-24 shows a strong surface wave, the late-
arriving linear arrival with an apparent velocity of about
1.35 km/s and intercept about 0. In the usual (x, t) space,
it would be hard to filter out this arrival without suppressing
the reflections. After slant stacking, this arrival shows up as a
region of large amplitude with τ ≈ 0 and p = 1/1350 s/m ≈
740 µs/m. Once the slant stack is filtered by eliminating all
data with p > 650 µs/m and inverse transformed, the surface
wave is significantly reduced. In practice, rather than having
an abrupt boundary, the data at the edges of the portion of the
(τ, p) space of interest are tapered smoothly to zero for reasons
discussed in Chapter 6.

The slant stack and velocity filtering with the double Fourier
transform are related, because both exploit properties of the
data associated with the apparent velocity. As a result, slant
stacking can be done by transforming data to the (kx, ω)
domain, evaluating the transform for constant values of the ray
parameter, and then inverse transforming to the time domain.

Fig. 3.3-23 Schematic illustration of slant
stacking: data are summed along lines in the
(x, t) plane (left) corresponding to values of
intercept τ and slope p, and so yield points
in the (τ, p) plane (right).
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Fig. 3.3-24 Left: Common source point gather of Vibroseis data from Alaska, showing prominent late-arriving surface waves with an apparent velocity of
about 1.35 km/s and intercept about 0. Center: Slant stack of the data. The p axis is labeled both with values of p (µs/m) and apparent velocity (km/s). The
surface waves appear as a region of large amplitude with τ ≈ 0 and p ≈ 740 µs/m. Right: The inverse slant stack, after suppression of data with p > 650 µs/m,
shows the surface wave significantly reduced. (Tatham, 1989. With kind permission from Kluwer Academic Publishers.)

Variable
chamber

size

Air

0

Seven-gun array (1222 in3 total volume)

Single 270 in3 air gun

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 s

Fig. 3.3-25 Left: Schematic of an air gun, a
common marine seismic source. (Fig. 3.18
in Kearey and Brooks, 1984, redrawn with
permission of Bolt Associates and Sodera
Ltd.) Right: Source wavelets (pressure
versus time) for a single air gun and an
array of air guns. The array reduces the
bubble pulse and makes the wavelet
more impulsive, though it still contains
additional unwanted complexity. (Fig. 3.19
in Kearey and Brooks, 1984. Redrawn with
permission of Bolt Associates.)

mined precisely. The sharpness of the reflected pulse determines
vertical resolution: how close in travel time, and thus depth,
two interfaces can be and still give distinct reflected arrivals.

Seismic sources do not generate delta function signals. Fig-
ure 3.3-25 shows the signal produced by an air gun, a common
source used in marine surveys. The damped oscillation results

3.3.6 Deconvolution

Another useful technique, deconvolution, “sharpens” the
reflections from interfaces. Ideally, each reflection would be a
sharp pulse approximating a delta function, so the arrival time
of the reflection and the depth of the reflector would be deter-
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6  Vibroseis is a trademark of the Continental Oil Company. The first such continu-
ously operating variable frequency seismic source was invented by Selwyn Sacks in his
Ph.D. thesis in 1961.

from expansion and contraction of the air bubble that the gun
injects into the water. The signal can be sharpened using mul-
tiple air guns offset in time, which interfere to give a sharper
pulse. Figure 3.3-26 shows the “sweep” signal generated by a
Vibroseis6 unit, a truck-mounted seismic source used in land
surveys. The signal extends for a period of time T (typically 7–
35 s) over which the frequency varies through a range f1–f2,
generally within 10–60 Hz. Such signals, also called “chirps,”
can be written

    
w t f t

f f

T
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21
2 1 2π (57)

Because the duration of the sweep is often longer than the differ-
ence in travel time between interfaces, the resulting seismogram
is a complicated combination of sweep signals with different
amplitudes and time delays reflected from different interfaces.

Thus reflection data, like any other seismograms, include the
effects of both the source and the structure. Separating these
effects is a basic theme in seismology, because we are usually
interested in either the source (as for earthquakes) or the struc-
ture, as in this application. To separate source and structure,
we describe a seismogram, s(t), as resulting from the source
pulse, known in reflection applications as a wavelet, w(t), and
a time series that describes the effects of the structure, in this
case a reflector series, r(t).

To find the reflector series, we recall from Section 2.6.7 that
a wave with initial unit amplitude acquires an amplitude equal
to the product of the reflection and transmission coefficients
along its path. Thus, for a set of layers with velocity vj and
thickness hj, the amplitude of the primary reflection from the
bottom of the i th layer is the product of the reflection coefficient
at the base of the layer times all the transmission coefficients for
both the up and down parts of the path,
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Fig. 3.3-26 Schematic geometry of a Vibroseis survey (top) and sweep signal (center). The field records (bottom) contain interfering reflections off various
interfaces, and so require processing to identify individual reflections. (With permission of Conoco.)
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because the Fourier transform of a convolution equals the
product of the Fourier transforms,

S(ω) = W(ω)R(ω). (63)

As shown schematically in Fig. 3.3-28, the convolution yields a
trace in which the source wavelet appears at times corres-
ponding to the spikes in the reflector series, with the appropri-
ate amplitudes. If the time between the spikes corresponding to
individual reflectors is shorter than the duration of the wavelet,
interference can give a complicated signal.

These expressions show why it would be desirable to have a
delta function source wavelet, because the Fourier transform of
a delta function is simply 1. Thus, if w(t) = δ(t), the seismogram
would equal the reflector series. Although a physical source
wavelet is not a delta function, the seismograms can be manip-
ulated mathematically to simulate such a wavelet. This can be
done by creating an inverse filter7 w−1(t), that, when convolved
with the wavelet, yields a delta function

w−1(t) * w(t) = δ(t). (64)

Applying this filter, which “spikes” the wavelet, leaves only the
reflector series

w−1(t) * s(t) = w−1(t) * w(t) * r(t) = r(t). (65)
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Fig. 3.3-27 Schematic of a ray path through several interfaces,
showing how the amplitude depends on the product of the reflection
and transmission coefficients along the path.

Fig. 3.3-28 A reflection seismogram can be viewed as the convolution
of a source wavelet with a reflector series representing the structure.
The reflector series has impulses at times corresponding to the arrival
times of reflections with amplitudes given by the reflection coefficients.
Deconvolution attempts to “spike” the wavelets in the data, revealing
the reflector series. (After Kearey and Brooks, 1984.)

7 The notation w−1(t) does not mean 1/w(t).

where Π denotes the product of the indicated terms. For
example, the reflection off the base of the second layer
has amplitude R23T01T10T12T21

 = T01T12R23T21T10, where
the second form shows the order of interactions along the
path (Fig. 3.3-27). In dealing with reflection data, the vertical
incidence reflection and transmission coefficients are generally
suitable approximations. Hence, the reflection and transmis-
sion coefficients are given by the densities and velocities at each
interface
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and the reflection arrives at a two-way travel time of

    

t
h

vi
j

jj

i

=
=
∑ ,2

0

(60)

which is the sum of the vertical travel times in each of the
layers. Thus the reflector series for primary reflections off a set
of N layers is a sum of impulses, each corresponding to the
reflection from the bottom of the i th layer,
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δ(t − ti) is the delta function, a spike in time that is zero at all
times except ti, when it equals 1. The reflector series is thus a set
of spikes with the appropriate amplitude and arrival time, each
corresponding to a specific reflection.

We will see in Chapter 6 that the resulting seismogram is
given by an operation known as the convolution of w(t) and
r(t), which is written

s(t) = w(t) * r(t) ≡ 

  
�
−∞

∞

w(t − τ)r(τ)dτ. (62)

This equation defines convolution in the time domain. Con-
volution can also be described in the frequency domain,



This works well except at frequencies where the source wave-
let’s spectrum is small. Deconvolution makes the arrivals from
reflectors stand out more distinctly (Fig. 3.3-29) and easier to
interpret.

An alternative, but similar, approach is used with Vibroseis
data for which the wavelet is very long. The goal is to identify
times in the trace when the sweep signal arrives. Similarities
between two time series f(t) and g(t) are shown by their cross-
correlation, an operation (Section 6.3.4) defined by
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The cross-correlation is largest as a function of L, the lag time,
when the series are most similar. For finite time series, the
integration is over the times when f and g are nonzero. A special
case is the auto-correlation, the cross-correlation of a function
with itself
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which is always maximum at zero lag. The auto-correlation of
a Vibroseis sweep, called a Klauder wavelet, is sharply peaked
at zero lag (Fig. 3.3-30). Thus cross-correlating a sweep with
the recorded trace is similar to using a spiking filter, because it
produces sharp spikes when reflections arrive (Fig. 3.3-31).
This similarity is not surprising, because cross-correlation
and convolution are similar operations (compare Eqns 62
and 68).

Reflections can also be enhanced by filtering in the frequency
domain to enhance certain frequency ranges and reject others.
The frequency response of geophones varies, but the records
may contain frequencies as low as a few Hz and in excess of
100 Hz. As a result, the signal-to-noise ratio can vary signific-
antly as a function of frequency, so filtering often improves
reflection quality. The appropriate frequencies may change
with time in the record. For example, the later-arriving reflec-
tions have longer periods because high-frequency energy is lost
to attenuation, the process by which seismic energy is converted
to heat (Section 3.7).
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Fig. 3.3-29 Top: Seismic section before deconvolution. Bottom: Seismic
section after deconvolution, showing sharper arrivals for the major
reflections. (Yilmaz, 1987. Reproduced by permission of the Society of
Exploration Geophysicists.)

Fig. 3.3-30 The auto-correlation of a Vibroseis sweep signal is an impulsive Klauder wavelet.
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Because this operation is the inverse of convolution, it is called
deconvolution.

To create the inverse filter, note that the Fourier transform of
the convolution (Eqn 64) yields

W−1(ω)W(ω) = 1, (66)

so the transform of the inverse filter is just 1/W(ω). Hence
deconvolution can be done by dividing the Fourier transforms

S(ω)/W(ω) = R(ω). (67)
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For more complex structures, things get trickier. If interfaces
are not horizontal, although the ray paths are the same up and
down and intersect the interface at right angles, the path need
not be vertical (Fig. 3.3-32, center). Moreover, there are several
paths from a single source–receiver pair to a reflector. The rela-
tion between the zero-offset time section and the structure is
thus more complicated.

To deal with these questions, we consider the wave field u(x,
z, t) , the displacement as a function of position and time during
a seismic experiment. The traces are the data at the surface,
u(x, z = 0, t). The question of what the traces show about
the subsurface can be addressed via a theoretical exploding
reflectors experiment, in which seismic sources on the reflectors
explode at time zero (Fig. 3.3–32, right). Waves propagate
upward from the reflectors and are recorded at the surface. The
reflectors do not interact further with the waves, so multiple
reflections are not generated. The sources have strength pro-
portional to the reflection coefficients, so the amplitudes at
the surface are correct. Finally, to correct for the fact that the
actual reflections went both up and down, times on the re-
corded traces are divided by two. The recorded data can thus
be thought of as resulting from the explosion of the reflectors.

The recorded data are directly related to the structure at
depth. At t = 0, the instant the sources explode, the wave field at
depth, u(x, z, 0), is exactly the geometry of the reflectors, and
thus the desired image of the subsurface. These waves pro-
pagate upward to the surface z = 0, and are recorded as the
seismic section u(x, 0, t). Hence the reflectors can be found
from the section by removing the effects of propagation, using
an operation called migration.

We first consider a constant-velocity medium in which a
point source at (x0, z0) explodes at t = 0. The resulting dis-
placement is a circular wave front (Section 2.4.3) that expands
with time at a rate equal to the velocity (Fig. 3.3-33) and is
described using a delta function

u(x, z, t) = δ((x − x0)2 + (z − z0)2 − (vt)2), (70)

Fig. 3.3-32 Three idealized seismic reflection experiments. Left: A zero-offset seismic section for a flat-layered medium. The only reflection points are
directly below the source and the receiver. Center: A zero-offset seismic section for a medium with a nonhorizontal interface. Although the upgoing and
downgoing ray paths are the same, the reflection points need not be directly below the source and the receiver. For a given reflector, several ray paths can
produce arrivals at a single receiver. Right: A conceptual model in which reflectors explode, giving a wave field with the geometry of the reflectors that
propagates to the surface, producing the observed seismic section. Migration seeks to reverse this process and find the initial wave field from the seismic
section. (After Claerbout, 1985.)
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3.3.7 Migration

Given the “cleanest” possible seismic section, how good an
image of the subsurface is it? Ideally, the section produced by
CMP stacking is a zero-offset section, because the traces have
been converted to what would be recorded for a coincident
source and receiver. The ray path down to a reflector and back
up must be the same, so Snell’s law requires that this path
be normally incident on the reflector. If the structure were
composed of horizontal interfaces, the reflection paths would
be vertical, and the time section could be converted to a depth
section by using the velocities to scale the time axis (Fig. 3.3-32,
left). In this case, a reflection’s arrival time indicates depth to a
reflector directly below the source and receiver.

Fig. 3.3-31 A Vibroseis record is a sum of sweep signals reflected from
various interfaces. Cross-correlation with a sweep signal produces
Klauder wavelets at the reflection times. (Conoco.)
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Fig. 3.3-33 Effect of a point source or diffractor. Left: The point
diffractor acts as a source of spherical (circular in two dimensions) wave
fronts. Right: The resulting seismic section with time scaled by velocity
so that the vertical axis has the dimensions of distance. The diffraction
appears as a hyperbola. The point at the apex corresponds to the true
position of the diffractor. The other points are due to later arrivals from
the diffractor at nonvertical incidence, so their positions on the section
do not indicate a reflector directly below the receiver.

Fig. 3.3-34 Diffraction hyperbola with true amplitudes.
(After Claerbout, 1985.)

cause Eqn 71 describes only the travel times, it does not include
this term, whose effect is visible in Fig. 3.3-34.

To illustrate this approach, consider an interface dipping at
an angle β. This should give the same reflections as a line of
closely spaced point diffractors, so the seismic section will be
a sum of the resulting hyperbolas. As shown in Fig. 3.3-35,
the hyperbolas interfere constructively, causing an apparent
interface. Interestingly, this apparent interface does not pass
through the apex of each hyperbola, so it is displaced from
the real interface and appears to have a shallower dip angle, α.
Because the scaled travel time to the true interface equals the
scaled arrival time on the trace, the real and apparent dips are
related by sin β = tan α.

Seismic sections from simple structures can appear quite dif-
ferent from the actual structure. For example, consideration
of ray paths for a single reflector with a synclinal structure
shows that several arrivals from different points on the reflec-
tor appear on a single zero-offset trace, each with a different
travel time. As a result, an apparent anticlinal, or “bowtie,”
structure appears (Fig. 3.3-36). Another common effect is that
the edges of sharp interfaces can give rise to long diffraction
“tails” (Fig. 3.3-37). This effect is analogous to diffraction at
the edges of a slit (Fig. 2.5-18).

The goal of migration is to undo the effects of diffraction
and hence convert the data to realistic images of the subsurface.
Migration can thus be thought of as an inverse scattering
or inverse diffraction problem. Because this requires removing
propagation effects, migration methods are derived using
forward models of the propagation process. The idea that the
section is the sum of diffractions suggests one approach known
as diffraction sum migration, or Kirchoff migration. Because
point diffractors cause hyperbolas on the seismic section, the
amplitude of each point on the migrated section is found by
summing the unmigrated section with appropriate scaling along
hyperbolic trajectories (Fig. 3.3-38). This operation should
collapse all the signal in diffraction hyperbolas to points at

whose downgoing half we ignore. The resulting seismic section
is the wave field at the surface, z = 0,

u(x, 0, t) = δ ((x − x0)2 + (z0)2 − (vt)2). (71)

This is a hyperbola with apex at (x = x0, t = z0/v), showing
that the wave front arrives first directly above the source, and
arrives later at points farther away. Thus the arrival seen on
the seismic section is not equivalent to geologic structure with
depth. A way to visualize the relation between the source posi-
tion and the seismic section is to plot the time axis in units
of vt, giving a time scale equal to the propagation distance.
Thus an arrival time equals the distance along the true path
from the source to the receiver. As illustrated, the depth of the
source is shown correctly on the section only by the arrival time
at a receiver directly above the source. For all other points on
the surface, the arrival appears at a time corresponding to the
travel time to that point, along a path that was not vertical.
Hence, except above the source, the arrival on the section does
not correspond to a source directly below the receiver, and the
arrival time does not give the source depth directly.

The hyperbolic arrival on a seismic section due to a point
source at depth is called a diffraction hyperbola. It lets us
understand how complicated structures appear on seismic
sections, because by Huygens’ principle (Section 2.5.10) the
reflection from an interface can be found by treating the inter-
face as a set of point sources. The resulting reflection is found by
summing the wave fronts from these Huygens’ sources, which
are also called point diffractors, or point scatterers. Because
each source produces a diffraction hyperbola on the seismic
section, the section resulting from a set of point diffractors
is the sum of their diffraction hyperbolas. In considering this
sum, we use the results of a more sophisticated analysis show-
ing that the diffraction hyperbola’s amplitude is largest at the
apex and decays as the cosine of the angle off to the sides. Be-
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Fig. 3.3-35 A dipping layer can be modeled as a line of point diffractors.
On a time section, interference between the diffraction hyperbolas
produces an apparent reflector, as shown schematically (top) and with true
amplitudes (bottom). Because the scaled travel time to the true interface
(vtr) equals the scaled arrival time on the trace (vta), the apparent dip α is
shallower than the true dip β. (After Claerbout, 1985.)
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Fig. 3.3-36 Top: Illustration of several ray paths for reflections at zero
offset from a reflector with a synclinal structure. Bottom: Because these
arrivals, each from a different point on the reflector, have different travel
times, the time section shows an apparent anticlinal, or “bowtie,”
structure. (Kearey and Brooks, 1984.)

Depth Time

their apexes, and thereby reconstruct the reflectors as a set
of point diffractors. Thus diffraction artifacts like those in Figs
3.3-36 and 37 should be removed, and apparent interfaces with
shallow dips should be converted to interfaces with the steeper
true dips. Figure 3.3-39 shows the improvement to a seismic
section from Kirchoff migration. The resulting migrated time
section can be converted to a depth section using a velocity–
depth function.

The appearance of a migrated section depends on the
assumed velocity. Using a too-slow velocity reduces the length

Fig. 3.3-37 The ends of truncated interfaces
(left) act as diffractors, so a time section
(right) shows spurious down-dip extensions
of the interfaces. (Claerbout, 1976.)
(http://sepwww.stanford.edu/sep/prof/)



of hyperbolas’ “tails,” but does not fully collapse them, and so
is termed undermigration. Similarly, a too-high velocity over-
migrates the data, converting upward-pointing hyperbolas
into downward-pointing ones. As a result, correct imaging of
dipping structures depends on an accurate velocity model.

Other migration methods, called wave equation migration,
use a double Fourier transform to map a wave field, u(x, z, t),
from the horizontal distance and time (x, t) domain to the
horizontal wavenumber and angular frequency (kx, ω) domain.
The transform is

U(kx, z, ω) = 

    

  � �
−∞

∞

−∞

∞

u(x, z, t) exp [i(−ωt + kxx)]dxdt, (72)

with inverse transform

u(x, z, t) = 
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  � �
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U(kx, z, ω) exp [i(ωt − kxx)]dkxdω.

(73)

If we consider only P waves, the wave field u(x, z, t) satisfies the
wave equation in two dimensions:
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The corresponding condition on the transform U(kx, z, ω) is
found by substituting the inverse transform for u, taking the
derivatives, and canceling, yielding
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Because the components of the wavenumber vector are related
by

| k |2 = k2
x + k2

z = ω2/v2, (76)

the transform satisfies

  

∂
∂

2

2
2U

z
k Uz  .= − (77)

If the velocity is constant with depth, kz is independent of z, so
integrating Eqn 77 yields

U(kx, z, ω) = U(kx, 0, ω) exp [± ikzz]. (78)

This equation relates the wave field at the surface and at any
depth. The operation of converting one to the other is called
downward or upward continuation of the wave field. The sign
of the exponential distinguishes upcoming from downgoing

3.3 Reflection seismology 155

Fig. 3.3-38 Diffraction sum migration reverses the effects of diffraction
by summing the time section along hyperbolic trajectories, thus collapsing
hyperbolas to their apexes. (Schneider, 1971. Reproduced by permission
of the Society of Exploration Geophysicists.)
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Fig. 3.3-39 Time section before (top) and after (bottom) migration.
Elimination of the diffractions produces a better image of structures at
depth, such as those at about 1.8 s, where bowties and diffraction “tails”
have been suppressed. (Prakla-Seismos)
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waves. Because z increases downward, upcoming waves occur
when kz and ω have the same sign. To ensure this, we define kz
as a function of ω,

    
k k v kz x x( , )  sgn ( ) /   ,ω ω ω= −2 2 2 (79)

where the function sgn (ω) is 1 when ω is positive, and is −1
when ω is negative. Using this definition, the inverse transform
Eqn 73 becomes

u(x, z, t) = 

    

1

4 2π
  � �
−∞

∞

−∞

∞

U(kx, 0, ω) exp [i(ωt − kxx

+ kz(ω, kx)z)]dkxdω. (80)

This integral relates the Fourier transform of the seismic
section recorded on the surface, z = 0, U(kx, 0, ω), and the
upcoming wave field at depth at earlier times. By the exploding
reflector model, the image of the subsurface is the wave field at
t = 0, when the reflectors have just exploded. Thus the image
can be found by setting t = 0:

u(x, z, 0) = 
1

4 2π
  � �
−∞

∞

−∞

∞

U(kx, 0, ω) exp [i(−kxx

+ kz(ω, kx)z)]dkxdω. (81)

Although this integral migrates the transform of the seismic
section into the desired image, the integral over ω and kx has to
be done separately to find the image at every depth z. A way to
get around this is to replace the ω integration with one over kz,
by expressing ω as a function of kx and kz,

  
ω( , )  sgn ( )   ,k k k v k kx z z x z= +2 2 (82)

and changing variables using
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This change converts Eqn 81 into an inverse Fourier transform
from the wavenumber (kx, kz) domain to the space (x, z) domain

u(x, z, 0) = 
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U(kx, 0, ω(kx, kz)) exp [i(−kxx

+ kzz)]
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x z
2 2+ 

dkxdkz, (84)

so inverting the double transform once gives the image for all
x and z.

The application of migration methods to data involves vari-
ous complexities. The time axis in the section can be scaled

to account for the variation in velocity with depth. Often in
complex geology horizontal variations in velocity are import-
ant, so migration can be conducted with numerical methods
that can propagate waves through laterally varying media.

3.3.8 Data processing sequence

The various processing operations for seismic reflection data
can be combined in different ways. To illustrate this, we sum-
marize a common sequence for some of the possible operations.
For simplicity, the discussion is in terms of one horizontal
dimension, but the approach applies to two dimensions.

Preprocessing consists of initial steps. Because data from dif-
ferent receivers are recorded simultaneously, they are reorgan-
ized (demultiplexed) to produce a trace for each receiver. The
traces are then edited to eliminate effects such as noisy traces
or recording errors. Static time shifts are applied when needed
(Section 3.3.5). The amplitudes are then adjusted using a gain
recovery function that corrects for the fact that the later arrivals
have lower amplitudes because of reflections, transmissions,
geometric spreading, and attenuation (Section 3.7). The data
are combined into common source gathers, and can then be
viewed as a volume defined by the time, offset, and midpoint
axes (Fig. 3.3-40). They can then be filtered using methods
(Section 3.3.5) including muting of undesired arrivals, band-
pass filtering to enhance or suppress certain frequencies, and
velocity or slant stack filtering to suppress certain arrivals.
Deconvolution (Section 3.3.6), which improves the time reso-
lution of the data, can be viewed as acting along the time axis in
Fig. 3.3-40.

As this point, common midpoint stacking and velocity
analysis are conducted for the gathers. These operations (Sec-
tion 3.3.4) combine data for each midpoint to produce a seismic
section that approximates what would be recorded at zero off-
set. Geometrically, this acts along the offset axis to collapse all

Fig. 3.3-40 Schematic illustration of the relation between processing
operations for reflection data. Deconvolution applied along the time
axis increases temporal resolution. CMP stacking along the offset axis
collapses the data to the midpoint–time plane (compare to Fig. 3.3-18),
yielding a seismic section and enhancing reflections. Migration applied
in this plane improves lateral resolution. (After Yilmaz, 1987.)
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the data to the midpoint–time plane. Migration (Section 3.3.7)
in the midpoint–time plane seeks to eliminate artifacts due to
diffractions and convert the seismic section to an image of the
subsurface. The migrated section can then be converted, using
assumptions about velocities, to a depth section. The depth
section is then interpreted together with geological data and
other types of geophysical data, in some cases from drill holes,
to understand the subsurface geology.

This discussion of the processing sequence brings out the
point that although it is natural to treat a seismic section as an
accurate image of the subsurface, it is actually a display of a
seismic wave field showing the energy arriving as a function of
two-way travel time. Thus the quantity shown, vertical dis-
placement or pressure, need not correspond to any geological
reflector of interest. Large arrivals can result from interference
between reflections from small impedance contrasts. More-
over, because a seismic section has been produced by math-
ematical operations, rather than the physical experiment it
simulates, noise in the data and errors in the processing can
produce spurious artifacts. For example, the conversion of time
to depth is only as accurate as the velocities found by stacking
or otherwise, perhaps from measurements in a drill hole.

As we have seen in discussing migration, seismic sections
are most likely to deviate from the desired images when the
medium has significant lateral variations. For example, a
medium with random heterogeneities can yield spurious short
layered segments, because the reflected energy depends on the
vertical changes in impedance. Thus long-wavelength vertical
variations in impedance are suppressed, whereas both short-
and long-wavelength horizontal variations are preserved, and
so can yield a structure with apparent horizontal layering. This
effect can be viewed as a velocity filter (Section 3.3.5) that
reduces horizontal resolution for structures with steep dips.
Similar effects, which are prone to occur at large offsets, may
contribute to the horizontally discontinuous layering observed
in deep crustal reflection data (Section 3.2.4). Hence, as we
will see in various contexts throughout our discussions (e.g.,
Section 7.3), studying three-dimensional velocity structure is
an interesting and challenging enterprise.

3.4 Seismic waves in a spherical earth

In the previous sections, we developed the theory to use the
travel times of seismic waves to study the velocity structure of a
medium composed of flat layers. This analysis is useful when
the ray paths between the source and the receiver are short
enough that the earth’s curvature can be neglected. Because this
is the case for distances less than a few hundred kilometers,
such analysis is used to study structure in the crust and the
uppermost mantle. In this section we develop the correspond-
ing theory for a spherical earth, which can be used for greater
distances and thus greater depths. Application of these results,
discussed in the next section, is our primary tool for studying
the structure of the deep earth.
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Fig. 3.4-1 Geometry of Snell’s law for a spherical earth.
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3.4.1 Ray paths and travel times

By analogy to the way we previously represented the earth using
uniform flat layers, we now treat it as a series of concentric
spherical shells of uniform-velocity material. The ray paths and
travel times for the spherical geometry are described by expres-
sions similar to those for flat layers (Section 3.3.1). Consider
the portion of a seismic ray’s path connecting points at radial
distances r1 and r2 from the earth’s center (Fig. 3.4-1). If v1 and
v2 are the velocities above and below r1, and i1, i ′1 and i2 are the
angles shown, then by Snell’s law
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However, r1 sin i ′1 = r2 sin i2 because both equal the length ON,
so we rewrite Eqn 1 as
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Thus we define the ray parameter p for a spherical earth as

  
p

r i

v
  

 sin 
,= (3)

where r is the radial distance from the center of the earth, v is
the velocity at that point, and i is the incidence angle between
the ray path and the radius vector. By reducing the thickness
of the shells ever thinner, the velocity becomes a continuous
function of radius, v(r). Equation 3 is thus Snell’s law for a
spherical earth, which describes the ray path. As for the flat
earth, the ray parameter is constant along the ray path, and
thus identifies a particular ray.

It may seem strange that different forms of the ray parameter
and Snell’s law occur for a sphere. At any given depth, the flat
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Fig. 3.4-2 Geometry of a ray path in a spherical earth with velocity
increasing with depth. The angle of incidence, i, is 90° at the bottoming
depth rp.

Fig. 3.4-3 Two rays with infinitesimally different ray parameters
illustrating the relationship p = dT/d∆.
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layer formulation, that p = sin i/v is constant, is valid. The
factor r corrects for the change along the path of the orientation
of the normal to the interface, which is the radius. If r changes
so slowly along the path that its variation can be ignored,
we obtain the flat case. Thus the flat layer version is used for
near-surface refraction and reflection studies.

The condition of constant ray parameter relates the ray path
to the velocity structure. For a source at a radius r0 (the earth’s
radius for a surface source) where the velocity is v0,

p = r0 sin i /v0. (4)

Rays leaving the source at different angles thus have different
ray parameters. As the ray travels downward, r decreases, and
in general v increases, so sin i and thus i increase, because p
is constant. The ray eventually “bottoms” and turns upward
when i = 90° (Fig. 3.4-2). At this bottoming depth, r = rp, and

p = rp /vp. (5)

From this point the ray returns to the surface. Different rays,
with different p, thus bottom at different depths.

Consider two rays with ray parameters p and p + dp, that
arrive at nearby points on the earth’s surface (Fig. 3.4-3). The
ray with ray parameter p takes a travel time T to travel a dis-
tance ∆, measured by the angle subtended at the earth’s center,
whereas the ray with p + dp takes T + dT to travel ∆ + d∆. In the
limit, as the distance between the two points goes to zero,
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Fig. 3.4-4 Variables defining ds, a portion of the ray path subtending an
angle dθ.
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Thus, as for the flat layer case (Section 3.3.1) the ray para-
meter is the reciprocal of the apparent velocity along the
surface, cx:
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Hence the ray parameter can be measured from the difference
in arrival times at nearby stations. Conversely, the slope of a
travel time curve T(∆) is the ray parameter of the ray emerging
at a distance ∆.

Because the geometry is spherical, it is natural to describe the
ray path in polar coordinates. Consider (Fig. 3.4-4) the point P
on the ray path with polar coordinates (r, θ). A small portion
of the ray path, ds, subtends an angle at the center of the earth
dθ, so



material. As written, the integrals are from the surface to the
bottoming depth, with the factor of 2 accounting for the
return trip to the surface. If the source is not at the surface,
the limits of integration are changed appropriately.

For the flat geometry, we found it useful to describe the
travel time curve in terms of its slope, the ray parameter, p,
and the time axis intercept of its tangent, τ (Section 3.3.2). To
do the same for the spherical geometry, we write the travel time
curve as

T(p) = p∆(p) + τ(p). (17)

We then evaluate the function

τ(p) = T(p) − p∆(p) (18)

using the integral expressions (Eqns 13 and 16), and find that
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This formulation can be used to invert travel time curves for
velocity structure.

3.4.2 Velocity distributions

Different distributions of velocity with depth produce char-
acteristic travel time curves. Figure 3.4-5 (overleaf ) shows the
usual situation in which velocity increases slowly with depth.
Given two rays, the one with a smaller angle of incidence at the
source has a smaller p, thus bottoms deeper at a point with
smaller rp and larger vp, and eventually emerges further from
the source. Thus the ray parameter decreases, and travel time
increases, monotonically with distance, ∆. The travel time
curve, T(∆), is concave downward because its slope, p(∆), de-
creases with distance (dp/d∆ = d2T/d∆2 < 0). The intercept-
slowness curve, τ(p), is smooth. To show these relations in
different ways, the plots in Fig. 3.4-5 are aligned so that the
distance axis is common to the ray path, T(∆), and p(∆) plots,
the depth axis is the same for the ray path and velocity–depth
plots, and the time axis is the same for the T(∆) and τ(p) plots.

A more complicated situation occurs when velocity increases
rapidly with depth (Fig. 3.4-6). Rays that bottom either above
or below the region of high velocity gradient behave as in
Fig. 3.4-5, so the corresponding portions of the travel time and
ray parameter curve show T increasing with ∆, and p decreas-
ing with ∆. By contrast, rays that bottom in the region of high
velocity gradient are bent upward more and emerge at smaller
values of ∆ than would otherwise be the case. As a result, three
rays with different ray parameters emerge at the same distance
∆. Thus the p(∆) and T(∆) curves have three distinct branches.
On the two normal forward branches dp/d∆ < 0. However, on
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Substitution in Snell’s law (Eqn 3) gives
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We thus use Eqns 9 and 10 to form and equate two expressions
for (ds/dθ)2,
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and manipulate them to obtain
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where ζ is defined by ζ = r/v. Integrating this expression from
the source depth, which we assume to be the surface r0, to the
deepest point on the ray rp, and doubling to account for the
upward path, gives
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This integral gives the angular distance ∆ traveled by the ray
with ray parameter p in an earth with a velocity distribution
v(r).

A similar integral expression for the travel time of this ray
comes from combining Eqns 9 and 10,
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so that a portion of the ray path is
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Thus the travel time, defined by the integral of the slowness
along the ray path, is given by
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These integral expressions for the distance ∆(p) and travel
time T(p) of a ray in a spherical geometry are analogous to
those for x(p) (Eqn 3.3.25) and T(p) (Eqn 3.3.26) in a layered
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Fig. 3.4-5 Ray paths, T(∆), p(∆), and τ (p) relationships for velocity
increasing slowly with depth.
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Fig. 3.4-6 A triplication occurs if velocity increases rapidly, because at
some distances three rays arrive. The triplication appears as the three
branches in the T(∆) and p(∆) curves. The cusps on the travel time curve
where the branches meet correspond to reversals in the p(∆) plot.

the back branch, ∆ decreases with decreasing p, so dp/d∆ > 0.
Thus rays with smaller incidence angles arrive closer to the
source, giving a characteristic triplication in the travel time
curve and a reversal in the p(∆) curve. We will see in the next
section that triplications are observed in the travel time curve
for waves in the mantle, due to velocity increases that are
thought to result from mineral phase transitions.

A triplication is similar to the travel time curves for the
direct, reflected, and head waves for a layer over a halfspace
(Fig. 3.2-2). The back branch of the triplication is analogous to
the reflection, and the two forward branches are analogous to
the direct and head waves. As the velocity increase becomes
sharper and more like the sharp jump between a layer and
halfspace, the back branch extends further in either direction,
so the triplication looks increasingly like the travel times for a
layer over a halfspace.

As we discussed in Section 2.8.4, geometric ray theory gives
information about amplitudes as well as travel times. Because
the rays plotted left the source at uniform increments of angle,
the amplitude expected at some distance depends on geometric
spreading, or the density of rays arriving. We expect high
amplitudes where rays are concentrated, and low amplitudes
where rays are sparse. Mathematically, the concentration of

rays is proportional to di/d∆, the range of incidence angles
for the rays that arrive in a given distance. To find this, we
differentiate the definition of the ray parameter (Eqn 7),
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Thus the amplitude is proportional to the second derivative
of the travel time curve, or the derivative of the p(∆) curve.
For a triplication, the back branch meets the two forward
branches at two points on the travel time and p(∆) curves. Here
dp/d∆ = ∞, so large amplitudes are expected. This situation is
called a caustic.

A third important case is a low-velocity zone, where velo-
city decreases with depth and then increases (Fig. 3.4-7). Rays
entering the low-velocity zone bend down, rather than up,
so no rays bottom there. To see this, note that for a ray to
bottom, it must turn upward (to a larger angle of incidence)
as it goes deeper (to smaller values of r), so that di/dr < 0.
Conversely, if di/dr > 0, the ray turns downward and cannot
bottom. These conditions can be written in terms of the
velocity–depth function by differentiating both sides of



and travel time for a given distance. The back branch, with
dp/d∆ > 0, corresponds to the rays that would have bottomed at
the depth of the low-velocity zone, had the velocity there been
high enough. The forward branch, which continues to greater
distances, corresponds to the rays that bottom deeper. The
concentration of rays just past the shadow zone corresponds to
the point where the two branches meet. Here dp/d∆ = ∞, so
large amplitudes occur. We will see that this situation occurs as
a result of the drop in velocity across the core–mantle bound-
ary, which gives rise to a shadow zone.

3.4.3 Travel time curve inversion

To infer the distribution of velocity with depth, travel time
curves are compiled from seismograms recorded at different
source–receiver distances. The inverse problem of deriving
velocity structure from the T (∆) curves can be done in various
ways. One is to use a computer program, based on Snell’s law,
to trace rays through different velocity structures and compute
the corresponding travel time curves. Figures 3.4-5–7 were
derived this way. This approach solves the inverse problem
by solving the forward problem repeatedly until a satisfactory
solution is found. An alternative is to solve the inverse problem
directly by deriving v(r) from T(∆).

Various methods have been used to solve the inverse
problem. A classic one is the Herglotz–Wiechert integral. This
approach is based on Eqn 13, which gives the distance traveled
by a ray with ray parameter p as a function of the velocity
structure
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where ζ = r/v, and p is the ray parameter for the ray arriving at
∆. This can be converted to
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where ζ1 = r1/v1 at radius r1, the bottoming point of the ray
that emerges at ∆1.1 This formula is used by starting with an ob-
served travel time curve, T(∆), and forming its derivative dT/d∆
= p(∆) numerically. The integral is done numerically from ∆ = 0
to ∆ = ∆1, using the fact that ζ1 = dT/d∆ at a distance ∆1. The
equation then gives the radius, r1, at which the velocity is r1/ζ1.

This method sometimes fails when velocity decreases with
depth, giving a low-velocity zone. In some such cases, it can still
be applied using a method called “earth stripping.” To do this,
v(r) is found down to the low-velocity zone using the Herglotz–
Wiechert integral. Equations 13 and 16 are then used with r ′,
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Fig. 3.4-7 A low-velocity zone gives rise to a shadow zone, a distance
range where no direct geometric arrivals appear, and hence discontinuous
T(∆), p(∆), and τ(p) curves.
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The condition that no rays bottom in a depth region where
di/dr is positive implies that the velocity decreases fast enough
that
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v

r
  .> (24)

This situation causes a shadow zone, a region of the earth’s
surface where no rays arrive. Just below the low-velocity zone,
rays reach a given ∆ by two paths, giving two values of p 1 Bullen and Bolt (1985).
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the outer radius of the low-velocity zone, substituted for rp, to
find the distance and time the ray traveled on its way down to
the low-velocity zone. Subtracting these from the known T(∆)
curve gives a T ′(∆) curve for a “mini-earth” with radius r ′.
Because in this “mini-earth” the velocity increases with depth,
the Herglotz–Wiechert method is applied again.

3.5 Body wave travel time studies

We saw in the last section that travel time data can be used
to determine seismic velocity as a function of depth. Begin-
ning early in the 1900s, travel time tables were compiled by
combining data from many earthquakes observed at various
epicentral distances. These seismological observations provide
the primary data for our view of the basic features of the earth’s
velocity structure. This picture, an essentially layered earth
composed of a thin crust, a mantle, a liquid outer core, and
a solid inner core, is key to our thinking about how the earth
evolved and operates. This concept was largely developed by
the 1940s, as illustrated in Fig. 3.5-1, showing the classic
Jeffreys–Bullen1 (JB) earth model. The JB model treated the
earth as a series of shells, characterized by the behavior of the
velocity with depth (Table 5.1-1). The mantle was divided
into an upper mantle (region B) and a lower mantle (region D),

Table 3.5-1 Regions in Jeffreys–Bullen earth model.

Region Depth Features of region
(km)

A 33 Crustal layers

B 413 Upper mantle: steady positive P and S velocity
gradients

C 984 Mantle transition region

D 2898 Lower mantle: steady positive P and S velocity
gradients

E 4982 Outer core: steady positive P velocity gradient

F 5121 Core transition: negative P velocity gradient

G 6371 Inner core: small positive P velocity gradient

Source: After Bullen and Bolt (1985).

1 The model was derived from extensive joint research into earth structure by
Sir Harold Jeffreys (1891–1989), who established in 1926 that the core was liquid,
and Keith Bullen (1906–76).

Fig. 3.5-1 Comparison of the classic Jeffreys–Bullen earth model (Jeffreys
and Bullen, 1940) and a newer model, IASP91 (Kennett and Engdahl,
1991). Although IASP91 and its successor, AK135 (Kennett et al., 1995),
have improved resolution in the mantle transition zone and the core, the
newer models are generally similar to that derived using hand-cranked
calculators.
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both of which had smooth velocity gradients. These upper and
lower mantle regions were separated by region C, the mantle
transition zone where velocities increase rapidly with depth.
Below the core–mantle boundary (CMB), the core was divided
into an outer core (region E) and an inner core (region G),
separated by a transition zone (region F). The inner core
boundary (ICB) separated regions F and G. Subsequently,
the lower mantle was divided into regions D′ (1000–2700 km
depth), most of the lower mantle with a smooth velocity gradi-
ent, and D″ (2700–2900 km), the zone above the core–mantle
boundary with a reduced velocity gradient.

Subsequent studies have derived models, such as the IASP91
model, also shown in Fig. 3.5-1, which confirm the basic struc-
ture of the JB model and provide better resolution of import-
ant regions. For example, the JB model did not resolve shear
velocities in the inner core, whereas recent models have finite S
velocity in the inner core, implying that it is solid. Similarly,
recent models provide more details about the mantle transition
zone and the core–mantle boundary, and do not include the
velocity “notch” at the inner core–outer core boundary.

Jeffreys’ and Bullen’s derivation of a radially symmetric
earth model from travel time observations converted the previ-
ous crude picture of the earth into one that has since changed
only in detail. More recent radial velocity models do not differ
much from each other, so they are likely to be converging on an
accurate radial model for the earth. Such average, or reference,
models and travel time curves, such as JB, IASP91, and PREM
(for Preliminary Reference Earth Model, Section 3.8), are
derived from data around the world and so average over local
variations in structure. Regional differences can then be viewed
as perturbations relative to a reference model.

However, lateral differences in structure can be significant
and provide insight into tectonic processes. Thus a major
current goal of seismology is to define the three-dimensional
velocity structure that results from the fact that the earth is a
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at a receiver. Multiple reflections off various layers and diffrac-
tions can bring additional arrivals. Hence seismograms contain
many arrivals, or phases, corresponding to different travel
paths. This is illustrated by Fig. 3.5-2, discussed in Section 1.1,
showing a few of the phases that are observed and some of
the corresponding ray paths. All the phases shown, except
for the Rayleigh surface wave, are body waves that travel
through the earth’s interior.

Such seismograms provide the observations that are com-
bined to generate travel time tables. Figure 3.5-3 illustrates the
process; the dots are travel times observed at various epicentral
distances for a set of earthquakes and nuclear explosions. The
data define lines giving the travel times of different phases. Such
observations can be used to develop and test earth models
giving P and S velocities as a function of depth. These models
predict the observed travel times quite well, as shown by the
fit of the theoretical travel times (lines in Fig. 3.5-3) to the
observations. The travel times depend on the source depth, as
shown in Fig. 3.5-4 for a surface source and a source at 600 km
depth.

Although the details of an earth model depend on the specific
data used to construct it, the key features of IASP91 are char-
acteristic of recent models. The model represents a global
average of the velocity structure that varies somewhat between
locations. The crust is 35 km thick, an average between thin
oceanic and thick continental crust (Fig. 3.2-17). Velocities
increase smoothly through the upper mantle, to a depth of
410 km. The mantle transition zone, from about 400–700 km
depth, contains depth intervals near 410 km and 660 km
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geologically active planet. Convection in the earth causes three-
dimensional temperature variations that result in observable
velocity variations. In addition, mantle flow appears to gener-
ate seismic anisotropy at the top and the bottom of the mantle,
and magnetic stresses due to outer core flow may cause inner
core anisotropy. Resolving this three-dimensional structure
requires sophisticated analysis techniques. For example, travel
time studies are complemented by waveform modeling, and
stacking techniques are applied to enhance seismic signals. The
suggested reading provides some reviews of recent studies.

This section focuses on determining velocity structure, so
we largely defer discussion of the chemical, mineralogical,
thermal, and rheological factors that cause these variations for
later sections.

3.5.1 Body wave phases

We have seen that seismic waves can travel between a source
and a receiver along multiple paths. For example, increases in
velocity can cause triplications, yielding three distinct arrivals

Fig. 3.5-2 Top: Long-period vertical component seismogram at Golden,
Colorado, showing various seismic phases. Bottom: Ray paths for some
of the seismic phases labeled on the seismogram. Paths taken as P waves
are shown as solid lines; paths taken as S waves are shown as dashed lines.
Although P and S are both direct phases, they do not travel the exact same
path because their velocities differ. Similarly, the ray path for PcS is
asymmetric, and pP and sP do not reflect off the surface at the same
location.
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Fig. 3.5-4 Travel time curves for body wave
phases for model IASP91 computed for an
earthquake at the surface (left) and at a
focal depth of 600 km (right). (Kennett and
Engdahl, 1991.)

2 Although early estimates put the locations of the discontinuities at depths of 400
and 670 km, recent revisions place them closer to 410 and 660 km. We will use the
differing values interchangeably.

where the velocities increase rapidly.2 Although these regions
are often referred to as the 410 km and 660 km discontinuities,
their exact depths vary from place to place. From about 700
to 2890 km depth the velocities increase smoothly throughout
the lower mantle. At about 2890 km, the P velocity drops
sharply, and the S velocity goes to zero, corresponding to the
liquid outer core. The outer core extends to a depth of about
5150 km, beneath which the solid inner core has higher velocit-
ies, including a finite S-wave velocity. As we will see, these vari-
ations in velocity with depth are thought to reflect important
changes in the physical, chemical, thermal, and mineralogical
state of the materials present.

Seismic phases are named, based on their paths through the
earth (Fig. 3.5-5, Table 3.5-2). The direct P-wave and S-wave
arrivals are denoted “P” and “S.” Another class of arrivals
involve reflections at the earth’s surface. The P-wave arrival
corresponding to a single surface reflection is called PP, that
for two reflections is PPP, and so on. Similarly, SS and SSS
correspond to S waves reflected at the surface. Because P waves
can convert to S waves, and vice versa, PS is a P wave converted
to an S wave upon surface reflection, and SP is the reverse. Con-
sideration of the ray paths shows that the travel time for PP at a
given distance should be twice the travel time of P at half that
distance — that is, to a point midway between the source and

Table 3.5-2 Body wave phase nomenclature.

Name Description

P Compressional wave
S Shear wave
K P wave through outer core
I P wave through inner core
J S wave through inner core
PP P wave reflected at surface
PPP P wave reflected at surface twice
SP S wave reflected at surface as P wave
PS P wave reflected at surface as S wave
pP P wave upgoing from focus, reflected at surface
sP S wave upgoing from focus, converted to P at

surface
c Wave reflected at core–mantle boundary (e.g., ScS)
i Wave reflected at inner core–outer core boundary

(e.g., PKiKP)
P′ Abbreviation for PKP
Pd or Pdiff P wave diffracted along core–mantle boundary

Source: After Bolt (1982).

the receiver. Similarly, the travel time for PPP should be three
times the travel time for one-third the distance.

The surface-reflected phases PP and SS (as well as SSS, SSSS
or S4, etc.) have unusual characteristics. By Fermat’s principle
(Section 2.5.9), seismic phases have either minimum or maxi-
mum travel times with respect to adjacent paths. Most arrivals
(P, S, pP, ScS, etc.) are minimum-time phases, but the surface
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Fig. 3.5-6 Top: Ray path for a surface reflection. The reflection is a
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reflections off the elliptical surface have the same travel time. The
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Fig. 3.5-5 Examples of body wave phases illustrating the nomenclature
used. “P” and “S” designate direct ray paths, whereas “p” and “s” denote
upgoing paths from the earthquake. Hence SP designates an S wave
through the mantle reflected at the surface as P. “c” designates a reflection
at the core–mantle boundary, so PcP is a P wave reflected at the core, and
PcS is a P wave reflected as S. “K” and “I” denote P waves that traveled
through the outer and inner cores, and “i” designates a reflection at the
inner core’s boundary. Hence PKIKP travels through the mantle, outer
core, and inner core. PKJKP, which travels as S through the inner core, has
only recently been conclusively observed. (After Bolt, 1982. From Inside
the Earth by Bruce A. Bolt. © 1982 by W. H. Freeman and Company.
Used with permission.)

By Fermat’s principle, the true ray path is that on which the
derivative of travel time with respect to ε is zero,
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so ε is zero, giving the expected bounce point. To see if this is a
minimum or a maximum, we form the second derivative
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Figure 3.5-4 and Section 3.4.2 show that the direct P and S
waves have travel time curves that are concave down, d2T/d∆2

< 0, so their surface reflections PP and SS are maximum-time
phases. Thus PP or SS waves traveling along the same azimuth
that reflect at the surface either closer or further than the point
where PP reflects arrive earlier. By contrast, the core reflections
like ScS have travel time curves that are concave upward, so in
Eqn 5 d 2T/d∆2 > 0, and its surface reflection ScS2 is a minimum-
time phase.

reflections are maximum-time phases with respect to distance.
To see this, consider ray paths for a surface reflection that differ
slightly from the true path, so the reflection bounces off the sur-
face a small distance ε from the actual bounce point at ∆ /2,
halfway between the source and the receiver (Fig. 3.5-6, top).
Their travel time is thus the sum of the travel times for two legs

T(∆) = T(∆/2 + ε) + T(∆/2 − ε). (1)

Using the first two terms of the Taylor series
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earthquakes are used for body wave studies, because they
generate only small surface waves.

Finally, it is worth remembering that travel time tables are
compiled from observations of seismic arrivals. Although most
arrivals on seismograms can be identified today from exist-
ing tables, important results are still found by noticing and
explaining a previously unrecognized arrival.

3.5.2 Core phases

The contrast in properties between the solid mantle and the
liquid core, which has lower velocity than the mantle above,
makes the core well suited to seismological study using reflected,
transmitted, converted, and diffracted arrivals.

Core reflections are of great interest because the core–mantle
boundary (CMB) is a solid–liquid boundary, and thus a strong
reflector for shear waves. Reflections off the CMB are denoted
by a lower-case “c,” so ScS is an S-wave reflection and PcP is
a P-wave reflection. Conversions at the CMB also occur. ScP
goes down through the mantle as a shear wave and returns as
a compressional wave, whereas PcS does the reverse. Some
phases undergo multiple reflections at both the core and the
surface; ScSScS (or ScS2) bounces twice at the CMB and once at
the surface. Such reflections, known as multiple ScS, are shown
in Fig. 1.1-4.

ScS is a more distinct arrival than PcP, because the liquid
core does not transmit shear waves. The SH part of the motion
in the incident ScS cannot convert to P waves at the CMB, so is
totally reflected. Hence ScS is often well recorded on the trans-
verse component (Section 2.4.4) of a seismometer. By contrast,
the PcP reflection is generally weak, because the impedance
contrast (Section 2.6.6) is small, so most P energy incident
on the CMB is transmitted. The small impedance contrast
(about 5%) arises because the P-wave velocity decrease going
from the mantle to the core (about 13.7 km/s to 8.1 km/s) is
offset by the density increase (about 5.5 g /cm3 to 9.9 g/cm3).

Core reflections, especially ScS, are useful in studies of earth
structure, because they give a vertical average velocity for the
mantle. The travel time curves for these phases are concave
upward (Fig. 3.5-4), like that for the reflection off the top of a
layer in a flat geometry (Section 3.2.1). Similarly, they have
finite travel time at zero distance because of the time needed to
get down to the core and back.

The travel times and amplitudes of core phases are also used
to study structure near and within the core, because their ray
paths are sensitive to the structure. To illustrate this idea, con-
sider P-wave ray paths (Fig. 3.5-7, top left) within the earth.
Rays leaving the source at progressively smaller angles of
incidence (closer to the vertical) bottom deeper in the mantle
and so reach greater distances. As the bottoming depth ap-
proaches the core–mantle boundary, the travel times of P
and PcP converge (Figs 3.5-3 and 4). Eventually, at about 98°
(the precise distance depends on the depth of the earthquake
and the exact velocity structure), P grazes the core–mantle
boundary, and P and PcP are identical.

An intuitive way to view minimum- and maximum-time
phases is to consider ray paths for surface reflections in a
homogeneous medium (Fig. 3.5-6, bottom). An ellipse defines
the set of points whose summed distances to two points, or
foci, are equal. Thus, if an earthquake and a receiver were the
foci, the travel time for a reflection from any point on the ellipse
would be the same. Hence, if the surface were elliptical, the
reflected phase would be neither a minimum- nor a maximum-
time phase, because all the energy would arrive at the same
time. If the surface were flat, and thus had less curvature than
the ellipse, waves that reflect off the surface slightly closer or
further than the midpoint travel further, making the reflection
a minimum-time phase. However, if the surface were circular
and more curved than the ellipse, waves reflected off the surface
slightly closer or further than the midpoint travel a shorter dis-
tance, making the reflection a maximum-time phase. This last
case is analogous to that for PP and SS in the spherical earth.

Although PP and SS are maximum time phases with respect
to distance, they are minimum travel time phases with respect
to azimuth, as are most phases. Thus waves with a bounce
point off the great circle path between the source and the
receiver arrive later. This combination of maximum time with
respect to distance and minimum time with respect to azimuth
makes the surface reflections sample an “X”-shaped region of
the surface, known as the Fresnel zone (Section 3.7.3), near the
bounce point. The fact that these are maximum-time phases
also causes them to undergo a π /2 phase shift3 (Fig. 2.6-5).
Each successive bounce at the surface causes another π /2 phase
shift, so SSS is phase-shifted by π and inverted with respect to
direct S. S4 undergoes a 3π /2 phase shift, and S5 has a 2π shift,
giving it the same shape as the original S.

Figure 3.5-5 is drawn for an earthquake beneath the earth’s
surface. Because earthquakes occur to depths of 700 km, seis-
mic ray paths go up from earthquakes as well as down. Lower-
case “p” and “s” identify upgoing compressional and shear
waves (Fig. 3.5-2). pP goes up as a P wave and reflects near
the epicenter, whereas sP goes up as an S wave and converts to
a P wave at the surface. These reflections are useful because
the travel time difference between direct P and pP, for example,
indicates the depth of the earthquake. After an upgoing wave
reflects at the free surface, it can undergo later conversions,
so pPP, sPS, etc. are possible arrivals.

Many other body wave phases have been identified and are
included in travel time tables. In addition, some tables give
arrival times for Love and Rayleigh surface waves. As shown in
Fig. 2.7-4, these surface waves are dispersive, so different fre-
quencies have different arrival times, making the time shown
approximate. This time is still useful for various purposes,
including allowing earth structure studies to avoid phases
that may be obscured by surface waves. In many cases, deep

3 This phase shift, also known as a Hilbert transform, can be viewed by thinking of
the pulse as made up of sine and cosine functions and turning each into the other.
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A ray with a slightly smaller angle of incidence, however,
refracts downward at the CMB, because the core has a lower
P velocity than the mantle. It thus enters the core, travels
through it, refracts into the mantle, and reaches the surface.
This phase is called PKP, where “K” denotes passage through
the outer core.4 For an angle of incidence slightly below
grazing, PKP reaches the surface at point A (Fig. 3.5-7, top
right), at a distance close to 180°. Rays with smaller angles
of incidence penetrate deeper into the core, and thus arrive
at distances successively less than 180°, down to a distance of
about 145° (point B). At this point the pattern reverses, because
rays with smaller angles of incidence arrive at successively
greater distances. This goes on for rays reaching distances up to
point C (~153°, depending on the earth model), corresponding
to the ray that grazes the inner core–outer core boundary.

The ray paths show that the low velocity in the outer core
gives rise to a geometrical shadow zone, where Snell’s law

predicts that no direct rays arrive.5 We have seen (Fig. 3.4-7)
that the corresponding travel time curve should have a break
due to the shadow zone, and then two branches on the far
side of the shadow zone. For the core, the shadow zone occurs
for distances between ~98° to ~145° (point B, Fig. 3.5-7, top
left). Beyond 145°, the travel time curve has two branches for
PKP. The AB branch (sometimes labeled PKP2) is the back
branch, on which rays with smaller angles of incidence appear
at smaller distances, whereas the BC branch is the forward
branch on which rays with smaller angles of incidence appear
at larger distances.

In reality, body waves are observed in the shadow zone.
Much of the body wave energy arrives as surface-reflected (PP,
PPP, SS, etc.) or multiply core-reflected (ScS2, etc.) arrivals.
Other arrivals are due to P waves that encounter the inner core.
Because the inner core has higher P-wave velocity than the

5 Although the core’s existence had been inferred from the earth’s gravity (Sec-
tion 3.8), the discovery of this shadow zone in 1906 by Richard Oldham (1858–1936)
provided the first direct evidence and set the paradigm for future core studies.4 “K” is from Kern, the German word for core.



168 Seismology and Earth Structure

outer core, waves refract upward and emerge in the shadow
zone. These phases are known as PKIKP, because P waves in
the inner core are denoted by “I.” In addition, waves reflect
at the boundary between the inner and outer cores, giving the
phase PKiKP.6 (The lower-case “i” is analogous to the lower-
case “c” in PcP.) The travel time curve thus has a PKIKP
branch DF, where D is the distance at which PKIKP is first
observed, and a back branch for PKiKP. The back branch
begins at C, where PKiKP and PKP are the same, and extends
through D back to zero distance (Figs 3.5-3 and 4), because
the reflection occurs at vertical incidence. Hence the portion of
the travel time curve containing CD and DF is due to the rapid
increase of velocity at the inner core–outer core boundary, and
is analogous to a triplication.

Seismic energy also enters the shadow zone via P and S waves
that diffract around the core (Section 2.5.10). The ray paths for
the diffracted P waves (denoted Pd or Pdiff) shown in Fig. 3.5-7
represent energy that diffracted around the core, left the CMB,
and traveled back to the surface. This process is much like that
discussed for the head wave (Section 3.2.1). Thus, once the
direct P wave becomes the diffracted wave at a distance near
100°, its travel time curve (Fig. 3.5-4) loses the curvature it had,
because successive rays penetrated deeper to higher-velocity
material. Instead, it becomes linear because all the diffracted
waves bottom at the CMB, and so have the same ray parameter
and hence apparent velocity. As for the head wave, assuming
that the energy followed a ray path gives the diffracted wave’s
travel time but cannot fully describe its amplitude, because
diffraction involves energy propagating as waves, not rays.
However, we will see that more complete formulations such as
normal modes predict both the times and the amplitudes of the
diffracted phases.

Figure 3.5-7 shows that the travel time curve for the core
phases is complicated because it combines the effects of a
geometric shadow zone, which gives two PKP branches, a
triplication-like feature containing the PKIKP and PKiKP
branches, and a diffraction branch. In reality, even these models
are simplifications of a more complex reality. Figure 3.5-8,
showing the travel times of several million PKP arrivals, illus-
trates several significant deviations from the theoretical curves
in Fig. 3.5-7. First, the arrivals do not fall along narrow lines.
This is partly due to errors of observation, but also due to the
heterogeneous structure of the crust, mantle, and core, which
makes some arrivals early and others late. Second, the PKP-BC
branch continues beyond its geometrically predicted limit of
153°. This is because the PKP-BC wave diffracts around the
inner core, although its amplitude decreases rapidly in the
process, so there are few observations beyond 160°.

Third, and most importantly, the PKP travel times show an
additional branch not predicted by geometric ray theory. These
arrivals, labeled PKP precursors, appear to be a continuation
of the PKP-AB branch and arrive as much as 20 s before the

Fig. 3.5-8 Arrival times of PKP waves recorded by the International
Seismological Centre during 1964–87. A point is plotted if there are at
least 200 arrivals in the catalog for that time and distance. Although these
arrival times are similar to the predicted travel time curves in Fig. 3.5-7,
there are some differences. The PKP-BC branch is observed beyond its
geometrical limit (153°) due to diffraction around the inner core, and
precursors to the PKP-DF branch are observed that result from seismic
scattering at the CMB and in the mantle. (Courtesy of K. Koper.)

6 Observations of this phase by Inge Lehmann (1888–1993) in 1936 provided the
first evidence for the existence of the inner core.

PKP-DF branch. These arrivals puzzled seismologists until it
was realized that they were waves reflected, or scattered, from
inhomogeneous structures in the mantle. This scattering is
analogous to that discussed in Section 3.3.7 in the context of
migration in reflection seismology. Because the scatterers are
comparable in size (about 10–15 km) to the wavelengths of
short-period P waves in the lower mantle, they behave as
Huygens’ sources (Section 2.5.10). Thus a PKP-AB wave
interacting with a scatterer at the CMB radiates waves in all
directions (Fig. 3.5-9). Those arriving before PKP-DF are
clearly observed, whereas those arriving afterwards are lost
amid PKP-DF. The range of observable scattered PKP waves is
shown as the shaded regions in Fig. 3.5-9, illustrating another
way in which seismic energy reaches the shadow zone. Although
most such scattering occurs near the CMB, modeling of the
PKP precursors suggest that waves are also scattered by small
reflectors throughout the mantle, as shown by the dark shaded
region in Fig. 3.5-9.

Some core phases begin as S waves (Fig. 3.5-5). Although no
S waves propagate in the liquid outer core, phases like SKS
travel through the mantle as an S wave and through the core
as a P wave. SKKS is similar to SKS, but also involves an
underside reflection at the CMB. Because the P velocity of the
uppermost core (about 8.1 km/s) is not much larger than the S
velocity of the lowermost mantle (about 7.2 km/s), SKS and
SKKS waves do not change direction significantly as they cross
the CMB. Thus SKS, SKKS, SKKKS, etc. are the only waves
that bottom near the top of the core and are used to constrain
the outer core’s velocity structure.
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Fig. 3.5-9 A model for the PKP precursors shown in Fig. 3.5-8. Top: PKP-
AB waves that interact with scatterers (stars) cause arrivals at distances
less than the geometrically allowed AB range. As shown by the travel times
(bottom), these arrivals precede the PKP-DF arrivals. Scatterers at the base
of the mantle yield waves in the light and dark shaded regions, and others
in the mid-mantle yield waves in the dark shaded region. (Hedlin et al.,
1997. Reproduced with permission from Nature.)

7 This observation and normal mode results are overcoming seismologists’ prior
reservations, exemplified by comments like “the inner core, which may exist, is said
to have the following properties. . . .”

Other core phases, some of which are not included in the
travel time plots in Fig. 3.5-4, have also been reported. These
include PKKP (Fig. 3.5-10), a P wave that has undergone under-
side reflection at the CMB, PKPPKP (sometimes called P′P′),
a PKP phase reflected at the surface, and PKIIKP, an under-
side reflection from the outer core–inner core boundary. An
especially elusive phase has been PKJKP, which, by analogy to
PKIKP, travels through the inner core as an S wave. The weak
amplitude of this phase, combined with the fact that it arrives
late in the seismogram amid other phases, has made it difficult
to observe. PKJKP has been verified only recently, by stacking
data from very large deep earthquakes that generate the large
body waves needed to produce even small PKJKP, while not
generating surface waves that mask the small core arrivals.7

Inner
core

Outer
core

Mantle
PKP

PKIKP

PKIIKP

PKKPPKPPKP

PKiKP

Fig. 3.5-10 Some additional core phases. PKKP and PKIIKP are
underside reflections at the core–mantle boundary and outer core–inner
core boundaries, and PKPPKP (P′P′) is an underside surface reflection.
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Core phases can be challenging to study with travel time data
because their travel time curves are complicated and some
of the arrivals are small. Amplitude and waveform studies
provide additional information. As we have seen (Section 3.2.3),
amplitudes can be used to differentiate between structures that
would give similar travel times. Some insight into the ampli-
tudes can be obtained from the ray densities (Section 3.4.2).
For example, the AB and BC branches of the PKP travel time
curve meet at the far side of the shadow zone, at point B.
Figure 3.5-7 shows that rays which left the source at uniform
angle increments are concentrated there, so large amplitudes
are expected at this caustic.

This discussion of amplitudes brings out another interesting
point. Although the earth is approximately spherical, we have
discussed only waves propagating in the plane containing the
source, the receiver, and the center of the earth. One case in
which sphericity is important is near the antipode, the point
180° from the source. Figure 3.5-11 shows seismograms re-
corded at PTO (Porto, Portugal) and MAL (Malaga, Spain)
from an earthquake in New Zealand. Phases like PP and PKP
are focused at the antipode, because paths in any direction
from the source arrive at the same time. Note the larger arrivals
at PTO, only 0.7° from the antipode.

3.5.3 Upper mantle structure

The velocity structure of the upper mantle shows two major
effects. First, it has discontinuities and velocity gradients that
are essentially radially symmetric, which are believed due to the
effects of pressure on the minerals present. Second, it contains
significant lateral heterogeneity that is primarily associated
with temperature variations due to cold subducting oceanic
lithosphere. We discuss the radial velocity structure here,
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Fig. 3.5-11 Focusing of P waves at the antipode, 180° from an earthquake. Left: Seismic rays PKP-AB and PP focus at the antipode. Dashed lines
represent wave fronts, whose propagation time in minutes is given. Right: Seismograms showing antipodal focusing of core phases. (Rial and Cormier,
1980. J. Geophys. Res., 85, 2661–8, copyright by the American Geophysical Union.)

waves sample physical properties over a period of seconds,
whereas the lithosphere and asthenosphere are inferred from
data sampling periods of thousands and millions of years
(Section 5.7).

The depth and magnitude of the LVZ vary regionally. In
tectonically active regions like western North America, the
LVZ is well developed and relatively shallow. In stable con-
tinental regions that have not experienced tectonism for a long
time, the LVZ is deeper and less pronounced, and may not even
be present. The thick, high-velocity layer under continents has
led to the suggestion that it may reflect a chemically distinct
tectosphere. For this hypothesis, continents behave differently
from the oceanic lithosphere, where surface wave dispersion
shows a pronounced LVZ for all ages (Fig. 2.8-7). This persist-
ence may reflect the fact that oceanic lithosphere is never older
than 180 Ma, tectonically young by continental standards,
because older oceanic lithosphere is subducted away.

We will show in Section 5.7 that the contrast between the
high-velocity seismic lithosphere and the asthenosphere LVZ
is probably related to variations in material strength between
the cold lithosphere and the warmer asthenosphere. There may
also be some effects of partial melting. This situation differs
from the velocity differences between the crust and the mantle,
which result from their different compositions. Beneath the
LVZ, which extends to an average depth of about 200 km,
temperatures increase only slowly, but velocities increase signi-
ficantly in response to the increasing pressure.

The transition zone between the upper and lower mantles is
marked by the velocity discontinuities at depths of about 410

explore its mineralogical causes in Section 3.8, and consider the
effects of subducting lithosphere in Section 5.4.

We have already discussed the velocity structure of the upper-
most mantle shown by surface wave dispersion (Section 2.8).
Body wave analyses reveal a similar structure. The sub-crustal
lithosphere shows generally fast P- and S-wave velocities of
about 8.1 and 4.5 km/s. This high-velocity layer provides a
way of defining the lithosphere, termed the seismic lithosphere
or lid, from seismological observations. The thickness of the
seismic lithosphere varies with location. At mid-ocean ridges,
where oceanic plates are created, its thickness approaches zero.
Beneath stable cratons, the fast lithospheric velocities extend
to about 200 km. As a global average, the seismic lithosphere
extends to about 80–100 km depth.

In most regions of the world, we find a seismic low-velocity
zone (LVZ) beneath the seismic lithosphere. The LVZ appro-
ximately coincides with the expected mechanically weak
asthenosphere underlying the stronger lithosphere. The lith-
osphere and asthenosphere are defined by their mechanical
properties, such that plates of strong lithosphere slide over
weaker asthenosphere. This contrast, as we will see, results
from the fact that the lithosphere is the cold outer thermal
boundary layer of the solid earth (Sections 3.8, 5.1). By con-
trast, the high-velocity seismic lithosphere and underlying LVZ
are seismologically defined entities. The rough correspondence
between the seismological and mechanical layers indicates that
the two are closely related, and that seismic observations can be
used to map mechanical structure. The two sets of layers are
not identical for several reasons including the fact that seismic
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8 The uncertainties about D″ have been illustrated by describing its thickness as
250 ± 250 km (Jeanloz, 1990).

Fig. 3.5-12 Ray paths for P waves through the upper mantle, computed for earth model PREM, showing triplications due to mantle discontinuities.

Earthquake

Upper mantle

45°

and 660 km. We saw in the last section that a rapid velocity
increase (Fig. 3.4-6) produces a triplication in the travel time
curve. Upper mantle travel times show two triplications around
15° and 22° caused by the 410 and 660 km discontinuities.
Ray paths for such a structure are shown in Fig. 3.5-12. Some
reference models such as PREM also have a discontinuity at
220 km, and regional studies also often find discontinuities at
other depths in the upper mantle.

One difficulty in studying the transition zone, or other re-
gions of complex velocity structure, is that travel time curves
are composites of data from many earthquakes at different dis-
tances. The process of combining the data can make the details
of the triplication difficult to observe. Moreover, dT/d∆, the
derivative of the travel time curve that is used in inverting for
velocity, is uncertain due to the scattered data. These difficult-
ies can be addressed in several ways. One is to derive informa-
tion from the waveforms as well as the travel times. A second is
to use arrays of seismometers spaced closely enough that it is
possible to identify arrivals corresponding to the different
branches of triplications and directly measure dT/d∆ by tracing
them across the array. Such dense data also facilitate waveform
studies.

Figure 3.5-13 (overleaf ) illustrates these ideas with an array
study of upper mantle P-wave structure under the Gulf of
California spreading center. Data from ten earthquakes are
combined into a record section for the epicentral distance range
9–40°. The travel time curves show two triplications, one near
15° due to the 410 km discontinuity, and another around 22°
due to the 660 km discontinuity. Travel times and synthetic
seismograms predicted by the velocity structure (GCA) derived
from the data fit the data well, including the back branches (C-
B and D-E) of the triplications. The effects of the discontinuities
appear in the p(∆) data as two groups of later arrivals for which
p increases with ∆. These arrivals are the back branches of the
triplications (Fig. 3.4-6). The remaining arrivals show p de-
creasing with ∆, and thus are the forward branches.

Figure 3.5-14 compares the GCA model to upper mantle
models for other tectonic environments: ARC-TR (arc-trench)
for the Japan subduction zone, T7 for the tectonically active
western portion of North America, and K8 for the stable
Eurasian shield. Above 200 km, all show a LVZ overlain by
a higher-velocity lid, but the depth and extent of the LVZs
differ. The shield model, for example, has the thickest lid.
Below 200 km, GCA shows the lowest velocity. The depths of

the 410 and 660 km discontinuities differ between the models.
These differences are thought to reflect the fact that the mineral
phase transformations causing the discontinuities occur at
pressures (and hence depths) that depend on temperature. Thus
lateral temperature changes, especially those associated with
subduction zones, should change the depths at which these
transitions occur (Section 5.4.2).

Waveform modeling provides additional information about
the transition zone. For example, waveform modeling of
intermediate-period S waves shows a discontinuity at about
520 km depth that is not observed with short-period P waves.
The phase transition thought to cause this discontinuity may
occur over a greater depth range than for the 410 and 660 km
discontinuities, making it visible only to longer-period waves.

3.5.4 Lower mantle structure

Velocities increase rapidly with depth for roughly 100 km
beneath the 660 km discontinuity, but then increase more
slowly. The rapid increase implies that mineral transforma-
tions continue, whereas the slow increase implies that the
mineralogy and composition of the material are not changing
significantly, and that the velocity increases are primarily
due to the material being compressed by higher pressure.
However, weak seismic discontinuities have been reported at
a variety of depths such as 900 and 1300 km. These may repre-
sent either global discontinuities like the 410 and 660 ones,
or local velocity anomalies, perhaps due to fragments of old
subducted slabs.

The situation changes dramatically in the D″ layer at the very
base of the mantle, a fascinating and poorly understood region8

that has a velocity structure whose complexity rivals that of
the lithosphere. D″, the bottom few hundred kilometers of the
mantle, was initially differentiated from the rest of the mantle
(D′) because the velocity gradient with depth is lower. This
lower gradient is expected, because D″ is a thermal boundary
layer between the mantle and hotter core. The expected
~1000°C temperature difference across D″ would lower
velocities and thus decrease the velocity gradient.

However, detailed velocity models show that at the top
of this lower-gradient region the velocity increases sharply
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(Fig. 3.5-15). A feature of such models is that the high- and
low-velocity regions trade off to give similar travel times as
PREM, which does not contain the high-velocity region. Thus
D″ is now often delineated by the location of the discon-
tinuous velocity increase, which averages about 250 km above
the CMB. This is ironic, in that D″ was first named for a region
of lower than expected velocities.

Observations of the velocity increase, known as the D″ dis-
continuity, are usually made with the phases PdP and SdS, each
of which combines waves that reflect off and refract just under

the discontinuity (Fig. 3.5-16). PdP and SdS arrive between the
direct (P and S) and core-reflected (PcP and ScS) phases, as
shown. The discontinuity has been observed at many locations
on the CMB, but other locations, even nearby, do not show
a PdP or SdS arrival. Moreover, although the average depth
of the discontinuity is 250 km above the CMB, the observed
depths range from 100 to 450 km above the CMB.

One possible explanation for this variability is that the dis-
continuity has large topographic variations over small spatial
wavelengths that focus and defocus waves. Another possibility

Fig. 3.5-13 Seismic array study of upper
mantle structure. Top: Record sections,
plotted with a reducing velocity of 10°/s,
showing observed (left) and synthetic (right)
seismograms. Bottom left: Reduced travel
time plot, showing travel time data and
model predictions. Bottom right: p(∆)
plot and model predictions. The two
triplications are evident in the record
sections, travel time plot, and p(∆) plots.
The slight break in the travel time curve at
13° is due to use of slightly different models
(GCA′ versus GCA). (Walck, 1984.)
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Fig. 3.5-16 Top: Schematic ray paths of the two arrivals making up
the phase SdS. Sbc reflects off the D″ discontinuity, and Scd refracts
just below it. (Wysession et al., 1998. The Core–Mantle Boundary
Region, 273–97, copyright by the American Geophysical Union).
Bottom: Observed Scd arrivals (arrows) (left) compared to synthetic
seismograms (right) computed using velocity model SYLO (Fig. 3.5-15).
(After Young and Lay, 1990. J. Geophys. Res., 95, 17, 385–402,
copyright by the American Geophysical Union.)

is that there is no actual discontinuity, but that complex three-
dimensional velocity heterogeneities give the appearance of a
discontinuity. This possibility is supported by observations of
the increased scattering of seismic waves passing through D″.
In either case, it is possible that the increase in velocity is associ-
ated with subducted lithosphere that sank to the bottom of the
mantle. There is a correlation between regions of fast velocities
in D″ and the projected locations of fossil slabs from ancient
subduction zones (Fig. 3.5-17), which should retain a cold
thermal anomaly for a long time after reaching the CMB
(Section 5.4.1). Seismic modeling suggests that this mechanism
could generate PdP and SdS phases.

D″ shows additional complexities. There is strong evidence
for significant seismic anisotropy (Section 3.6.6). Large lateral

Fig. 3.5-15 Velocity structures from several studies showing an increase
in velocity about 250 km above the core–mantle boundary, known as the
D″ discontinuity. (Wysession et al., 1998. The Core–Mantle Boundary
Region, 273–97, copyright by the American Geophysical Union.)

Fig. 3.5-14 Comparison of model GCA, derived from the data in Fig. 3.5-
13, to P-wave velocity models for other tectonic regions. (Walck, 1984.)
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the CMB is likely to be the site of many processes involving
lateral and vertical motions and vigorous chemical reactions.
An analogy might be that D″ is a thermal boundary between
the mantle and the core, analogous to the lithosphere, which
is the thermal boundary layer at the top of the mantle. The
high-velocity layer at the base of D″ may be a chemical layer,
analogous to the crust. These complexities have led the CMB
to be called the graveyard of ancient ocean lithosphere, the
birthplace of mantle plumes, and the region that most signific-
antly controls the outer core convection patterns and thus the
earth’s magnetic field. The fact that we study this region largely
via seismic “remote sensing” through 2890 km of heterogene-
ous mantle may limit the degree to which it can be understood.9

3.5.5 Visualizing body waves

To end our discussion of body waves, it is worth considering
their physical nature. We have treated body wave arrivals like S
and ScS as geometric rays. However, although it is convenient
to describe these waves as rays and to show their paths through
ray tracing, this approximation does not fully describe their
behavior.

To see this, we consider a numerical simulation showing
time snapshots of the SH shear wave field generated by a
600 km-deep earthquake (Fig. 3.5-19). The wave field is
synthesized by summing 28,000 torsional normal modes
(Section 2.8) with periods above 12 s. The calculations show
accurate relative amplitudes, with light and dark shades repres-
enting displacements into and out of the paper, respectively.
Although the normal mode solution is itself an approximation
to the actual wave field in the laterally heterogeneous earth, it
is much closer to reality than geometric rays.
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Fig. 3.5-17 P-velocity variations at the
base of the mantle. Dark areas represent
anomalously fast velocities, and light areas
are slow anomalies. The fast anomalies
correlate with the predicted locations
of lithosphere subducted during the
Mesozoic that sank to the base of the
mantle. (Wysession, 1996b. Reproduced
with permission from Nature.)

Fig. 3.5-18 Ray paths of SPdKS, a phase that is highly sensitive to the
ultra-low-velocity zone at the base of the mantle. As with many studies
of the deep mantle and core, it is analyzed using the difference between
its travel time and another phase — in this case, SKS.

variations at both small and large spatial wavelengths occur for
velocities within D″ and for topography on the CMB. There is
also evidence for an ultra-low-velocity zone (ULVZ) at the very
bottom 10–20 km of the mantle. The ULVZ is observed with
an unusual body wave phase, SPdKS, which is similar to SKS
but travels partly as a diffracted P wave at either or both of
its entrance and exit points from the core. SPdKS appears as
a shoulder of the SKS arrival, and is very sensitive to the
P-wave velocity structure just above the CMB (Fig. 3.5-18).
Modeling of SPdKS waveforms suggests that vp may be 10%
lower than in the rest of D″, and the reflection coefficients of
PcP precursors that reflect off the top of the ULVZ suggest that
vs may decrease by 30%. The ULVZ may result from partial
melt, because it is most prominent where D″ velocities are
slowest, implying that the high temperatures causing the low
velocities may also cause more partial melting.

In summary, much uncertainty remains about the detailed
structure of D″ and its causes. This is hardly surprising, because

9 The geophysical significance of the CMB and the large uncertainties remaining
about it are summarized by D. Stevenson’s description of D″ as “the sum of all of our
ignorance of the interior of the earth.”
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Fig. 3.5-19 Snapshots of a synthetic SH wave field showing the propagation of waves after a 600 km-deep earthquake. The initial wave front moves
away from the source at the lower left side of the figures. The wave front develops complexity due to interactions with the surface, CMB, and internal
discontinuities and velocity gradients. The wave field is computed using the spherically symmetric PREM velocity model. Amplitudes are raised to
a power of 0.8 to enhance smaller signals. (After Wysession and Shore, 1994.)



176 Seismology and Earth Structure

As shown, a single spherical S wave front is quickly broken
into various wave fronts by reflections off the surface, mantle
discontinuities, and the core. As the wave fronts arrive at the
surface, they cause arrivals that we call S, ScS, sS, etc.

In the first frame, Fig. 3.5-19a, which is 60 s after the earth-
quake, the wave front maintains much of its initially spherical
shape. The upgoing part of the wave front is headed toward the
surface, but will not reach it for another 67 s. The downgoing
part of the wave front is headed toward the core, where it will
be fully reflected and give rise to ScS.

In Fig. 3.5-19b, 300 s after the earthquake, the wave front
still maintains its integrity, though the upper part is now re-
flecting off the surface, and the lower part is about to reach the
core. The slower upper mantle velocities cause bends in both
the reflected and the unreflected waves. The S wave front is
reaching the surface 12.5° away from the source, and at closer
distances has already reflected downward. When these down-
going waves reach the surface again, they will be called the
sS and sScS phases. The downgoing portion of the initial wave
front that will become ScS has not yet reached the core.

By 600 s after the earthquake (Fig. 3.5-19c) added complex-
ity is evident. The upgoing wave that reflected at the core will
generate ScS and its multiples (ScS2, ScS3, etc.). The surface-
reflected wave is separating into two parts. One is heading into
the lower mantle and will eventually reach the surface as the
sScS and sS phases. The other will turn higher up in the mantle
and arrive at the surface as the SS phase. Behind the sS, ScS,
and sScS wave fronts are upper mantle echoes reflected from
the 220, 400, and 670 km discontinuities. However, despite all
that is going on, the only phase yet recorded at the surface is S,
now arriving 31° away from the source. sS will begin to arrive
in another 63 s, at a distance of 24°.

By 900 s after the origin time (Fig. 3.5-19d), four segments of
the broken wave front are reaching the surface: S at 52°, sS at
39°, SS at 38°, and ScS at 33°. The sS and SS wave fronts have
begun to separate. In contrast, the ScS and S wave fronts have
begun to come back together because they enter the core
shadow, where the S/ScS wave front continues as a diffracted
Sdiff wave. Behind the S and ScS waves in the lower mantle are
the sS and sScS waves, which follow similar paths except for
their surface reflections. The distance between S and sS (and
also between ScS and sScS) is a function of the depth of the
earthquake. The three wave front segments labeled SS form
a characteristic “Y” shape that results from the waves turn-
ing in the mid-mantle. The “Y”’s junction represents the
superposition of the part of the wave front that is heading
down toward the bottoming point and the part of the wave
front that has already turned and is heading back up again.
Behind SS, the phase SSS that bounces twice on the underside
of the surface, is beginning to form.

In Fig. 3.5-19e, 1200 s after the earthquake, most of the
initial S wave front is actually Sdiff because S grazes the core at
about 100°. The surface-reflected sS wave now also diffracts
around the core as sSdiff. SSS is now fully developed, and is
reaching the surface behind SS. The polarity of SSS is different

from that of SS, because each successive surface bounce
changes its phase by π /2 (Section 3.5.1). The initial S-wave
polarity is into the page (light-colored), whereas SSS is prim-
arily out of the page (dark colored) because it has been
phase-shifted twice. The smaller-amplitude phases evident are
reflections from the upper mantle discontinuities in the velo-
city model at depths of 220, 400, and 670 km, and so come in
threes. One set of these, labeled as ScS220S, ScS400S, and
ScS670S, are underside reflections that precede ScS2.

By 1500 s after the earthquake (Fig. 3.5-19f), the initial wave
front is entirely diffracted Sdiff , reaching the surface at a dis-
tance of 111°. Because waves travel much faster at the base of
the mantle than in the upper mantle, Sdiff at the CMB has gone
further, reaching 152°. A set of mid-mantle reflections labeled
S220S, S400S, and S670S, which are also visible in the previous
panel, appear ahead of SS. These peel off the upgoing S/Sdiff
wave front as it interacts with the discontinuities. Because they
are related to SS, they also have the “Y”-shape characteristic
of underside-reflected phases. The upgoing parts of the “Y”
formed from the upgoing S phase, but the downgoing parts
(right side of the “Y”) peel off Sdiff and are better called
Sdiff200Sdiff , Sdiff400Sdiff , and Sdiff670Sdiff . The waves with the
largest amplitudes, SS and SSS, are arriving at the surface at
distances of 76° and 63°.

In Fig. 3.5-19g, 1800 s after the earthquake, S4 has begun
to be observed at the surface (71°), following SS (97°) and
SSS (83°). The next surface reflection, S5, is now developing.
The ScS2 multiple reflection is arriving at the surface 36° from
the earthquake. The downgoing part of SS is from Sdiff reflect-
ing at the surface, so it will arrive at the surface at distances
greater than 200° as the phase Sdiff Sdiff . By now, 30 minutes
after the earthquake, seismic energy has spread throughout
the mantle. Multiple ScS waves are still reverberating between
the surface and the core. At the CMB, the leading Sdiff wave
has wrapped around the antipode and is heading back toward
the epicenter.

This simulation illustrates that although the ray paths used
to describe body waves in the earth are intuitively appealing
and useful, they are simple ways of characterizing a complic-
ated wave field. An earthquake generates an initially spherical
wave front whose interaction with various interfaces gives rise
to many wave fronts. We use names for the arrivals that the
wave fronts cause at the surface, so different parts of the same
wave front, or the same part at different times, are given differ-
ent names. Hence our intuition based on geometric rays can
lead us to miss some of the richness that occurs. For example,
we tend to view diffraction as an exotic effect different from the
direct ray path, but the simulation shows no major change as
the direct wave becomes the diffracted wave, although there
is a loss of high frequencies. Hence the simulation shows no
obvious core shadow zone, because seismic energy reaches
the shadow zone by diffraction and multiple reflections. The
essential point is that the wave fields are the physical entities,
whereas rays are useful approximations whose limitations
should be kept in mind.



3.6 Anisotropic earth structure

3.6.1 General considerations

So far in this chapter, we have considered a view of the earth
developed from analyses of seismic waves assuming that they
propagated through an earth made up of purely isotropic,
linearly elastic material (Section 2.3.9). In such material, the
stresses are linearly proportional to the strains via Hooke’s law

σij = cijkl ekl, (1)

and the 81-term tensor of elastic moduli, cijkl, reduces to two
independent elastic constants, λ and µ. As a result, the material’s
elastic properties are the same in all directions. Although isot-
ropy is a good first approximation in the earth, it is sometimes
important to consider deviations from isotropy, or anisotropy.
In such cases, Hooke’s law applies, but the relation between the
stresses and strains involves more than two elastic constants.
Although there can be up to 21 independent elastic constants,
any material in which more than two are needed is called
anisotropic.

Having more than two elastic constants means that the
material’s properties differ depending on the direction. Because
seismic wave velocities depend on the elastic constants, waves
traveling through anisotropic material travel faster or slower
depending on their direction, and complicated wave phenom-
ena can occur. For example, a shear wave can be split into two
pulses, each with a different polarity and traveling at a different
speed (Figs 3.6-1, 2.4-8).

Anisotropy can result from a material’s being non-uniform,
a condition called heterogeneity or inhomogeneity. A common
situation is when material has directionality in its structure. For
instance, plywood is a superposition of thin layers of wood,
so its strength (shear modulus) differs in different directions.

Similarly, a stack of rock layers with different isotropic velo-
cities can as a whole behave anisotropically, so seismic waves
travel with different speeds parallel or perpendicular to the
layers. This situation is called shape-preferred orientation
(SPO) anisotropy. Anisotropy can also occur for homogeneous
materials. For example, the crystal structure of the mineral
olivine is homogeneous in that it is composed of the same
repeating groups of atoms, but acts anisotropically because its
acoustic properties vary in different directions relative to the
crystal lattices of an agglomeration of mineral grains. This situ-
ation is called lattice-preferred orientation (LPO) anisotropy.

The anisotropic variations of the seismic velocity of earth
materials are small compared to the large changes in seismic
velocity that occur radially from the surface to the core. Hence,
in developing radial models of seismic velocity, anisotropy has
traditionally been treated as a secondary effect. Nevertheless,
recent efforts to better quantify three-dimensional velocity varia-
tions sometimes find that anisotropic perturbations are com-
parable to lateral velocity changes. It is often difficult, however,
to distinguish between the effects of anisotropy and those of
heterogeneity. For example, curvature on a refracting interface
can simulate many of the effects associated with anisotropy.

An important reason to study anisotropy is that material flow
at depth appears to preferentially orient olivine crystals within
upper mantle rocks. Hence mapping the seismically “fast”
direction lets us investigate the relation between plate motions
and mantle flow at depth. Although anisotropy studies are
ongoing, and both results and interpretations will change over
time, they represent a major frontier in deep earth studies.

3.6.2 Transverse isotropy and azimuthal anisotropy

As discussed in Section 2.3.9, the symmetry of the stress and
strain tensors and the idea of strain energy means that no more
than 21 of the 81 elastic constants cijkl are independent. We can
thus write the cijkl tensor as a matrix Cmn, where the indices
m and n vary from 1 to 6 as the pairs of indices (i, j) or (k, l)
take values of (1, 1), (2, 2), (3, 3), (2, 3), (1, 3) and (1, 2),
respectively:
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Fig. 3.6-1 Schematic of an initially polarized shear wave split along the
fast and slow anisotropic directions, yielding pulses separated in time.
The pulses remain split after leaving the anisotropic region.
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For an isotropic material, the cijkl tensor can be written in terms
of two independent elastic constants

cijkl = λδijδkl + µ(δikδjl + δilδjk), (3)

so its matrix form is
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However, the crystal structures of many earth materials re-
quire additional independent elastic coefficients. For example,
ice, quartz, olivine, or plagioclase feldspar require 5, 6, 9, and
21 constants, respectively. In such cases, the matrix is more
complicated.

One of the most important forms of anisotropy, known
as transverse isotropy (also known as radial anisotropy,
axisymmetry, and cylindrical symmetry), occurs for a stack of
layered materials. Each layer is isotropic in its properties, but
these properties differ between layers (as in plywood). Thus the
elastic properties, and hence seismic velocities, of the stack as
a whole are identical regardless of the amount of rotation
about the axis of symmetry, which is perpendicular to the layers.
However, these aggregate properties differ in the perpendicular
directions.

A transversely isotropic material can be characterized by five
independent elastic coefficients, A, C, F, L, N, that represent its
aggregate properties. If the axis of symmetry is x3, so properties
in that direction differ from those in the x1–x2 plane, the elastic
constant matrix (Eqn 4) becomes
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Comparisons with matrices 2 and 4 show that terms that were
the same for an isotropic material (consider C11 and C33, or C55
and C66) now differ, because terms involving the x3 direction
differ from those in the x1 or x2 directions.

This matrix gives the velocities of waves propagating in dif-
ferent directions. First, consider waves propagating in the x1
direction (Fig. 3.6-2, top). By analogy to the isotropic case,
A corresponds to λ + 2µ for the x1 direction, N corresponds
to µ for the x2 direction, and L corresponds to µ for the
x3 direction. Thus the P velocity and the two orthogonal S
velocities are

P1 = (A/ρ)1/2, S1 = (N/ρ)1/2, S2 = (L/ρ)1/2. (6)

Hence the velocity of shear waves traveling in this direction
depends on the directions of their particle motions. The waves
become split, with waves polarized in one plane traveling
faster than those polarized in the other. This is one way to get
splitting like that shown in Fig. 3.6-1. These results would
be the same for propagation in the x2 direction, or any other
direction in the x1–x2 plane, because physical properties in this
plane are independent of direction.

In many applications, the horizontally layered earth shows
transverse isotropy about a vertical axis. The SH-wave velo-
city S1 is generally faster than the SV velocity S2, because the SH
displacement is preferentially in the fast layers, whereas SV
samples both equally. An interesting consequence is that the
shear velocity inferred from the dispersion of Love waves,
which are SH waves, would be higher than that from Rayleigh
waves, which involve SV.

Direction of propagation

S2

S1 P1 X1

X3
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Fig. 3.6-2 Cartoon showing the effects of transverse isotropy due to
layering. Top: Directions of oscillations for P and S waves propagating in
the x1 direction, in the plane of layering. The shear wave oscillating in the
plane of the layering has velocity S1, which is generally faster than that
for the shear wave oscillating across the layers, S2. Bottom: Directions
of oscillations for P and S waves propagating in the x3 direction,
perpendicular to the layering. The compressional wave velocity, P2, is
generally less than P1. Both shear waves have the same velocity, S1.



By contrast, for P and S waves propagating in the x3 (axis of
symmetry) direction (Fig. 3.6-2, bottom), both S velocities
equal S2 in Eqn 6. The P velocity reflects the fact that C corres-
ponds to λ + 2µ for the x3 direction, so

P2 = (C/ρ)1/2. (7)

For layered materials, typically P1 > P2, so P waves propagate
faster in the x1 direction than in the x3 direction. This is because
the wave travels preferentially in the fast layers in the x1 direc-
tion, whereas a P wave traveling in the x3 direction must also
traverse the slow layers.

Transverse isotropy is often characterized by three
parameters:

ξ = N/L = (S1/S2)2, φ = C/A = (P2 /P1)2, η = F/(A − 2L). (8)

If the material were isotropic, ξ = φ = η = 1. For layered struc-
tures, generally ξ > 1 and φ < 1.

A second common type of anisotropy is azimuthal
anisotropy, in which velocities vary as a function of horizontal
direction. One way to obtain this is to have transverse isotropy
with the x3 axis turned to horizontal, which is analogous to
standing plywood vertically. In general, the P-wave velocity
varies with azimuth as

P(θ) = A1 + A2 cos 2θ + A3 sin 2θ + A4 cos 4θ + A5 sin 4θ, (9)

where the constants Ai depend on the 21 elastic constants.

3.6.3 Anisotropy of minerals and rocks

An important source of seismic anisotropy is minerals that are
anisotropic due to their crystal structure. At microscopic levels
the anisotropy can be enormous, with velocities along different
mineralogical axes varying by more than 100%. Generally,
however, the anisotropic mineral grains are randomly oriented,
so seismic waves have wavelengths long enough to average out
the anisotropic effects, leaving only weak anisotropy. However,
in some cases the mineral grains are aligned, causing significant
anisotropy.

Laboratory studies of the elastic moduli of minerals give
insight into such LPO anisotropy. Some studies involve static
methods like twisting or squeezing samples, but most use the
vibrational properties of mineral samples as small as 1 mm. At
very high pressures, a technique called Brillouin scattering,
which measures how laser light passing through the mineral is
distorted, yields elastic constants for samples smaller than
0.1 mm.

One of the most important anisotropic minerals is olivine
(Fig. 3.6-3), which comprises much of the upper mantle
(Section 3.8). For waves propagating in the fastest direction,
the P-wave velocity is 9.89 km/sec and the S velocities are
4.89 km/s and 4.87 km/s. By contrast, the slowest P velocity in
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Fig. 3.6-3 P and S velocities (km/s) in different directions relative to
the crystal structure of olivine. P velocities are in the directions of the
dashed lines, and the S velocities are shown by the adjacent pairs of
perpendicular lines. The a axis, corresponding to the [100] crystal face,
is the fastest direction through the crystal. It is also the dominant slip
direction, so olivine crystals align in the direction of plastic flow.
(Babuska and Cara, 1991. With kind permission from Kluwer
Academic Publishers.)

this example is 7.72 km/s. The magnitude of anisotropy is
characterized by

k = (vmax − vmin)/vmean. (10)

For P-waves in the olivine crystal, αmax = 9.89 km/s, αmin =
7.72 km/s, and αmean = 8.81 km/s, so k = 25%. The maximum
and minimum S velocities are 5.53 km/s and 4.42 km/s, so
k = 22%. Although for olivine the anisotropy of P and S waves
is similar, they can differ greatly for other minerals.

Other important minerals range from nearly isotropic to
extremely anisotropic. One of the most isotropic minerals
is garnet, where k for both P and S waves is ≤ 1%. At the other
extreme, sheet silicates like mica can have values of k up to
60% for P waves and 116% for S waves.

As a result, a major factor controlling a rock’s anisotropy is
the anisotropy of the minerals composing it and their relative
proportions. Another important factor is the presence of
deviatoric stresses, which can cause a preferred orientation of
anisotropic mineral grains that might otherwise be randomly
distributed. Crystals are generally oriented with their smallest
widths in the direction of maximum compression. For example,
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in micas, which are important components of highly foliated
schists, the flat crystals are oriented parallel to the plane of
least compression. Thus slip occurs more easily parallel to the
developing foliation, because the planar mica faces contain
the weakest bonds. Shear in a preferred direction can also
recrystallize different mineral assemblages, so the resulting
anisotropy reflects a combination of the preferred orientation
of anisotropic materials and the presence of laminar structures.

3.6.4 Anisotropy of composite structures

Anisotropy can also result from an asymmetric combination
of materials. The upper continental crust often contains hor-
izontally layered sedimentary rocks. Similarly, oceanic crust is
comprised of sediments overlying layers of basalt and gabbro.
Such layering can yield transverse isotropy, with the symmetry
axis oriented vertically. On a regional scale, plate collisions often
cause significant metamorphism, sometimes yielding transverse
isotropy due to the preferred orientation of the foliation of
gneisses and schists.

Fluid-filled cracks, for example in a volcanic region, can also
cause anisotropy. For a material containing two-dimensional
fluid-filled cracks whose normals are parallel to the x1 axis, the
anisotropy is given by
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where ε is the crack density given by ε = Na3/V, N is the number
of cracks in the volume V, and a is the half-width of a crack. If
the cracks become infinitely small, ε = 0, yielding the isotropic
case (Eqn 4). In general, the anisotropy depends on the geo-
metry of the inclusions and their contrast in properties with the
surrounding matrix. For computational ease, rods (prolate
spheroids) and disks (oblate spheroids) are often assumed in
seismic modeling.

3.6.5 Anisotropy in the lithosphere and the asthenosphere

Anisotropy in the lithosphere takes many forms, including that
in glaciers whose flow aligns the ice crystals. Closer to our
applications, several effects generate anisotropy in the oceanic
crust. Horizontal sediment layers can create transverse isotropy
of up to 15% with a vertical symmetry axis. In the upper crustal
layer of vertical-sheeted basaltic dikes, azimuthal anisotropy is
thought to exist with a horizontal axis perpendicular to the
dikes and thus in the spreading direction.

Sub-crustal oceanic lithosphere shows strong azimuthal
anisotropy. The flow processes associated with plate spreading

Fig. 3.6-4 Top: Illustration of how the spreading process yields a
preferred orientation of olivine crystals in the oceanic lithosphere, with the
fast axis of velocity ([100]) in the spreading direction. Bottom: Variations
in Pn wave velocities near Hawaii. The azimuth is measured relative to the
trend of the isochrons (90° from the spreading direction), so the maxima
at 90° and 270° show that the fast direction of the azimuthal anisotropy is
in the direction of spreading when the plate formed. (Morris et al., 1969.
J. Geophys. Res., 74, 4300–16, copyright by the American Geophysical
Union.)
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(Fig. 3.6-4, top) appear to orient olivine crystals preferentially
in the spreading direction, along their [100] slip axes.1 Because
P waves propagate fastest in this direction (Fig. 3.6-3), Pn head
waves that sample the uppermost mantle just below the Moho
(Section 3.2.1) show a strong azimuthal velocity dependence
(Fig. 3.6-4, bottom). This variation is approximately described
by the cos 2θ term in Eqn 9, where θ is measured from the
spreading direction, so the velocity is highest in the spreading
direction or 180° from it. This anisotropy is “frozen in” as the
lithosphere ages, and so records the spreading direction.

Because continental crust is more complicated than oceanic
crust, so is its anisotropy. A primary source of anisotropy in
the upper crust is the presence of cracks, often fluid-filled.
Such cracks often have a near-vertical orientation induced by
regional stress fields parallel to the cracks. When these cracks
occur in horizontal sediments that would by themselves have
vertical-axis transverse isotropy, the combined result can be
orthorhombic symmetry. The lower continental crust tends to
have strong sub-horizontal layering, perhaps resulting from
ductile deformation, which causes seismic anisotropy. Fig-
ure 3.6-5 shows such layering in a seismic reflection profile and
a schematic diagram.

Anisotropy within and beneath continental lithosphere is
often studied with a technique called shear wave splitting. When
SKS waves convert from P waves in the outer core to S waves in
the lower mantle, they are entirely polarized in the radial (SV)
direction, because all the initial SH energy was reflected when
the downgoing S wave encountered the core–mantle boundary.
As these shear waves travel across the mantle and crust, how-
ever, they can be split when traveling through anisotropic media
(Fig. 3.6-6). Assuming transverse isotropy with a horizontal
axis of symmetry, the two polarized waves travel at different
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1 This representation of crystallographic axes is discussed in mineralogy texts like
Klein and Hurlbut (1985).

Fig. 3.6-5 Left: Seismic reflection profile
of the crust and upper mantle in eastern
Australia. The lower crust has multiple,
discontinuous, and sub-horizontal reflectors
possibly due to strain-induced fabrics,
igneous layering, or free fluids. This
structure yields vertical-axis transverse
isotropy. (Finlayson et al., 1989. Properties
and Processes of Earth’s Lower Crust, 1–16,
by permission of Australian Geological
Survey Organisation.) Right: Schematic
cross-section of the crust in the northern Ruby
Mountains of the North American Basin and
Range. There is a strong tendency toward
horizontally layered features, although the
likely origins of such fabrics vary with depth.
(Smithson, 1989. Properties and Processes
of Earth’s Lower Crust, 53–63, permission
as above.)

Transverse
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Radial
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Split shear waves
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s2
s1

Fast
direction

tδ

Fig 3.6-6 Splitting of an incoming shear wave into pulses oriented along
the fast (s1) and slow (s2) directions of anisotropy. The polarization
angle φ gives the rotation of the fast axis relative to the radial propagation
direction, and δt is the time difference between the split pulses.

speeds and arrive at different times. Thus, if the SKS signal on
the radial component in an isotropic earth is s(t), its projection
into the fast and slow polarizations is, respectively,

s1(t) = s(t) cos φ, −s2(t) = s(t − δt) sin φ, (12)

where φ is the polarization angle between the radial direction
and the fast axis, and δt is the delay time between the fast
and slow polarizations. We would normally not expect any
SKS on the transverse component, but anisotropy yields a com-
bination of both the fast and the slow polarizations on both the
radial and the transverse components, given by

R(t) = s(t) cos2 φ + s(t − δt) sin2 φ,

T(t) = [(s(t) − s(t − δt))/2] sin 2φ. (13)

For example, in Fig. 3.6-7a (top), SKS appears on the trans-
verse component. The two components are rotated to yield the
fast and slow polarizations, s1(t) and s2(t) (Fig. 3.6-7a, middle).
The time shift δt is then applied, and the signals are rotated
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again so that all of the signal appears on the radial component
(Fig. 3.6-7a, bottom). As shown in Fig. 3.6-7b, before cor-
rection, particle motion occurs on both components, but after
correction, the motion is limited to the radial component. The
fact that this technique removes the transverse signal shows
the appropriateness of the transversely isotropic model. The
values of φ and δt are found by minimizing the transverse
signal, as shown by the contour plot in Fig. 3.6-7c. Typical
values for the magnitude of shear wave splitting, δt, are in the
0–2 s range.

Seismic anisotropy within continents is thought to reflect
crystal alignment created during a tectonic episode and then
“frozen in.” The anisotropy is a result of the last episode
of tectonism, which resets any previous anisotropy. Because
continental rock can be as old as 4 Ga (the mean age is about
1.5 Ga), anisotropy in continental lithosphere can reveal
information about very old tectonic events such as episodes of
mountain building. For plate collisions the fast axis is usu-
ally sub-perpendicular to the principal stress axis, or parallel to
the resulting orogenic belts. There may also be deeper aniso-
tropy due to oriented olivine in the flowing asthenosphere.
However, it is sometimes difficult to distinguish this effect
from lithospheric anisotropy. For instance, in eastern North
America the fast axis is oriented WSW–ENE, parallel to the
direction of both absolute plate motion (Section 5.2.4) (and thus
presumably asthenospheric flow) and major orogenic bounda-
ries like the Appalachian Mountains (Fig. 3.6-8).

Surface wave observations indicate that anisotropy extends
to a depth of about 300 km beneath oceans. The S-wave veloc-
ity inferred from Love waves, which are SH waves, is higher
than inferred from Rayleigh waves, which involve SV. Figure
3.6-9 shows the squared S-wave velocity ratio ξ (Eqn 8) versus

depth for several ages of oceanic lithosphere. The deviation of ξ
from 1 reflects transverse isotropy with SH velocities faster
than SV velocities. Because the oceanic lithosphere extends to a
depth of about 100–125 km, anisotropy seems to extend into
the asthenosphere.

In addition, Rayleigh wave velocities show azimuthal
anisotropy similar to that found for Pn waves that sample the
uppermost mantle at much shallower depths. Both types of
anisotropy may reflect mantle flow (Fig. 3.6-4). The flow-
induced preferred orientation of olivine would give azimuthal
anisotropy in the spreading direction. Taking paths in different
directions averages out the azimuthal effect, leaving a net
transverse isotropy that is symmetric about the vertical. An
interesting consequence of this model is that near the ridges,
where mantle material is upwelling, transverse isotropy should
be less significant, as the data show. At older ages, mantle flow
will be more horizontal, increasing transverse isotropy.

3.6.6 Anisotropy in the mantle and the core

Although most of the mantle shows little or no anisotropy,
this is not so for the D″ region at the base of the mantle, where
complex interactions with the liquid outer core may occur
(Section 3.5.4). Studying anisotropy in a narrow layer nearly
3000 km below the heterogeneous mantle and crust is challeng-
ing, but initial investigations suggest anisotropy on the order of
several percent, comparable to the isotropic velocity variations.
D″ anisotropy seems to fall in to two categories. Beneath regions
of paleo-subduction, such as western Central America and the
northern Pacific rim, SH waves in the form of S, ScS, or Sdiff
travel faster than their SV counterparts (Fig. 3.6-10). This
behavior has been modeled as transverse isotropy. However,
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Fig. 3.6-7 Shear wave splitting of SKS
waves for a Kuril Islands earthquake,
stacked across an array of seismometers in
New Zealand. a: SKS waveforms before
and after processing. Top: radial and
transverse components before processing.
Note the large SKS signal on the transverse
component, which should not be there
for an isotropic earth. Middle: SKS
waveforms after rotation into the fast and
slow polarizations. Bottom: SKS waveform
after the splitting has been removed so that
all SKS is on the radial component. b:
Particle motion plots (Section 2.4) of SKS
on the radical and transverse components
before and after removal of the transverse
signal. c: Contour plot of the amplitude in
the radial component as a function of the
delay time and polarization angle. The
minimum corresponds to the best-fitting
value. (Gledhill and Gubbins, 1996. Phys.
Earth Planet. Inter., 95, 227–36, with
permission from Elsevier Science.)
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Fig. 3.6-9 Depth variations of ξ, the square of the VSH/VSV ratio, beneath
the Pacific Ocean. ξ tends to exceed 1, meaning that SH is faster than SV,
consistent with olivine in both the lithosphere and the asthenosphere being
preferentially oriented by the spreading process. (Nishimura and Forsyth,
1989.)
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Fig. 3.6-8 Map of the eastern USA showing
shear wave splitting results from SKS and
SKKS. Lines point in the direction of the
fast axis, assuming horizontally oriented
transverse isotropy, and the sizes of the
circles represent the magnitude of the
splitting in seconds. The background is a
map of the shear wave velocity anomalies
at 200 km depth (van der Lee and Nolet,
1997. J. Geophys. Res., 102, 22, 815–38,
copyright by the American Geophysical
Union.) The splitting direction is
approximately parallel to the Appalachian
orogenic belts (dashed line) and aligned with
the absolute plate motion (APM). Note the
regional variations for different locations.
(Fouch et al., 2000. J. Geophys. Res., 105,
6255–76, copyright by the American
Geophysical Union.)
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Fig. 3.6-10 Evidence for anisotropy at the base of the mantle, shown by
diffracted arrivals for a South American earthquake recorded at Canadian
station DAWY. Arrows show estimates of the onset times. Diffracted SH
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Fig. 3.6-12 PKP-BC − PKP-DF travel time residuals as a function of ξ, the
angle between the PKP-DF ray and the earth’s spin axis. Circles and thin
solid line are for data from Song and Helmberger (1993); squares and thin
dashed line are for data from Creager (1992). The thin solid and dashed
lines are the smoothed fits to the residuals. The heavy solid and dashed
lines are the predicted residuals for the transverse isotropy expected if the
inner core were composed of iron in either the hcp and the fcc structures.
The similarity between the hcp curve and the data support hcp as the
crystal phase for the inner core. (Stixrude and Cohen, 1995. Science, 267,
1972–5, copyright 1995 American Association for the Advancement of
Science.)

Fig. 3.6-11 Predicted anisotropic behavior for perovskite, periclase, and
silica as a function of pressure in the mantle. The far right corresponds to
the lowermost mantle, where these phases are major components. The
kinks in the silica curve result from phase transitions. (Stixrude, 1998.
The Core–Mantle Boundary Region, 83–96, copyright by the American
Geophysical Union.)

face-centered-cubic (fcc) structures. The hcp structure of iron,
aligned along the earth’s rotation axis, does a good job of
modeling the observations.

Inner core anisotropy is also shown by normal modes that
have significant displacement in the inner core. If there were no
lateral heterogeneity or anisotropy, the various singlets making
up a normal mode multiplet would have almost identical
eigenfrequencies (Section 2.9). In fact, as shown in Fig. 3.6-13
for the 18S4 multiplet, the modes are split, so the eigenfre-
quencies for the different singlets (points) vary depending on
the azimuthal order. The solid line (left) shows the splitting
predicted from a transversely isotropic model with elastic
parameters (shown on the right). Here α, β, and γ  are combina-
tions of the elastic constants for transverse isotropy (Eqn 5).
The velocity perturbation for any direction through the inner
core is

δv/v = (2β − γ ) cos2 ξ, (15)

where ξ is the angle between the ray path and the earth’s rota-
tion axis. δv/v is zero along an equatorial path, but is about 1%
parallel to the axis.

Inner core anisotropy is not perfectly symmetric about the
rotation axis, which allows for the possibility of observing differ-
ential rotation of the inner core with respect to the mantle. This
phenomenon has been reported, seen as temporal variations of
the BC-DF residuals (Eqn 14) for similar earthquake-station
geometries. Quantification of such differential rotation and its
implications for the generation of the magnetic field in the con-
vecting outer core are active research areas.

D″ anisotropy beneath the mid-Pacific is variable, with SH
waves usually but not always arriving before the accompany-
ing SV waves. This effect may reflect vertical structures due
to lower-most mantle upwelling. In addition, several mineral
phases that are expected here, such as perovskite (MgSiO3),
periclase (MgO), and the columbite phase of silica (SiO2),
should be anisotropic under these conditions (Fig. 3.6-11). Be-
cause little of the core–mantle boundary has been examined for
anisotropy due to the stringent earthquake-station geometries
required, much is yet to be learned.

Significant anisotropy occurs in the solid iron inner core.
PKIKP waves (PKP-DF) travel ~3 s faster in the inner core
along the earth’s rotation axis than along the equatorial plane.
The PKP-DF and PKP-BC phases (Fig. 3.5-7) travel similar
paths through the mantle, so any travel time difference between
them is likely to reflect structure in the core. Because of the
low viscosity of the liquid outer core, flow should eliminate any
lateral velocity variations, including anisotropy. Thus the dif-
ference between the observed differential travel times of the BC
and DF phases and that predicted by a model

δtBC − δtDF = (tBC − tDF)observed − (tBC − tDF)predicted, (14)

is likely to be a function of inner core structure along the DF
path.

Figure 3.6-12 shows BC-DF residuals versus ξ, the angle
between the PKP-DF ray segment in the inner core and the
earth’s spin axis. Small values of ξ correspond to paths parallel
to the spin axis, and the corresponding large residuals indicate
that near-axial PKP-DF waves travel faster and arrive sooner.
Also shown are theoretical predictions for the anisotropic
behavior of solid iron in the hexagonal close-packed (hcp) and



Fig. 3.6-13 Evidence for transverse isotropy in the inner core from the splitting of a spheroidal normal mode multiplet. Points represent the observed
frequencies for the different azimuthal orders (left). The dashed curve is the prediction for the inner core including the effects of the earth’s rotation and
ellipticity but not anisotropy. The solid curve incorporates the anelistic model at the right by combinations of the elastic constants for transverse isotropy.
In this formulation, α, β, and γ  differ from their usual seismological definitions. (Tromp, 1993. Reproduced with permission from Nature.)

1 This process causes mirages, where light is refracted differently by hot air just
above the ground. Similarly the distorted appearance of the setting sun results from
seeing different parts of it through different levels of the atmosphere which refract
light differently because of the vertical density gradient.

3.7 Attenuation and anelasticity

3.7.1 Wave attenuation

In the last section, we extended our view of the earth as an iso-
tropic elastic medium to include the effects of anisotropy. We
now consider anelasticity, or deviation from elasticity, which
is one of the reasons why seismic waves attenuate or decrease
in amplitude as they propagate. We have already discussed
how the reflection and transmission of seismic waves at discrete
interfaces reduce their amplitudes. Here, we consider four
other processes that can reduce wave amplitudes: geometric
spreading, scattering, multipathing, and anelasticity. The first
three are elastic processes, in which the energy in the propagat-
ing wave field is conserved. By contrast, anelasticity, sometimes
called intrinsic attenuation, involves conversion of seismic
energy to heat.

As in many seismological applications, it is worth first con-
sidering familiar analogous behaviors for light. As you move
away from a street lamp at night, the light appears dimmer for
several reasons. The first is geometric spreading: light moves
outward from the lamp in expanding spherical wave fronts
(Section 2.4.3). By the conservation of energy, the energy in a
unit area of the growing wave front decreases as r−2, where r is
the radius of the sphere or distance from the lamp.

Second, the light dims as it is scattered by air molecules, dust,
and water in the air. As we have discussed, scattering results
when objects acting as Huygens’ sources scatter energy in all
directions. This effect is dramatic on a foggy night because the
scattered light causes a halo around the lamp.

Third, the light is focused or defocused by changes in the
refractive properties of the air.1 This effect is termed multi-
pathing in seismology. Focusing and defocusing can be illus-
trated by looking at the street light through binoculars.
Looking through binoculars the usual way, the waves are
focused by the lenses, and the lamp appears closer and brighter.
Reversing the binoculars makes the lamp appear further away
and dimmer.

Fourth, some of the light energy is absorbed by the air and
converted to heat. This process differs from the other three in
that light energy is actually lost, not just moved onto a different
path.

All four processes are important for seismic waves. The first
three are described by elastic wave theory, and can increase or
decrease an arrival’s amplitude by shifting energy within the
wave field. By contrast, anelasticity reduces wave amplitudes
only because energy is lost from the elastic waves. So much
of seismology is built upon the approximation that the earth
responds elastically during seismic propagation that it is easy
to forget that the earth is not perfectly elastic. However,
without anelasticity, seismic waves from every earthquake that
ever occurred would still be reverberating until the accumulat-
ing reverberations shattered the earth. Elasticity is a good
approximation for the earth’s response to seismic waves, but
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Fig. 3.7-1 Regional variations in attenuation seen in seismograms from
an April 14, 1995, earthquake in Texas recorded in Nevada (MNV,
∆ = 15°) and Missouri (MM18, ∆ = 14°). The MNV record has less high
frequency energy because the tectonically active western USA is more
attenuating than the stable mid-continent.

Fig. 3.7-2 Schematic representation of the variations of seismic
attenuation (top) and normalized velocity (bottom) as a function of
normalized temperature changes. Attenuation is more sensitive to
increased temperature. (Romanowicz, 1995. J. Geophys. Res., 100,
12,375–94, copyright by the American Geophysical Union.)

there are many important implications and applications of
anelasticity.

Anelasticity results because the kinetic energy of elastic
wave motion is lost to heat by permanent deformation of the
medium. The large-scale, or macroscopic, term for this process
is internal friction. Among the smaller-scale, or microscopic,
mechanisms that may cause this dissipation are stress-induced
migration of defects in minerals, frictional sliding on crystal
grain boundaries, vibration of dislocations, and the flow of
hydrous fluids or magma through grain boundaries. Theoret-
ical and experimental work is being carried out to examine
possible mechanisms of seismic attenuation.

The study of anelasticity has lagged behind that of the
elastic wave velocities because of the complexities involved in
measuring attenuation and understanding its physical causes.
Although measuring seismic wave amplitudes is straightfor-
ward, they depend on both the source, which is not perfectly
known, and all the elastic and anelastic effects anywhere along
the paths that the seismic energy traveled between the source
and the receiver. Hence it can be hard to distinguish the effects
of anelasticity from elastic processes.

This inherent uncertainty is somewhat compensated by the
fact that variations in anelasticity are large, as illustrated by
comparison of records of an earthquake in Texas at stations in
Nevada and Missouri (Fig. 3.7-1). The Nevada seismogram
has much less high-frequency energy, showing that the crust
in the western USA is much more attenuating than that in the
Midwest. By comparison, seismic velocity variations between
these areas are generally less than ±10%. Even so, because of
the difficulties in measuring attenuation, variations in attenua-
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tion at both regional and global scales are much less resolved
than similar variations in velocity.

Attenuation is valuable for studying temperature variations
within the earth. Many important geophysical processes (mantle
convection, plate tectonics, magmatism, etc.) involve lateral
variations in temperature. Elastic velocities are also sensitive to
temperature, but are better for mapping cold (fast) anomalies
like subducting slabs than hot (slow) material like that at
midocean ridges (Section 2.5.10). As shown in Fig. 3.7-2,
seismic velocities depend nearly linearly upon temperature,
whereas attenuation depends exponentially on temperature.
Thus combining velocity and attenuation studies can provide
valuable information. Figure 3.7-3 shows the velocity and
attenuation structure at a portion of the East Pacific rise axis,
where a low-velocity, high-attenuation region is interpreted as
a melt-filled magma chamber.
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Fig. 3.7-3 Results of P-wave velocity (top) and attenuation (bottom)
tomography across the axis of the East Pacific rise. (Solomon and Toomey,
1992, reproduced with the permission of Annual Reviews Inc.)

2 As we saw in discussing wave reflection and transmission (Section 2.2.4), ampli-
tudes are easier to visualize, but energy is conserved, and hence often more useful for
understanding wave behavior.
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Fig. 3.7-4 Geometric spreading of surface waves for a laterally
homogeneous earth yields a wave front that is a ring whose
circumference varies as a sin ∆.

where ∆ is the angular distance from the source. Thus the
amplitudes decrease as (a sin ∆)−1/2, with minimum at ∆ = 90°,
and maxima at 0° and 180°. Actually, not all the energy would
focus at the antipode and source even if the earth had no lateral
variations in velocity, because some defocusing would result
from the earth’s ellipsoidal shape. Lateral heterogeneity, dis-
cussed next, further distorts the wavefront.

For body waves, consider a spherical wavefront moving
away from a deep earthquake. Energy is conserved on the ex-
panding spherical wavefront whose area is 4πr2, where r is the
radius of the wavefront. Thus the energy per unit wave front
decays as 1/r2, and the amplitude decreases as 1/r. In reality,
because body waves travel through an inhomogeneous earth,
their amplitude depends on the focusing and defocusing of rays
by the velocity structure. The effects of the variations in veloc-
ity with depth were shown in Section 3.4 by considering the
density of rays with different incidence angles that arrive at
a given distance. These amplitude variations are viewed as
geometric spreading and described by the second derivative of
the travel time curve (Eqn 3.4.20). Thus, although the phenom-
enon of geometric spreading is intuitive, quantification of its
effects is complicated.

3.7.3 Multipathing

Seismic waves are also focused and defocused by lateral varia-
tions in velocity. Although physically this process is the same
as the effects of vertical variations, it is often distinguished by
the term multipathing. The distinction reflects our view of the
earth as an essentially layered planet with secondary lateral
variations.

As we discussed for tsunamis (Fig. 2.8-9), seismic waves
refract towards low-velocity anomalies and away from high-
velocity anomalies. Figure 3.7-5 illustrates this effect for a plane
wave passing through a refracting layer of variable thickness.

3.7.2 Geometric spreading

The most obvious effect causing seismic wave amplitudes to
vary with distance is geometric spreading, in which the energy
per unit wave front varies as a wave front expands or contracts.
Geometric spreading differs for surface and body waves. For
a homogeneous elastic spherical earth, a surface wave front
would spread as it moved from the source to a distance 90°
away, refocus as it approached the antipode on the other side
of the earth from the source, and so on. The amplitudes would
be largest at the source and antipode, where all the energy
would be concentrated, and smallest halfway between, 90°
from the source. On a homogeneous flat earth, the surface
waves would spread out in a growing ring with circumference
2πr, where r is the distance from the source. Conservation of
energy2 requires that the energy per unit wave front decrease
as 1/r, whereas the amplitudes, which are proportional to the
square root of energy (Eqn 2.4.65), decrease as 1/   r . However,
because the earth is a sphere, the ring wraps around the globe
(Fig. 3.7-4), making the energy per unit wavefront vary as

1/r = 1/(a sin ∆), (1)
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Fig. 3.7-5 An example of how velocity heterogeneities affect wave
amplitudes. A plane wave impinging from the left is refracted by a layer
of variable thickness. The amplitudes of the waves arriving at the right
are shown. Regions of wide ray spacing have low amplitudes, and dense
spacing yields large amplitudes. Concentrated lines, or caustics, cause very
high amplitudes. (Hannay, 1986. Reproduced with permission from the
Institute of Mathematics.)

Fig. 3.7-6 Schematic example of how velocity heterogeneity can cause
an erroneous estimate of either the focal mechanism or attenuation.
The figure-eight structure at the earthquake shows the amplitude of a
radiated surface wave as a function of azimuth, which depends on the
focal mechanism (in this case dip-slip motion on a vertical fault). The
predicted path would leave the source with a lower amplitude than the
actual path, which is bent by the high-velocity region. Hence a focal
mechanism study using these data without accounting for the perturbed
ray path would be incorrect. Conversely, modeling the amplitudes without
considering the high-velocity region would yield too-low estimates of
attenuation.

effect can be important, because most earthquakes occur at plate
boundaries, such as subduction zones or mid-ocean ridges,
where there are significant velocity heterogeneities. This phe-
nomenon can cause difficulties in the interpretation of seismic
data. For example, assume (Fig. 3.7-6) that the actual wave
path from an earthquake to a receiver differs from that pre-
dicted due to a region of anomalously fast velocities. If the
amplitudes of these waves were used to study the earthquake’s
focal mechanism, the result would be biased because the waves
left the source in a direction different from that expected if the
velocity heterogeneity were not present. Conversely, if the focal
mechanism were known, the observed amplitude would differ
from that expected, so an estimate of the attenuation would be
incorrect.

When multipathing occurs, the seismic waves arriving at a
receiver can be viewed as having taken some ray paths in addi-
tion to the direct path, and so have sampled a larger region of
the earth. A way to view this is that Fermat’s principle giving
the geometric ray path applies exactly only to waves of infinite
frequency. For waves of finite frequency, we can view the seismic
waveform as a coherent sum of energy that travels all possible
paths that arrive within a half-period of the infinite-frequency
wave, which took the shortest time. These paths form a volume
called the first Fresnel zone around the infinite-frequency path.
Successive half-periods correspond to higher-order Fresnel
zones. For longer-period waves, the maximum time over which
energy arrives coherently is longer, so the Fresnel zones are
proportionately larger. For example, teleseismic body waves
sample a banana-shaped region about the geometric ray path.
Figure 3.7-7 shows Fresnel zones for a body wave phase in a
laterally homogeneous earth, plotted in terms of how the travel
time is affected by velocity perturbations. The curved ray path
represents the effects of vertical variations in velocity on the
infinite frequency ray, and the surrounding “banana” represents
the effects of finite-frequency waves. Lateral heterogeneity
would distort the “banana.”

The ray paths, which are normal to the local wave front, show
how the initially planar wave is refracted. The ray spacing
represents the energy density, so amplitudes are low where the
rays are far apart, and high where they are close together. In
some cases the energy focuses into caustics, areas of infinitely
high energy density, which appear as solid black regions.

This example illustrates that velocity variations can affect
the amplitudes of seismic waves some distance away. For ex-
ample, small velocity heterogeneities near an earthquake can
cause large amplitude variations at teleseismic distances. This

−1.5

(× 10–6 s/km3)

−1 −0.5 0 0.5 1 1.5

Fig. 3.7-7 Numerical simulation of the paths taken by seismic energy
associated with the body wave phases S and sS for a 120 km-deep
earthquake. The values shown, computed using normal modes, show
the sensitivity of the travel time to velocity perturbations. These phases
sample the structure in a banana-shaped region shown in side view (left)
and end-on (right) surrounding the geometric ray path (solid line).
(Zhao et al., 2000.)



As we have seen, some of the behavior of diffracted waves
can be derived either using a Huygens’ source scattering repres-
entation (Section 2.5.10) or by using ray paths in a medium
with variable velocity, as for the head wave (Section 3.2.1) or
core diffraction (Section 3.5.2). These ray paths were not truly
geometric, in that energy was required to follow paths that
did not obey Snell’s law. The distinction between ray theory
and diffraction depends on wavelength, as discussed in Section
2.5.10, so waves diffracted around the core are depleted in the
higher frequencies.4

Scattering can be viewed in different ways. In some situ-
ations we view the scattering as deterministic, and try to image
distinct scatterers. For example, migration methods in reflec-
tion seismology (Section 3.3.7) seek to undo the effects of scat-
tering and produce a clearer image of the subsurface. In other
situations, we view the medium as containing many scatterers
and consider their effects on the wave field statistically. This
approach is taken to the scattering of PKP waves (Fig. 3.5-8),
with a wavelength of about 10 km, by lower mantle hetero-
geneities of about that size.

Scattering is especially important in the continental crust,
which has many small layers and reflectors resulting from
billions of years of continental evolution. Although these
structures do not significantly affect waves with wavelengths
longer than tens of km, for shorter-wavelength waves they can
act as point scatterers or Huygens’ sources. Hence some of the
scattered energy arrives at a receiver after the initial pulse
that obeyed Fermat’s principle and took the shortest path.
This scattered energy causes an arrival to have a coda, a tail of
incoherent energy that decays over a duration of seconds or
minutes. The main arrival has a polarity related to the direction
of propagation that can be observed on a three-component
seismometer by forming particle motion plots (Fig. 2.7-6). By
contrast, the scattered energy arrives from various directions
and thus shows little or no preferred particle motion.

Figure 3.7-9 demonstrates the scattering for a seismic arrival.
The unscattered wave travels the shortest distance and gives the
initial arrival (left). Scattered energy lost from this arrival that
instead arrives later could have been scattered from an infinite
number of locations that would yield the observed travel time.
In a constant-velocity medium, the locus of these possible scat-
terers forms an ellipsoid with the source and the receiver as
foci (center). Larger ellipsoids define the possible scatterers for
energy that arrives later (right). These ellipsoids are distorted
by velocity heterogeneity and are analogous to the Fresnel
volume used when we consider the waves as following distinct
ray paths.

Scattering is especially noticeable on the moon. Figure 3.7-10
contrasts seismic records of an earthquake and the impact of
a rocket on the moon. Most of the earthquake’s energy arrives
in the main P- and S-wave arrivals. By contrast, on the moon
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Fig. 3.7-8 Schematic representation of different approaches to seismic
wave propagation in a medium with velocity heterogeneity. The approach
depends on the ratio of the heterogeneity size a to the wavelength λ and
the distance L the wave travels through the heterogeneous region. (After
Aki and Richards, 1980. From Quantitative Seismology, © 1980 by
W. H. Freeman and Company, used with permission.)

3.7.4 Scattering

A related effect to multipathing is the scattering of seismic
waves. Both effects are complicated, and the distinction be-
tween them is gradational. As shown in Fig. 3.7-8, whether
the effects of velocity heterogeneity are regarded as scattering
depends on the ratio of the heterogeneity size to the wavelength
and the distance the wave travels through the heterogeneous
region. When the heterogeneity is large compared to the wave-
length, we regard the wave as following a distinct ray path that
is distorted by multipathing. When the velocity heterogene-
ities are closer in size to the wavelength, we think of scattered
energy rather than distinct ray paths. However, when the
heterogeneities are much smaller than the wavelength, they
simply change the medium’s overall properties. The further the
wave travels in the heterogeneous region, the more useful the
scattering description becomes. Hence for longer distances,
the wavelength range viewed as scattering increases.3

Figure 3.7-8 also illustrates that diffraction can be viewed
as behavior intermediate between scattering and multipathing.

3 The fact that light scattering in the atmosphere depends on wavelength and the dis-
tance traveled has familiar consequences. Because the shortest wavelengths of visible
light are the most scattered, blue light reaching us from all directions makes the sky
appear blue. The loss of blue light makes the sun appear yellow, although it would ap-
pear white if observed from a spacecraft. At sunset, when the sunlight passes through
a longer path in the atmosphere than at other hours, intermediate wavelengths are
also scattered, leaving direct light from the sun enhanced in the longest visible wave-
lengths (red light) and making the sun appear red.

4 This effect makes it hard to understand what someone is saying when they are
standing around a corner, because the voice sounds muffled due to the loss of the
higher frequencies.
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3.7.5 Intrinsic attenuation

We can gain insight into the intrinsic attenuation of seismic
waves by examining a simple system, a damped harmonic oscil-
lator composed of a spring and a dashpot. We use Newton’s
second law, F = ma, to describe the displacement u(t) of a mass
m. The restoring force of the spring is proportional to minus
the spring constant k times the spring extension or displace-
ment from the equilibrium positions, so

    
m

d u t

dt
ku t

2

2
0

( )
  ( )  .+ = (2)

Once set in motion by an impulse, this frictionless system has
a purely elastic response described by a perpetual harmonic
oscillation

u(t) = Aeiω0t + Be−iω
0t, (3)

where A and B are constants, and the mass moves back and
forth with a natural frequency

ω0 = (k/m)1/2. (4)

One example of this general solution is

u(t) = A0 cos (ω0t). (5)

Once the motion is started, this undamped oscillation con-
tinues forever, because no energy is lost. However, this is no
longer the case if the system contains a dashpot, or damping
term. The damping force is proportional to the velocity of the
mass and opposes its motion. Hence the equation of motion
(Eqn 2) becomes

  
m

d u t

dt
m

du t

dt
k u t

2

2
0

( )
  

( )
  ( )  ,+ + =γ (6)

where γ is the damping factor. To simplify this, we define the
quality factor
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Fig. 3.7-10 Comparison of seismograms for the earth and the moon.
Top: Seismogram recorded at Cathedral Cave, Missouri (CCM), from a
small earthquake 183 km away. Bottom: Seismogram recorded by the
Apollo 12 seismometer of the impact of the Apollo 14 Saturn booster
rocket 147 km away. The terrestrial record shows high attenuation,
whereas the lunar seismogram shows intense scattering due to the
fractured regolith and very weak attenuation due to the lack of
intergranular water. (Mitchell, 1995. Rev. Geophys., 33, 441–62,
copyright by the American Geophysical Union.)

the energy is intensely scattered, and no main arrivals can be
identified. This is probably because intrinsic attenuation is
much larger in the earth’s crust than on the moon. The move-
ments of interstitial fluids in the earth’s crust greatly reduce
seismic wave amplitudes, whereas energy scattered by the
moon’s highly fractured near-surface regolith layer is poorly
absorbed and reverberates. As a result, efforts to identify seis-
mic phases and use them to study the moon’s internal structure
have been generally unsuccessful.

Fig. 3.7-9 Development of a P-wave coda
due to scattering. Left: The first arrival
follows the minimum-time path from the
earthquake (EQ) to the station (STA)
according to Fermat’s principle, and
involves no scattered energy. Center:
Scattered energy arrives after the first
arrival. An infinite number of possible
locations for scatterers yield arrivals at this
same time. In a homogeneous medium the
locus of these points forms an ellipsoidal
surface. Right: Energy arriving later in the
coda can be modeled as arising from a larger
ellipsoidal surface of possible scatterers.



Q = ω 0/γ, (7)

and rewrite Eqn 6 as
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This differential equation, which describes the damped har-
monic oscillator, can be solved assuming that the displacement
is the real part of a complex exponential

u(t) = A0eipt, (9)

where p is a complex number. Substituting Eqn 9 into Eqn 8
yields

(−p2 + ipω0/Q + ω2
0) A0ei(pt) = 0. (10)

For this to be satisfied for all values of t,

−p2 + ipω0/Q + ω2
0 = 0. (11)

Because p is complex, we break it into its real and imaginary
parts,

p = a + ib, p2 = a2 + 2iab − b2, (12)

so Eqn 11 gives

−a2 − 2iab + b2 + iaω0/Q − bω0/Q + ω2
0 = 0, (13)

which can be split into equations for the real and imaginary
parts and solved separately:

Real: −a2 + b2 − bω0/Q + ω2
0 = 0, (14)

Imaginary: −2ab + aω0/Q = 0.

Solving the imaginary part for b gives

b = ω0/2Q, (15)

and putting this into the equation for the real part gives

a2 = ω2
0 − ω2

0/4Q2 = ω2
0(1 − 1/4Q2). (16)

Thus we define

ω = a = ω0(1 − 1/4Q2)1/2, (17)

and rewrite Eqn 9 with separate real and imaginary parts,

u(t) = A0ei(ωt+ibt) = A0e−bteiωt. (18)

The real part is the solution for the damped harmonic
displacement,
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Fig. 3.7-11 For a damped harmonic oscillator, the envelope (dashed lines)
amplitude is initially A0, but decays with time at a rate determined by the
quality factor, Q.

u(t) = A0e−ω0t/2Q cos (ωt). (19)

This solution shows how the damped oscillator responds
to an impulse at time zero (Fig. 3.7-11). It is no longer a simple
harmonic oscillation because it differs in two ways from the
undamped solution (Eqn 5). The exponential term expresses
the decay of the signal’s envelope, or overall amplitude,

A(t) = A0e−ω0t/2Q, (20)

which is superimposed on the harmonic oscillation given by the
cosine term. Moreover, the frequency of the harmonic oscilla-
tion (Eqn 17) is changed from the natural frequency of the
undamped system, ω0, by an amount depending on the quality
factor. Q is inversely proportional to the damping factor, γ, so
the smaller the damping, the greater Q is. For no damping, Q is
infinite, and the damped solution reduces to the undamped
one, because its amplitude does not decay with time (Eqn 20),
and its frequency remains ω0 (Eqn 17). As the damping in-
creases, Q decreases, so the amplitude decays faster, and the
frequency changes more from its undamped value. Equation 20
shows that the amplitude decays to e−1 (0.37) of its original
value by the relaxation time

t1/e = 2Q/ω0. (21)

Because the energy in an oscillating system is proportional to
the square of the amplitude, as we saw for a harmonic wave in
Section 2.2.4, Eqn 20 gives the energy of the oscillator as

E(t) =
  

1

2
kA2(t) = 

    

1

2 0
2

0
0 0kA e E et Q t Q− −=ω ω/ /  . (22)
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Energy decays faster than the amplitude, because the negative
exponent in Eqn 22 is twice as large as in Eqn 21.

3.7.6 Quality factor, Q

The solution for the damped harmonic oscillator incorporated
the damping through the quality factor, Q. Attenuation for
seismic waves and a variety of other physical phenomena are
often discussed in terms of Q or Q−1. Although Q has more
convenient values, Q−1 has the advantage that it is directly,
rather than inversely, proportional to the damping. In some
cases, Q is used to describe the decay of an oscillation, whereas
in others it is used to describe the physical properties of the
system that cause a disturbance to attenuate. For example,
the Q of one of the earth’s normal modes, which is directly
analogous to a damped oscillator, describes how the mode
decays with time. This decay results from the distribution of
material in the earth that causes seismic energy to be lost
to heat. This distribution can be described in terms of a Q,
or anelastic attenuation, structure analogous to the elastic
velocity structure.

As a result, we speak of the Q of surface waves, body waves,
and crustal phases like Lg. We also speak of the variation
within the earth of Qα and Qβ, which controls the attenuation
of P and S waves. The anelastic structure of the earth, given by
variations in Qα and Qβ, is analogous to the elastic velocity
structure because Q can be viewed mathematically as an
imaginary part of the velocity. To see this, note that (9), which
we used to derive the decaying oscillation, can be viewed as an
oscillation with a complex frequency p

u(t) = A0eipt = A0ei(a + ib)t (23)

where the real and imaginary parts of the frequency are

a = ω b = ω* = ω0/2Q ≈ ω /2Q (24)

assuming that attenuation is small (Q large) enough that ω ≈
ω0. Hence we write

Q−1 = 2b/a = 2ω*/ω. (25)

Treating the attenuation as an imaginary part of the
frequency and dividing by the wavenumber lets us treat the
corresponding velocity for a propagating wave as complex,

c + ic* = ω/k + iω*/k = ω/k + iωQ−1/2k (26)

so

Q−1 = 2c*/c. (27)

Thus we can express the attenuation of P- and S-waves by using
the quality factors Qα and Qβ to give imaginary parts to the
velocities. If there is no attenuation (Q = ∞) the frequency and

the velocity have no imaginary parts. This formulation is useful
because it means that methods used to invert surface wave
velocities or normal mode eigenfrequencies to find velocity
in the earth can also be used to invert observations of their
attenuation to find the distribution of anelasticity.

We pose the complex parts of the velocities in terms of the
properties of the material causing attenuation by treating the
elastic moduli as having imaginary parts. For the shear velocity

β + iβ * = β(1 + iQ−1
β /2)

= ((µ + iµ*)/ρ)1/2 = β(1 + iµ*/µ)1/2

� β(1 + iµ*/2µ) (28)

where the last step used the first term of the Taylor series,
because the attenuation and hence imaginary part is small.
Comparing terms shows that

Q−1
β  = µ*/µ. (29)

A similar analysis shows that the quality factor for P waves is
given by the imaginary parts of both the bulk and shear moduli

Q−1
α  = (K* + 4/3µ*)/(K + 4/3µ). (30)

Physically, it is useful to think of energy as being lost in either
compressional or shear deformation, so we express their
attenuation in terms of imaginary parts of the compressibility
and rigidity

Q−1
K = K*/K Q−1

µ  = µ*/µ = Q−1
β . (31)

These quality factors are related to those for the velocities by

Q−1
α  = LQ−1

µ  + (1 − L)Q−1
K L = (4/3)(β/α)2. (32)

In general little energy is lost in compression, so Q−1
K is very

small, and thus most of the attenuation for P waves occurs in
shear, making Q−1

α  ≈ (4/9)Q−1
β .

Techniques for measuring Q in the earth follow from those
used to measure Q for the decay of an oscillation. From Eqn
20, taking the natural logarithm of the envelope shows that

ln A(t) = ln A0 − ω0t/2Q, (33)

so Q can be found from the slope of the logarithmic decay.
Alternatively, if successive peaks one full period T = 2π /ω0
apart have amplitudes

A1(t1) = A0 exp (−ω0t1/2Q) and

A2(t1 + T) = A0 exp (−ω0(t1 + T )/2Q), (34)

their ratio is

A1/A2 = exp [−ω0t1/2Q − ω0(t1 + T )/2Q] = exp (π /Q), (35)
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Fig. 3.7-12 Frequency dependence of attenuation for seismic waves in
the mantle. Q is shown as though all measurements were for ScS waves,
a good measure of the average mantle value because of their path from
surface to core and back. (Sipkin and Jordan, 1979. © Seismological
Society of America. All rights reserved.)

so

Q = π/ln (A1/A2). (36)

To illustrate this approach, note that in Fig. 3.7-11 the second
peak, at ωt = 2π, is about 2/3 of the first peak, at ωt = 0. Thus
Q ≈ π/ln (3/2) ≈ 8. This is small compared to Q for mantle
rocks, which is in the range of 200–500, but comparable to
that for some sedimentary rocks. For example, S waves in shale
have Q ≈ 10.

Another way to view Q is as the number of cycles the oscilla-
tion takes to decay to a certain level. The number of cycles n, is

n = t/T = ωt/2π ≈ ω0t/2π, (37)

where the last approximation, based on Eqn 17, assumes
that the attenuation is small enough (Q >> 1) so that ω ≈ ω0.
The amplitude at time tn , after n cycles, is

A(tn) ≈ A0 e
n

Q

− π

, (38)

so, if we define n as equal to Q,

A(tn) ≈ A0e−π ≈ 0.04A0. (39)

Thus, after Q cycles, the amplitude drops to a level of e−π or 4%
of the original amplitude. Hence, in Fig. 3.7-11, more than
95% of the amplitude is lost after Q ≈ 8 cycles.

Q can describe the oscillation’s decay in either time or space.
For standing waves like normal mode oscillations, Q describes
the decay of amplitudes with time. For traveling waves, we

replace t with x/c, where x is the distance traveled and c is the
velocity. Thus Eqn 20 becomes

    A x A e
x

cQ( )  ,=
−

0
2

0ω

(40)

which describes how the amplitude decays with the distance
the wave propagates.

When these techniques are used to measure Q for seismic
waves, we find that Q varies with frequency (Fig. 3.7-12).
Q is essentially constant at low frequencies, about 0.001 to
0.1 Hz, but then increases with frequency. Thus Q values
derived from normal mode analysis are lower than those
obtained from higher-frequency waves. Although our first
instinct might be that Q should be frequency-independent,
such a situation imposes a stringent requirement. Because
Q = ω /γ, constant Q requires a physical mechanism in the earth
with damping proportional to frequency. We will explore this
issue shortly.

Before doing so, it also worth noting that our model of the
damped oscillator assumes that the attenuation is linear, such
that Q is independent of the amplitude of the wave. This is the
same as assuming that the amplitudes are not too large. In most
rocks this condition is satisfied if the strains involved with the
wave propagation are less than about 10−6. Although this is
true at teleseismic distances, it is not the case near an earth-
quake or an explosion, where the elastic strain can exceed
10−4. Large earthquakes can cause large strains, and hence a
region of nonlinear attenuation.

3.7.7 Spectral resonance peaks

We are interested in understanding how anelasticity in the earth
causes the attenuation of propagating waves. This behavior is
an example of the general case of how a damped harmonic
oscillator responds to a driving force that depends on frequency.
To see this, we modify Eqn 8 by adding a harmonic driving
force, and so have the inhomogeneous equation

    

d u

dt

du

dt

2

2
  + γ  + ω2

0u = eiωt. (41)

The solution is found using a trial solution

u(t) = A(ω) eiφ(ω) eiωt. (42)

Substituting this in Eqn 41 yields the amplitude response, A(ω),
and phase response, φ(ω),

A(ω) = [(ω 2
0 − ω2)2 + (ωγ )2]−1/2,
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As shown in Fig. 3.7-13, the amplitude and the phase re-
sponses depend on the damping factor γ and how far the forc-
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5 The rainbow results from physical dispersion for light waves passing through
water drops in the atmosphere or a prism. Different frequencies (colors) of light travel
at different speeds through the water or prism, and thus refract at different angles,
separating initially white light into different colors.

ing frequency ω is from the oscillator’s natural or resonant fre-
quency, ω0. The resonance curve shows how the damped har-
monic oscillator responds to the frequency-dependent driving
force. The closer the driving frequency ω is to the oscillator’s
natural frequency ω0, the more the oscillator responds.

The resonance curve can be viewed in terms of the frequency
at which the peak occurs

ωp = (ω2
0 − γ 2/2)1/2 = ω0(1 − 1/2Q2)1/2 (44)

and the amplitude of the peak

A(ωp) = Q/(ω2
0(1 − 1/4Q2)1/2). (45)

If the oscillator is undamped (γ  = 0, Q = ∞) the peak occurs at
its natural frequency and shows an infinite response. Adding
damping lowers the amplitude of the peak and shifts it.
However, the shift is very small unless the system is much more
damped (Q < 2) than occurs for seismic wave attenuation. The
damping also spreads out the peak in frequency, so the more
the damping, the broader and lower the peak. To see why,
recall that the more the damping, the faster the oscillation
decays as a function of time (Fig. 3.7-11). As we will see in
Chapter 6, the spectrum of an undamped sinusoid is a sharp
line, or delta function, so additional frequencies, and thus a
broader peak, correspond to the decaying sinusoid. The phase
response also has significance, as we will see when we discuss
seismometers (Section 6.6).

The resonance curve concept appears in a wide variety of ap-
plications, because many physical systems can be viewed as
damped harmonic oscillators. Three commonly considered in
seismology are the attenuation of the earth’s normal modes, the
behavior of a seismometer, and the response of a building to
ground motion. An earthquake puts energy at various frequen-
cies into the earth, exciting its normal modes (Section 2.9).
These modes form a set of damped harmonic oscillators, so the
amplitude spectrum of a long-period seismogram contains

peaks that correspond to the net resonance curve for each mode
multiplet. The width of a peak depends on the frequencies and
amplitudes of the mode’s singlets and the mode’s damping.
Seismometers can also be viewed as damped harmonic oscil-
lators, whose natural frequency and damping control their
response to ground motion. In addition, as mentioned in
Section 1.2.2, buildings can be considered damped harmonic
oscillators. This concept is important in designing earthquake-
resistant structures, because buildings are most vulnerable to
ground motion with frequencies close to their natural frequen-
cies, so damping is added to reduce the resulting motion.

3.7.8 Physical dispersion due to anelasticity

An important consequence of seismic wave attenuation is
physical dispersion, in which waves at different frequencies
travel at different velocities. This differs from the geometrical
dispersion discussed in Sections 2.7 and 2.8, in which surface
waves of different frequencies have different apparent velo-
cities at the surface because they sample different depths and
hence encounter material of different velocities. Thus, although
the intrinsic velocity of the rock at any depth is treated as
frequency-independent, dispersion occurs because of the depth-
variable velocity of the material. By contrast, with physical
dispersion the intrinsic velocity of waves in the medium varies
with frequency.5

To see how physical dispersion results from attenuation,
consider how a seismic wave changes shape. Assume that a
delta function wave, a pulse of infinite height and unit area
(Fig. 3.7-14), propagates through a homogeneous elastic
medium with intrinsic velocity c:

Frequency Frequency

100

80

60

40

20

0
0 ω /20 ω0 ω /203 ω02 0 ω /20 ω0 ω /203 ω02

Q = 100

Q = 15
Q = 5

A
m

pl
itu

de

0

Q = 5
Q = 15Q = 100

-π

-π /2

Ph
as

e,
φ

Fig. 3.7-13 Amplitude (left) and phase
(right) response of a forced, damped
harmonic oscillator with natural frequency
ω0. For greater damping (lower Q) the peak
decreases and both it and the phase shift are
broadened from the sharp values they have
with little damping.
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Fig. 3.7-14 Left: A propagating wave pulse
composed of a delta function. With no
dispersion, all frequencies arrive at the same
time. Center: The delta function after
broadening by attenuation, showing that
energy arrives before the high-frequency
arrival time. Right: The pulse including
physical dispersion, which makes the lower-
frequency waves travel more slowly, so that
they do not arrive before the highest-
frequency component.

6 We noted a similar effect in Section 2.9.8: namely, that individual normal modes of
a single frequency appear to predict displacement before a wave could arrive, but their
sum gives a wave at the correct time.
7 Aki and Richards (1980).

t = x/c, which is the arrival time of the infinite-frequency
component. In fact, because the tails of the wavelet extend
to infinity on both sides of t = x/c, some energy arrives before
the earthquake occurred. This impossible situation, called
noncausality, results from the fact that attenuation broad-
ened the pulse by preferentially removing the high-frequency
components.6

Thus the physical mechanisms that cause attenuation in the
earth must prevent waves of all frequencies from traveling at
the same speed. Instead, there must be dispersion, where the
lower frequencies causing the tails travel more slowly and
arrive later. We saw in Section 2.8 that in a dispersive medium
we distinguish the phase velocity c, the speed of a wave of a single
frequency, from the group velocity that describes the speed of a
wave group. Thus the mathematical condition for causality
is that u(x, t) = 0 for all t < x/c∞, where c∞ = c(∞) is the phase
velocity of the infinite-frequency waves that arrive first. One
such dispersion relation for phase velocity as a function of
frequency, called Azimi’s attenuation law, is
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where c0 is a reference velocity corresponding to a reference
frequency ω0.7 This relation provides the needed causality,
because the resulting pulse (Fig. 3.7-14, right) has high fre-
quencies arriving at or soon after t = x/c∞, whereas the low fre-
quencies arrive later over a duration depending on the value
of Q. If there is no attenuation (Q = ∞), Eqn 51 yields no dis-
persion, and the delta function is not broadened.

From Eqn 51, the P- and S-wave velocities α and β vary as a
function of period T, as

u(x, t) = δ(t − x/c). (46)

The Fourier transform of the delta function,

F(ω) =

    

 �
−∞

∞

u(x, t)e−iωtdt =

    

 �
−∞

∞

δ(t − x/c)e−iωtdt = e (−iωx/c), (47)

shows that the delta function is made up of waves of all fre-
quencies, as we discuss further in Section 6.2.5. If there is
no dispersion, all the frequencies travel at the same speed and
arrive at the same time. The effect of attenuation as a func-
tion of distance is given by writing Eqn 40 as a function of
frequency,

  A e
x

cQ( )  ,ω
ω

=
−
2 (48)

which shows that if Q is constant, the rate at which the ampli-
tude decays with distance increases strongly with frequency.
To see how this attenuation affects the delta function wave,
we multiply Eqn 47 by Eqn 48 and use the inverse Fourier
transform to return to the time domain
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2π
 �
−∞

∞

e e
x

cQ
i x

c

− −ω ω
2 e iωtdω. (49)

Evaluating the integral yields

u(x, t) = [(x/2cQ)/((x/2cQ)2 + (x/c − t)2)]/π, (50)

so the delta function is broadened by attenuation into a
wavelet that is symmetric in time about its maximum at t = x/c
(Fig. 3.7-14, center).

A problem with this solution is that seismic energy arrives
before the geometric arrival time of the delta function pulse,
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where α(1) and β(1) are the velocities at 1 s. We find how a
wave’s travel time varies with period by integrating along its
ray path (Eqn 3.4.16). The effect can be significant. For a vert-
ical ScS wave, the travel time for T = 40 s is 5 s slower than for
T = 1 s. Out of a total travel time of about 934 s, this is a differ-
ence of 0.5%. For vertical PcP waves at the same periods, the
travel time difference is 1 s out of 511 s, or 0.2%.

This phenomenon causes a discrepancy between the seismic
velocity structure found by inverting observations of long-
period normal modes and short-period body waves. The
velocities inferred from normal modes are consistently slower
than those from body waves. The discrepancy reflects the fact
that attenuation causes longer-period waves that are studied
as normal modes to travel at lower velocities than the body
waves. Failure to take this effect into account can cause
errors in the predicted arrival times of body waves of several
seconds.

The pulse in Fig. 3.7-14 (right) is also known as an attenua-
tion operator, and can be used to model the effects of attenua-
tion on seismic waveforms. As discussed in Section 3.3.6 and
derived in Section 6.3, seismic signals can be modeled by
convolving the source–time function with operators describing
different effects. Thus a synthetic seismogram computed for an
elastic earth can be convolved with the attenuation operator
to create a more realistic pulse.

Body wave attenuation is often characterized using the para-
meter t*. If a ray travels through a region of constant Q,
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t

Q
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(53)

Because Q varies within the earth, we derive t* by integrating
along the ray path,
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where ∆ti and Qi are the travel time and Q values on the ith path
segment. For P waves, t*α is often about 1 s, whereas S waves
typically have t*β around 4 s. The values of t* increase with
increased distance, but are also affected by the number of
passages through the asthenosphere (about 80–220 km depth).
For example, ScS tends to have a higher t* (greater attenuation)
than S at the same distance because of the longer ray path, and

S waves from deep earthquakes that only cross the astheno-
sphere once have lower t* than S waves from shallow events.

3.7.9 Physical models for anelasticity

A common model for the anelastic processes in the earth caus-
ing attenuation treats the material as a viscoelastic or standard
linear solid, which combines elastic and viscous responses to
an incident seismic wave. This model is represented by a spring
with constant k1 in parallel with a spring with constant k2 and a
dashpot with viscosity η (Fig. 3.7-15). If a step function strain
H(t) (0 for t < 0, 1 afterwards) is applied, the stress response
includes an instantaneous elastic contribution from spring k1
and a delayed response from the dashpot and spring k2,
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σ (t) = k1H(t) + k2e−t/τ, (55)

where τ is the relaxation time constant = η/k2.
The response to harmonic waves depends on the product

of the angular frequency and the relaxation time. For wave
periods that are very short compared to the relaxation time, the
system responds mostly elastically, and there is little attenua-
tion. For wave periods much longer than the relaxation time,
the system responds mostly in a viscous manner, so there is no
attenuative loss of energy. As shown in Fig. 3.7-15, the attenua-
tion8 varies as
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1 2
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(56)

At very low or very high frequencies Q−1(ω) approaches zero,
so Q becomes infinite. The greatest attenuation, or absorption
peak,9 occurs at ωτ = 1, where

Qm
−1

ax = Q−1(1/τ) = k2/2k1. (57)

The phase velocity also depends on ωτ:
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where c0 = (k1/ρ)1/2. The phase velocity is lowest (c0) at low fre-
quencies, and reaches

c∞ = c0(1 + k2/2k1) = c0(1 + Qm
−1

ax) (59)

at high frequencies. This model thus has the key feature of the
physical dispersion relation (Eqn 51) discussed earlier, that
long-period waves travel more slowly than high-frequency
waves.

Given this model, the fact that seismological observations
find relatively constant Q over a large range of low frequen-
cies from about 0.001 to 0.1 Hz (Fig. 3.7-12) is surprising.
Moreover, theoretical and laboratory studies of the physical
mechanisms thought to cause attenuation in the earth also
suggest that Q should be strongly frequency-dependent. Hence
the relatively constant value at low frequencies is thought to
result from the superposition of many different mechanisms. A
possible explanation comes from noting that a typical attenua-
tion spectrum for a polycrystalline structure (Fig. 3.7-16, top)
contains multiple attenuation peaks or absorption bands. The
absorption bands depend on the material’s composition and
grain size and vary with temperature (recall Fig. 3.7-2) and pres-
sure, such that higher pressure decreases attenuation, whereas

Fig. 3.7-16 Top: Relaxation spectrum for a polycrystalline material
showing attenuation peaks at different frequencies due to different
microscopic mechanisms. Bottom: Schematic model to explain the
observation that Q is roughly constant over a wide range of frequencies.
The superposition of absorption peaks for different compositions at
different temperatures and pressures yields a flat absorption band.
(Liu et al., 1976.)

8 Kanamori and Anderson (1977).
9 This effect is like driving over a bump: at a high speed inertia keeps the car in line
and the bump is not very noticeable. At low speed, we feel only a gradual swell in the
road. However, at an intermediate speed the bump gives the maximum jolt.

higher temperature increases it. Waves of various frequen-
cies traversing the earth may feel the net effect of absorption
bands with different relaxation times, yielding a flat absorption
spectrum (Fig. 3.7-16, bottom). The higher-frequency waves
in Fig. 3.7-12 that show a frequency-dependent Q would be
above the flat part of the absorption spectrum.

3.7.10 Q from crust to inner core

Attenuation is inferred in all regions of the earth except for
the liquid iron outer core, and varies greatly both laterally and
vertically. In the crust, the greatest attenuation (lowest Q or
highest Q−1) occurs near the surface (Fig. 3.7-17), presumably
due to the presence of fluids. Attenuation is lowest at about
20–25 km depth, and then increases again, presumably due to
increasing temperature. Attenuation decreases as a function of
frequency, as in Fig. 3.7-12, and varies geographically. Q in the
upper crust is roughly proportional to the time since the last
major tectonic activity in a region, perhaps due to crack genera-
tion and fluid flow during tectonism and gradual crack anneal-
ing after tectonism ceased.
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Fig. 3.7-18 QLg for the USA mapped
from the codas of 1 Hz Lg waves. QLg,
which reflects attenuation within the
crust, shows higher attenuation in the
tectonically active western USA and lower
attenuation in the tectonically inactive east.
(Mitchell et al., 1997.)

Attenuation in the upper mantle varies with depth, with the
lowest Q in the asthenosphere from about 80 to 220 km depth
(Fig. 3.7-19). At these depths the temperature approaches, and
perhaps exceeds, the melting temperatures of rock, so a small
percentage of partial melt may exist. This pattern of attenua-
tion is similar to that for seismic velocities, which are lowest
in the asthenosphere. Hence both the elastic velocity and
anelastic attenuation reflect the physical processes causing the
mechanically weak asthenosphere. Beneath the asthenosphere,
Q increases gradually with depth, presumably because tem-
perature increases at a slower rate than pressure.

Qµ increases with depth through the lower mantle, reaching
values in excess of 500. There is some indication that attenua-
tion is enhanced in the D″ region at the base of the mantle.
Although no attenuation of P waves is detected for the outer
core, there is significant attenuation of PKIKP waves traversing
the inner core, yielding QK estimates in the range of 150–300.

Lateral variations in attenuation are studied using tomo-
graphic methods similar to those used for velocity (Sections
2.8.3, 7.3). Where temperatures vary over short distances,
significant attenuation variations can occur, as shown in Fig.
3.7-3 for a mid-ocean ridge. Similarly, a cross-section through
the back-arc spreading center above the Tonga subduction
zone (Fig. 3.7-20) shows that Qα exceeds 10,000 within the
cold and rigid subducting slab, but is less than 75 beneath the
hot back-arc basin. Such attenuation data, especially when
combined with velocity data, are valuable for tectonic studies.

3.8 Composition of the mantle and the core

Seismology yields information about velocities within the
earth. To derive inferences about the composition of the earth,
the seismological data are combined with results from geology,
geodesy, geomagnetism, cosmochemistry, and the physics and

Regional variations in crustal Q are often studied with Lg
waves, a superposition of higher-mode surface waves that give
prominent arrivals in continental regions. QLg for the USA var-
ies regionally (Fig. 3.7-18), with values as high as 750 in the
stable East and as low as 250 in the tectonically active West.
This regional difference in attenuation, also seen in Figs 3.7-1
and 3.7-17, has implications for seismic hazards (Section 1.2.2).
Similarly, the fact that the USA tested nuclear weapons in the
western USA, which is more attenuative than the areas used by
the Soviet Union, is significant for verifying test ban treaties
(Section 1.2.8).



chemistry of materials at high temperature and pressure. A
general view of the earth’s composition has emerged, although
aspects are still under investigation. This view is a cornerstone
of our thinking about the evolution of the earth and other
planets. We will summarize some basic ideas that are presently
under discussion, and the suggested readings provide more
information.

3.8.1 Density within the earth

A starting point for analysis of the earth’s composition is a
model of the variation in density with depth. The density is
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an important constraint on the nature of the material, and
can be combined with velocities to derive elastic constants.
Densities are less well known than velocities, and their estima-
tion requires more inferences. As with velocities, we use a
radially symmetric density model for most applications and
consider lateral perturbations when needed.

The basic constraint on the earth’s density is that its average
is given by the earth’s mass M, which can be found from the
acceleration of gravity at the surface r = a using the law of
gravitation,

g = GM/a2. (1)

Because g = 9.8 m/s2, G = 6.67 × 10−11 Nm2kg−2, and a =
6371 km, we find M = 5.97 × 1024 kg. The mass is the volume
integral of the density, so if density varies only with depth

M = 4π

      
�
0

a

ρ(r)r2dr, (2)

the average density, ρo, is found by dividing the mass by the
volume,

ρo = M/[(4/3)πa3]. (3)

The resulting average density of the earth is about 5.5 g/cm3.
The fact that this value is significantly higher than the density
of the surface rocks (about 3 g/cm3) is evidence for a core of
much denser, and hence presumably different, material.

A second constraint on the density, which also indicates
a dense core, comes from the moment of inertia about the
rotation axis. This is defined by (Fig. 3.8-1) integrating over
volumes dV, each at a distance l = r sin θ from the spin axis,
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Values similar to those for the earth (ρc = 12 g/cm3, ρm =
5 g/cm3, rc = 3480 km) yield a moment of inertia ratio of
C/Ma2 = 0.35. This value is less than the 0.4 which a uniform
planet would have, because the material is concentrated toward
the center. It is similar to the value of C/Ma2 for the earth
determined from the earth’s shape and gravity field. The earth’s
value, about 0.33, thus indicates the presence of a dense core.

Although the mass and moment of inertia give only integral
constraints on the density, seismic velocities give information
on the variation of density with depth. We first consider a
region of uniform material and see how the density increases
with depth as the material is self-compressed by its own weight.
At a radius r, the gradient of the hydrostatic pressure P(r) is

  

dP

dr
g  ,= − ρ (8)

where ρ(r) and g(r) are the density and the acceleration of grav-
ity at that depth. The derivative is negative, because pressure
increases with depth. The local value of gravity, g(r), depends
on the total mass m(r) within the sphere of radius r,1

g = Gm/r2. (9)

The pressure derivative can then be written as

  

dP

dr

Gm

r
  .=

−ρ
2

(10)

The elastic constants of the material are introduced using the
definitions of the density and the dilatation θ (Eqn 2.3.60),

ρ = m/V, dθ = dV/V, (11)

so that differentiation yields

dρ = −(m/V2)dV = −ρdθ. (12)

Thus the bulk modulus K can be expressed, starting with its
definition (Eqn 2.3.74), as

  
K
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d

dP

d

d

d
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d
      .= − = − =

θ ρ
ρ
θ

ρ
ρ

(13)

Combining this with the pressure derivative equation (Eqn 10)
gives the change in density with depth
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r
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θ

(r,  ,  )θ φρ

Fig. 3.8-1 A planet’s moment of inertia is found by integrating about the
spin axis. The moment arm, l, to a volume element, dV, is r sin θ.
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The ratio of the moment of inertia to the mass gives a scalar
that depends on the density distribution. If the earth were
homogeneous, the density everywhere would equal the average
density, ρ(r) = ρo, and

C = (8/15)πa5ρo, M = (4/3)πa3ρo, C/Ma2 = 0.4. (5)

Alternatively, if all the mass were in a shell at the surface,
the density distribution could be written as a delta function
ρ(r) = δ(r − a)ρs. Using the properties of the delta function
(Section 6.2.5), Eqns 2 and 4 yield

C = (8/3)πρs a4, M = 4πρs a2, C /Ma2 = 0.67. (6)

As expected, a distribution with material concentrated toward
the outside gives a larger ratio.

A more realistic case is a two-shell planet, with a mantle of
density ρm and a core of density ρc and radius rc. The integrals
are evaluated in pieces as
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1 g(r) depends only on the mass below radius r, because a spherical shell of uniform
density has no net gravitational effect inside the sphere. This situation arises because
gravity varies as r−2, whereas the shell’s mass varies as r2, so larger contributions from
the closer portions of the shell are canceled by those from the rest. The fact that a
sphere’s gravitational attraction is the same as if all its mass were at the center arises in
the same way. This effect is not a general property of the center of mass and does not
apply for bodies of other shapes. However, it applies for the electric field, which also
varies as r −2, within a uniformly charged sphere. Deriving this result is said to have de-
layed Newton for years before presenting the theory of gravitation in 1686. (Feynman
et al., 1963.)
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To include the observations of seismic velocities, we define
the seismic parameter, Φ, and bulk sound speed, Φ1/2, such that

Φ = α2 − (4/3)β2 = K/ρ. (15)

Thus we can write the Adams–Williamson equation relating
the velocity structure to the derivative of density with radius,
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where the dependences on radius are explicitly shown. This
equation can be used to estimate the density structure by
starting with the near-surface density, using the seismic velocit-
ies to find its derivative, and computing the density at a deeper
point. The resulting density and value of g(r) are then used in
the next step.

However, density increases with depth as a result of mineral
phase changes as well as of self-compression, so the Adams–
Williamson equation is insufficient. This difficulty was identi-
fied in 1936 by K. Bullen, who used the Adams–Williamson
approach to find the density throughout the mantle. He then
computed the moment of inertia of the mantle and subtracted it
from the moment of inertia of the earth, to find the moment of
inertia of the core. Figure 3.8-2 shows the C/Ma2 value calcu-
lated for the core as a function of the assumed density at the top
of the mantle, which is the initial density for the Adams–
Williamson calculation. For reasonable values of near-surface
density, ≈ 3.3 g/cm3, the core would have C /Ma2 greater than
0.4, implying that density decreases with depth in the core. This
seems unlikely, because the solid inner core should be denser
than the liquid outer core. Only implausibly high near-surface
densities could cure the problem.

This issue was resolved in the 1950s by F. Birch2 in a classic
series of papers showing that at least one of two assumptions
underlying the method was inappropriate. One implicit as-
sumption is that the temperature increases with depth along
an adiabatic gradient, or “adiabat,” such that if a piece of
material moves vertically, the pressure-induced temperature
change leaves the material at the same temperature as its new
surroundings (Eqn 5.4.10). However, the temperature gradient
in the mantle is thought to exceed the adiabatic gradient,
because a superadiabatic gradient is required for the thermal
convection expected in the mantle.3 The superadiabatic gra-

2 Francis Birch (1903–92) pioneered the use of rock and mineral physics in studies of
the earth’s composition.
3 For an adiabatic gradient, rising material reaches the same temperature, and hence
density, as its surroundings, and thus has no tendency to continue rising. However,
for a superadiabatic gradient, the rising material remains hotter and less dense than its
surroundings, and thus tends to continue rising.

4 The coefficient of thermal expansion, which gives the change in density with
temperature T, is α = (−1/ρ)∂ρ/∂T.

dient can be included by modifying the Adams–Williamson
equation (16) to

d

dr

g
g

ρ ρ
φ

ατ    ,= − + (17)

where α is the coefficient of thermal expansion,4 and τ is the
portion of the temperature gradient exceeding the adiabatic
gradient. This correction for higher temperature lowers the
calculated mantle densities, and hence increases the calculated
C/Ma2 for the core, making the problem of the core density
structure worse.

Hence the assumption of homogeneous material whose
density changes only by self-compression must be incorrect.
Birch showed that inhomogeneity can be identified using the
function 1 − (1/g)dφ/dr. Figure 3.8-3 compares values of this
function derived from seismic velocity data with values pre-
dicted for compression of homogeneous mantle material. Below
1000 km the mantle behaves as a homogeneous material, while
at shallower depths it does not. This is because the mineral
phase transitions expected at the 410 and 660 km discontinuit-
ies involve denser atomic packings, and therefore transitions to
higher densities, than predicted by the Adams–Williamson
equation.

As a result, density models of the earth include rapid changes
in the transition zone. Figure 3.8-4 shows the velocity and
density structure for earth model PREM (Table 3.8-1). Within
the lower mantle, outer core, and inner core, density increases
smoothly with depth according to the Adams–Williamson
equation. At the boundaries between these regions, density
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5 The value of gravity at the surface is a complicated function, varying laterally as
a result of density anomalies within the earth, dynamic forces that lift up or pull
down the surface, and a latitudinal effect due to the ellipsoidal shape of the earth
(Section A.7.2).
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changes sharply. The CMB is the most significant boundary
with respect to density, with an increase from 5.57 g/cm3 for
mantle rock to 9.90 g /cm3 for the liquid iron outer core.
Density also changes sharply at the 410 and 660 km discon-

tinuities. Such models are developed to satisfy the travel time
data, other seismological data including eigenfrequencies of
the earth’s normal modes, and the constraints on density.

A density profile lets us compute a pressure profile, and thus
use the results of experiments showing which mineral phases
exist at particular pressures. To do this we integrate both sides
of Eqn 8,

P(r) = −

      

�
0

r

g(r)ρ(r)dr, (18)

using ρ(r) and the resulting values of g(r). As shown in Fig. 3.8-
5, pressure starts at 1 bar at the surface, and rises to about
13.3 GPa (133 kbar) at the 410 km discontinuity, 23.8 GPa at
the 660 km discontinuity, 136 GPa at the CMB, 329 GPa at
the ICB, and 364 GPa at the center of the earth.

The curve for gravity is interesting. Gravity averages
9.8 m/s2 at earth’s surface,5 and is zero at earth’s center, where
the mass of the earth pulls evenly in all directions. Gravity



Table 3.8-1 PREM Model.

Depth (km) r (g/cm3) a (km/s) b (km/s)

Ocean 0.0 1.020 1.450 0.000
3.0 1.020 1.450 0.000

Crust 3.0 2.600 5.793 3.191
15.0 2.600 5.793 3.191
15.0 2.900 6.792 3.889
25.0 2.900 6.792 3.889

Upper mantle 25.0 3.381 8.101 4.479
40.0 3.379 8.091 4.473
60.0 3.377 8.079 4.465
80.0 3.375 8.067 4.457
80.0 3.375 8.005 4.377

low-velocity zone 115.0 3.371 7.984 4.363
150.0 3.367 7.963 4.350
185.0 3.363 7.942 4.338
220.0 3.359 7.920 4.325
220.0 3.436 8.519 4.589
265.0 3.463 8.606 4.620
310.0 3.490 8.692 4.651
370.0 3.516 8.778 4.683
400.0 3.543 8.865 4.714

Transition zone 400.0 3.724 9.092 4.874
450.0 3.787 9.347 5.019
500.0 3.850 9.601 5.163
550.0 3.913 9.856 5.307
600.0 3.976 10.111 5.451
635.0 3.984 10.165 5.478
670.0 3.992 10.219 5.505

Lower mantle 670.0 4.381 10.727 5.913
721.0 4.412 10.885 6.061
771.0 4.443 11.040 6.207
871.0 4.504 11.219 6.277
971.0 4.563 11.390 6.344

1071.0 4.621 11.552 6.407
1171.0 4.678 11.707 6.469
1271.0 4.735 11.856 6.527
1371.0 4.790 11.998 6.583
1471.0 4.844 12.135 6.637
1571.0 4.898 12.266 6.689
1671.0 4.951 12.394 6.739
1771.0 5.003 12.518 6.788
1871.0 5.055 12.638 6.836
1971.0 5.106 12.757 6.882
2071.0 5.157 12.873 6.928
2171.0 5.207 12.988 6.973
2271.0 5.257 13.103 7.017

Depth (km) r (g/cm3) a (km/s) b (km/s)

2371.0 5.307 13.218 7.061
2471.0 5.357 13.333 7.106
2571.0 5.407 13.450 7.150
2671.0 5.457 13.568 7.195
2741.0 5.491 13.652 7.227
2771.0 5.506 13.659 7.226
2871.0 5.556 13.684 7.226
2891.0 5.566 13.689 7.225

Outer core 2891.0 9.903 8.065 0.000
2971.0 10.029 8.199 0.000
3071.0 10.181 8.360 0.000
3171.0 10.327 8.513 0.000
3271.0 10.467 8.658 0.000
3371.0 10.602 8.795 0.000
3471.0 10.730 8.926 0.000
3571.0 10.853 9.050 0.000
3671.0 10.971 9.167 0.000
3771.0 11.083 9.278 0.000
3871.0 11.191 9.384 0.000
3971.0 11.293 9.484 0.000
4071.0 11.390 9.579 0.000
4171.0 11.483 9.668 0.000
4271.0 11.571 9.754 0.000
4371.0 11.655 9.835 0.000
4471.0 11.734 9.912 0.000
4571.0 11.809 9.985 0.000
4671.0 11.880 10.055 0.000
4771.0 11.947 10.123 0.000
4871.0 12.010 10.187 0.000
4971.0 12.069 10.249 0.000
5071.0 12.125 10.309 0.000
5149.5 12.166 10.355 0.000

Inner core 5149.5 12.764 10.987 3.434
5171.0 12.775 10.995 3.440
5271.0 12.825 11.030 3.465
5371.0 12.871 11.063 3.487
5471.0 12.912 11.092 3.508
5571.0 12.949 11.119 3.526
5671.0 12.982 11.142 3.542
5771.0 13.010 11.162 3.556
5871.0 13.034 11.179 3.568
5971.0 13.054 11.193 3.578
6071.0 13.069 11.204 3.585
6171.0 13.080 11.212 3.590
6271.0 13.086 11.217 3.594
6366.0 13.088 11.218 3.595
6371.0 13.088 11.218 3.595

Source: Dziewonski and Anderson (1981).
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increases slightly across the mantle, reaching a maximum of
10.7 m/s2 at the CMB because of the high density of the core
relative to the mantle. Inside the core, gravity decreases nearly
linearly toward the earth’s center. The high density of the core
is also shown by the mass distribution; the core has only 16%
of the earth’s volume, but has almost one-third of the mass.

3.8.2 Temperature in the earth

Seismology gives insight into the geotherm, the temperature as
a function of radius, which both controls and reflects the com-
position, mineralogy, and evolution of the earth. The geotherm
depends on the sources of heat and modes by which the heat



204 Seismology and Earth Structure

6 Although our instincts based on water make it strange to think of temperatures
near 5000° as “freezing,” this occurs as the solid inner core forms from the liquid
outer core.
7 Temperatures in the deep earth are often given as absolute (Kelvin) temperatures,
equal to the Celsius temperatures plus 273.15°.
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is transferred upward in the earth. Thermal convection, heat
transfer by the motions of material due to the density changes
resulting from temperature, occurs in the mantle. The most
obvious manifestations of this convection are the mid-ocean
ridges, which are its hot upwelling limbs, and subducting
plates, which are its cold downwelling limbs. A separate con-
vection system in the fluid outer core is believed to cause the
earth’s magnetic field. In addition, heat is transferred by con-
duction through the lithosphere, the core–mantle boundary,
and the inner core, which may also be convecting.

The geotherm is harder to estimate than the pressure profile
and remains a subject of debate. A geotherm is inferred by
modeling radioactive generation of heat in the crust and the
mantle, conduction of heat across the lithosphere, CMB, and
inner core, and adiabatic temperature gradients associated
with convection in the mantle and the outer core. The predicted
temperatures are required to match the expected temperatures
of the phase transitions in the transition zone and the expected
freezing point of iron at the ICB.6 Given the uncertainties
involved, estimates of the temperature at the center of the
earth vary from 5000 K to almost 7000 K,7 with recent work
favoring the lower end of this range.

A sample geotherm for the mantle is shown in Fig. 3.8-6. The
most striking feature is the contrast between the shallow tem-
perature gradient in the mid-mantle and the steep gradients in
the upper and lower thermal boundary layers, the lithosphere
and D″. The difference reflects the assumptions that heat is con-
ducted primarily through the boundary layers, giving the steep
gradients, but is convected between them, yielding a shallower
near-adiabatic gradient. The predicted temperature rises from
about 0°C at the surface to about 1300°C at a depth of 100 km,
giving an average thermal gradient of 13°C/km. From there
to the base of the mantle the temperature rises only another
1600°C, corresponding to a low gradient of only about
0.6°C/km. Over the bottom few hundred kilometers of the
mantle, however, the temperature rises another 1400°C to a
CMB temperature of about 4000°C (~3700 K). Thus the tem-
perature changes across the boundary layers at the surface and
CMB are comparable. However, because the surface area of
the CMB is only about 30% of the earth’s surface, much more
heat flows out of the earth than flows out of the core. Most of
this extra heat is generated by the decay of radioactive isotopes
in the mantle and the crust. An important caveat is that if there
are additional thermal boundary layers in the mantle, or if the
thermal conductivity of the mantle is higher than expected,
the temperatures in the lower mantle will be elevated, and the
temperature change across D″ will be less.

The geotherm gives insight into the variations with depth of
seismic velocity and attenuation and the strength, or stress, the
material can support (Section 5.7). Higher temperatures reduce

seismic velocity and strength, but increase attenuation. Con-
versely, higher pressures increase the velocity and strength,
but reduce attenuation. These properties thus depend on the
balance between the temperature and the pressure. The cold
lithosphere has high velocity and low attenuation, and behaves
as rigid plates. However, the rapidly increasing temperature
with depth brings the geotherm close to, if not above, the
solidus, or melting temperature curve. This yields the low-
velocity zone, where there is high attenuation and weak mate-
rial that forms the asthenosphere underlying the moving plates.
In the lower mantle, temperatures are only slightly greater
than in the asthenosphere, so the higher pressures make the
rock stronger. Hence the lower mantle is thought to have
a viscosity that is about 100 times greater than that in the upper
mantle. Temperatures increase rapidly in D″, causing velocities
slower than expected from the lower mantle velocity gradient.
The ultra-low-velocity zone at the base of the mantle may be
due to partial melting, showing that the geotherm has inter-
sected the solidus. As discussed later, the high temperatures
in the core keep the outer core liquid, but the rapid increase in
pressure due to the weight of the outer core makes the inner core
freeze into a denser solid. The inner core is therefore close to
the melting temperature of iron, so it has low shear velocities.

3.8.3 Composition of the mantle

Models of the composition of the mantle are derived by com-
paring the velocity and density (and therefore pressure) profiles
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Table 3.8-2 Pyrolite model, mineralogy above transition zone.

Mineral Composition wt(%)

Olivine (Fo89) (Mg0.89, Fe0.11)2SiO4 57
Orthopyroxene (Mg, Fe)SiO3 17
Clinopyroxene (Ca, Mg, Fe)2Si2O6 − NaAlSi2O6 12
Pyrope-rich garnet (Mg, Fe, Ca)3(Al, Cr)2Si3O12 14

Source: Ringwood (1979).
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8 The atomic number is the number of protons, whereas the atomic weight is the
number of protons and neutrons.

derived from seismic data to temperature profiles and results
for earth materials at high pressure and temperature. A key
result from experiments is that the bulk sound speed (Eqn 15)
and the density for a material are approximately linearly
related for a given mean atomic weight. The mean atomic
weight is the mean molecular weight of a formula unit, such
that forsterite (magnesian olivine) Mg2SiO4 has H = (2 × 24 +
28 + 4 × 16)/7 = 20, and fayalite (iron olivine) Fe2SiO4 has
H = (2 × 56 + 28 + 4 × 16)/7 = 29. Figure 3.8-7 shows this result
for various elements whose atomic numbers8 are labeled.
Also shown are ranges of density and bulk sound speed for the
mantle and core derived from seismically based models. The
mantle and the core occupy different parts of the plot.

This result suggests that the mantle and the core are chem-
ically different, and provides a way of testing which chemical
compositions are plausible. Dunite, a rock containing 92%
olivine, which in turn is 90% forsterite, fits the mantle data.
Curves for more iron-rich olivine would plot further to the
right, such that olivine with more than 50% fayalite would be
outside the range observed for the mantle.

The core data plot much further to the right, indicating that
the core is composed of material of higher atomic number. The
data are to the left of the curve for pure iron, suggesting that the
core is composed of iron plus a lower atomic weight (“lighter”)

element. For example, the composition Fe2Si (iron plus 20%
weight Si) fits the core data.

Various chemical models for the mantle have been proposed.
The concepts involved can be illustrated by considering a pro-
posed composition called pyrolite that satisfies various petro-
logical, cosmochemical, and geophysical constraints. Pyrolite
is similar to natural peridotites (Fig. 3.2-23), which are accept-
able source rocks for basaltic magmas that result from partial
melting of mantle rock. The variation in seismic velocity and
density with depth is assumed to result from transformations
to denser phases as a result of increased pressure. Table 3.8-2
gives a composition whose density at surface temperature
and pressure conditions would be 3.38 g/cm3 and has P- and
S-wave velocities consistent with those observed for the upper
mantle.

In the upper mantle, the model’s major mineral component is
olivine. Such a composition satisfies the density and bulk sound
speed data (Fig. 3.8-7) and is consistent with the observed seis-
mic anisotropy (Fig. 3.6-4). The transition zone corresponds
to a series of solid state phase changes (Fig. 3.8-8). Olivine
undergoes several transformations before converting to a
perovskite structure in the lower mantle. Pyroxene first trans-
forms to garnet, and somewhat deeper, the calcium-bearing
component of the garnet transforms to a perovskite structure.
Because of the predicted predominance of perovskite (~70%) in
the voluminous lower mantle, perovskite is the most abundant
material in the earth.

Figure 3.8-9 shows the predicted volume fraction of the
major mineral phases as a function of depth. The α phase
of olivine, which occurs in the crust and the upper mantle,
transforms with increased pressure to its β phase wadsleyite,
which has a modified spinel structure. This transformation
is observed experimentally to occur at a pressure of about
12 GPa (120 kbar), corresponding to the 410 km discontinu-
ity. The β phase transforms to a γ, or spinel, structure known as
ringwoodite (Fig. 3.8-10) at a pressure of ~15 GPa, corres-
ponding to the less dramatic seismic discontinuity at 520 km.
At pressures above about 24 GPa, corresponding to the 660 km
discontinuity, γ spinel breaks down to a perovskite structure
and (Mg, Fe)O magnesiowustite.

The (Mg,Fe)SiO3 pyroxene component also undergoes
changes, beginning with a transformation to garnet below about
200 km. Below 600 km, some of the Mg-bearing garnet, majorite,
transforms to a structure called ilmenite. Beneath about 660 km,
the majorite/ilmenite transforms to perovskite. Some of the
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majorite probably survives into the lower mantle as stishovite,
a high-pressure phase of quartz, and an Al2O3-rich phase.
Unlike the olivine transformations that cause distinct seismic
discontinuites in the transition zone, the pyroxene and garnet
transformations occur gradually and contribute to a high
velocity gradient through the transition zone down to about
770 km (Section 3.5.4).

These phase changes are investigated using experiments that
simulate the pressures, temperatures, and compositions in the
earth. Because the experiments are difficult, extrapolations
of lower pressure and temperature data via thermodynamic
calculations are also used. An important factor for the velocity
structure is that some phase transformations happen gradually
over a range of depths (Fig. 3.8-11). A simple univariant phase
change, in which material of a single composition changes
completely from one phase to another as pressure increases,
causes a sharp discontinuity in velocity. A more complicated
multivariant phase change involving a system of variable
compositions causes two or more phases to coexist over a

broad region of pressure, and so produces a velocity gradient.
Thus seismological studies that better define the velocity struc-
ture of the transition zone improve our understanding of its
composition.

The mineralogical models agree with the depths of the seismic
discontinuities and their other characteristics. The olivine
α-to-β reaction should occur over a narrow depth range, as
shown by the volume fractions in Fig. 3.8-9. This prediction
is consistent with the sharpness of the seismic discontinuity,
which is observed with high-frequency (short-wavelength)
waves. The transformation is exothermic (releasing heat) and
hence would occur at lower pressures in subducting slabs due
to the colder temperatures (Section 5.4.2). This expectation
agrees with seismic observations showing an elevation of the
410 km discontinuity in and around subducting lithosphere.
By contrast, the β-to-γ transformation should occur over a
broader depth range. This prediction agrees with seismic
observations of the 520 km discontinuity, which is invisible to
high-frequency waves and seen only with longer wavelengths.
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Fig. 3.8-10 Comparison of the crystal structures of (Mg, Fe)2SiO4, in
its low-pressure α olivine phase (top) and its γ-spinel ringwoodite phase
(bottom), which is about 10% denser. Spheres correspond to ions of
oxygen (white), silicon (black), and magnesium/iron (grey). (After Press
and Siever, 1982.)

Spinel structure

Olivine

However, the γ -spinel to perovskite and magnesiowustite tran-
sition should occur over a narrow depth range, consistent with
the observed sharpness of the 660 km seismic discontinuity.
The reaction is endothermic (absorbs heat) and so should occur
at greater depths for colder temperatures. Studies have shown
that the discontinuity is depressed to depths of 700 km or more
in and around subducting lithosphere.

An unresolved question is whether the lower mantle is chem-
ically distinct from the upper mantle, which has important
implications for how the two have mixed during the earth’s
evolution. In models like those depicted in Fig. 3.8-8, the two
are assumed to have the same bulk chemistry, and the increas-
ing velocity and density in the lower mantle result from self-
compression. The velocity data do not appear to require phase
changes in the lower mantle. However, the lower mantle may be
denser than expected for pyrolite, and hence perhaps enriched
in iron and silica. The observation that some subducting
lithosphere penetrates the 660 km discontinuity (Section 5.4)
indicates that mixing occurs. However, even if all slabs reach
the lower mantle, the earth may not be old enough for the
lower and upper mantles to be well mixed.9 Another possibility
is that the early earth had distinct upper and lower mantle
convection systems, and whole mantle convection began later.
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3.8.4 Composition of D″

Seismic observations give a picture of the D″ region (Sec-
tion 3.5.4) that includes lateral velocity variations, vertical
layering, and anisotropy. Hence processes there may be as com-
plex as in the lithosphere, the other major thermal boundary
layer. This complexity may reflect factors including subducted
lithosphere, the generation of mantle plumes, and interactions
between the core and the mantle.

Figure 3.8-12a (right) shows a simple convection model, with
cold material sinking to the CMB, heating up from contact
with the core, and then rising again. The left side of the figure
shows the resulting vertical velocity profiles in regions of
downwelling (solid line) and upwelling (dashed line). Thus
the large (> ±5%) lateral seismic variations at the base of the
mantle would be caused by temperature variations. However,
given the complex seismic structures observed, this model
component seems necessary but insufficient.

The other possibilities shown involve subducted slabs. In
Fig. 3.8-12b, the subducted slabs do not reach the top of the
core, but remain separated by a chemically distinct layer. This
layer may result from early planetary differentiation, or may
have grown by chemical reactions between the mantle and the
core. High-pressure experiments imply that perovskite and
magnesiowustite would react with iron. These mantle dregs
might be thinned in regions of mantle downwelling, and
thickened beneath upwellings. Layering in the dregs may explain
observations of transverse isotropy in downwelling regions
and azimuthal anisotropy in upwelling regions (Section 3.6.6).
The velocity increase of the D″ discontinuity may be partly
caused by ponded slab material, which will still be colder and
have higher velocity than ambient rock. This discontinuity
may be enhanced by dregs flowing up and over ponded slabs.
The ultra-low-velocity zone (ULVZ) at the very bottom of the
mantle may be due to the lower velocities of an iron-rich layer
or to partial melting within it.

Another possibility is that the part of the subducted litho-
sphere that started as basaltic ocean crust and then trans-
formed to eclogite transforms to a material that is seismically
faster than the rest of the lower mantle (Fig. 3.8-12c). This
phase could delaminate from the slabs and accumulate, form-
ing a different chemical boundary layer. If it remained solid,
it might partially explain the D″ discontinuity. Alternatively,
if it melted, it might explain the ULVZ. Either way, its laminar
nature might explain the observed seismic anisotropy. The
lateral variations in velocity would correlate with anisotropy;
SH waves would travel fast in downwelling regions because of
transverse isotropy, but be slowed by the vertical laminations
beneath upwellings.

D″ may also signify the bottom of the perovskite stability
field (Fig. 3.8-12d). Large radial changes in temperature and/or
composition at the base of the mantle could move perovskite
or a secondary phase out of its range of stability, causing a
phase transformation. One possibility is a transformation of
perovskite to stishovite and magnesiowustite, which occurs

with an increase in the iron/magnesium ratio. Stishovite has
high seismic velocities and might contribute to the D″ discon-
tinuity. In this case, anisotropy might reflect orientation of
crystals due to lateral flow. The denser magnesiowustite might
settle to the bottom, forming the ULVZ.

Given our limited knowledge, D″ may involve these and other
effects. For example, if the vertical temperature difference
across D″ is small (about 300°C), then convection should play



a lesser role relative to a chemical boundary layer. If the con-
trast is large, perhaps 1500°C, plume generation should be
more significant, and it would be harder to maintain a distinct
chemical layer.

3.8.5 Composition of the core

Interesting issues about the core also remain unresolved. The
density and bulk sound speed data (Fig. 3.8-7) suggest that the
core has a composition similar to that of iron, but with a less
dense element of lower atomic number added. Other argu-
ments for an iron core are from cosmochemistry. Meteorites
are roughly divided into stony meteorites, resembling the
mantle, and iron meteorites, composed of an iron–nickel alloy,
which are thought to be similar to the core.10 Convection of
molten iron is also considered the only suitable mechanism for
generating the earth’s magnetic field. The light element lower-
ing the core density is unknown: candidates include sulphur,
silicon, oxygen, potassium, and hydrogen. Laboratory experi-
ments suggest that 10–15% of a light element would yield an
acceptable density.

It may seem surprising that the inner core is solid, because it
should be at a higher temperature than the liquid outer core.
Thus the effects of pressure favoring the denser solid phase must
exceed those of temperature. From the ICB to the center of the
earth, temperature is thought to increase by only 100–200°C,
or about 3% of the inner core temperatures, which are about
5000°C. Pressure, however, is thought to increase about 11%,
from about 329 GPa at the ICB to 364 GPa at earth’s center
(Fig. 3.8-5). The density inferred from the seismological data is
consistent with that for solid iron expected from experiments
and modeling.

This situation requires that the inner core geotherm be at
temperatures below the melting temperature curve (solidus),
whereas the outer core geotherm must be above the solidus.

10 Iron meteorites — and thus presumably the solid inner core — are like steel,
recalling legends in which swords forged from meteorites are very strong and have
magical powers.
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Two suggestions have been offered for this effect. If the inner
and outer cores were chemically identical (Fig. 3.8-13, left), the
solidus should rise smoothly with depth. The geotherm would
be shallower than the solidus, so that they intersect at the ICB,
but steeper than the adiabatic gradient required for convec-
tion in the outer core. However, some theoretical calculations
suggest that the superadiabatic temperature gradient in the
core required for convection would be steeper than the solidus.
If so, the solid inner and liquid outer cores can be explained by
assuming that the inner core is chemically different from the
outer core, and thus has a different melting curve (Fig. 3.8-13,
right). Thus, only in the inner core does the geotherm lie below
the solidus and result in a solid phase.

Figure 3.8-14 illustrates this idea, assuming that the light ele-
ment in the core is sulfur. In this phase diagram for the Fe–FeS
system extrapolated to core conditions, sulphur significantly
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lowers the melting temperature of iron. Cooling a liquid iron
mixture with 12% sulphur, corresponding to 33% FeS, causes
solid Fe to freeze out, leaving the liquid richer in FeS.11 In this
analogy, the outer core corresponds to the FeS-rich liquid, and
the inner core to the denser Fe solid. The nickel would also
preferentially enter the solid phase. Such a model predicts an
inner core of approximately 80% Fe and 20% Ni, and an outer
core with 86% Fe, 12% S, and 2% Ni. The inner core’s freezing
is thought to be crucial to the convection in the outer core,
because the sinking iron releases gravitational potential energy.
It has been estimated that the outer core’s convection is driven
in approximately equal fractions by this process, the latent heat
of the crystallizing inner core, and the loss of primordial heat.
An additional contribution might come from radiogenic heat
production from potassium or uranium, if either are present.

Such models suggest that the boundary between the inner
and outer cores is both a phase boundary and a compositional
boundary, like the CMB. The boundary may be quite complex.
Some evidence suggests that the attenuation of PKP-DF waves
is greatest in the outer few hundred km of the inner core, imply-
ing that this zone may be somewhat mushy. It has also been
suggested that iron crystallizes at the ICB at some latitudes,
and dissolves back into the outer core at other latitudes, con-
strained by magnetic forces. This effect may cause preferential
alignment of iron crystals, and thus inner core anisotropy
(Section 3.6.6). Seismological studies and experimental and
theoretical studies of materials at high pressures and temper-
atures are being used to investigate these issues.

3.8.6 Seismology and planetary evolution

We have seen in this section that seismology gives a snapshot of
the present stage of the earth’s thermal and chemical evolution.
Seismology shows the present thickness of the lithosphere,
which may have increased with time, and provides much of
our information about plate tectonic processes and mantle
convection. Seismology similarly provides most of what we
know about the core, including the present sizes of the inner
and outer cores that reflect the progressive freezing of the solid
inner core from the liquid outer core. Hence, as shown in
Fig. 3.8-15, the core has been cooling with time, causing the
inner core to grow.

What we know about the earth and our more limited know-
ledge of the moon and other planets suggest that although there
are differences among the inner planets that reflect their initial
compositions, there are also similarities in their evolution. As
shown in Fig. 3.8-16, planets may follow a similar life cycle,
with phases including their formation, early convection and
core formation, plate tectonics, terminal volcanism, and quies-
cence. This evolution is driven by the available energy sources

11 This effect in which the composition of the liquid and the solid differ is called
fractional crystallization and has many geological applications, including formation
of rocks from a cooling magma. It can be illustrated with partially frozen apple juice,
where the liquid tastes sweeter because it is enriched in sugar relative to the solid
fraction. 12 Consider a human and dog born on the same date.

and reflects the planets’ cooling with time. Thus, even though
the planets formed at about the same time, they are at different
stages in their life cycles.12 The earth is in its middle age, char-
acterized by active plate tectonics.

Hence the approaches used to study the earth’s interior can
be applied to other planets. A five-station seismological net-
work deployed on the moon by the Apollo missions found a
very low level of seismicity, of which most reflected meteoroid
impacts or small moonquakes generated by tidal forces. Travel
time studies yielded the velocity profile shown in Fig. 3.8-17,
which has considerable uncertainty owing to the small number
of seismometers and the difficulty of identifying arrivals due
to scattering (Fig. 3.7-10). Various interpretations have been
made of these results. Although it is tempting to correlate the
low-velocity zone with an asthenosphere, thermal models pre-
dict that this region would be too cold. As a result, the zonation
of the mantle is thought to represent compositional differences.
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Fig. 3.8-16 A model for the evolution of
the terrestrial planets, showing the energy
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Fig. 3.8-17 Velocity model from lunar seismic data (left) and a possible compositional interpretation (right). Squares show seismometer locations,
arrowheads show major meteoroid impacts, and large and small dots denote shallow and deep moonquakes. (After Nakamura, 1983 ( J. Geophys. Res.,
88, 677–86, copyright by the American Geophysical Union) and Hubbard, 1984.)
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There is a suggestion of decreased velocity below 1000 km,
which thermal models suggest could be consistent with an
asthenosphere. Seismological efforts to detect a core are incon-
clusive, and the moment of inertia ratio of 0.39 allows for at
most a small core.

Hence it appears that the moon now has a thick lithosphere
and is tectonically inactive. It thus seems to have lost much of
its heat, presumably because of its small size, which favors
rapid heat loss. In general, we would expect the heat available

from the gravitational energy of accretion and radioactivity to
increase as the planet’s volume, whereas the rate of heat loss
through the surface should depend on its surface area. Hence
the remaining heat should vary as

  
remaining heat  
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loss
= = =  
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π
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(19)

so larger planets would retain more heat and be more active.
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Gibson and Levander (1988) discuss posible artifacts in lower crustal re-
flection data.

The extensive literature on reflection seismology includes the intro-
ductory exploration texts listed above and advanced treatments, including
Claerbout (1976, 1985), Robinson and Treitel (1980), Waters (1981),
Sheriff and Geldart (1982), Robinson (1983), and Yilmaz (1987). The sub-
ject is closely allied to that of geophysical signal processing, discussed in
texts including Kanasewich (1981) and Hatton et al. (1986).

Applications of seismology to earth structure are discussed in texts and
the research literature. Introductory texts such as Bolt (1982), Bott (1982),
Gubbins (1990), Doyle (1995), Lay and Wallace (1995), Lowrie (1997),
Shearer (1999), and Udias (1999), have good overviews. Simon (1981) is
a manual for seismogram interpretation, showing examples of records
for earthquakes at various distances and depths. The classic texts by
Gutenberg (1959) and Jeffreys (1976) are excellent starting points for
further treatment of the data and methods. Bullen and Bolt (1985) has a
detailed discussion of ray theory for the spherical earth. Aki and Richards
(1980), Ben-Menahem and Singh (1981), and Kennett (1983) treat both
ray theory and more advanced methods. The normal mode simulation
of body wave propagation shown in Fig. 3.5-19 is available at http://
epsc.wustl.edu/seismology/michael/movie.html.

Karato and Spetzler (1990) review the physical mechanisms causing
anelasticity. Information about anisotropy can be found in Babuska and
Cara (1991) and Silver (1996). For discussion of scattering and attenua-
tion, see Kanamori and Anderson (1977), Brennan and Smylie (1981),
Jackson (1993), Mitchell (1995), Sato and Fehler (1998), and Romanowicz
(1998). Garnero (2000) summarizes results for the lateral heterogeneity of
the lowermost mantle.

We alluded only briefly to the nonseismological geophysical data and to
chemical results applicable to study of the earth’s interior. In addition to
journal articles, useful texts are those by Wyllie (1971), Bullen (1975),
Ringwood (1975), Wood and Fraser (1977), Brown and Mussett (1993),
Bott (1982), Melchior (1986), Jacobs (1987), Lambeck (1988), Anderson
(1989), Stacey (1992), and Poirier (2000). Useful reviews can be found in
McElhinny (1979), Ahrens (1995a, b, c), Boschi et al. (1996), Boehler
(1996), Crossley (1997), Gurnis et al. (1998), and Davies (1999).

From such arguments, we might expect Mercury and Mars,
which are larger than the moon but smaller than the earth,
to have also reached their old age with little further active
tectonics. Mercury may still have a small liquid core, which
contributes to the observed magnetic field, due to tidal forces
from the sun. Venus, which is comparable in size to the earth,
might still be active but with episodic, rather than continuous,
plate tectonics. Seismology can contribute little to the active
discussion of these topics until seismometers are deployed on
these planets. Although only one seismometer has been oper-
ated on Mars and yielded inconclusive results,13 seismometers
are planned for future missions.

Further reading

Refraction seismology and its use in crustal studies are covered in many
general geophysics texts, such as Fowler (1990) and Reynolds (1997).
More detailed treatments can be found in exploration textbooks like
Dobrin and Savit (1988), Sheriff and Geldart (1982), Telford et al. (1976),
and Kearey and Brooks (1984). Additional information can be obtained
in review papers such as Braile and Smith (1975), Kennett (1977), or
Spudich and Orcutt (1980). A summary of crustal structure results and
interpretations for the continental USA can be found in Pakiser and
Mooney (1989). Meissner (1986) presents an integrated treatment of
observations and models for the continental crust. Reviews on the nature
of the Mohorovibia discontinuity are given by Jarchow and Thompson
(1989), Braile and Chiang (1986), and Fountain and Christensen (1989).

13 Due to operational constraints, the seismometer was mounted on the lander
portion of the spacecraft, rather than in direct contact with Mars. It is rumored that
consideration was given to saving weight on the lander by moving the seismometer to
the orbiter.

Problems
(a) Derive the travel time to distance x for a wave that is incident

on the boundary at a distance y from the source, travels
for some distance just below the boundary, and then returns
to the surface at the same incidence angle at which it went
down.

(b) Find the y value giving an extremal travel time, and show
that it corresponds to the critical angle of incidence.

(c) Determine if this travel time is a minimum or a maximum.
5. Use the data for the reversed profile shown in Fig. P3.2 to find the

crust and mantle velocities, Moho dip, and crustal thickness.
6. (a) Derive the travel time for the head wave on the up-dip path of a

reversed profile with a dipping layer (Eqn 3.2.17).
(b) Show that the equations for the travel time of the head wave

for a dipping layer (Eqns 3.2.16 and 3.2.17) reduce to the flat
layer result in the case of zero dip.

7. Derive the Dix equation for interval velocity (Eqn 3.3.19) from the
formula for rms velocity.

8. Consider two pairs of seismograms. One pair have the same mid-
point, but the offset for one record is the negative of the first. The
other pair have the same source point, but the offset for one record

1. Use the data from the refraction experiment in Fig. 3.2-5 to find the
crust and mantle velocities and the crustal thickness. Remember
that this is a reduced travel time plot.

2. For a case of two layers overlying a halfspace, derive an expression
for the thickness of the second (deeper) layer in terms of the second
crossover distance.

3. Analyze the data from the marine refraction experiment (Lewis,
1978) shown in Fig. P3.1, assuming for simplicity that the structure
consists of a water layer, a crustal layer, and a mantle halfspace.

(a) Assuming that the first arrivals are described by two line
segments, for head waves at the top of the crust and mantle,
find the corresponding velocities.

(b) Although the direct wave traveling in the water layer is not
shown, the P velocity for water is 1.5 km/s. Use the time
intercept for the crustal head wave to find the water depth.

(c) Use the time intercept for the Pn wave to find the crustal
thickness.

4. To show that the head wave is predicted by Fermat’s principle,
consider a layer of thickness h with velocity v0, overlying a
halfspace with a higher velocity, v1.
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is the negative of the first. Sketch the ray paths for a single dipping
layer, and explain which have the same travel times and why.

9. Define the cross-correlation (Eqn 3.3.68) for discrete time series.
Such a series with N points can be written f(t) = f(n∆t), where n
goes from 0 to N − 1 and ∆t is the time increment between points.

10. Given a common offset gather, what can you tell about structure
along a profile?

11. Assume that a 24-fold seismic survey records data sampled every
40 milliseconds, and that each trace is 10 s long. For a source spac-
ing of 25 m, how many data points are recorded in a 100 km-long
survey?

12. Given the definition of the travel time curve for a spherical earth
T(p) = p∆(p) + τ(p), prove that dτ/dp = −∆(p).

13. (a) Use the travel times for PcP and PKiKP at vertical incidence
(Fig. 3.5-4) to estimate the average P-wave velocity in the outer
core.

(b) Use the travel times for PKiKP and PKIKP at vertical incidence
(Figs. 3.5-4 and 3.5-7 to estimate the average P-wave velocity
in the inner core.

14. Compare the travel time curves (Fig. 3.5-4) for earthquakes at the
surface and at a depth of 600 km. Identify and explain some of
the differences.

15. Use the travel time curves (Fig. 3.5-4) for earthquakes at the
surface and at a depth of 600 km to find p in s/degree for direct P
waves at 40° and 60°. Find the angle of incidence at the earthquake
for these rays by converting p to s/radian and using the velocities in
Fig. 3.5-1. Explain how the angle of incidence of rays reaching a
given distance depends on earthquake focal depth.

16. The seismogram in Fig. P3.3 for July 21, 1964, at Baguio
(Philippines) contains arrivals from an earthquake that occurred in
the Solomon Islands at 21 hours, 1 minute, 50 seconds. To analyze
these data, which may be easier on an enlarged photocopy,

(a) Measure the arrival time of the P wave and use the earth-
quake origin time to find its travel time.

(b) Use the travel time curves to find how far from the station
the earthquake occurred.

(c) Trace the first 8 minutes of the seismogram after the P wave.
Identify the S and PP phases on your tracing (use the travel
time table for help). Can you identify other phases?

(d) Identify the free surface reflections pP and sP. Measure their
times after P, and use these times to estimate the depth.

17. The travel time curve for Pdiff, the P wave diffracted along the core–
mantle boundary, conveys information about the velocity at the
base of the mantle. The travel time curve is linear, with ray para-
meter p = dT/d∆ = rcmb /vcmb, where rcmb is the radius of the core–
mantle boundary and vcmb is the velocity at the base of the mantle.

(a) Measure the ray parameter in s/degree from the record
section in Fig. P3.4, and compare it to the slope of the travel
time curve in Fig. 3.5-4.

(b) Convert p to s/radian, and find the velocity at the base of the
mantle.

(c) Imagine a location near the base of the mantle that is 180°
away from an earthquake. The first SH wave to reach that
spot will be SHdiff . What is the first SV wave (of nonzero
amplitude) to reach that spot?
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C-2. Write a program to generate and plot travel times for reflections
from a series of flat interfaces using both the expressions for
travel time and distance (Eqns 3.3.7, 3.3.8) and their hyperbolic
approximation (Eqn 3.3.11). Calculate the travel times for the
oceanic crust model given in Fig. 3.2-15. Compare the results
from the two methods.

C-3. (a) Write a subroutine to calculate the cross-correlation of two
time series sampled at discrete times.

(b) Write a subroutine to calculate a Vibroseis sweep signal
(Eqn 3.3.57) of a given length, T, and frequency range (f1, f2).
The start time, t0, and sample rate, ∆t, should also be
parameters.

(c) Generate and plot a sweep for ∆t = 0.0025 s, t0 = 0, T = 5 s,
f1 = 7 Hz, and f2 = 14 Hz. Use the results of part (a) to find
and plot its auto-correlation.

C-4. (a) Write a subroutine to generate a reflector series (Eqn 3.3.61)
for a series of layers with thicknesses hi, velocities vi, and
densities ρi.

(b) Calculate and plot the results for two layers over a half-
space, if the first layer is 3 km thick, with v = 2.5 km/s and
ρ = 2.1 g/cm3, the second is 4 km thick with v = 3.2 km/s
and ρ = 2.4 g/cm3, and the halfspace has v = 4.5 km/s and
ρ = 2.8 g/cm3.

(c) Calculate and plot the vertical incidence synthetic seismo-
gram for this structure and the source given in the previous
problem.

(d) Using the results of problem C-3, cross-correlate the
seismogram with the sweep and plot the resulting time
series.

(e) Repeat parts (b)–(d), cutting the second layer thickness in half
each time. When can you no longer resolve the second layer
on the time series after cross-correlation?

C-5. (a) Write a program which takes a source at any depth and traces
rays, selected by a range of incidence angles at the source,
through an earth model. Have the graphic output show the
source, ray paths, earth’s surface, core–mantle boundary, and
inner core–outer core boundary.

(b) Using PREM or another earth model, trace rays for sources at
the surface and at 300 km depth. Have the ray paths show the
effects of upper mantle discontinuities and the core.

(c) Have the program produce a travel time plot. Can you resolve
the upper mantle discontinuities in this plot?

C-6. (a) Write a program that computes the mass, M, moment of
inertia about the polar axis, C, and C/Ma2 ratio for a planet
of radius a. To do this, treat the planet as a series of n shells
whose densities you input.

(b) Determine models for the densities of

a M C/Ma2

earth 6371 km 5.977 × 1024 kg 0.331
moon 1738 km 7.352 × 1022 kg 0.395
Mars 3390 km 6.419 × 1023 kg 0.365

that satisfy the observed M and C/Ma2. Can you satisfy the
data for Mars and the earth without a dense core?

Fig. P3.4 See problem 17.
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18. Derive R(t) and T(t) in Eqn 3.6.13.
19. (a) Use Table 2.9-1 to find the attenuation relaxation times for

modes 0T2, 0T30, and 0S30 if their Q values are 250, 130, and
183, respectively.

(b) How far have the Love and Rayleigh waves corresponding to

0T30 and 0S30 traveled during these times?
20. Show that for a damped harmonic oscillator, the quality factor

Q = 2πE/(−∆E), where E is the energy in the oscillating system, and
∆E is the amount of energy lost during one cycle of the oscillation.

21. Find the percentage shear wave velocity differences due to physical
dispersion between waves with periods of 1 and 10 s in the case of

(a) a hot back-arc basin (Q = 25),
(b) a cold lithospheric slab (Q = 250).

Explain physically what causes the difference between the results
for parts (a) and (b).

22. Show that α2 − (4/3)β2 = K/ρ and that Q−1
α  = LQ−1

µ + (1 − L)Q−1
K

where L = (4/3)(β/α)2

23. Use the acceleration of gravity at the core–mantle boundary
(g = 10.7 m/s2) to find the total mass and average density of earth’s
core.

24. Assuming that the earth is ellipsoidal, but otherwise homogeneous:
(a) What source location results in the greatest amount of

antipodal defocusing of surface waves?
(b) What source location results in the least amount of

antipodal defocusing of surface waves?
(c) For (a), estimate the approximate time range for the earliest

and latest arrival of a surface wave with a phase velocity of
4.0 km/s.

Computer problems

C-1. Write a program to trace direct, reflected, and head wave paths
for a dipping layer over a halfspace. Have the program compute
the travel time for each path from the length of the path in each
material (i.e., rather than using the analytic expressions for travel
time). Use the program to replicate the results of problem 5.



4.1 Introduction

Seismology deals with the generation and propagation of seis-
mic waves. Our initial focus has been on the propagation of
seismic waves and how they can be used to study the interior of
the earth. We now turn to the generation of seismic waves and
how they are used to study earthquakes. This association is so
strong that seismology is sometimes viewed as the science of
earthquakes, rather than of elastic waves in the earth. Both
definitions are used, but the latter has become more common
because seismology is the primary tool used to investigate earth
structure as well as earthquakes, whereas techniques other
than elastic waves are also used to investigate earthquakes.

Earthquakes almost invariably occur on faults, surfaces in
the earth on which one side moves with respect to the other.
Typically, earthquakes occur on faults previously identified by
geological mapping, which shows that motion across the fault
has occurred in the past. Earthquakes that occur on land and
close enough to the surface often leave visible ground breakage
along the fault. For example, earthquakes occur along the San
Andreas fault, which can be seen cutting across California
for great distances (Fig. 4.1-1). One of these, the famous 1906
magnitude 7.8 San Francisco earthquake on the San Andreas
fault was one of the first US earthquakes to be studied carefully.
Contemporary accounts showed that several meters of relative
motion occurred along several hundred kilometers of the San
Andreas fault (Fig. 4.1-2).

The earthquake and the resultant fires did such damage
(Fig. 1.2-10) that a study commission was formed. As part of
the investigation, H. Reid proposed the elastic rebound theory
of earthquakes on a fault. In this model, materials at distance
on opposite sides of the fault move relative to each other, but
friction on the fault “locks” it and prevents the sides from slip-
ping (Fig. 4.1-3). Eventually the strain accumulated in the rock
is more than the rocks on the fault can withstand, and the fault

4 Earthquakes

Much of what is known about earthquakes follows from study of the motion of the ground.

Charles Richter, Elementary Seismology, 1958

Fig. 4.1-1 Aerial photograph of the San Andreas fault in the Carrizo Plain
in California, seen from the south. Note the displacement of stream gullies
as the Pacific plate (near side) has moved to the left (northwest) relative to
North America. (Copyright John S. Shelton.)

slips, resulting in an earthquake. The motion illustrated in
this cartoon by an offset fence can sometimes be seen after
earthquakes using other linear features, including rows of
trees, railroad tracks, or roads (Fig. 4.1-4).

The elastic rebound idea was a major conceptual break-
through, because the faulting seen at the surface had been pre-
viously regarded as an incidental side effect of an earthquake,
rather than its cause. Subsequently, earthquake studies have
been widely pursued for several reasons. One is to understand
the large-scale geological processes causing earthquakes. It
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Fig. 4.1-2 Map of the portion of the San Andreas fault that slipped in
 the 1906 San Francisco earthquake (top) and the amount of surface slip
reported at various points along it (bottom). This slip is the distance by
which the earthquake displaced originally adjacent features on opposite
sides of the fault. (Boore, 1977. © Seismological Society of America.
All rights reserved.)

Fig. 4.1-3 The elastic rebound model of earthquakes assumes that
between earthquakes, material on the two sides of a fault undergoes
relative motion. Because the fault is locked, features across it that were
linear at time (a), such as a fence, are slowly deformed with time (b).
Finally the strain becomes so great that the fault breaks in an earthquake,
offsetting the features (time c). (Courtesy of S. Wesnousky.)

Fig. 4.1-4 Displacement of crop rows resulting from slip along the
Imperial fault, El Centro, California, on October 15, 1979. (Courtesy of
the National Geophysical Data Center.)

turns out that earthquakes largely reflect the motions of
lithospheric plates, and so provide valuable information about
how and why plates move. For example, earthquakes on the
San Andreas fault result from the steady motion between the

North American and Pacific plates (Fig. 5.2-3). A second
reason is to understand the fundamental physics of earthquake
faulting. There are many unanswered questions about how
and when faults break, even for earthquakes that occur near
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the earth’s surface, where data are relatively easy to gather.
These issues are important for society because, as discussed in
Chapter 1, knowledge of where and when earthquakes are
likely, and of the expected ground motion during them, can
help mitigate the risk they pose.

The largest earthquakes typically occur at plate boundaries.
Using elastic rebound theory, we think of them as reflecting the
most dramatic part of a process called the seismic cycle, which
takes place on segments of the plate boundary over hundreds to
thousands of years. During the interseismic stage, which makes
up most of the cycle, steady motion occurs away from the fault
but the fault itself is “locked,” although some aseismic creep
can also occur on it. Immediately prior to rupture there is the
preseismic stage that can be associated with small earthquakes
(foreshocks) or other possible precursory effects. The earth-
quake itself marks the coseismic phase during which rapid
motion on the fault generates seismic waves. During these few
seconds, meters of slip on the fault “catch up” with the few
mm/yr of motion that occurred over hundreds of years away
from the fault. Finally, a postseismic phase occurs after the
earthquake, and aftershocks and transient afterslip occur for a
period of years before the fault settles into its steady inter-
seismic behavior again.

Studying this cycle is difficult because it extends for hundreds
of years, so we do not have observations of it in any one place.
Instead, we have observations from different places, which we
assume can be combined to give a complete view of the process.
It is far from clear how good that view is and how well our
models represent its complexity. As a result, earthquake physics
remains an active research area that integrates a variety of
techniques. Most faults are identified from the earthquakes on
them, and seismology is the primary tool used to study the
motion during the earthquakes and infer the long-term nature
of motion on the faults. Moreover, because earthquakes are
such dramatic events, historical records of earthquakes are
often available and provide data on the earthquake cycle for
a given fault or fault segment. Field studies, both on land and
under water, also provide information about the location,
geometry, and history of faults. Geodetic measurements are
used to study ground deformation before, during, and after
earthquakes, and thus the processes associated with fault lock-
ing and afterslip. For oceanic regions and deep earthquakes,
where geodetic and geological observations are not available,
almost all of what we know about the earthquakes themselves
comes from seismology. The results for individual earthquakes
are then combined and integrated with those from other tech-
niques, as discussed in the next chapter, to better understand
how earthquakes in a given region reflect the large-scale tectonic
processes that cause them.

Of these approaches, our primary focus in this book is the
information that seismology provides about earthquakes. The
arrival time of seismic waves at seismometers at different sites
is first used to find the location of an earthquake, known as the
focus, or hypocenter, using techniques discussed in Chapter 7.
Next, as discussed in this chapter, the amplitudes and shapes of

the radiated seismic waves are used to study the size of the
earthquake, the geometry of the fault on which it occurred,
and the direction and amount of slip. We introduce these
techniques and discuss their applications, while leaving their
derivation and details for more advanced treatments listed at
the chapter’s end.

It is worth bearing in mind that learning about earthquake
faulting from the seismic waves that are generated is an inverse
problem, like learning about earth structure from seismic
waves. As discussed in Section 1.1.2, this means that studying
seismic waves alone is limited in what it can tell about the
earthquake process. We will see that the seismic waves radiated
from an earthquake reflect the geometry of the fault and the
motion on it, and so can give an excellent picture of the kin-
ematics of faulting. However, they contain much less informa-
tion about the actual physics, or dynamics, of faulting. In the
next chapter, we discuss how seismological results are being
combined with experimental and theoretical studies of rock
friction and fracture to explore the physics of earthquakes.

4.2 Focal mechanisms

4.2.1 Fault geometry

To describe the geometry of a fault, we assume that the fault
is a planar surface across which relative motion occurred
during an earthquake. Geological observations of faults that
reach the surface show that this is often approximately the case
(Fig. 4.2-1), although complexities are common. Similarly,
we will see that this assumption is usually (but not always)
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Fig. 4.2-1 Fault cutting across a moraine near Crowley Lake, California.
The land in front has dropped relative to the background. (Copyright
John S. Shelton.)
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Fig. 4.2-2 Fault geometry used in earthquake studies. The fault plane,
with normal vector 4, separates the lower, or foot wall, block from the
upper hanging wall block (not shown). The slip vector, 2, describes the
motion of the hanging wall block with respect to the foot wall block.
The coordinate axes are chosen with x3 vertical and x1 oriented along
the fault in the plane of the earth’s surface, such that the fault dip angle, δ,
measured from the −x2 axis, is less than 90°. The slip angle λ is measured
between the x1 axis and 2 in the fault plane. φf is the strike of the fault
measured clockwise from north. (After Kanamori and Cipar, 1974. Phys.
Earth Planet. Inter., 9, 128–36, with permission from Elsevier Science.)
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These two different coordinate systems, (φf, δ, λ) and (4, 2),
are useful for different purposes. Some calculations are more
easily done with respect to the fault, whereas others are more
easily done with respect to geographic directions.

Although the slip direction varies such that the slip angle
ranges from 0° to 360°, several basic fault geometries, de-
scribed by special values of the slip angle, are useful to bear in
mind (Fig. 4.2-3). When the two sides of the fault slide horizon-
tally by each other, pure strike-slip motion occurs. When λ =
0°, the hanging wall moves to the right, and the motion is called
left-lateral. Similarly, for λ = 180°, right-lateral motion occurs.
To tell which is which, look across the fault and see which way
the other side moved. The other basic fault geometries describe
dip-slip motion. When λ = 270°, the hanging wall slides down-
ward, causing normal faulting. In the opposite case, λ = 90°,
and the hanging wall goes upward, yielding reverse, or thrust,
faulting.1 Most earthquakes consist of some combination of
these motions and have slip angles between these values. It is
thus useful, when thinking about earthquake mechanisms, to
remember the three basic faults. As discussed in Section 2.3.5,
the basic fault types can be related to the orientations of the
principal stress directions.

This discussion brings out the point that although texts
typically show vertically dipping strike-slip faults,2 they are by
no means the norm. In fact, as discussed later, the largest earth-
quakes occur on shallow-dipping thrust faults at subduction
zones. Although such faults are harder to study, because the
fault trace is generally under water, the same basic principles
apply.

Real faults, of course, have finite dimensions and complic-
ated geometries. If we treat a fault as rectangular, the dimension
along the strike is called the fault length, and the dimension
in the dip direction is known as the fault width. Actual earth-
quake fault geometries can be much more complicated than a
rectangle. The fault may curve and require a three-dimensional
description. Rupture may occur over a long time and consist of
several sub-events on different parts of the fault with different
orientations. Such complicated seismic events, however, can
be treated as a superposition of simple events. Thus, if we

1 Seismologists often use the terms “reverse” and “thrust” fault interchangeably,
whereas structural geologists reserve the term “thrust” for a shallow-dipping reverse
fault.
2 In part because many authors have spent time in California, and in part because
they are easy to draw.
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consistent with seismic data. Thus the fault geometry is
described in terms of the orientation of the fault plane and the
direction of slip along the plane.

The geometry of this model is shown in Fig. 4.2-2. The fault
plane is characterized by 4, its normal vector. The direction of
motion is given by 2, the slip vector in the fault plane. The slip
vector indicates the direction in which the upper side of the
fault, known as the hanging wall block, moved with respect to
the lower side, the foot wall block. Because the slip vector is in
the fault plane, it is perpendicular to the normal vector.

Several different coordinate systems are useful in studying
faults. One is aligned such that the x1 axis is in the fault strike
direction, the intersection of the fault plane with the earth’s
surface. The x3 axis points upward, and the x2 axis is perpen-
dicular to the other two. The dip angle δ  gives the orientation
of the fault plane with respect to the surface. Because the x1
axis could be defined in two directions, 180° apart, it is chosen
so that the dip measured from the –x2 axis is less than 90°. The
direction of motion is represented by the slip angle, λ, meas-
ured counterclockwise in the fault plane from the x1 direction,
which gives the motion of the hanging wall block with respect
to the foot wall block. To orient this system relative to the geo-
graphic one, the fault strike φf is defined as the angle in the
plane of the earth’s surface measured clockwise from north to
the x1 axis.

Alternatively, the orientation of the fault and slip can be
described by giving the normal and slip vectors in a geographic
coordinate system with 7 pointing north, 8 pointing west, and 9
pointing up. In this coordinate system, the unit normal vector
to the fault plane is
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Left-lateral strike-slip fault
(   = 0°)λ

Right-lateral strike-slip fault
(   = 180°)λ

Reverse dip-slip fault
(   = 90°)λ

Normal dip-slip fault
(   = –90°)λ

”Up”
Fault plane Dilatation Compression

Epicenter

Dilatation
Compression

Auxiliary
plane

“Down”
Fig. 4.2-4 First motions of P waves observed
at seismometers located in various directions
about the earthquake provide information
about the fault orientation. The two nodal
planes separate regions of compressional
and dilatational first arrivals. One nodal
plane is the fault plane, and the other is the
auxiliary plane, but these data cannot
distinguish which is the actual fault plane.

Fig. 4.2-3 Basic types of faulting. Strike-slip
motion can be either right- or left-lateral.
Dip-slip faulting can occur as either reverse
(thrust) or normal faulting. (Eakins, 1987.)

directions from an earthquake. Figure 4.2-4 illustrates this
concept for a strike-slip earthquake on a vertical fault. The first
motion is either compression, for stations located such that
material near the fault moves “toward” the station, or dilata-
tion, where the motion is “away from” the station. Thus when
a P wave arrives at a seismometer from below, a vertical-
component seismogram records an upward or downward first
motion, corresponding to either compression or dilatation.

The first motions define four quadrants, two compressional
and two dilatational. The division between quadrants occurs
along the fault plane and a plane perpendicular to it. In these
directions, because the first motion changes from dilatation to
compression, seismograms show small or zero first motions.
These perpendicular planes, called nodal planes, separate the
compressional and dilatational quadrants. If these planes can
be found, the fault geometry is known. A problem is that the
first motions from slip on the actual fault plane and from slip
on the plane perpendicular to it, the auxiliary plane, would be
the same, so the first motions alone cannot resolve which plane

understand the seismic waves generated by a simple, two-
dimensional, rectangular fault, we can model those resulting
from a more complicated set of ruptures. This application of the
principle of superposition is based on the assumption of linear
elasticity and is analogous to the way we constructed seismic
waves by summing normal modes (Sections 2.2.5 and 2.9).

4.2.2 First motions

Seismograms recorded at various distances and azimuths are
used to study the geometry of faulting during an earthquake,
known as the focal mechanism. This operation uses the fact
that the pattern of radiated seismic waves depends on the
fault geometry. The simplest method, which we discuss first,
relies on the first motion, or polarity, of body waves. More
sophisticated techniques, discussed in the next section, use the
waveforms of body and surface waves.

The basic idea is that the polarity (direction) of the first
P-wave arrival varies between seismic stations at different
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Fig. 4.2-5 A fault-oriented coordinate system for
describing the radiation pattern of an earthquake.
The body forces equivalent to the faulting are a pair
of force couples acting about the null axis. (After
Pearce, 1977.)

geological and geophysical data, together with (hopefully
valid) preconceptions, about the source. In particular, we often
(at least believe that we) have good reasons to favor slip on one
of the possible fault planes and to interpret the faulting in terms
of the regional geology and stress field. Similarly, we interpret
aspects of the seismic wave field in terms of simple models
of the physics of the faulting process, while recognizing that
radiated seismic waves provide only a partial picture.

The radiation patterns of double couples have natural sym-
metries about the fault plane, and are thus normally written
using a coordinate system oriented along the fault. In such a
system (Fig. 4.2-5), the fault plane lies in the x1–x2 plane, so its
normal is the x3 axis. The slip vector is in the fault plane, paral-
lel to the x1 axis. The slip is such that material above the x1–x2
plane moves in the +x1 direction with respect to the material on
the other side. The radiation pattern would be the same if the
slip in the x3 direction occurred on the auxiliary plane, which
lies in the x2–x3 plane and whose normal is the x1 axis. Thus
we can interchange the slip (x1) and normal (x3) directions,
so the slip vector on one plane is the normal vector on the
other, and vice versa. However, the direction orthogonal to
both, known as the null axis, is distinct. In this geometry, the
equivalent body force double couple acts about the x2 axis, and
the forces are oriented along the x1 and x3 directions.

To see how the radiation patterns vary with the direction of
the receiver, consider the radiation field in spherical coordin-
ates, where θ is measured from the x3 axis and φ is measured
in the x1–x2 plane (Figs 4.2-6 and 7). Seismic source theory
shows that far from the source, the displacement due to com-
pressional waves, which create the radial (êr) component of the
displacement (ur) because their motion is along the propaga-
tion direction, is

is the actual fault plane. However, additional information
can often settle the question. Sometimes geologic or geodetic
information, such as the trend of a known fault or observations
of ground motion, indicates the fault plane. Often, smaller after-
shocks following the earthquake occur on, and thus delineate,
the fault plane. If the earthquake is large enough, the finite time
required for slip to progress along the fault causes variations in
the waveforms observed at different directions from the fault,
so these directivity effects can be used to infer the fault plane.

4.2.3 Body wave radiation patterns

The radiation patterns of P and S waves, which we will not
derive, can be obtained using the theory of seismic sources. The
radiation patterns turn out to be those that would be generated
by a set of forces with a corresponding geometry. Specifically,
the radiation due to motion on the fault plane is what would
occur for a pair of force couples, pairs of forces with opposite
direction a small distance apart. If one couple was oriented
in the slip direction with forces on opposite sides of the fault
plane, the other couple would be oriented in the corresponding
direction on opposite sides of the auxiliary plane. Thus the
elastic radiation can be described as resulting from a double
couple, and these forces are known as the equivalent body
forces for the fault slip, discussed further in Section 4.4.

It is important to bear in mind that the equivalent forces are
only a simple model representing the complex faulting process
that actually took place. We can view the faulting as occurring
within a “black box” about which the radiated seismic waves
provide only limited information. The seismic waves tell us
only that some processes within the box produced seismic
waves described by the equivalent forces. Often we have other
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Fig. 4.2-6 The body wave radiation pattern for a double couple source has
symmetry in the spherical coordinate system shown, corresponding to the
axes in Fig. 4.2-5. θ is measured from the x3 axis, the normal to the fault
(x1−x2) plane, and φ is measured in the fault plane. The P-wave radiation
pattern has four lobes that go to zero at the nodal planes, which are the
fault and auxiliary (x2−x3) planes. The S-wave radiation pattern describes
a vector displacement that does not have nodal planes but is perpendicular
to the P-wave nodal planes. S-wave motion converges toward the T axis,
diverges from the P axis, and is zero on the null axis. (After Pearce, 1977,
1980.)
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This expression has several parts. The first term is an ampli-
tude term. In an infinite medium, for which this was derived,

the amplitude would decay as 1/r. The second term reflects the
pulse radiated from the fault, F(t), which propagates away at
the P-wave speed α and arrives at a distance r at time t − r/α.
F(t) is called the seismic moment rate function or source
time function. It is the time derivative of the seismic moment
function

M(t) = µD(t)S(t), (4)

which describes the faulting process in terms of the rigidity of
the material and history of the slip D(t) and fault area S(t). The
latter terms are time-dependent, because they can vary during
an earthquake. As discussed in Section 4.6, the best measure
of earthquake size and energy release is the static (or scalar)
seismic moment

M0 = µD
—

S, (5)
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Fig. 4.2-7 Radiation amplitude patterns of P and S waves in the x1−x3
plane. a: Fault geometry, showing the symmetry of the double couple
about the x2 axis. b: Radiation pattern for P waves, showing the amplitude
(left) and direction (right). c: Same as (b), but for S waves.
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where D
—

 is the average slip (or dislocation) on the fault with
area S. We often use the seismic moment as a scale factor and
write F(t) = M0x(t), where x(t) is the source time function.

The final term, sin 2θ cos φ, describes the P-wave radiation
pattern. It is four-lobed, with two positive, compressional,
lobes and two negative, dilatational, ones. The displacement is
zero on the fault (θ = 90°) and auxiliary (φ = 90°) planes. Thus
the fault plane and auxiliary plane are nodal planes separat-
ing compressional and dilatational quadrants. The maximum
amplitudes are between the two nodal planes.

Similarly, the shear wave displacement has two components,
uθ êθ + uφ êφ, where

  
u

r
θ πρβ

= 
1

4 3
F(t − r/β) cos 2θ cos φ,

u
r

φ πρβ
= 

1

4 3
F(t − r/β)(−cos θ sin φ). (6)

Note that the term involving F(t) corresponds to waves pro-
pagating at the S-wave speed β. As shown in Fig. 4.2-6, the
S-wave motion does not have nodal planes, but it is perpen-
dicular to the P-wave nodal planes and is zero on the null axis.
It converges toward the center of the compressional quadrants,
which, as we will see shortly, is the location of the T, or least
compressive stress, axis. It also diverges from the centers of the
dilatation quadrants, known as the P, or most compressive
stress, axis. Thus, although the S-wave pattern does not reflect
the fault plane as clearly as the P-wave pattern, it can also be
used to study the fault geometry. An interesting feature of
Eqns 3 and 6 is that they show why S waves on seismograms are
usually bigger than P waves — the equations predict an average
ratio of α3/β3, or about 5.

Because the radiated seismic waves vary as a function of
θ and φ, seismograms recorded at different directions from
the earthquake can be used to find the fault geometry. The
P wave is the first wave to arrive from an earthquake, so on a
seismogram it is an isolated arrival whose polarity is often easy
to identify. A set of P-wave first motions thus often makes
it possible to locate the nodal planes that divide the regions of
different polarity. The first S waves are harder to use, because
they arrive later in the seismogram and can be buried in a com-
plicated wave train. It is still possible, however, to use the S-
wave information. One way to do this is to consider the relative
amplitudes of the two S-wave components.

One additional concept is needed to determine fault plane
solutions using the first motions from various seismic stations.
The radiation patterns show the displacements that would
occur on a sphere with infinitesimal radius about the source.
The observations, of course, are at stations some finite distance
from the source. We thus need to convert the observations
at the stations to hypothetical ones surrounding the source.
To do this, recall that seismic waves do not travel in straight
lines from the earthquake to a station. Instead, because seismic
velocities vary with depth, rays follow curved paths.

Fig. 4.2-8 The angle of incidence at the earthquake source is the angle
from the vertical at which the ray leaves the source, and thus the angle at
which the ray intersects the lower focal hemisphere.
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As discussed in Section 3.4, the ray paths are given by Snell’s
law, which says that the ray parameter is constant along a ray.
Thus the ray parameter of the ray arriving at a given distance
can be found from the slope of the travel time curve T(∆),
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Hence taking r as the radius at the earthquake source and v
as the velocity at the source depth, the value of dT/d∆ for this
distance gives the ray’s angle of incidence at the source, often
called the take-off angle. How far a ray travels depends on its
take-off angle (Fig. 4.2-8); rays with large take-off angles leave
the source closer to the horizontal and travel shorter distances
than those with smaller take-off angles.

The distance that a ray has traveled thus gives its take-off
angle. Table 4.2-1 is a sample table relating teleseismic travel
distances and take-off angles for P waves from a surface-focus
earthquake. These distances and angles depend on the velocity
model assumed. In teleseismic first motion studies, stations
at distances greater than 100° are generally not used because
the rays hit the earth’s core, and stations for distances closer
than 30° are often avoided because the take-off angles depend
strongly on the upper mantle velocity structure used. In local
earthquake studies, care is taken to ensure that the velocity
model is appropriate.

Using such tables, the distances to seismic stations can be
converted to take-off angles. Thus the locations of compres-
sions and dilatations can be converted to their positions on
the surface of the lower focal hemisphere, a hemisphere with
infinitesimal radius about the source. A similar approach can
be used for data directly above a deep earthquake, where the
upper focal hemisphere is a natural representation.

4.2.4 Stereographic fault plane representation

We have seen that fault geometry can be found from the distri-
bution of data on a sphere around the focus. Because plotting
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on a piece of paper is easier than plotting on a sphere, a stereo-
graphic projection that transforms a hemisphere to a plane is
used to plot the data. The graphic construction that does this is
a stereonet (Fig. 4.2-9).3 On this net, the azimuth is shown by
the numbers from 0° to 360° around the circumference. The
dip angles are shown by the numbers from 90° to 0° along the
net’s equator. The angle 90°, straight down, hits the middle of
the net, whereas 0°, the horizontal direction, is at the edge.

To see how to use this net, consider how planes through
the center of the focal sphere appear (Fig. 4.2-10). A vertically
dipping, N–S-striking, plane intersects the hemisphere such
that it plots as a straight line through the center of the net. A
N–S-striking plane with a different dip intersects the net edge
at 0° and 180°, but intersects the equator at a position cor-
responding to the dip. For example, planes dipping 70°E and
60° W intersect the equator at the 70°E and 60°W marks. Thus,
meridians on the net (the curves going from the top to the
bottom) represent N–S-striking planes with different dips.

Planes striking in other azimuths are plotted in a similar way
(Fig. 4.2-11) by rotating the stereonet.4 Thus, a plane strik-
ing at an angle φ (measured clockwise from north) is plotted by
rotating the stereonet so that the vertical (N–S) axis points in
the φ direction. The plane with the desired dip is now a merid-
ian, so it can be found using the scale along the equator. After
plotting the plane by tracing the appropriate meridian, we
rotate the net back to its original orientation. Hence planes
striking in azimuths other than N–S appear as meridians relat-
ive to their strike direction, with the appropriate dip. All of
these meridians are thus great circles, the curves formed when
a plane through the center of the sphere intersects the surface of
the sphere.

Table 4.2-1 P-wave take-off angles for a surface-focus earthquake.

Distance (°) Take-off angle (°) Distance (°) Take-off angle (°) Distance (°) Take-off angle (°)

21 36 47 25 73 19
23 32 49 24 75 18
25 30 51 24 77 18
27 29 53 23 79 17
29 29 55 23 81 17
31 29 57 23 83 16
33 28 59 22 85 16
35 28 61 22 87 15
37 27 63 21 89 15
39 27 65 21 91 15
41 26 67 20 93 14
43 26 69 20 95 14
45 25 71 19 97 14

Source: After Pho and Behe (1972).

3 Seismologists generally use an equal-area or Schmidt projection, rather than an
equal-angle or Wulff projection. The techniques used are the same for the two.
4 This can be done either by the traditional method, rotating a piece of tracing paper
over a stereonet, or by using a computer program that plots points and planes on a
stereonet.

Fig. 4.2-9 A stereonet used to display a hemisphere on a flat surface.
The azimuth is shown by the numbers around the circumference,
and dip angles are shown by the numbers along the equator.

We can also plot planes perpendicular to a given plane. To
do this, rotate the stereonet so that the plane lies on a meridian,
and find the point on the equator 90° from the intersection of
the plane with the equator (Fig. 4.2-12). This point is the pole
for the plane, because it represents the point at which the nor-
mal to the plane intersects the sphere. Any plane perpendicular
to the first plane contains the normal, and hence must pass
through the pole. To draw such perpendicular planes, remem-
ber that an arbitrary curve on the stereonet does not represent a
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Fig. 4.2-10 Three planes striking N–S on a stereonet. The meridians
(curves going from the top to the bottom) represent N–S-striking planes
with different dips.

Fig. 4.2-11 To plot a plane striking N45°E and dipping 60°E, rotate the
stereonet (or tracing paper above it) so that the strike is at the top and the
dip can be measured along the equator. After plotting the appropriate
meridian, rotate the net back to the geographic orientation with north
at the top.
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plane; only meridians are projections of planes. We thus rotate
the net in the desired direction and trace meridians going
through the pole.

To determine focal mechanisms, we plot the points where
rays intersect the focal sphere, so that the nodal planes can be
found. For example, to plot the point corresponding to a
ray whose azimuth is 40° and whose take-off angle is 60°,
we first rotate the net, placing the equator along azimuth 40°.
Because take-off angles i are measured from the vertical, they
correspond to dips of 90 − i. We thus mark the point with
dip 30°E, and rotate the net back so that north is at the top
(Fig. 4.2-13).

We can use these ideas to determine the focal mechanism
from a set of P-wave first motions. First, we find the polarities
of the first arrivals at seismic stations. Each station corresponds
to a point on the focal sphere with the same azimuth and an in-
cidence angle corresponding to the ray that emerged there. We
then plot the location of each station on the stereonet and mark
whether the first motion is dilatation or compression. Next, by
rotating the tracing paper or using a stereonet program, we
find the nodal planes that best separate the compressions from
the dilatations. In doing this, we ensure that the two planes
are orthogonal, with each one passing through the pole to the
other. Provided the distribution of stations on the focal sphere
is adequate, we can find the nodal planes, which are the fault
plane and the auxiliary plane.

Different types of faults appear differently on a stereonet
(Fig. 4.2-14). The black and white quadrants, representing
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Fig. 4.2-13 To plot a point on a stereonet, rotate the azimuth of the
point to the equator, measure the take-off angle from the vertical (or
equivalently the dip from horizontal), plot the point and rotate back
to the geographic orientation with north at the top.

Fig. 4.2-12 Plotting perpendicular planes on a stereonet. First, rotate the
first plane’s strike to the top of the stereonet, and plot the plane. Next, find
the pole, the point on the equator 90° away. Any plane through the pole is
perpendicular to the first plane. Several such planes, with different strikes
and dips, are shown.
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compression and dilatation, show the fault geometry. A four-
quadrant “checkerboard” indicates pure strike-slip motion on
a vertical fault plane. The motion would be right-lateral if one
plane is the fault plane, and left-lateral on the other. As we
mentioned earlier, often the distribution of aftershocks or geo-
logic information (or prejudices) is used to infer which was the
actual fault plane, and thus the sense of slip. A pure dip-slip
fault that dips at 45° (the fourth quadrant is on the upper focal
hemisphere) gives a three-quadrant “beachball.” The center re-
gion is compressional for a thrust fault, and dilatational for a
normal fault. The difference reflects the different direction of
fault motion, as the side-view cartoon shows. For a dip-slip rup-
ture on a vertical fault, only two quadrants of the “beachball”
are visible, because the others are on the upper focal hemisphere.

The pattern is a little more complicated for oblique-slip faults
with a mixture of strike-slip and dip-slip motion. The mechan-
isms in Fig. 4.2-15 have the same N–S-striking, 45°E-dipping
fault plane, but with slip directions varying from pure thrust,
to pure strike-slip, to pure normal. Thus the auxiliary plane
varies but always passes through the normal to the fault plane,
and the slip vector can be found because it is the normal to the
auxiliary plane, and thus is in the fault plane (Fig. 4.2-5).

It is important to bear in mind that although the focal mecha-
nisms look different, they reflect the same four-lobed P-wave
radiation pattern (Fig. 4.2-6). However, because the fault
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Fig. 4.2-14 Focal mechanisms for earthquakes with various fault
geometries. Compressional quadrants are black. The strike-slip
mechanism is for pure strike-slip motion on a vertical fault plane,
which could be oriented either NE–SW or NW–SE. The pure dip-slip
mechanisms are for faults striking N–S.

Strike-slip fault
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this plane
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this plane

Dip-slip faults

Focal sphere
side view

Thrust
fault

Focal sphere
side view

Normal
fault

Focal sphere
side view

Vertical
dip-slip

5 This concept can be seen by marking the P-wave quadrants on a ball and rotating
it. For additional insight, the S-wave radiation pattern (Fig. 6) can also be marked on
the ball.

plane and slip direction are oriented differently relative to the
earth’s surface, the projections of the radiation pattern lobes on
the lower focal hemisphere differ.5 Pure dip-slip motion on a
45° dipping fault has two lobes along the vertical axis, so the
nodal planes dip at 45°. By contrast, pure strike-slip motion on
a vertical plane has lobes in the plane of the surface, and the
null axis is vertical.

A common use of earthquake focal mechanisms is to infer
stress orientations in the earth. As discussed in Section 2.3.4,
a simple model predicts that the faulting occurs on planes
45° from the maximum and minimum compressive stresses.
Equivalently, these stress directions are halfway between the
nodal planes. Thus the maximum compressive (P) and min-
imum compressive stress (T) axes can be found by bisecting
the dilatational and compressional quadrants, respectively

Fig. 4.2-15 Focal mechanisms for earthquakes with the same N–S-striking
fault plane, but with slip angles varying from pure thrust, to pure strike-
slip, to pure normal faulting.
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(Fig. 4.2-16). Although T is called the “tension” axis, it is
actually the minimum compressive stress, because compres-
sion occurs at depth in the earth. The intermediate stress axis,
known as the B or null axis, is perpendicular to both the T and
the P axes. This direction is also perpendicular to both the slip
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Fig. 4.2-17 Focal mechanisms and some seismograms for three different
earthquakes. Compressional quadrants are shown shaded.

of the stress axes, as noted in Fig. 2.3-9. If the P axis is vertical,
the fault plane dips at 45°, and normal faulting occurs. If,
instead, the T axis is vertical, the fault geometry is the same, but
reverse faulting occurs. When the null axis is vertical, strike-
slip motion occurs on a fault plane 45° from the maximum
principal stresses, which are in the plane of the surface.

Figure 4.2-17 shows the focal mechanisms and a few of the
seismograms for three earthquakes. Note that in some cases the
first arrival is small and difficult to identify. This is especially
likely when the station is near a nodal plane, where the ampli-
tude is small. It is also worth noting that often many stations
plot near the center of the focal sphere, because they are at large
distances from the source, so rays to them have small angles of
incidence. As a result, it is sometimes hard to constrain nodal
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quadrant

Faults
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Fig. 4.2-16 Cartoon illustrating the relation between fault planes and the
maximum compressive principal stress (P) and the minimum compressive
stress (T) axes. The P and T axes can be found by bisecting the dilatational
and compressional quadrants, respectively. On a stereonet, this is done by
using the great circle (meridian) connecting the poles for the two nodal
planes and finding the point halfway between them.

and the normal vectors, and is the intersection of the two nodal
planes.

To bisect the angle between the two nodal planes on the
stereonet, we find the poles for the two planes (each of which is
in the other plane), draw the great circle (meridian) connecting
them, and mark the point on it halfway between the poles (Fig.
4.2-16). We can thus infer stress directions from a focal mech-
anism. Different fault types correspond to different orientations
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planes, especially if the plane is far from the vertical, as in the
dip-slip examples shown. In such cases, information about the
waveforms as well as the polarity of the waves is used, as dis-
cussed later.

4.2.5 Analytical representation of fault geometry

In many applications, including seismic moment tensor ana-
lysis, which we discuss shortly, it is useful to have analytic
expressions for the relations between the fault plane, the auxili-
ary plane, and the stress axes. In Section 4.2.1, we expressed
the fault normal and slip vectors in a geographic coordinate
system, such that for a fault with strike φf , dip angle δ, and
slip angle λ the fault normal and slip vectors are
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Because the null (or B) axis is orthogonal to the fault normal
and slip vectors, a unit vector in this direction can be written
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Similarly, to find vectors p and t along the P and T axes, note
that they are in the plane containing 2 and 4 and lie halfway be-
tween them, so

t = 4 + 2 ti = ni + di,

p = 4 − 2 pi = ni − di , (10)

1 = 4 × 2 bi = ε ijknjdk.

It turns out that the null axis is perpendicular to both the
P and the T axes. To see this, we use the cross-product (Eqn
A.3.43) to form a vector perpendicular to both axes,

(1/2)(t × p) = (1/2)(4 + 2) × (4 − 2) = (ε ijk/2)(nj + dj)(nk − dk)

= (εijk /2)(njnk − njdk + djnk − djdk), (11)

and simplify, using

4 × 4 = ε ijknjnk = 0, 2 × 2 = ε ijkdj dk = 0,

ε ijkdjnk = −ε ijknjdk, (12)

to see that

(1/2)(t × p) = −εijknjdk = −(4 × 2), (13)

which is just the negative of a unit vector along the null axis, b.
Thus either the fault normal vector, slip vector, and null axis
or the P, T, and B (null) axes can be used for an orthogonal co-
ordinate system.

The relationship between the fault and auxiliary planes can
be derived from the fact that the slip vector, which lies in the
fault plane, is the normal to the auxiliary plane and vice versa.
Thus if 41, 21 and 42, 22 are the fault normal and slip vectors for
the two nodal planes,

21 = 42 and 22 = 41. (14)

Writing out 21 = 42 by components,

    

cos  cos  sin  cos  sin 

cos  sin  sin  cos  cos 

sin  sin 

  

sin  sin 

sin cos 

cos 

.

λ φ λ δ φ
λ φ λ δ φ

λ δ

δ φ
δ φ

δ

1 1 1

1 1 1

1 1

2

2

2

1 1

1 1

2

2

f f

f f

f

f

+
− +

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
−
−

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

(15)

The corresponding relation between 41 and 22 is found simply
by interchanging subscripts.

These equations relate the strike, dip, and slip angles for one
plane to the other. To use them, we multiply the first by cos φf1

and the second by sin φf1
, and subtract them to find

cos λ1 = sin δ2 sin (φf1
 − φf2

), (16)

or, equivalently,

cos λ2 = sin δ 1 sin (φf2
 − φf 1

). (17)

We also have the third equation

cos δ2 = sin λ1 sin δ1, (18)

or, equivalently,

cos δ1 = sin λ 2 sin δ2. (19)

An additional constraint comes from the fact that the two
nodal planes are perpendicular:

41 · 42 = 0, (20)

so

sin δ1 sin φf1
sin δ2 sin φf2

 + sin δ1 cos φf1
sin δ2 cos φf2

+ cos δ1 cos δ2 = 0,

sin δ1 sin δ2 cos (φf1
 − φf2

) + cos δ1 cos δ2 = 0; (21)

or

tan δ1 tan δ2 cos (φf1
 − φf2

) = −1. (22)



These equations allow us to find the the second nodal plane
and the slip vector on it (φf2

, δ2, λ2) from the first nodal plane
and the slip on it (φf1

, δ1, λ 1). The hard part, getting the angles
in the appropriate quadrants, can be done by first finding δ2
from Eqn 18, and then finding sin λ2 from Eqn 19 and cos λ 2
by combining Eqns 16 and 17. Given both sine and cosine,
λ2 can be placed in the correct quadrant. We then find φf 2

 from
Eqns 22 and 16. Finally, if 90° < δ2 < 180°, we change (φf2

, δ2,
λ2) to (180° + φf2

, 180° − δ2, 360° − λ2).
If the nodal planes have been found from first motions using

a stereonet, the situation differs because the strike and dip of
both planes are known, but the slip angles are not. We then
choose one nodal plane and find the slip angle on it. This can be
done using Eqns 16 and 18 to find cos λ1 and sin λ1, and then
placing λ1 in the correct quadrant.

4.3 Waveform modeling

As noted in the previous section, P-wave first motions are often
inadequate to constrain focal mechanisms. Additional infor-
mation is obtained by comparing the observed body and sur-
face waves to theoretical, or synthetic, waveforms computed
for various source parameters, and finding a model that best
fits the data, either by forward modeling or by inversion. Wave-
form analysis also gives information about the earthquake
depths and rupture processes which cannot be extracted from
the first motions. We discuss such analysis first for body waves
and then for surface waves.

4.3.1 Basic model

To generate synthetic waveforms, we regard the ground motion
recorded on a seismogram as a combination of factors: the
earthquake source, the earth structure through which the waves
propagated, and the seismometer. Each factor can be thought
of as an operation whose effects depend on the frequency of
the seismic waves. Hence it is often useful to think of the
seismogram u(t) in terms of its Fourier transform U(ω), which
represents the contribution of the different frequencies:
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As as in earlier discussions (Sections 2.8, 3.3, 3.7), we use
the Fourier transform and related concepts while deferring
more general treatment of Fourier analysis to Chapter 6. The
essence of this approach is that we represent a seismogram or
individual factors that make it up either as a time series or by
its Fourier transform, depending on which is more convenient,
and switch back and forth using the transform and inverse
transform relations.

This approach to generating synthetic seismograms from
earthquakes is conceptually the same as that discussed in Sec-

tion 3.3.6 for reflection seismograms. There, we described the
combined effect of various factors as the convolution of time
series representing each factor. Recall that the convolution of
two time series w(t) and r(t) is written

s(t) = w(t) * r(t) = �
−∞

∞

w(t − τ)r(τ)dτ. (2)

Thus a seismogram u(t) can be written

u(t) = x(t) * e(t) * q(t) * i(t), (3)

where x(t) is the source time function, the “signal” the earth-
quake puts into the ground, e(t) and q(t) represent the effects
of earth structure, and i(t) describes the instrument response
of the seismometer. We also noted (and will prove in Section
6.3.1) that convolution in the time domain is equivalent to
multiplication in the frequency domain, so Eqn 3 can be
written as the product of Fourier transforms of the four factors

U(ω) = X(ω)E(ω)Q(ω)I(ω). (4)

Each factor can be described in the time domain or the fre-
quency domain. For example, the seismogram depends on how
the seismometer responds to ground motion of different fre-
quencies. Figure 4.3-1 (top) shows the instrument response,
the amplification of a signal as a function of period, for a long-
period seismometer. Ground motion with periods around the
peak response (T = 15 s) is enhanced relative to that at longer
or shorter periods. As discussed in Section 6.6, seismometer
responses differ; some have peak response at short (e.g., 1 s)
periods, whereas others have better response at longer periods.
The seismometer response can also be described in the time
domain by taking its inverse Fourier transform (Fig. 4.3-1,
bottom). The resulting time series, i(t), is the impulse response,
describing how the seismometer responds to a sharp impulse.
For the seismometer illustrated in Fig. 4.3-1, the impulse
response has a sharp initial peak, followed by a smaller
“backswing.”

In this formulation, the effects of earth structure are divided
into two factors. One, e(t), gives the effect of reflections and
conversions of seismic waves at different interfaces along the
ray path and the effect of geometric spreading of the rays due
to the velocity structure (Section 3.4.2). All these effects are
elastic wave phenomena. There is also anelastic attenuation
described by q(t), whereby some of the seismic waves’ mech-
anical energy is lost by conversion into heat. Attenuation, dis-
cussed in Section 3.7, is illustrated by the decay with time of a
damped harmonic oscillation with frequency ω :

f(t) = Ae iωte−ωt /2Q. (5)

The quality factor Q characterizes the attenuation: the ampli-
tude decays by e−1 in a time 2Q/ω (Fig. 3.7-11), so the higher
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Fig. 4.3-1 The response of a long-period seismometer. Top: Gain, or
magnification, of an arriving signal as a function of period. Bottom:
Impulse response in the time domain. This seismometer is a long-period
World Wide Standardized Seismographic Network (WWSSN) analog
instrument, a type installed around the world in the 1960s that produced
many crucial results prior to the advent of digital instrumentation.

Fig. 4.3-2 For a fault of length L, the duration of the source time function
varies as a function of azimuth, depending on the ratio of the rupture
velocity vR and the wave velocity v.

1 A familiar analogous effect occurs during thunderstorms. Thunder is generated
by the sudden heating of air along a lightning channel in the atmosphere. Observers
in positions perpendicular to the channel hear a brief, loud, thunder clap, whereas
observers in the channel direction hear a prolonged rumble. Here the minimum dura-
tion occurs at azimuth 90°, and the maxima are at 0° and 180°, because the “rupture
velocity” is much greater than the sound velocity, so v/vR is approximately zero, and
the time function duration varies as cos θ. (Few, 1980)

that Q is, the slower the decay, and thus the lower the attenua-
tion. The operators q(t) or Q(ω) describe the effect of attenua-
tion over the range of frequencies making up the seismogram
being synthesized.

4.3.2 Source time function

The earthquake source signal, x(t), is the source time function
produced by the faulting. In the simplest case of a short fault
that slips instantaneously, the seismic moment function
(Eqn 4.2.4) is a step function whose derivative, a delta function
(Section 6.2-5), is the source time function. Real faults, how-
ever, give rise to more complicated source time functions.
Consider a simple case in which the rupture at each point on
a rectangular fault radiates an impulse. However, the total
radiated signal is not impulsive, because the finite fault does not
all break at the same time. Instead, waves arrive first from the
initial point of rupture, and later from points further along

the fault. Assume (Fig. 4.3-2) that the rupture propagated at
the rupture velocity vR along a fault of length L. Consider a
receiver at a distance ro and azimuth θ from the initial point of
rupture. The first seismic arrival is at time ro /v where v is either
α or β, for P or S waves, respectively. The far end of the fault
ruptures a time L/vR later, giving a seismic arrival at time (L/vR
+ r/v), where r is the distance from the far end to the receiver.
The law of cosines shows that

r2 = r2
o  + L2 − 2roL cos θ, (6)

which, for points far from the fault (r >> L), is approximately

r ≈ ro − L cos θ. (7)

Thus the time pulse due to the finite fault length is a “boxcar”
of duration

TR = L(1/vR − cos θ /v) = (L/v)(v/vR − cos θ), (8)

known as the rupture time. Because vR is typically assumed to
be about 0.7–0.8 times the shear velocity β, v/vR is about 1.2
for shear waves and 2.2 for P waves. The maximum duration
occurs 180° from the rupture direction, and the minimum is in
the rupture direction.1 These expressions can be modified for dif-
ferent fault shapes and rupture propagation directions, such as
rupture propagating outward from the center of a circular fault.
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Fig. 4.3-4 Effects of rupture directivity on the source time function at
different azimuths from the rupture. Because the same energy arrives, the
area of each source time function, corresponding to the seismic moment, is
the same. However, in the direction of rupture propagation more energy
arrives in a shorter time, whereas in the opposite direction less energy
arrives over a greater duration.

A second effect lengthening the time function is that, even at
a single location on the fault, slip does not occur instantane-
ously. The slip history is often modeled as a ramp function
(Fig. 4.3-3) that begins at time zero and ends at the rise time TD.
The source time function depends on the derivative of the slip
history, as noted in Section 4.2.3. For a ramp, the derivative is a
“boxcar.” Convolving the finiteness and rise time effects yields
a trapezoid whose length is the sum of the rise and rupture
times, which is often used to represent an earthquake source
time function. Other shapes of comparable length, like trian-
gles, are also used, because (as we will see) seismograms are
often insensitive to the details of the source time function.
However, we will also see that for large earthquakes, body
wave modeling can resolve a more complicated time function
corresponding to the variation in slip along the fault as a
function of space and time.

The radiated pulse varies in time duration as a function of
azimuth from the rupture direction, due to the finite rupture
length (Eqn 8). Because the area of the pulse is the same at all
azimuths, the magnitude of the source time function varies
inversely with its duration (Fig. 4.3-4). In some cases these
effects, called directivity, can be used to identify the fault plane
(because no similar effect is associated with the auxiliary plane)
and study the rupture propagation. Directivity is related to
the Doppler effect for sound and light waves, which shifts the
frequency of a moving oscillator to higher frequency when the
oscillator moves toward an observer, and lower frequency when
it moves away. However, directivity results from interference

between different parts of a finite fault, whereas the Doppler
effect in its simplest form occurs for a moving point source.2

An interesting question is when we need to consider the
effects of a finite earthquake source. We have shown (Eqn 8)
that the difference in the arrival time of waves traveling at
velocity v from different parts of the fault with length L is the
rupture time TR, which is approximately L/v. If this difference
is comparable to the period of the seismic wave, the arriving
waveform will be significantly affected. Thus, when the ratio

    

T

T

L v

v

LR   
/

/
  = =

λ λ
(9)

is small, the fault length is short compared to the wavelength of
the seismic waves, and we can neglect the finiteness of the
source and treat it as a point. This criterion is similar to that
noted in Section 3.2.3, that seismic waves cannot “see” earth
structures much smaller than their wavelengths. For a finite
fault, this occurs because the rupture velocity is comparable to
the seismic velocity.

An interesting consequence of Eqn 9 is that a fault can seem
finite for body waves, but not for surface waves. A 10 km-long
fault, which we might expect for a magnitude 6 earthquake, is
comparable to the wavelength of a 1 s body wave propagating
at 8 km/s, but small compared to the 200 km wavelength of a
50 s surface wave propagating at 4 km/s. On the other hand,
a 300 km-long fault for a magnitude 8 earthquake would be a
finite source for both waves.

4.3.3 Body wave modeling

The elastic structure operator e(t) representing the effects of re-
flections and transmissions along the ray path primarily reflects
interactions near the earth’s surface, where the largest change

2 The Doppler effect is used to detect motion in applications ranging from police
and weather radar to astronomical studies of “red-shifted” light that show the uni-
verse expanding. For discussion of the relation between directivity and the Doppler
effect, see Douglas et al. (1988).
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Fig. 4.3-3 The source time function depends on the derivative of the
history of slip on the fault. A ramp time history (top) with duration TD has
a “boxcar” time derivative. When convolved with the “boxcar” time
function due to rupture propagation (center), a trapezoidal source time
function results (bottom).
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and seismometer are considered to describe the first pulse on a
seismogram (Fig. 4.3-5).

On the other hand, for a shallow earthquake, reflections
off the earth’s surface arrive shortly after the direct arrival.
We thus model the first few seconds of the P-wave arrival as
the sum of three arrivals (Fig. 4.3-6, top); the direct P wave, the
P wave reflected from the surface (pP), and the S wave that
converted to a P wave at the surface (sP).

The two surface reflections arrive after the direct P wave.
Figure 4.3-6 (bottom) shows that pP is delayed with respect
to P by approximately

δtpP = (2h cos i)/α, (10)

where i and α are the incidence angle and velocity for P waves.
A messier calculation shows that for a Poisson solid, sP is
delayed by

δtsP = (h/α)(cos i + (3 − sin2 i)1/2). (11)

For shallow earthquakes the initial waveform reflects all
three arrivals. For example, for a source 10 km deep in a
medium with α = 6.8 km/s, the time delays δtpP and δtsP are
2.7 s and 3.8 s at a distance ∆ = 50°, where the incidence angle
is 24°. These arrivals are hard to resolve from the P arrival,
because the seismometer’s impulse response (Fig. 4.3-1) is
long enough that it has not completely responded to the direct
arrival before the others arrive.

The four factors in Eqn 3 can be combined to synthesize
body waves. Although the derivation has some subtleties,
the result reflects the basic ideas just discussed. The displace-
ment as a function of time, distance, and azimuth, for an initial
P-wave arrival at distances 30–90° from the source, is

u(t, ∆, φ) = i(t) * q(t) *
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This formulation includes the seismometer and attenuation
factors and a complicated-looking third term incorporating
the source and structure factors. This term has distinct pieces,
each with a physical interpretation. The amplitude scale factor
M0/(4πρhα 3

h) contains the earthquake’s seismic moment M0
and the density and P-wave velocity at the source depth h.
The g(∆)/a factor, where a is the earth’s radius, describes the
amplitude variations due to geometric spreading of rays. The
C(i0) factor corrects the amplitude for the effects of the free
surface, where the rays arrive at the receiver at an angle of
incidence, i0.

The term in brackets has three parts, corresponding to P, pP,
and sP. Each includes the source time function x(t) lagged by

Fig. 4.3-6 Top: The P-wave arrival for a shallow earthquake at distance
30° < ∆ < 90° from the source is modeled as the sum of arrivals due to the
direct P wave and the free surface reflections pP and sP. Bottom: Geometric
construction used to derive the delay time of pP with respect to direct P.
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Fig. 4.3-5 The P-wave arrival waveform for a deep earthquake combines
the effect of the source time function, attenuation, and the instrument.
Near-source structure can be neglected because surface reflections arrive
much later. (After Chung and Kanamori, 1980. Phys. Earth Planet. Inter.,
23, 134–59, with permission from Elsevier Science.)

in physical properties occurs. It is thus useful to consider two
simple cases. For a deep earthquake, the surface reflections and
other reflected, refracted, and diffracted arrivals arrive much
later than the direct P wave, so we can describe the direct P
wave without them. Moreover, at distances 30° < ∆ < 90° from
the source, the effects of upper mantle triplications and core
structure (Section 3.5) can be ignored. Thus, the structure
operator can be neglected, and only the source, attenuation,
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and those for SH waves are

pL = sin λ sin δ cos δ sin 2(φf − φ) + cos λ sin δ cos 2(φf − φ),

qL = −cos λ cos δ sin (φf − φ) + sin λ cos 2δ cos (φf − φ). (14)

The reflected phases’ amplitudes also include the plane wave
potential reflection coefficients at the free surface, ΠPP(ih) and
ΠSP(jh), which depend on the angles of incidence. Finally, the
sP term is scaled by a factor (αh cos ih)/(βh cos jh) which incor-
porates several effects, including the fact that near the source
the wave incident on the surface is better treated as a spherical
wave than a plane wave.

We could similarly model the SH wave, which arrives much
later, by summing direct S and sS using an expression analo-
gous to Eqn 12, with the S-wave velocity, take-off angles, delay
times, and the SH-wave radiation pattern RSH.

This formulation shows how synthetic body wave seismo-
grams depend on the assumed focal depth, which determines
the time separation between arrivals, the mechanism, which
determines the relative amplitudes of the arrivals, and the

the travel time for that ray, τ P, τ pP, and τ sP. Each arrival’s
amplitude depends on the body wave radiation pattern at the
source for that wave type

RP(φ, i) = sR(3 cos2 i − 1) − qR sin 2i − pR sin2 i,

RSV(φ, j) = 
  

3

2
sR sin 2j + qR cos 2j + 

  

1

2
pR sin 2j,

RSH(φ, j) = −qL cos j − pL sin j, (13)

which depend on the take-off angle (i for P waves and j for
S waves) and a set of fault geometry factors which include
the fault strike, dip and slip angles (Fig. 4.2-2) φf , δ, λ, and the
azimuth φ (clockwise from north) to the station. For P − SV
waves these factors are

sR = sin λ sin δ cos δ,

qR = sin λ cos 2δ sin (φf − φ) + cos λ cos δ cos (φf − φ),

pR = cos λ sin δ sin 2(φf − φ) − sin λ sin δ cos δ cos 2(φf − φ),

Fig. 4.3-7 Cartoon illustrating the relative
polarities and amplitudes of the direct P wave and
the near-source free surface reflections pP and sP
for different focal mechanisms. The arrivals are
shown as impulses, and then including the effects
of attenuation and the seismometer. (Okal, 1992.
© Seismological Society of America. All rights
reserved.)
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Fig. 4.3-8 Body wave modeling procedure for depth determination.
Synthetic seismograms for an assumed fault geometry, including the
effects of the seismometer and attenuation, are calculated for various
depths. The data are best fit by a depth near 30 km. (Stein and Wiens,
1986. Rev. Geophys. Space Phys., 24, 806–32, copyright by the American
Geophysical Union.)

source time function, which determines the pulse shape. Fig-
ure 4.3-7 illustrates this concept for P waves from two dip-slip
faults, one dipping vertically and the other at 45°. The arrivals
are shown first as impulses and then after convolution with the
seismometer and attenuation operators. In one case pP leaves
the focal sphere (shown in side view) with the same polarity
as P, whereas in the other it leaves with opposite polarity.
Its polarity then reverses at the free surface. Thus pP on a
seismogram need not have the opposite polarity from P.
Similar effects occur to sP. As a result, the relative polarities
and amplitudes of the arrivals vary with the mechanism,
making the seismogram a useful diagnostic.

Source parameters can be studied by generating synthetic
seismograms for various values and finding the best fit to the
data, either by forward modeling (“trial and error”) or by
inversion. Often first motion, body wave, and surface wave
analyses (discussed next) are combined. Although first motion
data are often consistent with various focal mechanisms, the
different methods used together generally yield a consistent
and better constrained result.

Figure 4.3-8 shows an example for an earthquake near the
Sumatra trench, whose mechanism was reasonably well con-

30 s

Structure

Structure *
source  

Structure *
source *

attenuation *
instrument  

Water-
halfspace

Water–crust-
halfspace

Fig. 4.3-9 Synthetic P-wave seismograms for an earthquake occurring
beneath the ocean, modeled both without and with a distinct crustal layer.
The crustal layer has a smaller effect than the water layer. (Stein and
Kroeger, 1980. Reproduced with the permission of the American Society
of Mechanical Engineers.)

strained by first motions. To check the mechanism and estimate
the depth, synthetic seismograms were computed for various
focal depths. The left panel shows the expected timing and
amplitudes of various arriving phases, and the right shows the
synthetic seismogram resulting from including the effect of the
source (assuming a trapezoidal time function), seismometer,
and attenuation. The data are fit well by a source at a depth
near 30 km. Because the earthquake occurred beneath the
Indian Ocean, some rays reflected at the sea surface, and others
reflected at the sea floor. The sea floor reflection, pwP, should
have the same polarity (up) as pP, as observed. This method can
be extended to include the effects of crust and upper mantle
structure. As shown in Fig. 4.3-9, a crustal layer has less effect
than the water layer, because the water layer has a greater con-
trast in velocity and density.

Such depth determinations from body wave modeling are often
better than those provided by earthquake location programs
using arrival times. For example, the International Seismolo-
gical Center assigned the earthquake represented in Fig. 4.3-8 a
depth of 0 ± 17 km. Even if the depth is restricted to be within
the earth, the modeling shows that this solution is too shallow.

How well the details of the time function can be resolved
depends on factors including the type of seismometer used and
the size of the earthquake. One important factor is the distance
between the source and the receiver, which influences the
amount of attenuation. As the pulse travels, the high frequen-
cies that determine the pulse shape are preferentially removed
by attenuation, because the amplitude (Eqn 5) decays by 1/e in
a time 2Q/ω, so higher frequencies decay faster for a given Q.
Thus the seismogram is smoothed by the effects of both attenu-
ation and the seismometer (Fig. 4.3-9), especially for long-
period seismometers, which also suppress high frequencies
(e.g., Fig. 4.3-1). As a result, body wave pulses at teleseismic
distances can look similar for different source time functions
of approximately the same duration (Fig 4.3-10). Conversely,
the best resolution for the details of source time functions is
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Fig. 4.3-10 Comparison of seismograms synthesized at a teleseismic
distance with different source time functions. The effects of the
seismometer and attenuation make it difficult to resolve some of the details
of the time function. (Stein and Kroeger, 1980. Reproduced with the
permission of the American Society of Mechanical Engineers.)

Synthetic Source time function

5 s30 s

Fig. 4.3-11 Data and synthetic seismogram for the large (Ms 7.5) 1976
Guatemala earthquake. The source is modeled as a series of sub-events
along the fault, with positions, timing, relative amplitudes, and
mechanisms shown, which gives rise to the complex waveform observed.
(After Kikuchi and Kanamori, 1991. © Seismological Society of America.
All rights reserved.)

given by strong motion records close to an earthquake and
broadband seismometers with uniform response over a wide
frequency range.

Larger earthquakes typically occur on longer faults, and
thus have longer-duration time functions. As a result, it is often
possible to resolve details of the slip process. For example, Fig.
4.3-11 shows complex waveforms from the 1976 Guatemala
earthquake.3 The synthetic seismograms fit the data by assum-
ing that the source consisted of a number of separate sub-events
along the fault. Such studies can offer useful insight into the
faulting process by showing how the amount and geometry of
slip varied along the fault.

A useful way to estimate source time functions is based on
the Green’s function,

g(t) = e(t) * q(t), (15)

combining the elastic and anelastic effects of propagation from
the source to the receiver. The Green’s function thus describes
the signal that would arrive at the seismometer if the source
time function were a delta function. Hence the earthquake’s
source time function is found by deconvolving the Green’s
function and the seismometer from the seismogram u(t)

x(t) = u(t) * [g(t) * i(t )]−1,
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As we discussed for reflection seismograms (Section 3.3.6),
deconvolution can be done in either the time or the frequency
domains. Dividing spectra in the frequency domain is easier,
but requires care to avoid dividing by small amplitudes which
can occur at some frequencies.

Large complex earthquakes can be modeled using Green’s
functions derived for a simple source in the fault region. The
seismogram is treated as the sum of source time functions with
different amplitudes, Cj, at different times, τj,

3 This Ms 7.5 earthquake, on the Motagua fault which is a transform segment of the
boundary between the Caribbean and North American plates (Fig. 5.2-4), caused
enormous damage and 22,000 deaths.
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Cj[x(t − τ j) * g(t) * i(t)]. (17)

With high-quality data, we will see in Section 4.5.3 that it
is possible to go the next step and estimate how the seismic
moment release varied on the two-dimensional fault surface as
a function of time during the rupture.

4.3.4 Surface wave focal mechanisms

Surface waves can be modeled in a conceptually similar way to
body waves, and also help resolve earthquake focal mecha-
nisms and depths. In contrast to body wave modeling, which
we considered in the time domain using ray theory, we pose
surface wave modeling in the frequency domain using a formu-
lation derived from the traveling wave approximation to the
earth’s normal modes (Section 2.9.6). Thus, for surface waves
the contributing factors appear as products of their Fourier
transforms (Eqn 4), whereas for body waves (Eqn 12) they
appear as convolutions in the time domain (Eqn 3).

We model the transverse component of a Love wave seismo-
gram observed at angular distance θ and azimuth φ from an
earthquake by its Fourier transform

U(ω, θ, φ) = 
  

M( )

 sin 

ω
θ

e−iπ /4e− iωaθ /cV(ω, φ)e−ωaθ /2Queimπ/2

V(ω, φ) = pLPL(ω) + iqLQL(ω). (18)
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Here a is the earth’s radius, and c and u are the phase and group
velocities (Section 2.8.1) at this frequency. The (mπ/2) term,
where m is the number of times the wave passed the epicenter
or its antipode, is called the polar phase shift.4 M(ω) represents
the earthquake’s seismic moment release as a function of
frequency, and thus can incorporate effects of the source time
function. Fault finiteness is included, using a frequency domain
formulation akin to that for body waves (Eqn 8). Except for
large earthquakes, M(ω) can typically be regarded as a constant
equal to the scalar moment.

Several terms model the effects of propagation away from
the source. The decaying exponential e−ωaθ /2Qu is a formula-
tion of the attenuation for surface waves, derived from Eqn 5
with aθ/u giving the travel time and Q being the quality factor
at this frequency. The phase as a function of position is given
by the complex exponential e− iωaθ/c. The   1/ sin θ  term
describes the amplitude decay due to geometric spreading as
the wavefront moves away from the source. Thus θ is the actual
distance the wave traveled, including any 2π terms.

The term V(ω, φ), which describes the radiation pattern as a
function of frequency and the azimuth φ, contains two sets of
factors. The excitation functions PL(ω) and QL(ω), which are
derived from the radial eigenfunctions for torsional modes
with the appropriate frequency, are functions of frequency and
the elastic constants at the source depth. These functions
weight the SH-wave fault geometry factors pL and qL (Eqn 14).
Because the radiation pattern is a complex number, we can
write both amplitude and phase radiation patterns for a given
frequency as a function of azimuth

|V(ω, φ) | = [(pLPL(ω))2 + (qLQL(ω))2]1/2,

Φ(ω, φ) = tan−1 [(qLQL(ω))/(pLPL(ω))]. (19)

Similarly, we can synthesize the vertical component of
Rayleigh waves using

U(ω, θ, φ) = 
  

M( )

 sin 

ω
θ

e iπ /4e− iωaθ /cV(ω, φ)e−ωaθ /2Queimπ/2,

V(ω, φ) = sRSR(ω) + pRPR(ω) + iqRQR(ω). (20)

The radiation pattern V(ω, φ) contains excitation functions
SR(ω), PR(ω), and QR(ω), derived from the radial eigenfunc-
tions of spheroidal modes, together with the P–SV fault geom-
etry factors sR, qR, and pR (Eqn 14).

Theoretical surface wave spectra can be computed for any
fault geometry using the radiation pattern. For example, a ver-
tically dipping dip-slip fault has sR = pR = 0, qR = −sin (φf − φ),
so the only excitation function on which the radiation pattern
depends is QR. Alternatively, for a vertically dipping strike-slip
fault, sR = qR = 0, pR = sin 2(φf − φ), so the radiation pattern

Fig. 4.3-12 Focal mechanisms and surface wave amplitude radiation
patterns for six fault geometries. The mechanisms all have one fault plane
with a strike of 0°, and the radiation patterns are for a source of constant
moment.
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depends on PR. Thus Rayleigh wave spectral amplitudes for
vertically dipping dip-slip and strike-slip faults vary with
azimuth as sin (φf − φ) and sin 2(φf − φ).

Figure 4.3-12 shows theoretical amplitude radiation patterns
for Love and Rayleigh waves corresponding to several focal
mechanisms, all with a fault plane striking north (0°). The
patterns are distinctive: a vertical strike-slip fault has two
four-lobed patterns, whereas a 45°-dipping dip-slip fault has a
four-lobed Love wave pattern and a two-lobed Rayleigh wave
pattern. These radiation patterns are computed for the same
seismic moment, and thus show that a vertical strike-slip earth-
quake is much more efficient at generating Love waves than a
vertical dip-slip one. A 45°-dipping oblique-slip mechanism is

4 This shift arises from the (l + 1/2)θ in the approximation used to convert normal
modes to traveling waves (Eqn 2.9.17) (Brune et al., 1961; Aki and Richards, 1980).
For its application to equalization, see Kanamori (1970a).
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Fig. 4.3-13 Determination of a focal
mechanism using surface wave amplitudes.
Although P-wave first motions cannot
constrain both nodal planes, the second
plane is constrained by matching the
observed Love and Rayleigh wave radiation
amplitude patterns. (Stein, 1978.)

intermediate between the 45°-dipping strike-slip and the 45°-
dipping thrust mechanisms, and so are the corresponding Love
and Rayleigh radiation patterns. Such patterns can be gener-
ated for any fault geometry and compared to observations to
find the best-fitting source geometry.

To do so, seismograms are Fourier-analyzed to determine
the spectral amplitudes at certain frequencies. We can then
either model the amplitude at each station, or generate the
observed radiation pattern by an equalization correction which
simulates a common source-station distance. To do the latter,
observations at distance θ, with Fourier transform U(ω, θ, φ),
are equalized to a distance θ0 using
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The (mπ/2) term, where m is the number of times the path con-
necting θ and θ0 goes through the epicenter or its antipode, is
the polar phase shift.

Equalization ideally removes all propagation effects, so the

spectral amplitude as a function of azimuth should reflect the
source’s radiation pattern and be comparable to theoretical
patterns. Figure 4.3-13 shows an example for a normal faulting
earthquake in the diffuse plate boundary zone of the Indian
Ocean (Fig. 5.5-5), using Rayleigh and Love waves with the
source–receiver paths indicated. Because the first motion
data constrained only one E–W striking, north-dipping, nodal
plane, the second plane was derived by matching theoretical
surface wave amplitude radiation patterns (smooth lines) to the
equalized data. Although the observed radiation patterns are
somewhat jagged, the fault geometry shown is consistent with
the first motions and matches the maximum and minimum
amplitude directions of the surface waves.

The equalized data in Fig. 4.3-13 are not as smooth as the
theoretical pattern, both because of noise in the data and be-
cause the equalization assumes that the attenuation and group
velocity are the same for all paths, whereas in reality they vary.
As a result, the amplitudes at some stations are higher or lower
than predicted. It is possible to reduce this effect by correct-
ing for velocity and Q structure. Even without doing so, such
analyses are often valuable for mechanism studies, even for
moderate-sized earthquakes like in this example. Phase radia-
tion patterns can also be used, but are generally more sensitive
to lateral variations in velocity.
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Surface waves can also be used to study fault length and rup-
ture for large earthquakes. Figure 4.3-15 shows an analysis for
the great 1964 Alaska earthquake, the second largest ever
instrumentally recorded (Fig. 1.2-2). The focal mechanism
and geodetic data imply thrust faulting on a roughly NE–SW-
striking, shallow NW-dipping fault, due to the subduction of
the Pacific plate beneath North America (Fig. 5.2-3). The earth-
quake was so large that surface waves were unusable until their
amplitude had decayed enough, by the fifth station passage (R5
and G5, Fig. 2.7-3). From Fig. 4.3-12, we would expect both
the Love and Rayleigh wave amplitude radiation patterns to
have minima in the strike direction. However, the observed

Surface waves can also provide information about earth-
quake depths because the excitation functions depend on period
and source depth, as shown in Fig. 4.3-14 (top) for Rayleigh
waves. The excitation decreases with source depth, as expected
for fundamental mode Rayleigh waves. For a shallow source
QR(ω) goes to zero, because this term is proportional to the
shear stress generated by the wave, which is zero at the free
surface. Figure 4.3-14 (bottom) compares an observed surface
wave amplitude spectrum to that predicted for various source
depths, with the best fit for 4–5 km depth. This process can be
formalized by computing the error as a function of assumed
source depth and seeking the depth that provides the best fit.

Fig. 4.3-14 Surface wave depth determination uses the variation in Rayleigh wave excitation functions with period and source depth (top) (Romanowicz
and Guillemant, 1984. © Seismological Society of America. All rights reserved.) For example (bottom), the Rayleigh wave spectrum shown is best fit by a
4–5 km focal depth. (Tsai and Aki, 1970. J. Geophys. Res., 75, 5729–43, copyright by the American Geophysical Union.)
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5 Some of the earthquake damage is shown in Fig. 1.2-11.

Fig. 4.3-15 Focal mechanism for the great
1964 Alaska earthquake, and the surface
wave radiation patterns it predicts if the
source is treated as a point (top left). Love
and Rayleigh waves are shown as solid and
dashed lines, respectively. The observed
patterns (jagged lines) are quite different,
but are reasonably consistent with those
predicted by a finite source propagating
southwestward along the 600 km-long
fault plane, consistent with the large
aftershock area (bottom). (Kanamori, 1970b.
J. Geophys. Res., 75, 5029–40, copyright by
the American Geophysical Union.)

amplitude radiation patterns are quite different, and modeling
shows them to be consistent with rupture propagating south-
westward along the 600 km-long fault plane. This dimension is
consistent with the large aftershock area, and together with the
seismic moment (Section 4.6) implies an average fault slip of
about 7 meters, bearing out the gigantic nature of the earth-
quake.5 In fact, postseismic deformation is still observed with
geodetic data (Fig. 4.5-15).

4.3.5 Once and future earthquakes

Combining body and surface wave modeling with first motions
is often valuable for studying seismograms from older earth-
quakes. This application arises often in tectonic studies, be-
cause in many cases the largest earthquakes occurred prior to
the development of global seismic networks in the early 1960s
(Section 6.6). Since about 1930, a few stations have reported
first motions to the International Seismological Summary. The
number of points per earthquake is far less than that avail-
able for a modern study, and the data from nonstandardized
seismometers are often discordant. However, in some cases
body and/or surface wave modeling is useful, especially if the
first motions constrain at least one nodal plane. One technique
is to use the ratio of Love and Rayleigh wave amplitudes.

This discussion brings out an important difference between
first motion and modeling studies. For first motion studies,
all we need to know about the seismometer is the polarity, so
compressional arrivals are in fact “up” on the seismograms.
However, modeling requires knowing the response of the
instruments. Fortunately, modern instruments are (at least in
theory) standardized, and their calibration can be checked.
This is a problem for studies of older earthquakes, because
calibrations were often quite poor.

In recent years, modeling approaches have become steadily
more powerful. High-quality data from digital broadband
seismometers (Section 6.6) have become standard. In addition,
laterally homogeneous models for seismic velocity and attenu-
ation have been developed and improved. As a result, inver-
sions of body and surface wave data for many earthquakes, as
discussed in the next section, are giving large focal mechanism
datasets for tectonic and earthquake source studies.

4.4 Moment tensors

4.4.1 Equivalent forces

Our approach so far in this chapter has been to view earth-
quakes as due to slip on a fault and to estimate their source
parameters by forward modeling the radiated seismic waves.
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seismic radiation. Although these forces are a seismic source
equivalent to the fault motion, they do not describe the actual
fracture process. Equivalent body forces can also be derived
for other seismic sources, such as explosions, landslides, or
impacts on the earth’s surface. These phenomena can generate
observable seismic waves when they occur rapidly enough
(over times less than about an hour) that they release energy
into the earth in the seismic wave frequency band (Fig. 2.4-7).
If the energy is released more slowly, propagating seismic
waves are not excited, although slower crustal deformation can
be recorded using geodetic methods (Section 4.5.1).

Figure 4.4-1 illustrates the forces we consider. As noted earl-
ier, earthquakes involving slip upon a fault are modeled as a
double couple composed of four forces. However, this combi-
nation is just one possible combination of forces. Thus we first
consider single and double forces, and then work up to double
couples.

4.4.2 Single forces

Outside of exploration applications, most seismograms result
from earthquakes. However, other geophysical phenomena
generate seismic waves that are sometimes modeled as single-
force sources. A striking example is the large seismic waves
generated by the 1980 explosive eruption of Mt St Helens, one
of the Cascade volcanoes reflecting the subduction of the Juan
de Fuca plate beneath North America (Fig. 5.2-3). The Love
and Rayleigh wave radiation patterns (Fig. 4.4-2) are two-
lobed, of comparable amplitude, and rotated 90° from each
other. Consideration of the patterns for double-couple fault
sources shows that such a lobe pattern is expected only for a
vertical dip-slip fault (Fig. 4.3-12), and that in this case the
Love waves should be much smaller than the Rayleigh waves.

Slip

y ′ y x ′

x

Single force

Fx

Single couple

d

f

f

Mxy

or f fd

Mxx

Double couple

⇒

Mxy

Myx

or

Fault

−My ′y ′

 Mx ′x ′

T

P

Fig. 4.4-1 Equivalent body force descriptions of a single force, a single
couple, and a double couple. The force couple can take two forms. One,
shown for Mxy, has two forces f offset by distance d such that a torque is
exerted. The other, shown for Mxx, is a force dipole which exerts no
torque. Slip on a fault can be described by the superposition of either
couples like Mxy and Myx or dipoles like Mx ′x ′ and −My ′y ′.

We now generalize this approach to include other types of seis-
mic sources. This formulation, using the seismic moment tensor,
gives additional insight into the rupture process and greatly
simplifies inverting seismograms to estimate source parameters.

We begin by returning to the concept of finding the seismic
waves generated by earthquakes due to slip on a fault by solv-
ing the equation of motion with the faulting represented by
equivalent body forces (Section 4.2.3) that yield the same

Fig. 4.4-2 Top: Observed surface wave
amplitude radiation patterns from the May
18, 1980, blast at Mt St Helens. Bottom:
Theoretical radiation patterns for several
seismic sources. Only the horizontal force
yields two-lobed Love and Rayleigh wave
patterns of comparable amplitude, rotated
90° from each other. (Kanamori and Given,
1982. J. Geophys. Res., 87, 5422–3,
copyright by the American Geophysical
Union.)
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Meteor impacts should, in principle, generate significant
seismic waves. Impacts have been detected seismologically on
the moon, but not on earth, where only large meteorites survive
passage through the atmosphere. Although it might seem that a
meteor impact should be modeled as a vertical force, this would
probably not be correct, because the impact’s energy would
vaporize rock and cause a spherically symmetric explosion
similar to an underground nuclear detonation. This idea is sup-
ported by the observation that craters produced by meteorites,
which are believed to have impacted at very oblique angles, are
essentially symmetrical. As we will see, spherically symmetric
explosions can be modeled by a set of three orthogonal force
couples.

4.4.3 Force couples

A force couple consists of two forces acting together. These are
similar in concept to electromagnetic dipoles, like that used to
model the earth’s magnetic field. Two basic couples are shown
in Fig. 4.4-1. One consists of a pair of forces offset in a direc-
tion normal to the force. The couple Mxy consists of two forces
of magnitude f, separated by a distance d along the y axis, that
act in opposite (±x) directions. The magnitude of Mxy is fd,
which in seismology is given in dyn-cm or N-m. To model a
couple acting at a point, the limit is taken as d goes to zero such
that the product fd stays constant.

The other type of couple, a vector dipole, consists of forces
offset in the direction of the force. Mxx consists of two forces of
magnitude f acting in the ±x directions, separated by d along
the x axis. The magnitude is fd, and the limit is taken in the
same way. The difference between the two couple types is that
the second exerts no torque.

Combining force couples of different orientations into the
seismic moment tensor M (Fig. 4.4-4) gives a general description
that can represent various seismic sources. No geophysical pro-
cesses have been found that are best modeled as single couples,
probably because such couples would generate large torques

Of the likely non-double-couple sources, both a vertical force
and an explosion would produce no Love waves and a circular
(rather than lobed) Rayleigh wave radiation pattern. How-
ever, a horizontal force can reproduce the observed radiation
patterns. The seismic source has thus been modeled with a
southward-pointing single force, opposite the direction of the
north-directed explosion and northward-flowing landslide.
The modeling gives estimates of the force involved in the land-
slide and explosion, which devastated more than 250 square
miles (640 km2) on the north side of the mountain. This explo-
sion is equivalent to an Ms 5.2 earthquake, significantly bigger
than the smaller earthquakes often associated with magma
movements within volcanoes.

Landslides have also been modeled by a single force in the
direction opposite that of the rock flow. Figure 4.4-3 illustrates
this for a large underwater slump (a kind of landslide in which
the mass of rock moves as a coherent body) associated with the
1929 Ms 7.2 Grand Banks earthquake. This earthquake, one
of the largest in a minor zone of seismicity along the Atlantic
continental margin of Canada (Section 5.6.3), was notable
because the slump generated powerful sediment flows, known
as turbidity currents, which ruptured telephone cables and
hence provided important evidence on the speed and force of
such currents. As shown, the observed S waves are reasonably
well modeled by synthetic seismograms for a horizontally ori-
ented single force, implying that the slump itself was the seismic
source. However, another study found that the seismograms
were well modeled by a double-couple earthquake at about
20 km depth, which triggered the slump. The issue of whether
it takes an earthquake to generate such slumps is interesting
because such mass movements, which might occur on many
heavily sedimented continental margins, can also generate sig-
nificant tsunamis (Section 1.2.4). The tsunami for this earth-
quake caused 27 deaths along the Canadian coast, and a slump
following an Ms 7.0 earthquake is thought to have caused the
devastating 1998 New Guinea tsunami which caused over
2000 deaths.

Fig. 4.4-3 Modeling of the November 18,
1929, earthquake and landslide off the
Grand Banks. The slump ruptured trans-
Atlantic cables (solid lines, right) at several
places (crosses). In this study, the S waves
are modeled with a single force with the
source time function shown (left)
representing the slump. Other studies treat
the slump as resulting from an earthquake.
(Hasegawa and Kanamori, 1987.
© Seismological Society of America.
All rights reserved.)
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Fig. 4.4-4 The nine force couples which are the components of the seismic
moment tensor. Each consists of two opposite forces separated by a
distance d (dashed line), so the net force is always zero.

1 Earthquakes can cause measurable changes in the earth’s rotation. However, these
result not from applied torques, but from vertical redistribution of mass due to static
displacements near a fault (Section 4.5).

Fig. 4.4-5 Schematic approximations made in modeling the seismic
rupture process. Top: The rupture process involves a complicated slip
function that is variable in space and time. The scalar seismic moment is
the integral of this slip process. Middle: To infer source parameters, we
approximate the rupture as a constant slip D

—
 on a geometrically simple

fault, making the moment a product of the rigidity, average slip, and fault
area. Bottom: The faulting is further approximated as a double couple of
equivalent body forces with moment fd.

Hence the moment tensor of an earthquake represents both
its fault geometry, via the different components, and its size, via
the scalar moment. The moment tensor is a simple mathemat-
ical representation that gives the seismic waves produced by a
complex rupture involving displacements varying in space and
time on a irregular fault (Fig. 4.4-5). In the previous section we
approximated the rupture with a constant average displace-
ment D

—
 over a rectangular fault, and we now approximate it

further as a set of force couples. These successive approxima-
tions are usually surprisingly successful at matching observed
seismograms.

4.4.5 Earthquake moment tensors

As we have seen, the equivalent body forces for seismic sources
of different geometries are represented by the seismic moment
tensor, M, whose components are the nine force couples

   

M  .=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

M M M

M M M

M M M

xx xy xz

yx yy yz

zx zy zz

(2)

and thus observable rotations of the earth about different axes.
The double and triple sets of couples used to model earthquakes
and explosions, respectively, do not generate net torques.1

4.4.4 Double couples

Figure 4.4-1 illustrates the relation between an earthquake’s
fault geometry and the double couple of equivalent body
forces. For this example, left-lateral strike-slip in the ±y direc-
tions on a fault in the y–z plane, the equivalent body forces
Mxy + Myx make up the double-couple source. The Myx couple
seems intuitive, because the forces point in the slip directions,
but the Mxy couple is also needed for reasons including avoid-
ing net torque on the fault.

Because the equivalent body forces are a double couple, they
would be the same if the slip were instead right-lateral on a
fault in the x–z plane. Thus, as we have noted, seismic waves
from a point double-couple source are the same regardless of
which plane is the fault plane and which is the perpendicular,
auxiliary plane.

The magnitude of the equivalent body forces is M0, the scalar
seismic moment of the earthquake, which has units of dyn-cm,
like those of a force couple. Thus if Mxy and Myx are couples of
unit magnitude, the moment tensor is

M = M0(Mxy + Myx). (1)



In this notation, the earthquake in Fig. 4.4-1 is represented as

   

M    .=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

0 0

0 0

0 0 0

0 1 0

1 0 0

0 0 0

0

0 0

M

M M (3)

We can write the moment tensor in any orthogonal coordi-
nate system because vector and tensor equations are valid
regardless of coordinate system. In general, the tensor appears
more complicated than Eqn 3 if the fault and slip directions
are not oriented neatly relative to the coordinate system. To see
this, we write the moment tensor for a double-couple earth-
quake in an arbitrary coordinate system. The components are
given by the scalar moment and the components of 4, the unit
normal vector to the fault plane, and 2, the unit slip vector,

Mij = M0(nidj + njdi), (4)

or
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This formulation shows two important things. First, the
interchangeability of 4 and 2 makes the tensor symmetric
(Mij = Mji). Physically, this shows that slip on either the fault
plane or the auxiliary plane yields the same seismic radiation
patterns. Second, the trace (sum of diagonal components) of
the tensor is zero,2

  
Mii

i
∑  = Mii = 2M0nidi = 2M0 4 · 2 = 0, (6)

because the slip vector lies in the fault plane and is thus perpen-
dicular to the normal vector. Hence moment tensors corre-
sponding to slip on a fault plane have zero trace. A nonzero
trace implies a volume change (explosion or implosion). Such
an isotropic component does not exist for a pure double-couple
source.

Before going further, it is worth briefly considering the
tensor properties of Mij. In discussing stress, we noted that a
matrix of numbers is a tensor only if it transforms between
coordinate systems in a specific way (Eqn 2.13.18). It is easy to
prove that the moment tensor for a double couple (Eqn 5)
transforms in this manner, because it is a physical entity relat-
ing the normal and slip vectors much as the stress tensor relates
the normal and traction vectors. At deeper level, Mij is a tensor
even for non-double-couple sources because it derives, in a
complicated way that we will not discuss, from the change the
earthquake causes in stress integrated over the source region.
The scalar moment gives the magnitude of the moment tensor

M0 = (
  
∑
ij

M2
ij)

1/2/  2, which is analogous to the magnitude of a

vector.
Using the definitions of the normal and slip vectors in terms

of fault strike, dip, and slip directions (Section 4.2), we can
write the moment tensor for any fault. The reverse process of
finding the fault geometry corresponding to a moment tensor is
more complicated. However, we need this ability for seismo-
gram inversions that yield the moment tensor. This can be done
using some ideas from linear algebra about vector transforma-
tions (Section A.5), because the eigenvectors of the moment
tensor are parallel to the T, P, and null axes.

To show this, we use the fact (Section 4.2.5) that vectors in
these three orthogonal directions t, p, and b can be written in
terms of the fault normal, 4, and slip vector, 2, as

t = 4 + 2, ti = ni + di ,

p = 4 − 2, pi = ni − di,

b = 4 × 2, bi = εijknjdk. (7)

To prove that these are the eigenvectors and to find the
eigenvalues, we begin with t, a vector in the T axis direction,
and evaluate

Mijti = M0(nidj + njdi)(ni + di)

= M0(ninidj + nididj + ninjdi + njdidi). (8)

Because the normal and slip vectors are perpendicular,
(nidi = 0) and have unit length (nini = didi = 1), we see that

Mijti = M0(dj + nj) = M0tj. (9)

Thus the scalar moment M0 is the eigenvalue associated with t,
which is an eigenvector.

Similarly, for the P axis,

Mijpi = M0(nidj + njdi)(ni − di)

= M0(ninidj + ninjdi − nidjdi − njdidi)

= M0(dj − nj) = −M0 pi , (10)

so −M0 is the eigenvalue associated with p, which is also an
eigenvector.

Finally, because Mij is a real symmetric matrix, we know that
a third eigenvector is perpendicular to the first two (Section
A.5.3). This turns out to be the null axis, b. In Section 4.2.5 we
showed that the null axis is perpendicular to the P and T axes:

(1/2)(t × p) = −(4 × 2) = −b. (11)

To show that b is an eigenvector, we form

Milbl = M0(nidl + dinl)(εljknjdk)

= M0εljk(ni dlnjdk + dinlnjdk)

= M0[ninj(ε ljkdldk) + didk(ε ljknl nj)], (12)

4.4 Moment tensors 243

2 Recall the summation convention notation (Section A.3.5) that a repeated index
indicates summation.
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and recognize that the cross-product of a vector with itself is
zero,

εljkdldk = εjkl dkdl = 2 × 2 = 0,

εljknl nj = εkljnl nj = 4 × 4 = 0, (13)

so the null axis b is an eigenvector with associated eigenvalue 0:

Milbl = 0. (14)

The fact that the P, T, and null axes are the eigenvectors
of the moment tensor lets us simplify it by transforming it
into the “natural” coordinate system whose basis vectors are
the eigenvectors. Such orthogonal transformations transform a
tensor from one orthogonal coordinate system to another, such
that its components change, but its physical meaning does not.
The transformation matrix with the eigenvectors as columns
(Section A.5.3),

  

U
t b p
t b p
t b p
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⎟
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gives a diagonal moment tensor for a double couple in the
principal axis coordinate system

   

U U
M
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One diagonal element is zero, and the other two are ± the scalar
moment. The trace (Mxx + Myy + Mzz), which is not changed by
an orthogonal transformation, started as zero in Eqn 6 and so
remains zero. Put another way, the isotropic component is an
invariant of the moment tensor and does not depend on the
coordinate system.

The point of the transformation is that inverting seismograms
in a geographic coordinate system yields the moment tensor
in that coordinate system. We then find its eigenvectors, the P,
T, and null axes, and use Eqn 7 to find the fault normal and
slip vectors and hence strike, dip, and slip angles. As part of the
same process, the eigenvalues give the scalar moment.

Thus the moment tensor corresponding to a specific faulting
geometry can be written in different ways. Figure 4.4-1 shows
this in a two-dimensional geometry. The coordinate system ori-
ented along and perpendicular to the fault has the fault normal
and slip vectors as basis vectors, and the nonzero moment
tensor components are Mxy = Myx = M0 (Eqn 3). If we transform
the moment tensor to the new (primed) coordinate system with
the P and T axes as basis vectors, 45° away from the first set, a
two-dimensional version of Eqn 16 gives the moment tensor

Mx ′x ′ = −My ′y ′ = M0. The transformation changes the compon-
ents, but the physical moment tensor stays the same, so these
two different-looking force systems give the same radiated
seismic waves. Hence the seismic waves alone provide no way
of deciding which is more “real.” Given that most earthquakes
occur on faults about which we have other knowledge, we gen-
erally view earthquakes as slip on a fault rather than dipoles.
It is worth recalling that a similar concept appears whenever
we transform vector or tensor quantities between coordinate
systems. For example, Fig. 2.3-6 showed that a given physical
state of stress could be represented either by normal stresses
(diagonal terms in the stress tensor) or shear stresses (off-
diagonal terms in the stress tensor), depending on the coordi-
nate system.

Figure 4.4-6 shows the diagonalized moment tensor and fo-
cal mechanism for some source geometries. The second, third,
and fourth rows show end-member double-couple mecha-
nisms. For each, the figure shows a vertical strike-slip (second
row), vertical dip-slip (third row), and a 45°-dipping pure
thrust fault. The first and last two rows, however, show very
different-looking mechanisms, which are discussed next. The
moment tensors are given in the coordinate system of Section
4.2.1, with basic vectors pointing north, west, and up. In
another coordinate system, such as spherical coordinates, the
components of the tensors would differ.

Fig. 4.4-6 A selection of moment tensors and their associated focal
mechanisms. The top row shows an explosion (left) and an implosion
(right). The next three rows are for double-couple sources. The bottom
two rows show CLVD sources which have a baseball or eyeball/fried-egg
appearance. (After Dahlen and Tromp (1998), with moment tensors
transformed to the coordinate system with basis vectors pointing north,
west, and up. Copyright © by Princeton University Press. Reprinted by
permission of Princeton University Press.)
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Another class of non-double-couple seismic sources are com-
pensated linear vector dipoles (CLVDs). These are sets of three
force dipoles that are compensated, with one dipole −2 times
the magnitude of the others:

M  /
/

.=
−⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

λ
λ

λ

0 0
0 2 0
0 0 2

(18)

The trace of the moment tensor is zero, so there is no isotropic
component. CLVDs are illustrated by the strange-looking
bottom two rows in Fig. 4.4-6. By contrast with the beachball-
looking focal mechanisms of double couples, the first motions
for CLVDs look like baseballs (fifth row) or eyeballs (sixth
row). Although sources with large CLVD components are
rare, they have been identified in several complicated tectonic
environments.

Two primary explanations have been offered for CLVD
mechanisms. Especially in volcanic areas, it is natural to
think of an inflating magma dike, which can be modeled as a
crack opening under tension. The moment tensor is for such a
crack is3
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where λ and µ are the Lamé elastic constants (Eqn 2.3.69). The
trace of this tensor is 3λ + 2µ, which is positive because the crack
opened. Thus we can decompose the tensor into two terms:
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The first term is an isotropic tensor whose diagonal compon-
ents E = λ + 2/3µ are one-third of the trace, and the second
term is a CLVD. Because, as we will see shortly, inversion of
moment tensors for shallow earthquakes cannot resolve the
isotropic component, the seismic waves from such a crack
would look like a CLVD.

An alternative explanation is that CLVDs are due to near-
simultaneous earthquakes on nearby faults of different geo-
metries. For example, consider the sum of two double-couple
sources with moments M0 and 2M0, expressed in the principal
axis coordinate system (Eqn 16):
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Fig. 4.4-7 An explosive source, which radiates energy equally in all
directions, is modeled using a triple dipole as an equivalent body force
system.

4.4.6 Isotropic and CLVD moment tensors

If all three diagonal terms of the moment tensor are nonzero
and equal, the polarity of the first motions (focal mechanism) is
the same in all directions. Such a triple vector dipole of three
equal and orthogonal force couples is the equivalent body
force system for an explosion or an implosion (Fig. 4.4-7). The
moment tensor looks like

   

M  ,=
⎛

⎝

⎜
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⎞

⎠

⎟
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E
E

E

0 0
0 0
0 0

(17)

and has nonzero trace 3E. A moment tensor with a nonzero
isotropic component represents a volume change.

Most explosive sources are man-made mining or nuclear
explosions. The ability to identify and locate nuclear explo-
sions seismologically is critical for monitoring nuclear testing
(Section 1.2). Natural explosive or implosive sources are rare,
but may be associated with fluid and gas migration linked
to magmatic processes or with sudden phase transitions of
metastable minerals. High-velocity impacts of meteorites could
also be modeled with explosive sources.

The physical processes in explosions differ markedly from
those for earthquakes. An explosion involves a sudden increase
in pressure, which causes nonlinear deformation that can melt
and even vaporize rock. As this shock wave of pressure ex-
pands, its amplitude decreases until the deformations are small
enough to occur elastically, yielding a spherical P wave (Section
2.4.3). This propagating wave interacts with interfaces within
the earth, including the surface, and generates SV and Rayleigh
waves, as seen in the nuclear explosion seismogram in Fig. 1.2-
19. Surprisingly, SH waves, including Love waves, are also
observed. These would not be expected in a spherically sym-
metric and isotropic earth, where P–SV and SH waves are
decoupled. Several possibilities have been suggested, including
tectonic release of deviatoric stress near the source, essentially
triggering earthquakes, and giving the source both isotropic
and double-couple components. 3 Aki and Richards (1980).
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Fig. 4.4-8 CLVD-type focal mechanisms for
earthquakes near the Bardarbunga volcano
in Iceland. The mechanisms are similar to
those shown in the lower right of Fig. 4.4-6.
These are thought to reflect reverse faulting
on cone-shaped ring faults surrounding the
magma chamber. In this model, deflation of
the magma chamber increases horizontal
compression, so the roof block above the
magma chamber subsides with respect to
the surrounding rock (right). (Nettles and
Ekström, 1998. J. Geophys. Res., 103, 17,
973–83, copyright by the American
Geophysical Union.)

Thus, adding these two double couples yields a CLVD. In this
example, both double-couple moment tensors are diagonal and
so have the same eigenvector directions, but the P, B, and T axes
of the first are the T, P, and B axes of the second. Thus, if the
first earthquake were strike-slip on a vertical fault, the second
would be normal faulting on a 45°-dipping fault (Fig. 4.2-16).

Decomposing a CLVD into double couples bears out the
concept that the moment tensors can be decomposed in differ-
ent ways, with different interpretations. This is because the
moment tensor represents the equivalent body force system, so
different decompositions reflect the same force system and give
the same seismic waves. Hence the seismic waves alone cannot
distinguish between alternative decompositions.

Multiple faulting events giving rise to apparent CLVDs have
been reported. For example, Fig. 4.4-8 shows CLVD mecha-
nisms at a volcano in Iceland, which have been interpreted
as resulting from reverse faulting on cone-shaped ring faults
beneath the caldera, triggered by deflation of the magma
chamber. Such CLVDs and other non-double-couple seismic
sources, like the single force for Mt St Helens (Fig. 4.4-2), occur
in volcanic regions where faulting and magmatic processes
interact. It is often difficult to distinguish the roles of the two
processes, even when geological and other geophysical data are
also used. Hence different interpretations of seismic events
have been offered in areas including Hawaii and the Long
Valley, California, caldera.

4.4.7 Moment tensor inversion

In addition to being an elegant representation of the source, the
moment tensor has two advantages for source studies. First, it
allows us to analyze seismograms without assuming that they
result from slip on a fault. In some applications, such as deep
earthquakes or volcanic earthquakes, we would like to identify
possible isotropic or CLVD components. Second, the moment

tensor makes it easier to invert seismograms to find source
parameters.

For example, consider the formulation we used to synthesize
surface waves (Section 4.3.4). The predicted seismograms
depended on fault geometry factors that are complicated pro-
ducts of trigonometric functions of the fault strike, dip, and slip
angles. This is not a problem in forward modeling, but makes
it hard to invert the seismograms to find the fault angles. The
inverse problem is much easier if we write the seismograms as
linear functions of components of the moment tensor.

To see this, we represent the source by a vector m, containing
components of the moment tensor. Although the tensor has
nine components, only six are independent, because the tensor
is symmetric. We then extend the idea of a Green’s function
which we previously used to represent the effect on a seismo-
gram of an earthquake with a particular fault geometry
(Eqn 4.3.15). Here, we define Gij(t) as the seismogram at the i th

seismometer due to the moment tensor component mj . Gij(t)
includes the effects of the seismometer and earth structure
along the path from the source to this seismometer, so the i th

seismogram is the sum of the Green’s functions weighted by the
moment tensor components,

ui(t) = 
    

G t mij j
j

( ) .
=
∑

1

6

(22)

Because we have many seismograms, we can write this as a
vector–matrix equation

u = Gm, (23)

where u is a vector composed of the seismograms at n stations
and G is the Green’s function matrix. G has as many rows as
seismometers and as many columns as moment tensor compo-
nents, so Eqn 23 looks like
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and anelastic effects of propagation from the source to the re-
ceiver. As in Eqn 4.3.20, we write

u(ω, θ, φ) = V(ω, φ)H(ω, θ),

H(ω, θ) = I(ω)
    

e iπ

θ

/

sin 

4

e− iωaθ /ce−ω aθ /2Queimπ /2. (27)

V(ω, φ) is the radiation pattern term reflecting the effect of
source geometry, which we want to find, whereas H(ω, θ) rep-
resents the effects of the seismometer and of propagation,
which we treat as known. I(ω) is the effect of the seismometer,
and the remaining terms are propagation effects, including
e−ω aθ/2Qu, the effect of attenuation as the wave travels a dis-
tance θ (including any 2π terms). In these expressions, a is the
earth’s radius, m is the number of polar or antipolar passages,
and c, u, and Q are the phase velocity, group velocity, and
attenuation at the frequency ω.

To set up the inversion, we write the radiation pattern, which
shows how the amplitude at a given frequency varies with the
azimuth (φ) of the receiver from the source, in terms of linear
combinations of the moment tensor components
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    + + ( sin   cos ).iQ M MR yz xzφ φ (28)

This expression is analogous to the radiation pattern for
Rayleigh waves due to slip on a fault (Eqn 4.3.20). The dif-
ference is that here the seismic source is written in terms of
moment tensor components, rather than as products of trig-
onometric functions of the fault strike, dip, and slip angles.
Thus Eqn 28 represents more general seismic sources than
double couples due to slip on a simple fault.

As before, the radiation pattern depends on excitation func-
tions derived from the radial eigenfunctions of spheroidal
modes of the appropriate frequency, which describe how a
source at a given depth causes displacements as a function of
frequency. However, in addition to the excitation functions
in (Eqn 4.3.20) (PR, SR, QR), we have the excitation func-
tion NR that applies to an isotropic source. To see this, recall
that for an explosion the moment tensor (Eqn 17) has equal
diagonal elements (Mxx = Myy = Mzz = M0) and zeroes off the
diagonal (Mxy = Myz = Mxz = 0). Substituting these into Eqn 28
yields V(ω, φ) = M0 NR, which is a radiation pattern that
depends on NR and is azimuthally symmetric, as expected for
an explosion. Conversely, if the source has no isotropic com-
ponent (Mxx + Myy + Mzz = 0), NR drops out of Eqn 28.

We can formulate the inverse problem using Eqn 28. At a
given frequency, separating V(ω, φ) into real and imaginary
parts yields the matrix equation
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This is an overdetermined system of linear equations with
more equations (n) than unknowns (6). We often encounter
such systems when we invert large quantities of data to estim-
ate a smaller number of parameters. As we noted in Section 2.8,
and will explore in depth in Chapter 7, we cannot invert the
matrix G because it is not square. Instead, we find the moment
tensor that best matches the observed seismograms in a least
squares sense, using what is called the generalized inverse of G,

m = (GTG)−1GTu. (25)

Thus, because the seismograms are linear functions of the
moment tensor components, they can be inverted to find the
tensor components.

Although we defer discussing most properties of general-
ized inverse solutions until Chapter 7, a point worth noting
is that how well we can estimate a moment tensor component
depends on the Green’s function. Equation 22 shows that the
seismogram involves products of moment tensor components
with their corresponding Green’s functions. Thus, if Gij is zero,
mj has no effect on the seismogram, no matter how big it is.
Similarly, if Gij is small, mj has little effect on the seismogram,
Conversely, inverting the seismogram to determine mj essen-
tially involves dividing the seismogram by Gij. Hence, if Gij is
small, dividing by it gives a large number, so any small errors
or noise in the data produce spuriously large values of mj. Put
another way, we get good estimates of components to which
the seismogram is fairly sensitive, but poorer ones for compon-
ents on which the seismogram depends weakly.4

We now consider one inversion approach, a method for sur-
face waves corresponding to the forward modeling in Section
4.3.4. In a coordinate system with the source at the north pole,
the vertical component of Rayleigh waves on a seismometer at
r = (r, θ, φ) can be written as an inverse Fourier transform:

u(r, t) 

    

=

−∞

∞

  
1

2π � U(ω, θ, φ)e iωtdω. (26)

The spectral amplitude U(ω, θ, φ) is a complex number repre-
senting the source, the effect of the seismometer, and the elastic

4 We will formalize this idea using eigenvalues in Section 7.3, but before doing so,
we can see intuitively that an estimate of the number of white cats in a dimly lit room
will be better than that of black cats.
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where m is a vector composed of the moment tensor compon-
ents that we seek to find,
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and B is the known matrix
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containing the excitation functions and azimuthal dependence.
To invert seismograms for the moment tensor, we divide the

Fourier transform of the seismogram from the station at ri by
the propagation and seismometer term H(ω, θi) (Eqn 27) to
find the complex amplitude V(ω, φi). Data from only one seis-
mic station yields two equations in six unknowns, so we cannot
find m. However, with data at three or more stations, all six
components of m can in principle be found. We form a vector
v from the V(ω, φi) values observed at each of the n stations.
We similarly use the values of B for each station, and write a
vector–matrix equation equating the observed amplitudes v to
those predicted by the known matrix B and the moment tensor
m that we seek,

v = Bm, (32)
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With more than three stations, there are more equations than
unknowns and Eqn 32 is solved using the least squares solution
(Eqn 25), giving

m = (BTB)−1BTv. (35)

This solution gives the moment tensor that best predicts the
observed spectral amplitudes. It is estimated at a given fre-
quency for a seismic source that is a delta function in time.
Time variation in the source can be examined by solving for m
at different frequencies.

An important limitation results from the fact that the middle
two columns in matrix B, corresponding to Mzz and Mxx + Myy,
do not contain φ, and so have no azimuthal variation. There-
fore, no matter how many stations we use at a given frequency,
we are solving only for the sum
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1

6
2(  )  (  )(  ),S N M N S M MR R zz R R xx yy+ + − + (36)

which is the same at all stations. The inversion thus cannot
find Mxx + Myy and Mzz separately, but only their sum, which is
the isotropic portion of the source corresponding to possible
volume changes.

One way to deal with this problem is to use data at different
frequencies, where the coefficients of Mzz and Mxx + Myy are
quite different. This is often difficult because these coefficients
vary slowly with frequency for shallow earthquakes (consider
SR(ω) for the 11 km-deep earthquake in Fig. 4.3-14). Surface
wave moment tensor inversions thus often constrain the source
to have no isotropic portion, so that Mxx + Myy = −Mzz. In this
case,



This problem can be addressed in several ways. One is to
invert shorter-period waves which have larger amplitudes
(Fig. 4.3-14). However, the effects of lateral heterogeneity
increase for shorter periods, due to the shorter wavelengths.
A second approach is to constrain Mxz and Myz to be zero and
invert for only the three components Mxx, Myy, Mxy. This forces
one eigenvector to be vertical and makes the major double
couple take one of three forms: pure strike-slip on a vertical
plane (vertical null axis), thrust faulting on a 45°-dipping plane
(vertical T axis), or normal faulting on a 45°-dipping plane
(vertical P axis). An interesting way to view this is to note
that shallow earthquakes on vertical dip-slip faults, for which
the only nonzero fault geometry factor (Eqn 4.3.20) is qR, have
radiation patterns proportional to QR(ω) and so excite surface
waves very inefficiently. Hence constraining Mxz and Myz to be
zero excludes any vertical dip-slip component from the focal
mechanism, so a complete solution requires other data, such
as first motions or geological knowledge. A third method is to
constrain one nodal plane from first motions and then do a
linear inversion for the second plane.

We can also use this formulation to invert transverse com-
ponent Love wave data, using the analogous expressions

U(ω, θ, φ) = V(ω, φ)I(ω)
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4.4.8 Interpretation of moment tensors

In general, once a moment tensor has been found by inverting
seismograms, it will be more complicated than expected for a
double couple. Even if the source were a pure double couple,
noise in the data and imperfect knowledge of earth structure
would likely produce a tensor that, once diagonalized, would
look like
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| λ 1 | ≥ | λ2 | ≥ | λ3 |, (43)

with eigenvectors 41, 42, and 43.
If M represents a double couple, then λ1 = −λ2, and λ3 = 0.

However, unless the moment tensor was constrained to satisfy
these conditions, it generally will not do so. In most cases,
λ1 ≈ −λ2, and | λ2 | >> | λ3 |, so M is approximately, but not
exactly, a double couple. In this case, we interpret the moment
tensor by decomposing it, as we did for the CLVD examples in
Section 4.4.6. If there is an isotropic component, we remove
it via
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so the inversion is for a vector with five components. NR, the
excitation function for an isotropic source, no longer enters
into the radiation pattern.

We then rewrite the inversion equation (Eqn 32) as

v = Am, (38)

and solve for
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given the known matrix
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The solution gives five moment tensor components, because
adding and subtracting m2 and m3 yields Mxx and Myy. Mzz
is then found from −(Mxx + Myy), but is not independent of
them.

Another significant difficulty in surface wave moment tensor
inversion stems from the fact that the excitation function QR
is zero at the earth’s surface (Fig. 4.3-14) because it is pro-
portional to the shear stress. At shallow depths QR is small, so
Mxz and Myz are poorly determined for shallow earthquakes
(< 30 km when inverting at 256 s). This leaves only three tensor
components well determined, which are insufficient to determ-
ine the fault geometry.
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42 is the T axis, and 43 is the null axis. Using these axes and our
tectonic preconceptions (which are not, of course, always
valid), we decide (using a stereonet or a computer) that the
earthquake was a thrust on a fault plane striking N189°E
and dipping 23°W. The auxiliary plane strikes N3°E and
dips 67°E.

In this case, we discarded the minor double couple and
assumed that the earthquake was a single double couple. It is
likely that the minor double couple often results from lateral
heterogeneity in the earth (the velocity and attenuation models
used in this inversion were laterally homogeneous), noise in
the data, and deviation of the earthquake from a point source.
You may recall from the surface wave example in Fig. 4.3-13
that the data were approximately fit by the amplitude radiation
pattern predicted by the focal mechanism, but some stations
had higher amplitudes, whereas others had lower amplitudes.
Similar effects can occur for the amplitude and phase data in a
moment tensor inversion. As a result, even if the source were a
pure double couple, the inversion fits the deviations in the data
from the predictions of the best-fitting double couple, and so
yields a moment tensor differing somewhat from the double
couple. Thus the better the inversion method reflects the earth’s
heterogeneity and source complexity, the less the tendency for
there to be spurious portions of the moment tensor. In some
cases, however, the minor double couple may have physical
significance, such as for simultaneous ruptures on nearby faults
with different orientations.

The moment tensor can be decomposed in other ways. One
is into a double couple and a CLVD:
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The relative strength of the double couple and CLVD is given
by the ratio of the smallest and largest deviatoric eigenvalues,
ε = λ ′3/λ ′1. ε = 0 indicates a pure double couple, and ε = ±0.5
shows a pure CLVD source. About 4% percent of the mechan-
isms in the Harvard global moment tensor catalog, derived
from inversions that are not constrained to yield double
couples, have | ε | ≥ 0.3. Some of these may be artifacts of the
inversion process similar to spurious minor double couples,
but some appear to be real source effects.

However, as our CLVD example (Section 4.4.6) showed,
both moment tensor decompositions and their interpretations
are not unique. For example, Eqn 45 showed a decomposi-
tion into a major double couple with moment λ ′1 and a minor
double couple with moment λ ′3. We could also decompose the
tensor with the same major double couple but a minor double
couple with moment λ ′2:5 This example was provided by A. Michael.
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where E = (λ1 + λ2 + λ3)/3. The remaining term is a deviatoric
moment tensor, with zero isotropic component and compon-
ents equal to the deviatoric eigenvalues λ′1 = λ1 − E, λ ′2 = λ 2 − E,
and λ ′3 = λ3 − E. If needed, the deviatoric eigenvalues are
renumbered so that | λ′1 | ≥ | λ ′2 | ≥ | λ′3 |. If the inversion has no
isotropic component, the deviatoric moment tensor is the
moment tensor resulting from the inversion.

The deviatoric moment tensor can be decomposed in several
ways. One is in terms of two double couples, called the major
and minor double couples:
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The first tensor is the major double couple, with scalar moment
| λ ′1 |, and the second is the minor double couple, with scalar
moment | λ ′3 |. Usually, the magnitude of the major double
couple is much larger, and we treat it as the earthquake’s
source mechanism.

As an example, consider M for an intermediate-depth thrust
earthquake in the Kuril subduction zone near Japan.5 The
moment tensor inverted from Rayleigh waves of period 256 s
recorded on the IDA network of digital very long-period seis-
mometers was
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where the components are in units of 1027 dyn-cm. Diagon-
alizing the matrix yields
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with eigenvectors 41 = (0.80, 0.92, 0.37), 42 = (0.00, −0.38,
0.93), and 43 = (−0.99, 0.07, 0.03). The isotropic component
was constrained in the inversion to be zero. Because the minor
double couple has a moment only 6% that of the major double
couple, we assume that the major double couple represents the
earthquake mechanism. 41 is the P axis of the double couple,



Until recently, these measurements were typically made by
triangulation, which measures the angles between monuments
using a theodelite, or trilateration, which measures distances
with a laser. Vertical motion was measured by leveling, using a
precise level to sight on a distant measuring rod. However, the
advent of geodetic methods using signals from space permits all
three components of position to be measured to sub-centimeter
precision. As a result, geodetic data before and after earth-
quakes now give coseismic motion to high precision much
more easily than was previously possible.

Although the space-based technologies are among the most
complex used in the earth sciences, in essence they use electro-
magnetic waves in ways analogous to those we have discussed
for seismic waves. Three of these techniques are used to locate
geodetic markers. Very Long Baseline Interferometry (VLBI)
uses the difference in the time when radio signals from distant
quasars arrive at different points on earth. Satellite Laser
Ranging (SLR) uses the time required by light from ground-
based lasers to bounce off satellites. The third approach relies
on the travel time of radio signals between satellites and ground
stations.

Although the various systems provide similar data, the third
approach via the Global Positioning System (GPS)2 is presently
the system of choice for most tectonic applications. GPS was
developed in the late 1970s by the US Department of Defense
for real-time positioning and navigation. A constellation of
satellites transmit coded timing signals on a pair of micro-
wave carrier frequencies synchronized to very precise on-board
atomic clocks. The timing signals are modulations of the car-
rier frequencies, analogous to those we discussed in the context
of phase and group velocities (Section 2.8.1). By determining
the ranges to a minimum of four satellites from the signal
delays and the broadcast satellite orbit information, a single
GPS receiver can determine its three-dimensional position
to a precision of 5 to 100 meters, depending on the level of
signal degradation imposed by the military (Fig. 4.5-1).3 This
operation is conceptually the same as locating an earthquake
from arrivals at multiple seismometers, which we discuss in
Section 7.2. GPS positions are two to three times more precise
in the horizontal than in the vertical direction, because radio
signals arrive only from above, just as earthquake locations are
less precise in depth because waves arrive only from below.

The improvement to cm level or better precision is obtained
by using the phase delays of the microwave carriers. Because
the carriers have higher frequencies than the modulations,
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1 The most familiar monuments are the metal disks attached to rocks often seen at
mountain peaks, but various other designs are also used in hope of minimizing the ef-
fects of soil or near-surface motion that mask the tectonic movement. In soft sedi-
ment, monuments are often steel rods driven deep into the earth. The popular term for
monuments is “benchmarks,” although geodesists traditionally reserve this term for
monuments used to study vertical motions.

2 Acronyms abound in space geodesy, given its space and military origins. Alterna-
tive meanings have been offered: the large VLBI project teams suggest “Very Large
Bunch of Investigators,” and the languid pace of GPS surveys prompted “Great Places
to Sleep.” There are also second-level acronyms involving other acronyms, such as
IGS for International GPS Service.
3 The Department of Defense can degrade GPS positioning via selective availability,
which introduces errors in the satellite clocks. This capability, which was discontin-
ued in May 2000, reduced the precision of single receiver positions but had little effect
on precise geodetic positions.
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The two decompositions sum to the correct value for each
tensor component, which is the equivalent body force, but
using tensors of differing scalar moments. This is analogous
to the way a vector can be decomposed into various sums of
vectors with different magnitudes.

Moment tensor solutions have become an important tool of
global seismology. Globally distributed broadband digital
seismometers permit reliable focal mechanisms to be generated
within minutes after most earthquakes with Ms ≥ 5.5 and made
publicly available through e-mail and the Internet. Several
organizations carry out this service, including the Harvard
centroid moment tensor (CMT) project. The CMT method
inverts two parts of seismograms: long-period (T > 40 s) body
waves and very long-period (T > 135 s) surface waves, called
mantle waves. The CMT inversion yields both a moment
tensor and a centroid time and location. This location often
differs from that listed in earthquake bulletins, such as that of
the International Seismological Centre (ISC), because the two
locations tell different things. Earthquake location bulletins
based upon arrival times of body wave phases like P and S give
the hypocenter: the point in space and time where rupture
began. CMT solutions, using full waveforms, give the centroid,
or average location in space and time, of the seismic energy
release. As a result, CMT origin times are almost always
later than ISC times. The availability of large numbers of high-
quality mechanisms (the Harvard project has produced more
than 17,000 solutions since 1976) is of great value in many
applications, especially tectonic studies.

4.5 Earthquake geodesy

4.5.1 Measuring ground deformation

So far in this chapter we have studied earthquakes using trans-
ient displacements due to the propagating seismic waves they
generate. However, the large, rapid deformation in an earth-
quake results from a complex deformation field which extends
over a broad region and a long time. Hence, additional inform-
ation about earthquakes and the processes causing them can
be obtained by measuring slow ground deformation using
techniques from geodesy, the science of the earth’s shape.
Most such techniques rely on detecting the motion of geodetic
monuments,1 which are markers in the ground.
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Baseline vector to be measured

Relative positioningConstellation of GPS satellites

Fig. 4.5-1 Left: The Global Positioning
System (GPS) uses a constellation of
satellites that transmit timing signals.
Right: Using precise positions based on
signals from multiple satellites recorded at
multiple receivers, measurements over time
yield relative velocities to precisions of a
few mm/yr or better.

The synthetic aperture method allows high-resolution radar
mapping from spacecraft or aircraft. The resolution of a phys-
ical radar can be estimated using the single slit diffraction con-
cept (Fig. 2.5-18), in which the angle θd between successive
zeros in the diffraction pattern is λ/d, where d is the slit width,
and λ is the wavelength. For radar, d is the antenna length, so a
radar a distance r above the earth’s surface could resolve
objects of size x, where (Fig. 4.5-2, left)

θd = λ /d = x/r. (1)

x

dθ

r

A1

θ

H

h

A2

r2r1

B

r̂

D · r̂

D

Fig. 4.5-2 Left: Geometry of radar imaging from space. A physical
antenna’s angular resolution is θd = λ /d = x/r, so x is the resolution on
the earth’s surface achievable by a radar with antenna length d and
wavelength λ operating at altitude r. Synthetic aperture radar dramatically
improves the resolution. Right: Geometry of the InSAR method. The insert
illustrates the relation between the crustal motion D and the resulting
range change δ r = (D · 5). (After Bürgmann et al., 2000. Reproduced with
the permission of Annual Reviews, Inc.)

their phase can yield more precise locations, much as higher-
frequency seismic waves can reveal more detailed velocity
structure (Section 3.2.3). The carrier wavelengths are 19 and
24 cm, so precise phase measurements can resolve positions to
a fraction of these wavelengths. The use of differential signals
from multiple satellites recorded at multiple receivers reduces
clock errors. Combining both transmitted frequencies removes
the effects of the passage of the GPS radio signals through the
ionosphere. Position errors due to signal delays from water
vapor in the troposphere can be reduced by estimating the
delays using an inversion process similar to solving for seismic
velocity structure.

The final element for high-precision surveys is provided by
continuously operating global GPS tracking stations and data
centers. These provide high-precision satellite orbit and clock
information, earth rotation parameters, and a global reference
frame. Using this information, GPS studies can achieve posi-
tions better than 10 mm, so measurements over time yield rela-
tive velocities to precisions of a few mm/yr or better, even for
sites thousands of kilometers apart. The uncertainty of the ve-
locity estimate depends on the precision of the estimated posi-
tions and the time interval between them.

GPS data are collected in two modes. In survey mode, GPS
antennas are set up over monuments for short periods, and the
sites are reoccupied later. Alternatively, continuously record-
ing GPS receivers are installed permanently. Continuous GPS
can provide significantly more precise data, albeit at higher cost
(in the USA, a 25-station network can presently be occupied in
survey mode for the cost of a single continuous station).

The biggest limitation of geodetic data for earthquake studies
is that the positions of geodetic markers before the earthquake
are needed. Thus effort and resources are required to install
and survey monuments in advance, in hopes that an earthquake
will occur nearby. In active seismic areas that are convenient
for study, this condition can sometimes but not always often
be met. A way around this difficulty is provided by Synthetic
Aperture Radar interferometry (InSAR) from satellites.



Because the radar wavelengths are 10s of centimeters, a radar
antenna a few meters long orbiting hundreds of kilometers
above the earth can normally resolve topography only on a
scale of kilometers. However, SAR uses signal processing to
combine information collected by a moving satellite to simu-
late an antenna much larger than the satellite’s real antenna.
For example, a real 10 m antenna can be used as a 4 km
synthetic antenna. The synthetic antenna can thus resolve both
topography and crustal deformation on a “footprint” of tens
of meters.

Figure 4.5-2 (right) illustrates the technique. The phase
difference between radar signals with wavelength λ reflected
from the earth’s surface and recorded by antennas at position
A1 and A2 is

φ = (4π /λ)(r2 − r1), (2)

where ri is the range from the antenna at Ai to the reflection
point. The antenna baseline separation vector B and satellite
flight height H are known from the satellite orbits. Because
the baseline length | B | is much shorter than the ranges ri, an
analysis like that used to derive the earthquake rupture time
(Fig. 4.3-2) shows that the elevation of the reflecting point is
h = H − r1 cos θ, so topography can be mapped from space.
This method, called interferometry,4 is used for both earth and
planetary mapping, such as the Magellan mission to Venus.

Two such radar images can detect ground motion between
successive measurements. If differences in satellite positions
between the measurements are removed, a vector surface
displacement D causes a phase change

φ ≈ (4π /λ)δr, δr = (D · 5), (3)

where δ r is the projection (scalar product, Section A.3.3) of
the vector displacement along 5, the look direction connecting
the satellite and reflection point. To find the full displace-
ment vector, observations from ascending (moving north) and
descending (moving south) tracks of the satellite, or different
satellites, can be combined.

The results are shown as a phase difference map, called a
differential interferogram. Figure 4.5-3 (top) shows such an
image of the phase differences resulting from the 1992 Landers
(Mw 7.3) and Big Bear (Mw 6.2) earthquakes in the Mojave
desert of southern California. A range change δr of λ/2 causes a
phase change of 2π that appears as one fringe (full shading
change) in the map. In this case, the C-band radar has a
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4 Interferometry, using phase differences of traveling waves to make precise distance
and time measurements, has many applications. In seismology, the time between
arriving waves is measured by cross-correlation (Sections 3.3.6, 6.3.4). GPS and VLBI
use the phase differences of radio waves to measure positions. Perhaps the most
famous application of interferometry is the Michelson–Morley experiment in the
1880s, which showed that the speed of light was the same in all directions despite the
earth’s motion through space, and thus played a key role in the birth of the theory of
relativity.

Fig. 4.5-3 Top: SAR interferogram constructed from radar images taken
on April 24, 1992, and June 18, 1993, showing the displacements
resulting from the 1992 Landers and Big Bear earthquakes. The shaded
fringes are interference patterns obtained by comparing the images. Each
cycle of shading represents 28 mm of change in the distance between the
satellite and the ground, so the static displacement is on the order of tens
of centimeters. Bottom: Synthetic interferogram computed using a model
of the static displacements predicted by the focal mechanisms. The images
are 92.2 km across in width. (B. Hernandez, personal communication,
1999, based upon Hernandez et al., 1997. Geophys. Res. Lett., 24, 1579–
82, copyright by the American Geophysical Union.)
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frequency of 5.2 GHz, so a fringe corresponds to 28 mm of
motion. The observed fringe pattern is coherent over large
areas where deformation is resolved. The pattern is reason-
ably similar to a synthetic interferogram (Fig. 4.5-3, bottom)
generated for a detailed model of the Landers rupture, which
involved several meters of right-lateral strike-slip on a complex
set of NW-striking faults extending for about 85 km.

InSAR has several attractive features for earthquake studies.
Although radar images before an earthquake are needed,
satellites can acquire them over areas far too large for geodetic
monuments to have been installed everywhere. In addition,
InSAR maps deformation on a spacing of tens of meters, far
denser than is practical with geodetic monuments. Moreover,
InSAR is especially sensitive to vertical motions, the compon-
ent for which the GPS is the least precise. InSAR has several
limitations. It recovers motion only in the look direction. It
cannot be used in some areas of steep topography, where the
radar beam cannot penetrate, or where the slope facing the
radar is so steep that several points have the same range to
the radar. Another limitation is that nontectonic changes
between images, such as those due to vegetation growth or
weather conditions (which affect radio wave propagation in
the atmosphere), can mask the effects of crustal motion. How-
ever, when such decorrelation between successive images is not
a problem, as in deserts or other bare rock settings, InSAR is a
powerful tool. Finally, InSAR provides relative changes within
an image that is tens to a hundred kilometers across, but does
not provide absolute positions on a plate-wide or global scale.
This poses no problems for individual earthquake studies, but
means that it alone cannot be used for large-scale applications
like plate boundary studies. In many applications, InSAR and
GPS are both being combined with seismological data. These
techniques are also being applied together with seismology to
study ground deformation at volcanoes.

The advent of space-based methods like GPS and InSAR,
which make collecting geodetic data faster and easier, have
made earthquake geodesy and seismic wave studies common
overlapping approaches to earthquake studies. Hence, although
seismology and earthquake geodesy were long viewed as very
distinct, owing to their different instrumentation, earthquake
geodesy is increasingly viewed as very low-frequency seismo-
logy (or earthquake seismology as high-frequency geodesy).

4.5.2 Coseismic deformation

Seismic source theory shows that the static coseismic dis-
placements produced by earthquakes have radiation patterns
analogous to the propagating wave displacements shown
in Fig. 4.2-6 and 4.2-7, and so can also provide important
information about the fault geometry and slip. An important
feature of these displacements is that they contain 1/r2 terms,
compared to 1/r terms for the propagating waves (Eqns 1
and 2). Thus, compared to the propagating waves, the static
displacements decay more rapidly with distance from the
earthquake. Hence we typically describe the static displace-

Fig. 4.5-4 Top: Horizontal static displacements following the 1927
Tango, Japan, earthquake. The dashed line shows the fault trace.
(Bottom): Decay of fault-parallel displacements with distance
perpendicular to the fault. (After Chinnery, 1961. © Seismological
Society of America. All rights reserved.)
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ments using Cartesian coordinates near a fault, rather than the
spherical coordinates used for teleseismic waves.

A classic example, shown in Fig. 4.5-4, is that of the static
displacements following the 1927 Ms 7.5 Tango, Japan, earth-
quake. The displacements change direction across the fault
trace, showing that the earthquake involved primarily left-
lateral strike slip. The fault-parallel displacement component
decays rapidly with distance from the fault.

Although the full expressions for the static displacements
due to slip on a fault are complicated, we can gain considerable
insight from the simple case of pure strike-slip faulting on an
infinitely long vertically dipping fault. In this case (Fig. 4.5-5,
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Fig. 4.5-5 Top: Geometry of the vertically dipping strike-slip fault model.
L and W are fault length and width. Bottom: Predicted fault-parallel static
displacements, normalized to the maximum offset, for an infinite strike-
slip fault, for different fault widths.

top), the fault-parallel displacement in the x direction, u(y),
varies with the distance from the fault y as

u(y) = ±D/2 − (D/π) tan−1 (y/W ), (4)

where D is the slip across the fault, and W is the depth to which
faulting extends, called the fault width. The ±D term is positive
for y > 0, negative for y < 0. This model assumes that the slip is
uniform all over the fault plane. Figure 4.5-5 (bottom) shows
this solution for several different fault widths. Near the fault,
y → 0, so the inverse tangent is zero, and u(0) = ±D/2. The dis-
placement decays away from the fault, so by a distance equal
to the fault width (y/W = 1) the inverse tangent is π/4 and the
displacement is D/4, or half that at the fault. Far from the fault,
y/W → 0, and the displacement dies off. Hence the distance
over which the displacement extends gives information about
the fault width. For example, the data in Fig. 4.5-5 indicate a
fault width of about 10 km.

For this infinite fault, fault-parallel displacement extends to
infinity along the fault. Calculations for finite-length faults

Fig. 4.5-6 Top: Fault-parallel static displacements for a finite vertically
dipping strike-slip fault. Contours are labeled in units of 10−3 times the
maximum offset. (Chinnery, 1961. © Seismological Society of America.
All rights reserved.) Center: Predicted fault-parallel static displacements,
normalized to the maximum offset, for strike-slip faults with different
fault widths (W) and lengths (L). The horizontal bar is where displacement
has dropped to half its value at the fault. Bottom: Predicted fault-parallel
static displacements for three buried infinite strike-slip faults extending
from depth w to depth W, all with the same slip. (Mavko, 1981.
Reproduced with the permission of Annual Reviews Inc.)
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show that the displacement tapers off rapidly past the fault
ends (Fig. 4.5-6, top). In addition, there is some fault-normal
(y direction) motion. For finite faults (Fig. 4.5-6, center), the
decay of fault-parallel displacement perpendicular from the
fault (in the y direction) depends somewhat on the ratio of
the fault width to fault length, W/L. Thus the fault width estim-
ated from the decay depends on the assumed length.
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areas. For a fault that does not reach the surface, the displace-
ment is both reduced in amplitude and varies more smoothly
with distance than it would for a fault extending to the surface.
Such buried dip-slip faults are sometimes called “blind” faults,
because they do not appear at the surface and may not be
recognized until an earthquake occurs.

The general solutions allow modeling of all three compon-
ents of static displacement for earthquakes with any focal
mechanism and finite fault dimensions. We can also model
situations in which different parts of the fault slip by different
amounts.

Estimating fault parameters from geodetic data is a classic
example of an inverse problem with a highly non-unique
solution, because various combinations of fault parameters
predict similar deformation. Figure 4.5-8 shows six solutions
that all give reasonable fits to the Tango earthquake data
(Fig. 4.5-4). Model I is an infinite fault with uniform slip at
depth, model II is an infinite fault with slip tapering to zero at
depth, and models III and IV are finite faults with uniform and
variable slip, respectively. Model V is the most complicated,
in that it assumes that the material near the fault is weaker
than that further away.

4.5.3 Joint geodetic and seismological earthquake studies

Combining geodetic and seismic wave observations gives more
information than either data type alone. The two data types are
nicely complementary. For example, although seismic waves
have an ambiguity in distinguishing between the fault plane
and the auxiliary plane, the geodetic data do not, as shown by
the fact that the Tango earthquake data (Fig. 4.5-4) and static
displacement models (Fig. 4.5-6, top) do not have a nodal plane
perpendicular to the fault plane. Both data types can give good
constraints on the fault geometry and slip on it, and aftershock
locations often provide the best constraint on fault dimensions.
However, geodetic data that depend on the difference in posi-
tion before and after an earthquake provide no information

Fig. 4.5-7 Vertical component of static displacement as a function of distance from various pure dip-slip faults. (Yeats et al., 1997; after Stein and Yeats,
1989. Courtesy of H. Iken.)

If a fault is buried and extends from depth w to depth W,
Eqn 4 becomes

u(y) = (D/π)[tan−1 (y/w) − tan−1 (y/W)]. (5)

In this case, the maximum surface displacement is less than
half the fault slip and occurs a distance from the fault equal
to the mean depth (wW )1/2 (Fig. 4.5-6, bottom). Thus the
displacement fields of buried faults are smoother and lower-
amplitude versions of those for faults that reach the surface.
These differences occur because a buried fault is further away
from each point on the surface, and the higher spatial frequen-
cies (shorter wavelengths) in the displacement decay faster with
distance, making the displacement smoother. As a result, there
is a trade-off between the fault’s down-dip dimension W – w
and the coseismic slip D, and one is often assumed to determine
the other. Often, fault dimensions are estimated from the after-
shock zone.

The buried fault solution (Eqn 5) is derived by simply add-
ing to Eqn 4 a fictitious second fault extending from the surface
to the fault top w, with the same slip but in the opposite direc-
tion. This is an example of the general principle that we can
superimpose static solutions for simple geometries to obtain
the solution for a complicated geometry. We also do this for
the propagating waves from complex faults, as we will see
shortly. The solutions can be added because they satisfy linear
elasticity.

Solutions are also available for dip-slip faults. Figure 4.5-7
shows solutions for the vertical component of static displace-
ment as a function of distance from various pure dip-slip faults.
For vertical dip, the solution looks like the strike-slip solution
turned vertically. If the dip is not vertical, the displacement
varies in magnitude as well as sign across the fault. The higher
amplitudes are above the thrust fault, on the hanging wall
block. Interestingly, seismic wave amplitudes for this geometry
are also often highest on the hanging wall, and can cause sig-
nificant damage when such earthquakes occur under populated
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Fig. 4.5-8 Comparison of different fault models that predict coseismic
deformation similar to that observed for the Tango earthquake (Fig. 4.5-
4). Distance is perpendicular to the fault. The data are normalized by the
fault offset, and points from the SW side (closed dots) are multiplied by −1
and plotted with points from the NE side (open dots). (Mavko, 1981.
Reproduced with the permission of Annual Reviews, Inc.)

5 This earthquake, which is one of the most studied owing to the extensive seismo-
logical and geodetic networks in the area, gave rise to some of the highest ground
accelerations ever recorded. It illustrates that even a moderate magnitude earthquake
can do considerable damage in a populated area. Although the loss of life (58 deaths)
was small due to earthquake-resistant construction (Section 1.2.2), the 20 billion dol-
lars in damage makes it the most costly earthquake to date in the USA.

about what happened during the earthquake, whereas seismo-
logical data can sometimes show how the rupture evolved.

Figure 4.5-9 illustrates an example of combining geodetic
and seismological data for the 1994 Ms 6.7 Northridge earth-
quake which occurred on a buried thrust fault in the San
Fernando Valley, near Los Angeles.5 The focal mechanism
and aftershock distribution indicate thrust faulting on a
NW-striking, SW-dipping fault. The geodetic (GPS) data show
significant vertical and horizontal motions concentrated above
the buried fault. The directions and magnitudes of the static
deformation, including the motion of down-dip sites toward
the fault and the high amplitudes above the fault, are what we
would expect for this geometry (Fig. 4.5-7). These data can
be modeled quite well by assuming that about 2.5 m of slip

Fig. 4.5-9 Geodetic and seismological results for the 1994 Northridge
earthquake. Top: The horizontal (solid arrows) and vertical (solid bars)
motions observed by GPS are well matched (dashed arrows and open bars)
by a fault model derived from these data. Negative uplift is shown by bars
below the station locations (dots). Bottom: Aftershock locations (dots)
and geometry of fault models with uniform slip (thick line) and variable
slip on a longer fault (thin line), both of which fit the data. (After
Hudnut et al., 1996; Thio and Kanamori, 1996; and Wald et al., 1996.
© Seismological Society of America. All rights reserved.)

occurred on a fault plane similar to that which one would infer
from the aftershocks. Two geodetic solutions are shown, one
with uniform slip and one with variable slip on a larger fault.

Because high-quality geodetic and seismological data are
available, considerable detail about the slip distribution has
been inferred. Strong motion data from seismometers close to
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Fig. 4.5-10 Comparison of results of slip
inversions for the Northridge earthquake
using various datasets. The fault plane is
viewed from the southwest and above. The
epicenter is marked by a star. (Wald et al.,
1996. © Seismological Society of America.
All rights reserved.)

waveforms. Rupture began at the epicenter and then pro-
pagated up-dip and northwestward. Such models are giving
our best look to date into the rupture process, and are being
combined with experimental and theoretical studies of rock
fracture (Section 5.7) to explore the complex physics of earth-
quake faulting.

Geodetic data after earthquakes also sometimes show a
phenomenon called afterslip or postseismic slip, in which
deformation goes on “silently” (without a seismic signal) for
some time after an earthquake and its seismologically observed
aftershocks. For plate boundaries, this motion is sometimes
thought of as a postseismic portion of the seismic cycle, during
which the motion slows from the rapid coseismic motion to
the slower steady interseismic motion. However, as discussed in
Section 5.7.6, it is often unclear whether the postseismic motion
reflects continued slip on the earthquake fault, the response
of the lithosphere to the earthquake having a time-varying

the earthquake are especially valuable because they contain
high-frequency details about the source time function, and
thus slip process, which can be lost in teleseismic data due to
attenuation (Fig. 4.3-10). Figure 4.5-10 shows maps of the slip
distribution on the fault plane estimated first by inverting the
strong motion, teleseismic, and geodetic data separately, and
then by a joint inversion. The seismic inversions extend ana-
lysis like that shown in Fig. 4.3-11, which resolved the source
time function into sub-events, to locate sub-events on the fault
plane. Interestingly, the largest slip is not at the epicenter (star).
The results for the different data types differ because each is
sensitive to different features of the slip. For example, the geo-
detic data yield a much smoother image than the seismic data,
which can resolve the rupture process, whereas the GPS data
sample only its end result. Thus, both waveform datasets yield
a high-slip region near the fault’s northwest corner. Figure 4.5-
11 shows the time evolution of the rupture inferred from the
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Fig. 4.5-12 Top: Coseismic (heavy solid line), interseismic (dashed line),
and total or far-field (thin solid line) motions in the fault-parallel (x)
direction as functions of fault-perpendicular distance (y) for an elastic
rebound model of the seismic cycle on an infinite, vertically dipping,
strike-slip fault. Bottom: Interseismic strain for this model.

waves once an earthquake occurs. To see this, consider a simple
elastic rebound (Fig. 4.1-3) model of an infinite strike-slip fault
at a plate boundary, assuming that large earthquakes release
all the strain which accumulates between earthquakes. After an
earthquake, material on the right (+y) side far from the fault
moves at the far-field rate v relative to the left (−y) side of the
fault, and so has moved a distance vt by time t (Fig. 4.5-12,
top). However, between earthquakes the fault is locked down
to depth W, although it slips freely below, so material at the
fault does not move between earthquakes. When the next large
earthquake occurs, completing the seismic cycle, everything
to the right of the fault must have moved a distance vt. The
earthquake’s coseismic displacement will be given by Eqn 4
with D = vt, so the coseismic slip u(y) is less than D except at the
fault. This means that points away from the fault already have
moved part of the distance D before the earthquake. Similarly,
everything on the left side must have had no net motion from
the seismic cycle, even though material near the fault moved
“backward” (in the −x direction) during the earthquake.

Thus the fault-parallel interseismic motion s(y) is found by
subtracting the coseismic slip from the far-field (or net) motion,
giving

s(y) = D/2 + (D/π) tan−1 (y/W). (6)

Hence, as shown in Fig. 4.5-12 (top), material on the left side
near the locked fault is “dragged along” during the interseismic
period, and then rebounds during the earthquake. Material on

Fig. 4.5-11 Time history results for the Northridge earthquake. Rupture
appears to have begun at the epicenter (star) and then propagated up-dip
and northwestward. The geometry is the same as in Fig. 4.5-10. (Wald
et al., 1996. © Seismological Society of America. All rights reserved.)

viscous component in addition to purely elastic instantaneous
deformation, or both.

4.5.4 Interseismic deformation and the seismic cycle

Geodesy gives insight into the seismic cycle before, after, and
between earthquakes, whereas we can only study the seismic
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the right side near the fault is retarded during the interseismic
period, and then “catches up” to the far-field motion due to the
coseismic deformation. Equations 4 and 6 are thus mathemat-
ical formulations of the elastic rebound model in Fig. 4.1-3.

If the fault is a plate boundary, the interseismic deformation
occurs over a finite plate boundary zone within which sites on
either side of the boundary move relative to the interior of the
plate they are on. In this case, the boundary zone is relatively
narrow, comparable to the depth to which the fault is locked.
However, as we will see, many plate boundary zones are
broader because additional faults take up some of the plate
motion.

Because the interseismic motion is the difference between the
far-field motion and coseismic deformation, its variation with
distance from the fault depends on the locking depth and far-
field rate. Comparison with the coseismic slip shows that the
width of the zone across which the motion changes rapidly
depends on the locking depth. Shallow locking concentrates
interseismic slip near the fault, whereas deeper locking spreads
it out into a broad shear zone. Hence a series of geodetic
surveys can develop a velocity profile across the fault, which
we can interpret by setting D = vt in Eqn 6 and dividing the
change in positions between surveys by the time between them.
Figure 4.5-13 shows a profile across the much-photographed
(Fig. 4.1-1) Carrizo Plain segment of the San Andreas fault.
The data are reasonably well fit by a far-field rate of about
35 mm/yr. As we will discuss in the next chapter, this rate is
less than the total (approximately 45 mm/yr) motion between
the Pacific and North American plates, showing that some of
the plate motion occurs away from the San Andreas fault over a
broader plate boundary zone. In fact, we will see that space
geodetic profiles across the broad boundary zone, which con-

Fig. 4.5-13 GPS data showing fault-parallel horizontal interseismic
motion across the Carrizo Plain segment of the San Andreas fault.
(Z.-K. Shen, personal communication, 2000.)
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tains many faults, look generally like Fig. 4.5-12 (top) but with
the full relative plate velocity.

We can use Eqn 6 to find the interseismic shear strain rate
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As shown in Fig. 4.5-12 (bottom), strain accumulates near the
fault during the interseismic period and is released in large
earthquakes. Like the displacement, the variation of strain with
distance from the fault depends on the locking depth and
far-field rate. The strain rate can be inferred from changes in
the angles between geodetic markers. Thus, prior to the advent
of GPS, which made studying displacements much easier, many
fault geodesy studies used triangulation to study interseismic
strain accumulation rates.

Although this example is shown for a strike-slip fault (the
easiest to draw), a similar approach is used for thrust faults at
subduction zones (Fig. 4.5-14). The interseismic motion is
modeled as the difference between long-term plate motion and
the coseismic deformation in large plate boundary earthquakes
(e.g., Fig. 4.5-7). As for the strike-slip case, interseismic motion
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the subduction interface and future large earthquakes on it.
Figure 4.5-15 shows GPS velocities relative to the stable inter-
ior of North America for some sites near the rupture zone of
the great 1964 Alaska earthquake (Fig. 4.3-15). Sites to the east
of the area shown move northwest, in the direction of Pacific
plate subduction beneath North America, as we would expect
for the interseismic motion of sites on the overriding plate
above a locked fault. The motion decays rapidly landward

occurs in a boundary zone extending some distance from the
fault defining the nominal plate boundary. Modeling predicts
interseismic subsidence and landward motion for most sites
above the locked fault, and uplift further inland (Fig. 4.5-14,
bottom). The motion has largely decayed by a distance equal to
twice that between the trench and the locked fault end.

Thus geodetic data near trenches can identify the inter-
seismic deformation and provide insight into the mechanics of
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Fig. 4.5-15 GPS velocities relative to North
America for some sites near the rupture zone
of the great 1964 Alaska earthquake. The
eastern sites move in the plate convergence
direction, as expected for interseismic
motion, whereas sites to the west move in
the opposite direction, implying postseismic
motion. (Freymueller et al., 2000. J.
Geophys. Res., 105, 8079–101, copyright
by the American Geophysical Union.)
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the data do not become more precise. Hence, older geodetic
data — for example, those taken shortly after the 1906 San
Francisco earthquake — can be of great value even if their
errors are larger than those of more modern data.

The geodetic data let us see the rate at which locked slip is
accumulating, and hence infer the maximum possible slip in a
future earthquake, depending on when it occurs. Conversely,
we can estimate the time until a future earthquake from records
of past earthquakes, by assuming what the coseismic slip will
be. However, as we noted in Section 1.2 and will discuss fur-
ther, the large earthquakes are variable enough that attempts to
predict them by approaches like this have not been successful.

In some places, geodetic data imply that slip is accumulat-
ing on the locked fault at a rate less than the far-field motion.
For the San Andreas example shown, this difference seems to
be due to plate motion taken up elsewhere. In other places,
the difference is thought to indicate that some of the plate
boundary slip occurs by aseismic slip or sliding (perhaps as
“silent earthquakes”) on the fault, and hence will not appear in
future earthquakes. As discussed in the next chapter, the idea
that significant portions of the motion on many plate boundar-
ies occurs aseismically is also suggested by earthquake history
studies. Such aseismic fault creep has been observed geodetic-
ally in some areas.

with distance from the trench. These observations, together
with the observed uplift, are reasonably consistent with the
expected interseismic motion (Fig. 4.5-16). However, sites to
the west move in the opposite direction, toward the trench, and
so appear instead to show continuing postseismic motion. The
differences between the two regions may reflect the complex
slip history in the great earthquake or long-term differences in
the behavior of different parts of the plate interface.

Hence, in general, geodetic data from the interseismic period
give insight into the mechanics of a fault and future earth-
quakes on it, even before they occur. This is gratifying because
the seismic cycle is so long, typically hundreds of years, that we
generally have to wait a long time to study a major earthquake
on a given fault segment. A slight compensation is that, as
we wait, estimates of geodetic velocities improve. Consider
measuring the rate v of motion of a monument that started at
position x1 and reaches x2 in time T. If the position uncertainty
is given by its standard deviation σ, then the propagation of
errors relation (Eqn 6.5.18) discussed in Chapter 6 shows that

v = (x1 − x2)/T implies σv =  2 σ/T, (8)

where σv is the uncertainty of the inferred rate. Thus the longer
we wait, the smaller the velocity uncertainty becomes, even if



The area of locking has interesting implications. Because
an earthquake’s seismic moment is the product of the fault
area, coseismic slip, and rigidity, the fault width and rate at
which slip accumulates give insight into the maximum seismic
moment that the locked fault could release in a future earth-
quake. The San Andreas data (Fig. 4.5-13) indicate that the
vertically dipping fault is locked to a depth of about 20 km,
which is similar to the maximum depth of small earthquakes
and the inferred lower extent of rupture in large earthquakes
along the fault. As discussed in Section 5.7, this depth is gen-
erally consistent with studies of rock strength and friction,
which imply that rocks deeper than about 20 km are weak
and undergo stable sliding rather than accumulate elastic strain
for future earthquakes. The Alaska situation is quite different
because the plate interface has a shallow dip (Fig. 4.5-16),
so there is a large fault area at depths shallow enough to
accumulate strain and then rupture. Hence, as we will see in
Section 4.6, the largest earthquakes occur at shallow-dipping
subduction zones and are much bigger than those for transform
boundaries. In either environment, however, it is not clear
whether the entire locked region contributes to the seismic slip
or whether part of the fault slips rapidly in the earthquake
and another part contributes to aseismic afterslip.

To complicate matters even further, it is worth bearing in
mind that we still do not have good geodetic data spanning
even one full seismic cycle, much less such data combined with
detailed studies of earthquakes at either end. Hence we have
little insight into the different possible time-variable effects like
afterslip or the transient effects due to earthquakes on nearby
faults or other segments of the same fault. Thus it may be quite
some time before many of these issues are resolved.

An intuitive way to summarize some of these ideas is to think
of the seismic cycle as a fault’s “slip budget,” analogous to per-
sonal finances. Given our income (plate motion), we spend
some immediately (aseismic slip) and save some (locked slip).
The savings are used for major purchases (earthquakes) at a
rate depending on the price of individual purchases (coseismic
slip), expenses associated with these major purchases (post-
seismic slip), and our saving rate (locked slip). Thus, although
we can estimate roughly when we might make a future large
purchase, the actual date depends on unpredictable changes in
the price (variable earthquake size) and changes in our savings
beyond our steady income and regular expenses, due to gifts or
unanticipated expenses (effects of other earthquakes). Thus
even in this simple analogy the earthquake cycle is complicated.

4.6 Source parameters

4.6.1 Magnitudes and moment

So far in this chapter we have discussed using seismic waves
radiated by earthquakes to study their source geometry and
focal depth. While recognizing the limitations on what the
seismic waves can tell us about the actual source process, we

have seen that for most earthquakes, assuming a simple fault
geometry and source model allows us to estimate parameters
that are generally consistent with other data and our geological
instincts. We thus proceed further in using seismic waves to
learn more about the faulting process.

In fact, even before earthquake mechanisms were studied,
seismologists’ second need after learning to locate earthquakes
was to quantify their size, both for scientific purposes and to
discuss their effects on society. The first measure introduced
was the magnitude, which is based on the amplitude of the
resulting waves recorded on a seismogram. The concept is
that the wave amplitude reflects the earthquake size once the
amplitudes are corrected for the decrease with distance due to
geometric spreading and attenuation. Magnitude scales thus
have the general form

M = log (A/T) + F(h, ∆) + C, (1)

where A is the amplitude of the signal, T is its dominant
period, F is a correction for the variation of amplitude with the
earthquake’s depth h and distance ∆ from the seismometer, and
C is a regional scale factor.1 Magnitude scales are thus logar-
ithmic, so an increase in one unit, as from magnitude “5” to
“6,” indicates a ten-fold increase in seismic wave amplitude.
Measured magnitudes range more than 10 units2 because the
displacements measured by seismometers span more than a
factor of 1010.

The earliest magnitude scale, introduced by Charles Richter
in 1935 for southern California earthquakes, is the local mag-
nitude, ML, often referred to as the “Richter scale.” Figure 4.6-1
shows how ML is determined from the amplitude measured on
a specific seismograph, known as the Wood–Anderson seismo-
graph. The magnitude of the largest arrival (often the S wave)
is measured and corrected for the distance between the source
and the receiver, given by the difference in the arrival times of
the P and S waves. The scale

ML = log A + 2.76 log ∆ − 2.48, (2)

defined for earthquakes in southern California, is a form of
Eqn 1 with the instrument period (0.8 s) and nearly constant
(shallow) depth incorporated in the constants, and the distance
in km. Richter magnitudes in their original form are no longer
used because most earthquakes do not occur in California
and Wood–Anderson seismographs are rare. However, local
magnitudes are sometimes still reported because many build-
ings have resonant frequencies near 1 Hz, close to that of a
Wood–Anderson seismograph, so ML is often a good indica-
tion of the structural damage an earthquake can cause.

With time, various local and global magnitude scales
evolved. For global studies, the primary two were the body
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1 We use the notations “log” for log10, and “ln” for the natural loge.
2 Magnitudes can be negative for very small displacements; a magnitude −1 earth-
quake might correspond to a hammer blow.



264 Earthquakes

500

400

300

200

60

100

40

20

5

0

100

50

20

10

5

2

1

0.5

0.2

0.1

Distance (km) S − P (s)

Magnitude
Amplitude (mm)

S − P = 24 s

P S

0 10 20

10
20

30

Amplitude = 23 mm

6

5

4

3

2

1

0

50

40

30

20

10
8
6

4

2
Fig. 4.6-1 The Richter scale for local magnitude, ML.
The magnitude is found from the amplitude of the largest
arrival and the S – P travel time difference. In this example,
the maximum amplitude is 23 mm and the S – P time is
24 s, making ML = 5.0. (From Earthquakes by Bruce A.
Bolt © 1978, 1988, 1993 by W. H. Freeman and Co.
Used by permission.)

wave magnitude, mb, and surface wave magnitude, Ms. mb is
measured from the early portion of the body wave train,
usually the P wave, using

mb = log (A/T ) + Q(h, ∆), (3)

where A is the ground motion amplitude in microns after the
effects of the seismometer are removed, T is the wave period in
seconds, and Q is an empirical term depending on the distance
and focal depth. This function can be derived either as a global
average or for a specific region, as shown by Fig. 4.6-2. Meas-
urements of mb depend on the seismometer used and the por-
tion of the wave train measured. Common US practice uses the
first 5 s of the record and periods less than 3 s, usually about
1 s, on instruments with peak response near 1 s. mb is measured
out to 100° distance, beyond which diffraction around the core
has a complicated effect on the amplitude.

The surface wave magnitude, Ms , is measured using the
largest amplitude (zero to peak) of the surface waves

Ms = log (A /T) + 1.66 log ∆ + 3.3 or

Ms = log A20 + 1.66 log ∆ + 2.0, (4)

where the first form is general, and the second uses the ampli-
tudes of Rayleigh waves with a period of 20 s, which often have
the largest amplitudes. In these relations, A is the ground mo-
tion amplitude in microns after the effects of the seismometer
are removed, T is the wave period in seconds, and the distance
∆ is in degrees.

As measures of earthquake size, magnitudes have two major
advantages. First, they are directly measured from seismo-
grams without sophisticated signal processing. Second, they
yield units of order 1 which are intuitively attractive: magni-
tude 5 earthquakes are moderate, magnitude 6 are strong, 7 are
major, and 8 are great.

However, magnitudes have two related limitations. First,
they are totally empirical and thus have no direct connection
to the physics of earthquakes. A striking illustration of this is
that Eqns 1–4 are not even dimensionally correct — logarithms
can be taken only for dimensionless quantities, whereas these
expressions involve ratios of displacement to period. A sec-
ond difficulty is with the numbers that emerge. Magnitude
estimates vary noticeably with azimuth, due to the amplitude
radiation patterns (Section 4.3), although this difficulty can be
reduced by averaging results. The different magnitude scales
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3 Seismic moments are reported either in dyn-cm or N-m, with 1 N-m = 107 dyn-cm.

size. All of these earthquakes, except for Chile, reflect deforma-
tion in the broad boundary zone between the North American
and Pacific plates (Fig. 5.2-3). The San Fernando earthquake
occurred on a buried thrust fault in the Los Angeles area, sim-
ilar to the Northridge earthquake (Figs 4.5-9 and 4.5-10). These
relatively short faults are part of an oblique trend in the bound-
ary zone, so the fault areas tend to be roughly rectangular.
Their down-dip width seems controlled by the fact that rocks
deeper than about 20 km are weak and undergo stable sliding
rather than accumulating elastic strain for future earthquakes,
as discussed in the context of fault locking (Section 4.5.4).
The next largest earthquake, Loma Prieta, occurred either close
to or on a short segment of the San Andreas fault (Fig. 1.2-16),
and hence on a somewhat longer fault of comparable width.
The San Francisco earthquake ruptured a long segment of
the San Andreas fault with significantly larger slip, but because
the fault is vertical, still had a narrow width. Thus the 1906
earthquake illustrates approximately the maximum size of

yield different values. Moreover, body and surface wave magni-
tudes do not correctly reflect the size of large earthquakes.

The latter two effects are illustrated in Table 4.6-1, which
gives magnitudes for various earthquakes, ordered by increas-
ing scalar moment.3 As shown, mb and Ms differ significantly.
The earthquakes with moments greater than that of the San
Fernando earthquake all have mb 6.2, even as the moment
increases by a factor of 20,000. Similarly, the earthquakes
larger than the San Francisco earthquake have Ms about 8.3,
even as the moment increases by a factor of 400. This effect,
called magnitude saturation, is a general phenomenon for mb
above about 6.2 and Ms above about 8.3.

Earthquake source parameter data like those in Table 4.6-1,
some of which are shown in Fig. 4.6-3, are used to investigate
issues related to earthquake size. Before doing so, it is worth
briefly discussing how the tectonic setting affects earthquake

Table 4.6-1 Source parameters for selected earthquakes.

Earthquake Body wave Surface wave Fault area (km2) Average Moment Moment
magnitude, mb magnitude, Ms (length ××××× width) dislocation (m) (dyn-cm), M0 magnitude, Mw

Truckee, 1966 5.4 5.9 10 × 10 0.3 8.3 × 1024 5.9
San Fernando, 1971 6.2 6.6 20 × 14 1.4 1.2 × 1026 6.7
Loma Prieta, 1989 6.2 7.1 40 × 15 1.7 3.0 × 1026 6.9
San Francisco, 1906 7.8 450 × 10 4 5.4 × 1027 7.8
Alaska, 1964 6.2 8.4 500 × 300 7 5.2 × 1029 9.1
Chile, 1960 8.3 800 × 200 21 2.4 × 1030 9.5

Sources: Values from Geller (1976), Wallace et al. (1991), and Wald et al. (1993).
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Chile, 1960 are assumed, and which are inferred by combining others. For
example, the relation between the seismic moment, slip, and
fault dimensions depends on the rigidity assumed (typically 3–
5 × 1011 dyn/cm2 for shallow earthquakes). Even so, such data
are sufficient to show the basic effects of interest.

We can understand these effects given what we have dis-
cussed about the amplitudes of body and surface waves in
Sections 4.2 and 4.3 — information that was not available to
seismologists when these magnitude scales were developed. We
have seen that the amplitudes depend on the scalar moment,
the azimuth of a seismometer relative to the fault geometry, the
distance from the source, and the source depth. Moreover,
because the source time function has a finite duration, depend-
ing on fault dimensions and rise time, the amplitudes vary
with frequency. We will see shortly that these frequency vari-
ations explain the differences between magnitudes and their
saturation.

Before doing so, we note the simple and elegant solution that
has been adopted: namely, defining a magnitude scale based on
the seismic moment. The moment magnitude,

M
M

w = − 
log

.
  . ,0

1 5
10 73 (5)

defined for M0 in dyn-cm, has several advantages. It gives a
magnitude directly tied to earthquake source processes that
does not saturate. Moreover, it preserves the simplicity of the
magnitude scale by giving values of order 1 compatible with
other magnitude scales. As we will see, Mw is comparable to Ms
until Ms saturates at about 8.2, but then increases. The largest
seismically recorded earthquake, the 1960 Chile event listed
in Table 4.6-1, had Mw 9.5. Moment magnitude has become
the common measure of the magnitude of large earthquakes.
Estimation of M0 (and therefore Mw) requires more analysis of
seismograms than for mb or Ms. However, semi-automated
programs like the Harvard CMT project or comparable re-
gional analyses now regularly compute moment magnitudes
for most earthquakes larger than about Mw 5.

4.6.2 Source spectra and scaling laws

The relations between the moment and various magnitudes
arise from the spectrum of the radiated seismic waves. We saw
in Section 4.3.2 that the radiated waves depend on the product
of the scalar moment and the source time function generated by
the earthquake. We used a simple model in which the time
function was the convolution of two “boxcar” time functions
due to the finite length of the fault and the finite rise time of the
faulting at any point. The Fourier transform of the resulting
time function is the product of the transforms of the boxcars.

The transform of a boxcar of height 1/T and length T is

F
T

e dt
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e e
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Fig. 4.6-3 Comparison of moment, magnitudes, fault area, and fault slip
for four earthquakes listed in Table 4.6-1. Ms saturates for events with
Mw > 8 and so is no longer a useful measure of earthquake size.

continental transform earthquakes. However, the Alaska and
Chilean earthquakes had much larger rupture areas because
they occurred on shallow-dipping subduction thrust inter-
faces. As shown in Fig. 4.5-16, these faults can have widths of
hundreds of km on which elastic strain can build up and even-
tually be released seismically. As will be discussed shortly, the
larger fault dimensions give rise to greater slip, so the combined
effects of larger fault area and more slip cause the largest earth-
quakes to occur at subduction zones rather than on transforms.

It is important to realize that values like those in Table 4.6-1
are estimates with considerable uncertainties due to various
causes. First, there are uncertainties due to the earth’s vari-
ability and deviations from the mathematical simplifications
used. For example, even with high-quality modern data, seis-
mic moment estimates for the Loma Prieta earthquake vary
by about 25%, and Ms values vary by about 0.2 units. Second,
the estimation techniques vary. The actual approaches used
to compute magnitudes have changed with time (note that the
pre-1964 earthquakes do not have mb values) in various ways.
Uncertainties for historic earthquakes are especially large; for
example, fault length estimates for the 1906 San Francisco earth-
quake vary from 300 to 500 km, Ms has been estimated at 8.3
but is now thought to be about 7.8, and the fault width is essen-
tially unknown and inferred from the depths of more recent
earthquakes and geodetic data. Third, different techniques (body
waves, surface waves, geodesy, geology) can yield different
estimates. Fourth, the fault dimensions and dislocations shown
are average values for quantities that can vary significantly
along the fault (Fig. 4.5-10). As a result, different studies
yield varying and sometimes inconsistent values, depending
on which parameters are estimated directly from data, which
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This plot is divided into three regions by the frequencies 2/TR
and 2/TD, which are called corner frequencies. The spectrum
is flat for frequencies less than the first corner, goes as ω −1 be-
tween the corners, and decays as ω−2 for the high frequencies.
Thus the spectrum is parametrized by three factors: seismic
moment, rise time, and rupture time. It is worth noting that
other source spectral models have been used. A third corner
frequency can be added to this model, representing the effects
of fault width and yielding an ω−3 segment at high frequency.
Other models have a single corner frequency (dashed line in
Fig. 4.6-4, bottom) that combines the effects of rise and rupture
time. As a result, the interpretation of observed earthquake
spectra depends somewhat on the source model.

To see how the source spectrum varies with earthquake size,
we first note that the seismic moment is the scale factor for the
spectral amplitude at low frequencies ω → 0. This is the reason
why it is also called the “static” moment. It is defined (Section
4.2.3) as the product of the rigidity at the source depth, µ, the
average slip (or dislocation) on the fault, C, and the fault area,
S. The fault area can be written in terms of a shape factor f and
the square of a dimension L, so

M0 = µCS = µCfL2. (10)

For large earthquakes, faults are often treated as approxim-
ately rectangular, so L is the length, and f is the ratio of width
to length. Another common approach uses a circular fault
model for which L is the radius and f = π.

The rupture time (Eqn 4.3.8) needed for the rupture to
propagate along the fault is approximately

TR = L/vR = L/(0.7β), (11)

if we assume that the rupture velocity is about 0.7 times the
shear velocity. The rise time needed for the dislocation to reach
its full value at any point on the fault has been predicted to be
about

TD = µC/(β∆σ) = 16Lf 1/2/(7βπ1.5), (12)

where ∆σ is the stress drop in the earthquake, a quantity that
we will discuss shortly. Assuming a shear velocity of about
4 km/s, Eqns 11 and 12 yield approximately

TR = 0.35L, TD = 0.1Lf 1/2. (13)

Table 4.6-1 shows that the Truckee and San Fernando earth-
quakes occurred on approximately square faults (f = 1), Loma
Prieta and Alaska had L ≈ 2W, or f ≈ 0.5, and the San Francisco

Fig. 4.6-4 Top: The approximation to the (sin x)/x function used in
modeling the source spectrum. Bottom: Theoretical source spectrum of
an earthquake, modeled as three regions with slopes of 1, ω−1, and ω−2,
divided by angular frequencies corresponding to the rupture and rise
times, TR and TD . Another common approximation uses a single corner
frequency, fc, at the intersection of the first and third spectrum segments.
The flat segment extending to zero frequency gives M0.
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This function, sometimes written as sinc x = (sin x)/x, appears
in many applications in which only part of a signal is selected.
In Section 2.5.10 it described the amplitude resulting when part
of a plane wave diffracts through a slit. In Section 6.3, we will
use it to describe the effect on a time series spectrum from using
only part of the series. Here, the sinc function describes the fact
that the source pulse has finite duration.

Thus the spectral amplitude of the source signal is the prod-
uct of the seismic moment and two sinc terms,

  
| |A M

T

T

T

T
R

R

D

D

( )    
sin( / )

/
   

sin( / )

/
 ,ω ω

ω
ω

ω
= 0

2

2

2

2
(7)

where TR and TD are the rupture and rise times. Often, we use
the logarithm of Eqn 7,

log A(ω) = log M0 + log [sinc (ωTR/2)] + log [sinc (ωTD /2)].
(8)

A useful approximation is to treat sinc x as 1 for x < 1, and 1/x
for x > 1, as shown in Fig. 4.6-4 (top). In this approximation a
plot of log | A(ω) | versus log ω is just three segments, corres-
ponding to different frequency ranges (Fig. 4.6-4, bottom).
Assuming TR > TD, we have



268 Earthquakes

Lo
g 

M
0 

(d
yn

-c
m

)

28

26

24

22

20

18

Ms determined

8

7.5

7

Ms = 6

5

4

3

2

L = 76

(km)  43

24

10

4.7

2.2

1.0

0.47

−2 0 +2

Log f (Hz)

−2 0 +2

Log f (Hz)

mb

28

26

24

22

20

18

Surface waves Body waves

6.0

6.0

6.0

mb = 5.9

5.6

5.0

4.3

3.3

Fig. 4.6-5 Theoretical source spectra of surface and body waves. The two
are identical at frequencies below the ω −2 corner frequency. This model
includes a fault-width corner frequency, and thus an ω −3 segment at high
frequency. mb, reflecting the amplitude at 1 s, saturates at about 6 for
earthquakes with moment above about 1025 dyn-cm. Ms, measured at
20 s, saturates at about 8 for moments greater than about 5 × 1027 dyn-
cm. The x axis is in frequency (Hz) rather than angular frequency (ω).
(Geller, 1976. © Seismological Society of America. All rights reserved.)

6

Lo
g 

M
0 

(d
yn

-c
m

)

30

29

28

27

26

25

24
97 8 9

Ms

6

Lo
g 

S 
(k

m
2 )

6

5

4

3

2

1
7 8

Ms

Fig. 4.6-6 Plots of Ms versus log M0 and Ms versus log of fault area (S)
show the saturation of surface wave magnitude. Ms saturates even as the
moment and fault areas increase. Lines show the predictions of the scaling
relations in Table 4.6-2. Open and closed circles denote intraplate and
interplate earthquakes, respectively. (Geller, 1976. © Seismological
Society of America. All rights reserved.)

earthquake occurred on a long narrow fault with L >> W, or
f < 0.1. Thus, in these cases or for a circular fault, TR > TD, as
drawn in Fig. 4.6-4.

As we will see, earthquake stress drops are approximately
independent of seismic moment, implying that the slip is pro-
portional to fault length. Hence, for an assumed stress drop, we
can compute theoretical spectra for various moments and fault
lengths (Fig. 4.6-5). The results show why mb and Ms differ,
and why both magnitude scales saturate. As the fault length
increases, the seismic moment, rupture time, and rise time
increase. Thus the corner frequencies move to the left, to lower
frequencies. The moment, M0, determines the zero-frequency
level, which rises as the earthquake becomes larger. However,
the surface wave magnitude, Ms, is measured at a period of
20 s, and so depends on the spectral amplitude at this period.
For earthquakes with moments less than about 1026 dyn-cm,
a 20 s period corresponds to the flat part of the spectrum, so
Ms increases with moment. However, for larger moments, 20 s
is to the right of the first corner frequency, so Ms does not
increase at the same rate as the moment. Once the moment
exceeds about 5 × 1027 dyn-cm, 20 s is to the right of the second
corner, on the ω −2 portion of the spectrum. Thus Ms saturates
at about 8.2, even if the moment increases. A similar effect
occurs for body wave magnitude, which depends on the
amplitude at a period of 1 s. Because this period is shorter than
the 20 s used for Ms, mb saturates at a lower moment (about
1025 dyn-cm), and remains about 6 even for much larger earth-
quakes. Similar saturation effects occur for other magnitude
scales which are measured at specific frequencies.

Another way to view magnitude saturation is shown by the
data for various earthquakes in Fig. 4.6-6. For earthquakes
above about 1028 dyn-cm, Ms saturates even for progressively
larger fault areas and thus seismic moments. As a result, Ms
is not a useful measure of the size of very large earthquakes.
For this reason, moments or moment magnitudes are used to
describe large earthquakes.

These effects are described by theoretical scaling relations
between various source parameters. Figure 4.6-6 shows that
the scaling relations used to generate Fig. 4.6-5 describe the
data relatively well, given the uncertainties in the data and
the simplifying assumptions required to derive these relations.
Table 4.6-2 presents these scaling relations and one relating
mb and Ms. Although the specific numerical values in these
relations are approximations, the general trends in the data are
relatively well described, so scaling relations provide powerful
tools. They provide valuable insight into the relation between
source parameters and are used to estimate source parameters
for earthquakes that have not yet occurred, or for which
parameters of interest are unknown.

Another approach to some of these issues uses empirical
regression relations between source parameters compiled for
many earthquakes, as illustrated in Fig. 4.6-7. Although these
relations do not allow us to explore theoretical relationships
between parameters, such as magnitude saturation, they offer
useful inferences about past and potential earthquakes. For
example, these regressions imply that an earthquake on a
100 km-long fault would have an average slip of about 2 m and
Mw about 7.4, whereas on a 10 km-long fault we expect about
0.3 m slip and Mw about 6.2. As for the scaling laws, these
estimates should be taken as useful averages. For example, we
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Fig. 4.6-7 Empirical relations showing the
average slip, fault length, and moment
magnitude for a compilation of
earthquakes. (Wells and Coppersmith,
1994. © Seismological Society of America.
All rights reserved.)

would be surprised by 10 m of motion on a 100 km-long fault,
but not by 1 or 4 m.

4.6.3 Stress drop and earthquake energy

The relationship between the slip in an earthquake, its fault
dimensions, and its seismic moment is closely tied to the magni-
tude of the stress released by the earthquake, or stress drop.
As discussed in Section 4.5.4, the earthquake releases the strain
that has accumulated over time near the fault, so the radiated
seismic waves are used to estimate the stress change.

To do this, we assume that the earthquake’s slip, D, occurs
on a fault with characteristic dimension L, and so causes a
strain change of approximately

εxx
xu

x L
= ≈   ,

∂
∂

C
(14)

so the stress drop averaged over the fault is approximately

∆σ ≈ µC/L. (15)

From seismological observations alone, the best-constrained
quantity is the seismic moment, so we estimate the average slip,
C, from the seismic moment as

C ≈ cM0/(µL2), (16)

where c is a factor depending on the fault’s shape. Thus the
stress drop is proportional to the moment and inversely pro-
portional to the fault dimension cubed or the 3/2 power of the
fault area:

∆σ = cM0/L3 = cM0/S3/2. (17)

The specific relation and values of c depend on the fault shape
and the rupture direction. For example, the stress drop on a
circular fault with a radius R is

∆σ    ,=
7

16
0

3

M

R
(18)

strike-slip on a rectangular fault with length L and width w
yields

∆σ
π

   ,=
2 0

2

M

w L
(19)

and dip-slip on a rectangular fault gives

Table 4.6-2 Earthquake scaling relations.

mb and Ms are related by
mb = Ms + 1.33 Ms < 2.86
mb = 0.67Ms + 2.28 2.86 < Ms < 4.90
mb = 0.33Ms + 3.91 4.90 < Ms < 6.27
mb = 6.00 6.27 < Ms.

Assuming L = 2W, Ms and fault area (in km2) are related by
log S = 0.67Ms − 2.28 Ms < 6.76
log S = Ms − 4.53 6.76 < Ms < 8.12
log S = 2Ms − 12.65 8.12 < Ms < 8.22
Ms = 8.22 S > 6080 km2.

Assuming a stress drop of 50 bars, log M0 (in dyn-cm) and Ms are
related by

log M0 = Ms + 18.89 Ms < 6.76
log M0 = 1.5Ms + 15.51 6.76 < Ms < 8.12
log M0 = 3Ms + 3.33 8.12 < Ms < 8.22
Ms = 8.22 log M0 > 28.

Source: Geller (1976).
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Fig. 4.6-8 Amplitude spectrum averaged from P waves recorded at
globally distributed broadband seismometers for the October 21, 1995,
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4 Stress drops are reported either in bars (1 bar = 106 dyn/cm2) or MegaPascals
(1 MPa = 10 bars).

Fig. 4.6-9 Theoretical spectra for a shallow (about 8 km focal depth)
earthquake at several stations. Due to free surface effects, the spectra differ
from theoretical source spectra like that in Fig. 4.6-4. (Langston, 1978.
J. Geophys. Res., 83, 3422–6, copyright by the American Geophysical
Union.)
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where the last form assumes λ = µ.
These equations let us estimate the stress drop from an

observed seismic moment and inferred fault dimensions. If
we know the fault dimensions from other observations, this
process is straightforward. For example, the fault area of
the great 1964 Alaska earthquake can be estimated from the
aftershock area, the source finiteness shown by surface waves
(Fig. 4.3-15), and geodetic data. Thus using the values in Table
4.6-1 and Eqn 20 with λ = µ yields an average stress drop
estimate

∆σ
π

   
.   

     
=

×
× ×

8

3

5 2 10

9 10 5 10

29

14 2 7

dyn-cm

cm cm
 ≈ 107 dyn/cm2 = 10 bars.

(21)

However, without independent knowledge of fault dimen-
sions, estimating the stress drop is harder. One approach uses
the spectrum to identify corner frequencies and estimate the rup-
ture time and hence fault dimensions. Figure 4.6-8 illustrates
this for a Mw 7.1 earthquake occurring at 165 km depth in the
subduction zone beneath Mexico. Analysis of the spectrum
with a single corner frequency model like that in Fig. 4.6-4,
and assuming a circular fault with rupture velocity of 3 km/s,
yielded a rupture duration of 22 s and a stress drop of about
65 bars.4 The low-frequency portion of the spectrum yields a

moment of 5.2 × 1026 dyn-cm, in reasonable agreement with
other studies, which found 4.6 and 7.1 × 1026 dyn-cm.

In many cases the spectrum is not directly amenable to cor-
ner frequency analyses. The earthquake in Fig. 4.6-8 was deep
enough that the spectrum of the direct P wave could be found
without contamination from later-arriving surface reflections.
However, for shallow earthquakes, P, pP, and sP often overlap
(Fig. 4.3-7), yielding a combined spectrum quite different from
the source pulse. Figure 4.6-9 illustrates this effect for a shallow
earthquake. As shown, the spectra differ significantly between
stations, due to the variation in amplitude between direct and
reflected arrivals, and cannot be used to find corner frequencies
or the seismic moment. This difficulty can be addressed by
modeling the body waves, including the free surface reflections,
and estimating the source time function duration by matching
the observed waveforms. Given a duration estimate and an
assumed fault geometry, the fault length and stress drop are
estimated in the same way as in the corner frequency analysis.

These examples illustrate that estimating the fault dimen-
sions and stress drop is challenging, whether it is done in the
time domain, by modeling or inverting waveforms, or in the
frequency domain. First, the parameter required is estimated
only with modest precision, as shown by the issue of choosing
the corner frequency even with high-quality data like that in
Fig. 4.6-8. The uncertainty is compounded by the fact that in-
ferring a source dimension from the corner frequency or source
time function requires assuming the rupture velocity and
fault geometry. Moreover, the estimated stress drop depends
on 1/L3, so uncertainty in the fault dimension causes a large
uncertainty in ∆σ. Figure 4.6-10 illustrates this issue via syn-
thetic P waves for different source time function durations. As
shown, the seismogram depends only moderately on the source
time function. However, small differences in time function
duration correspond to larger differences in stress drop, even
for an assumed rupture velocity and fault geometry.
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Fig. 4.6-11 Stress drops for interplate (plate boundary) and intraplate
(plate interior) earthquakes. The earthquakes are plotted in terms of log
fault area and log seismic moment. The lines for constant stress drop
values have slopes of 2/3, as shown by Eqn 17. Most earthquakes have
∆σ = 10 – 100 bars, with intraplate and interplate events trending toward
the higher and lower ends of the range, respectively. (Kanamori and
Anderson, 1975. © Seismological Society of America. All rights reserved.)
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This brings up the interesting question of how the un-
certainty in a quantity like stress drop, which is inferred by
combining parameters estimated from data using model as-
sumptions, is related to the uncertainties involved in each step.
A common approach, derived in Section 6.5.1, uses the pro-
pagation of errors relation (Eqn 6.5.19), which involves the
partial derivatives of the parameters going into the final quan-
tity. To use this, we write the stress drop (Eqn 17) with the fault
dimension equal to the product of rupture velocity and rupture
time,

∆σ = f(c, M0, vR, TR) = cM0/(vRTR)3. (22)

The standard deviation, or uncertainty, in the stress drop is
thus approximately
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We can compute the partial derivatives and use estimates of
the parameters and their uncertainties to estimate the resulting
uncertainty in the stress drop. For example, we might assume
the seismic moment, rupture time, and rupture velocity are un-
certain to about 25%. As Eqns 18–20 show, different models
give different shape factors, and various methods are used to
interpret corner frequencies, so c is uncertain to at least 50% if
we have no other knowledge of the fault geometry. Depending
on the values used, it seems that the precision of a stress drop
estimate is often a factor of 2 or 3. The accuracy — how this
value is related to the physical process of faulting — is hard to
assess, because the form of the time function and its relation to
other source parameters are derived for simple source models,
which may or may not describe real faulting very well. Hence
the stress drop is more usefully viewed as a characterization
of the source spectrum than as giving direct insight into the
physics of the source.

With all these difficulties, it is encouraging that earthquake
stress drop studies typically yield values in the 10–100s of bars,
as shown in Fig. 4.6-11. The stress drop is essentially constant
over five orders of magnitude in moment, although there ap-
pear to be small differences between tectonic environments.
Stress drops for interplate events average about 30 bars,
whereas intraplate stress drops sometimes exceed 100 bars.

There also seem to be differences among earthquakes at dif-
ferent plate boundary types. Figure 4.6-12 shows M0 /τ 3, the
ratio of seismic moment to the observed total time function
duration (rise time plus rupture time), for some oceanic ridge,
transform, and intraplate earthquakes. This quantity is approx-
imately proportional to stress drop (Eqn 22) and is hopefully
less model-dependent than stress drop estimates. For a given
Mw, the ratio seems smaller for transform earthquakes than
for ridges, perhaps implying lower stress drops.

Another way to use such data is to take the different
magnitudes to study how energy release varies with frequency.
Compared to ridge earthquakes, transform earthquakes often
have large Ms relative to mb and large Mw relative to Ms, sug-
gesting that seismic wave energy is relatively greater at longer
periods. Earthquakes that preferentially radiate at longer
periods are called “slow” earthquakes. Slow earthquakes have
been noted in various environments. For example, slow earth-
quakes underwater in the appropriate locations and focal
geometry can cause very large tsunamis (Section 1.2.4) that are
not predicted by tsunami warning systems based on real-time
assessments of mb or Ms.
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Fig. 4.6-13 Theoretical source spectra for earthquakes with the same
seismic moment and fault shape. For each pair of spectra with the same
rupture velocity, the left curve for lower stress drop corresponds to larger
fault dimensions, and hence longer time functions and smaller corner
frequencies. This earthquake would be “slower” with less high-frequency
radiation and lower Ms and mb. Similar effects occur for slower rupture
velocity. The x axis is in frequency (Hz) rather than angular frequency (ω).

Differences between mb, Ms, and Mw can reflect differences
in stress drop. Figure 4.6-13 illustrates this using theoretical
source spectra for earthquakes with the same seismic moment.
For a given moment and fault shape, Eqn 17 shows that a lower
stress drop corresponds to larger fault dimensions, and hence

longer time functions and smaller corner frequencies. Thus,
given two earthquakes with the same rupture velocity, the one
with lower stress drop will have less high-frequency radiation,
and thus lower Ms and mb. Similar effects can result from a
slower rupture velocity, which also gives a longer time function
for a given fault dimension. These two possibilities can be dis-
tinguished when the rupture velocity can be inferred from the
relative time between sub-events, as in Figs 4.3-11 or 4.5-11.

Thus the stress drop both characterizes earthquake source
spectra and gives insight into the physics of faulting. From
a source spectrum view, earthquake magnitudes saturate
because the stress drop is essentially constant as earthquake
moment increases, so the ratio of the slip to fault length re-
mains constant. As a result, larger-moment earthquakes have
longer faults and hence lower corner frequencies. From a fault
mechanics view, the fact that the ratio of the slip to fault length
is constant indicates that strain release in earthquakes is
roughly constant, at about

εxx ≈ C/L ≈ ∆σ /µ ≈ 10− 4, (24)

assuming a stress drop of 50 bars and µ = 5 × 1011 dyn/cm2,
which are average values for earthquakes in the crust and the
upper mantle.

This brings us to the important and unresolved issue, which
will be discussed in Section 5.7, that the 10–100 bar stress
drops found for earthquakes are much less than the strength of

Fig. 4.6-12 Source parameters for some
oceanic ridge, transform, and intraplate
earthquakes. The transform earthquakes
have relatively longer time functions and
higher Ms/mb, Mw /Ms, and M0/τ3 ratios,
implying that they are “slow” earthquakes,
perhaps with lower stress drop. (Stein
and Pelayo, 1991. Reproduced with the
permission of the Royal Society of London.)



rock found in laboratory friction experiments. One possibility
is that the low stress drop reflects the average of highly variable
slip over a fault plane, whereas strength is much higher in
strong patches (sometimes called asperities) where the largest
slip occurs. However, other data, such as the absence of heat
flow anomalies at faults, also imply that faults are weaker than
expected from the laboratory results. As a result, it is not clear
whether earthquakes release most of the stress built up on a
fault or only a small fraction of it. It is similarly unclear how
to interpret the possible variations in energy release as a func-
tion of period, and perhaps stress drop, in different tectonic
environments. Intuitively, they might reflect interplate earth-
quakes occurring more frequently than intraplate events on
better-established, and perhaps thus weaker, faults. Similarly,
established transforms may be weaker than newly formed
near-ridge crust.

This discussion leads naturally to the question of how the
seismic wave energy radiated by an earthquake is related to its
moment and magnitude. To address this, recall that work
equals force times distance, so the strain energy released is the
product of the average stress during faulting, O, the average
slip, and the fault area,

W = OCS. (25)

If the stresses before and after faulting are σ0 and σ1, then
∆σ  = σ0 − σ1, and O = σ1 + (∆σ)/2. Some of this energy, H, is lost
to friction, so the radiated seismic energy is

E = W − H = OCS − σf CS, (26)

where σf is the frictional stress, or

E = (∆σ /2)CS + (σ1 − σf)CS = E0 + (σ1 − σ f)CS. (27)

Thus the quantity

E0 = (∆σ /2)CS = (∆σ /2µ)M0 (28)

is a lower bound on the radiated seismic energy (Fig. 4.6-14).
If faulting stops once the final stress equals the frictional stress,
σ1 = σf , then E0 = E, the radiated energy. Note that the radiated
energy is proportional to the stress drop.

The ratio of the radiated energy to the total strain energy
release is called the seismic efficiency,

η = E/W = ∆σ/(2O), (29)

where the last form assumes that E0 = E. The efficiency depends
on the final stress or, equivalently, the ratio of stress drop to the
average stress. The case ∆σ << O is called partial stress drop,
whereas ∆σ ≈ 2O corresponds to near-total stress drop. It is still
unresolved which of these cases is appropriate for earthquakes,
because, of all the parameters in this model, only the stress
drop can be directly estimated from seismological data.

Fig. 4.6-14 Schematic illustration of the relation between the total strain
energy released in faulting (W) and its portions radiated seismically (E)
and dissipated by friction (H). In the model, these depend on the initial and
final stresses (σ0 and σ1), their average (O), the stress drop (∆σ), and the
frictional stress (σf). If the final stress equals the frictional stress, E0 = E.
Of these quantities, only stress drop can be estimated directly from
seismological data.
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This model of the seismic energy radiated in earthquakes
underlies the concept of moment magnitude. Assuming a stress
drop of 50 bars and µ = 5 × 1011 dyn/cm2, as in Eqn 24, Eqn 28
yields

E0 = M0 /(2 × 104), log E0 = log M0 − 4.3, (30)

where E0 is in ergs. Inverting the definition of moment magni-
tude Eqn 5 gives

log M0 = 1.5Mw + 16.1, (31)

so the second part of Eqn 30 becomes

log E0 = 1.5Mw + 11.8. (32)

This relation illustrates that an increase in earthquake magni-
tude of 1 unit, for example from 5 to 6, increases the radiated
energy by a factor of 101.5, or about 32. Hence a magnitude
7 earthquake releases 103, or, 1000 times more energy than
a magnitude 5 event. This ratio is strictly valid only for
earthquakes with the same stress drop, but is a good general
approximation.

Equation 30 also illustrates the intriguing fact that although
the seismic moment has the dimensions of energy (1 erg =
1 dyn-cm), the radiated energy is only 1/(2 × 104), or 0.00005,
of the seismic moment released. This is because the seismic
moment is not an energy, but instead is fundamentally related
to the integral of the stress change over the earthquake source
region, which gives the moment dimensions of dyn/cm2 × cm3,
or dyn-cm. We can view Eqn 28 as converting the moment to a
strain, and then multiplying by the stress acting during the
earthquake to find the strain energy radiated. To illustrate that
seismic moment and energy are different, seismic moment is
quoted in dyn-cm (or N-m), and seismic energy is given in ergs
(or J), even though the units are equivalent.
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4.7 Earthquake statistics

In discussing earthquake source parameters, we saw that inter-
esting insights into earthquake processes, such as magnitude
saturation and constant stress drop, came from considering
general properties of large numbers of earthquakes. Hence
we now turn to some ideas about the statistics of earthquake
populations, which have implications for both source pro-
cesses and hazard estimation.1

4.7.1 Frequency–magnitude relations

As mentioned in Section 1.2, the number of earthquakes
that occur yearly around the world varies with magnitude, with
successively smaller earthquakes being more common. This
observation was quantified by Gutenberg and Richter2 in the
1940s via the logarithmic earthquake frequency–magnitude
relation

log N = a1 − bM, (1)

in which N is the number of earthquakes with magnitude greater
than or equal to M occurring in a given time. The distribution is
described by a linear relation, with constants a1 and b. It turns
out that although the intercept, a1, depends on the number of
earthquakes in the time and region sampled, the slope, b, is
generally about 1. This is shown in Fig. 4.7-1 for the nearly
13,000 earthquakes with Ms ≥ 5 for the 30 years between 1968
and 1997. There is an approximately tenfold increase in the
number of earthquakes for successively smaller magnitudes:
annually around the world there are about one Ms = 8 earth-
quake, 10 Ms = 7 events, 100 Ms = 6 events, and so forth.

A striking feature of this relation, sometimes called the
Gutenberg–Richter relation, is that it also applies in individual
seismic areas, with b generally about 1. Thus, although the
number of earthquakes depends on how seismically active an
area is, the relative frequency (M > 6 earthquakes about 10 times
more common than M > 7, etc.) still applies. For example, in
the past 1300 years Japan is estimated to have had about 190
earthquakes with M > 7 and 20 with M > 8. Similarly, since
1816 southern California has had about 180 earthquakes with
M > 6, 24 with M > 7, and 1 with M > 8; whereas the New
Madrid (central USA) seismic zone has had about 16 earth-
quakes with M > 5 and 2 with M > 6. Although the precise
numbers, especially for the rarer large earthquakes, depend on
the period chosen and uncertainties in estimating magnitudes

Fig. 4.7-1 Frequency–magnitude plot for all earthquakes with Ms ≥ 5.0
during 1968–97 listed in the catalog of the National Earthquake
Information Center. The logarithm of the numbers of earthquakes as a
function of magnitude gives a line with slope (b) about 1. The values are
shown both as a cumulative curve for the number of earthquakes per year
with magnitude greater than or equal to a certain value and as incremental
values in 0.1 magnitude unit bins.
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1 Seismologists, like other geoscientists, have an ambivalence toward statistics,
finding them valuable but often insufficient to require discarding models that do not
rise to statistical significance. Often our attitude recalls the adage that statistics should
be used as a drunk uses a lamp post — more for support than illumination. Sometimes
this works; when asked whether he had statistically tested his exciting magnetic
anomaly results showing symmetric sea floor spreading at mid-ocean ridges, F. Vine
said that he never touched statistics but just dealt with facts (Menard, 1986).
2 The many important contributions to seismology of Beno Gutenberg (1889–1960)
and Charles Richter (1900–85) include quantifying global and regional seismicity.

prior to the invention of the seismometer (in about 1890), the
logarithmic decay still appears.

Such a pattern, called fractal scaling, self-similarity, or scale
invariance, is common in nature. For instance, a coastline or
river drainage pattern looks similar when viewed at scales of 1,
10, 100, or 1000 km. The idea that the distribution of earth-
quake size is invariant with respect to scale except for the
largest earthquakes is part of the rationale for the hypothesis
that earthquakes are unpredictable, because there is no way to
predict which small earthquakes will grow into large ones
(Section 1.2.6).

The frequency–magnitude relation applies not only to the
cumulative number N of earthquakes greater than a given
magnitude, but to the incremental numbers n in a magnitude
range M to M + dM. To see this, we write Eqn 1 as

N = 10a1−bM, (2)

differentiate it with respect to M, and take the logarithm, so

log
  

dN

dM

⎛

⎝⎜
⎞

⎠⎟
 = log n = a2 − bM (3)

where a2 is a new constant. Thus although the intercept a
changes, the slope b stays constant. The data in Fig. 4.7-1 show
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A model for this phenomenon based on the concept of scale
invariance assumes that the probability of an earthquake of
a given size on a fault is inversely proportional to the area of
faulting involved, so the number N of earthquakes with fault
area greater than S should obey a frequency–area relation like
those for magnitude or moment

log N = c − log S. (5)

We saw in Eqn 4.6.17 that for constant stress drop the
moment is proportional to S3/2, or the fault dimension L cubed,
so we expect

log N = c − 2/3 log M0, (6)

which is consistent with the observations showing β ≈ 2/3.
However, we have seen that for large transform fault earth-
quakes, which occur on vertical faults, the width (down-dip
extent) stays narrow even as fault length increases (Fig. 4.6-3).
As a result, the seismic moment for such earthquakes is no
longer proportional to L3, and is smaller than for other earth-
quakes of comparable fault length, as shown in Fig. 4.7-3. If
both the fault slip and the fault width no longer increase with
length, then the fault area, moment, and number of earth-
quakes should be proportional to L, so by Eqns 4 and 5 we find
that β = 1. Such an increase is suggested by the data for the
largest earthquakes in Fig. 4.7-2.

The frequency–moment data give insight into earthquake
energy release because the radiated energy is proportional to
the seismic moment (Eqn 4.6.30). The few largest earthquakes
release much more energy than the many smaller earthquakes.
In fact, the largest earthquake in a given year often releases
more energy than the rest of the year’s earthquakes. This effect
is illustrated in Fig. 4.7-4, which shows the cumulative seismic
moment release since 1976. The annual moment release by

Fig. 4.7-2 Frequency–magnitude plot of all earthquakes during 1976–98
with seismic moments measured by the Harvard CMT project. The slope
(β) of this distribution (solid lines) is −2/3, consistent with a b value of 1.
The values are shown both as a cumulative curve for the number of
earthquakes per year with log M0 greater than or equal to a certain value,
and as incremental values in 0.1 log M0 bins.
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this effect, although the linear fit is better for the cumulative
values because the numbers are larger, and hence less affected
by time sampling. Using more earthquakes by sampling longer
intervals and/or larger areas produces better fits. Conversely,
the shorter the time or the smaller the area, the more the fit
is degraded by the statistics of small numbers, as discussed
shortly.

Although the data in Fig. 4.7-1 are generally well described
by the linear relation, there are deviations. The data deviate
from the b = 1 line for very small (Ms < 3) magnitudes, because
the global earthquake catalog is incomplete, with many small
earthquakes not detected. The deviation for large (Ms > 7.5)
earthquakes is expected, because the surface wave magnitude
saturates (Fig. 4.6-6). To address this issue we can use the
seismic moment, which better indicates the size of large earth-
quakes. Using the definition of moment magnitude (Eqn 4.6.5)
in Eqn 1 yields

log N = a1 − b(log M0/1.5 − 10.73) = α − β log M0. (4)

This linear relation, with slope β = b/1.5 ≈ 2/3, is shown in
Fig. 4.7-2 for global earthquakes. The equation can also be
written in an incremental form analogous to Eqn 3.

The data in Fig. 4.7-2 deviate from the linear frequency–
moment relation at large and small moments, just as the
frequency–magnitude data did. The deviation for small earth-
quakes is likely in part to be due to the incomplete earthquake
catalog, but is also expected from energy considerations, as
discussed in problem 20. However, the deviation at large
moments is more puzzling, since moments do not saturate. For
moments above 1027 dyn-cm, the data are more consistent
with β ≥ 1 than β = 2/3. In other words, there are fewer earth-
quakes than expected for a given moment.

Fig. 4.7-3 Log–log plot of fault length versus seismic moment. Most
earthquakes fall between the solid lines with slopes of 1/3, showing M0
proportional to L3. However, strike-slip earthquakes (solid diamonds)
have moments lower than expected for their fault lengths, because above a
certain moment the fault width reaches a maximum, so the fault grows
only in length. (Romanowicz, 1992. Geophys. Res. Lett., 19, 481–4,
copyright by the American Geophysical Union.)
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mon, earthquakes contribute less, so the contribution of earth-
quakes with magnitudes less than 6 is negligible.

Although b values approximately equal 1 over long time
scales and large spatial scales, significant variations occur on
smaller scales. The b value of earthquake swarms is often much
larger than 1, sometimes approaching 2.5. These swarms,
which lack a mainshock, are often associated with volcanic
regions, and may result from processes such as the migration
of magmatic fluids or caldera development. For example,
seismicity associated with the collapse of the Fernandina
caldera in the Galapagos Islands in 1968 had b ≈ 1.9, indicating
many small earthquakes but fewer large ones than expected.

The b value also varies regionally, both spatially and with
depth. Figure 4.7-5 shows the variation in b value on a segment
of the Calavaras fault in California. Some patches have b values
much less than 1, implying shorter recurrence time. These
patches have been interpreted as possible asperities or stress
concentrations, perhaps reflecting variations in frictional prop-
erties along the fault, which may control the recurrence of the
next large earthquake and have large moment release during it.

Other intriguing possible deviations from b = 1 have been
reported. Figure 4.7-6 (left) shows earthquake magnitudes
and frequencies for large earthquakes inferred from geological
paleoseismic studies, which deviate from the seismologically
determined frequency–magnitude data. These observations have
been interpreted as showing large (sometimes termed charac-
teristic) earthquakes more frequent than would be expected
from the linear relation derived from the instrumental data,

earthquakes less than a given moment, such as Mw < 7.5, is
fairly constant. However, the total annual moment release
shown by the jagged top curve, which averages about 3.5 ×
1028 dyn-cm per year, is variable due to the occurrence of a few
very large events. Using Eqn 4.6.30, this moment release corre-
sponds to an annual energy release of about 2 × 1024 erg or
2 × 1017 J. Thus in Table 1.2-1 we saw that the annual magni-
tude 8 earthquake provides about half the total annual seismic
energy released, and that successively smaller, but more com-
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Fig. 4.7-6 Deviations from a linear
frequency–magnitude relation. Left:
Paleoseismic results (box) for the Wasatch
fault zone (Utah) showing large earthquakes
more frequent than expected from the
instrumental seismicity (dots). The solid line
is a model for this effect. (Youngs and
Coppersmith, 1985. © Seismological Society
of America. All rights reserved.) Right:
Incremental frequency–magnitude data for
instrumentally studied earthquakes in
continental interiors, showing larger
earthquakes less frequent than expected
from the smaller earthquakes. (Triep and
Sykes, 1997. J. Geophys. Res., 102, 9923–
48, copyright by the American Geophysical
Union.)

Fig. 4.7-5 Variation of b values for small
earthquakes with depth and distance along
the Morgan Hill segment of the Calaveras
fault during 1971–84. Regions with low b
values may have a shorter time until the
next large earthquake. The 1984 Morgan
Hill earthquake occurred in a region of
low b values. (Wiemer and Wyss, 1997. J.
Geophys. Res., 102, 15, 115–28, copyright
by the American Geophysical Union.)

Fig. 4.7-4 Cumulative seismic moment for the earthquakes in Fig. 4.7-2.
The total global seismic moment release is dominated by the few largest
events. The total moment for 1976–98 is about 1/3 that of the giant 1960
Chilean earthquake.



total population. Thus the b value is reasonably well estimated
from the smaller earthquakes, but not the largest ones. This
effect may occur if the number of large earthquakes in the
study is small. For example, we might expect this for indi-
vidual faults, even in a region whose overall seismicity obeys
a Gutenberg–Richter distribution.

A final point worth noting is that although the Gutenberg–
Richter distribution predicts the frequency of arbitrarily large
earthquakes, such earthquakes may not actually occur. As we
have seen, the area available for faulting limits earthquake size.
For example, we will see in Section 5.3.3 that the maximum
moment of mid-ocean ridge earthquakes varies inversely with
spreading rate. As a result, regional studies often assume the
existence of a maximum magnitude, sometimes based on the
earthquake history, in the Gutenberg–Richter distribution.
This assumption has interesting implications, because on many
plate boundaries the motion inferred from earthquake histories
seems to be significantly less than the plate motion (Sections
5.3.3, 5.4.3, 5.6.2). Hence, either the missing motion occurs in
very large, rare earthquakes, or much of the motion occurs by
aseismic processes. Which of these is the case is also of interest
for seismic hazard studies.

4.7.2 Aftershocks

The smaller aftershocks following a mainshock have a charac-
teristic distribution in size and time. As previously noted (e.g.,
Fig. 4.5-9), most aftershocks occur on or near the mainshock’s
fault plane, so their locations are used to distinguish between
the fault and auxiliary planes and to estimate the fault area.
The largest aftershock is usually more than a magnitude unit
smaller than the mainshock, and the aftershocks have a size
distribution with b near 1, so the total energy released by the
aftershocks is usually less than 10% of that of the mainshock.

Most of the aftershocks occur soon after the mainshock, and
the remainder decay with time in a quasi-hyperbolic manner.
This decay is described by a relation now called Omori’s law,3

    
n

C

K t P
  

(   )
,=

+
(7)

where n is the frequency of aftershocks at a time t after the
mainshock, with K, C, and P as fault-dependent constants. P is
typically about 1. This decay is illustrated by the aftershocks of
the 1989 (Ms 7.1) Loma Prieta earthquake (Fig. 4.7-8).

The aftershock decay is thought to reflect stress readjustment
following the stress changes due to the main shock. An intrigu-
ing exception to Omori’s law is that most deep earthquakes
have many fewer, and often no, detected aftershocks. This dif-
ference may reflect deep earthquakes resulting from phase
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Fig. 4.7-7 Numerical simulation showing apparent deviations from a
linear frequency–magnitude relation resulting from small sample size.
When data satisfying a linear relation (upper solid line) are divided into
subsets, most subsets have largest earthquakes either above or below the
ideal linear relation for the subsets (lower solid line). (Howell, 1985.
© Seismological Society of America. All rights reserved.)

3 Fusakichi Omori (1868–1923), considered the founder of Japanese seismology,
participated in the commission that studied the 1906 San Francisco earthquake
(Section 4.1) and correctly assured worried citizens that no comparable earthquake
would be expected for at least the next 50 years.
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although the opposite has also been observed (Fig. 4.7-6,
right). It is not yet clear whether these effects are real or due
to differences in magnitude and frequency estimation between
seismological and geological approaches. A study using seis-
mological data for continental interiors finds that the largest
earthquakes are less frequent than expected from the smaller
earthquakes (Fig. 4.7-6, right). These observations are inter-
preted as showing a possible small deviation toward higher
frequency at about Mw 7, followed by a significant decrease as
observed in the global data (Fig. 4.7-1), presumably due to
finite fault width. The Gutenberg–Richter relation can be
modified to describe the different deviations from linearity.

Some deviations of the largest earthquakes in an area from a
linear frequency–magnitude relation may reflect small sampling
(Section 6.5.2). Figure 4.7-7 illustrates this effect by dividing
an earthquake population that follows a Gutenberg–Richter
distribution into ten subsets. Because only one subset contains
the largest earthquake, and some have a much smaller largest
earthquake, the frequency–magnitude relations for the subsets
have considerable scatter. The largest earthquakes appear in
some cases more and in other cases less frequent than for the



278 Earthquakes

Magnitude Number Effect
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4760 aftershocks of the Loma Prieta
earthquake had been recorded by noon
on November 7, 1989. The diminishing
number of aftershocks with time is
typical for large California earthquakes.
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Fig. 4.7-8 Graphic showing the number
and distribution of aftershocks in 22 days
after the 1989 Loma Prieta earthquake as
functions of magnitude and time. (Courtesy
of US Geological Survey.)

4 Examples include volcanic eruptions, radioactive decay, and the number of
Prussian soldiers killed by their horses.

In the nomenclature of probability theory, the probability of
events depends on the probability density distribution that is
sampled and the sampling method. For earthquakes, we know
neither because we do not have a theoretical model that suc-
cessfully describes earthquake recurrence, so we adopt prob-
ability distributions based on the earthquake history which for
most faults is short (only a few recurrences) and complicated.
As a result, various distributions grossly consistent with the lim-
ited history are used and can produce quite different estimates.

The simplest model describes earthquake occurrence by a
Poisson distribution often used to describe rare events.4 We
assume that the probability of n large earthquakes in an area
or on a fault during time t is

p(n, t, τ) = (t/τ )n e−t /τ/n!, (8)

where 1/τ is the number expected in a year from the regional
Gutenberg–Richter distribution or some variant, so τ is the
mean recurrence time. The probability of one or more earth-
quakes is found from the probability that none will happen,
using the certainty (p = 1) that an earthquake either will or will
not happen, so

p(n ≥ 1, t, τ) = 1 − p(0, t, τ) = 1 − e−t /τ ≈ t /τ , (9)

where the last step used the Taylor series expansion ex ≈ 1 − x,
and so is valid for t << τ. In this model, the probability that an
earthquake will occur in an interval of time t starting from now
does not depend on when “now” is, because a Poisson process
has no “memory.” On average, earthquakes are separated by
time τ, but when the last earthquake occurred has no effect.

changes in mantle minerals (Section 5.4.2), which could pro-
duce slip only once on a fault surface, in contrast to frictional
sliding, which can recur.

4.7.3 Earthquake probabilities

A natural use of earthquake statistics is to estimate the pro-
bability of future earthquakes. These probabilities are interest-
ing from the standpoint of earthquake physics, and crucial
for attempts to forecast the hazards due to large, damaging
earthquakes (Section 1.2.5).

The challenge of estimating earthquake probabilities can be
illustrated by a simple analogy. Problems in probability are
often couched as games of chance, but earthquakes have the
special feature that the game’s rules are unknown. To see this,
consider estimating the probability that particular playing
cards will be dealt from a deck. If the game begins with a full
deck, there is a 25% (13/52) chance of drawing a spade, an 8%
(4/52) chance of an ace, and a 2% (1/52) chance of the ace of
spades. These chances are analogous to the prospects of having
a magnitude 6, 7, or 8 earthquake in a year. As play continues,
there are several possible cases. If the deck is shuffled after
every draw, the probabilities do not change. Alternatively, if
the deck is not shuffled, the probabilities change depending on
the cards that have been drawn. For example, if no aces have
yet appeared, the probability of an ace increases with each
draw. However, if cards are dealt from under the table, we do
not know what cards the deck began with (there may be no aces
or eight of them) and whether it is shuffled. We must infer what
the deck contains, how it is shuffled, and what cards will appear,
with no information except the cards already drawn. Hence
if no aces have appeared after a large number of draws, the
probability of an ace may be high (because the remaining cards
contain several) or low (because the starting deck had few).



The Poisson model is the simplest null hypothesis against
which we can compare other models. However, its time-
independence in which earthquakes are implicitly random
events is not appealing, because almost all of our seismological
instincts favor earthquake cycle models, in which strain builds
up slowly from one major earthquake to the next.5 In this case,
the probability of a large earthquake should be small immedi-
ately after a large earthquake, and then grow with time. This is
described by time-dependent models in which the probability
of a large earthquake a time t after the past one is given by a
probability density distribution p(t, τ, σ) that depends on the
average and variability of the recurrence times, described by
the mean τ and the standard deviation σ. In other words, p
gives the probability that the recurrence time for this earth-
quake will be t, given an assumed distribution of recurrence
times. The cumulative probability that the earthquake will
occur by time T since the past earthquake is found by integrat-
ing the density function

P T p t dt

T

( )  ( , , ) .=�
0

τ σ (10)

We seek to estimate how likely an earthquake is between
now and some future time. Formally, this is the conditional
probability that the earthquake will occur between time T0
(now) and a future time T, given the condition that it has not
yet happened by time T0. To do this, we use Bayes’s theorem,
which states that P(A |B), the conditional probability of event
A given that event B has occurred, is the ratio of the joint
probability P(A, B) of both A and B to P(B), the probability of
event B:

P(A |B) = P(A, B)/P(B). (11)

In this case, the conditional probability C(T, T0) that the earth-
quake will occur between T0 and T is the ratio of the probabil-
ity that it will occur in that interval to the probability that it has
not yet happened by T0, which is just 1 minus the probability
that it has. Hence

C(T, T0) = (P(T) − P(T0))/(1 − P(T0)). (12)

The denominator is less than one, so the conditional prob-
ability is greater than the joint probability (numerator) because
the fact that the earthquake has not happened makes it more
likely.

This approach can be used with any assumed probability
density function. The simplest is to assume that earthquake
recurrence follows the familiar Gaussian or normal (bell curve)
distribution (Section 6.5.1)

5 Of course, these instincts favoring determinism may ultimately prove incorrect —
Einstein initially rejected quantum mechanics, arguing that “God does not play dice.”

Fig. 4.7-9 Earthquake probability estimate for a segment of the San
Andreas fault on which the last major earthquake occurred in 1857.
Top: Probability density functions, with the interval 1983–2003 shaded.
The dashed line is for a Gaussian distribution, with mean and standard
deviations of 194 and 58 years, and the solid lines are for an alternative
(Weibull) distribution. Bottom: Conditional probability that the next
large earthquake will occur in the next 20 years, as a function of time
since 1857. As of 1983 (arrow), the probabilities for the time-dependent
models were comparable to those for a time-independent Poisson model.
(Sykes and Nishenko, 1984. J. Geophys. Res., 89, 5905–27, copyright by
the American Geophysical Union.)
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This distribution is often described using the normalized vari-
able z = (t − τ)/σ describing how far, in terms of the standard
deviation, t is from its mean.

Figure 4.7-9 shows such an analysis for the segment of the
San Andreas fault including the Pallett Creek site (Fig. 1.2-15),
on which the last major earthquake was the 1857 Fort Tejon
earthquake. The analysis uses a Gaussian distribution with a
mean and standard deviation of 194 and 58 years, correspond-
ing to the most recent five major earthquakes. The upper panel
shows the probability density function for this distribution
(dashed line) and two others. These are used to estimate the
conditional probability that a major earthquake would occur
between 1983 (the study time) and 2003. These times are 126
and 146 years since 1857, and so correspond to normalized
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thus shows clustered earthquakes resulting from the random
sampling. In the limit of very long histories, the Poisson process
has a standard deviation of recurrence intervals equal to its
mean. Thus a recurrence history with standard deviation close
to the mean favors a Poisson process, whereas a standard devi-
ation significantly smaller than the mean suggests a Gaussian
or other time-dependent process. How to interpret the limited
earthquake histories available is an interesting question, as
illustrated by this simple example with ten recurrences, which
is longer than usually available.

These examples bear out that estimates of earthquake prob-
abilities depend significantly on both the probability distribu-
tion used and the parameters for that distribution, which are
generally not well constrained by observations. For example,
the analysis in Fig. 4.7-9 used a Gaussian distribution with a
mean and standard deviation of 194 and 58 years, correspond-
ing to the most recent five major earthquakes at Pallett Creek.
Alternatively, the past ten earthquakes there yield a recur-
rence with a mean and standard deviation of 132 and 105 years
(Section 1.2.5). Other probability distributions give different
probability estimates, as illustrated by the curves in Fig. 4.7-9
corresponding to Poisson and Weibull distributions. Similarly,
different estimates would result from using a log-normal dis-
tribution in which the natural logarithm of recurrence time is
normally distributed, so recurrence intervals longer than the
mean are more likely than shorter ones.

Hence earthquake forecasts are easy to make, but hard to
test. Because the estimates must be tested using data that
were not used to derive them, hundreds or thousands of years

Fig. 4.7-10 Synthetic earthquake histories computed by sampling a
Poisson model with the recurrence time of 194 years and a Gaussian
model with this recurrence time and standard deviation 58 years. The
Gaussian model yields a more periodic series, whereas the Poisson model
yields clustering.
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Fig. 4.7-11 Portion of the seismic gap map (McCann et al., 1979) used
by Kagan and Jackson (1991) to test the gap hypothesis. The shaded
segments of the plate boundaries had been assigned seismic potentials of
high (red, R), intermediate (orange, O), and low (green, G). Unshaded
segments were regarded as having uncertain potential. During the ten
years following the map’s publication, ten large (M > 7) earthquakes
(dots) occurred in these regions. None were in the high- or intermediate-
risk segments, and five were in the low-risk segments. (Stein, 1992.
Reproduced with permission from Nature.)
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times of −1.17 and −0.83, with probabilities of 0.12 and 0.20.
Thus the conditional probability (Eqn 12) is

C(2003, 1983) = (P(2003) − P(1983))/(1 − P(1983))

= (0.20 − 0.12)/(1.0 − 0.12) = 0.09, (14)

or 9%. The probability for successive 20-year intervals
increases with time, and so is 29% if the earthquake has not
occurred by 2057, and 56% if it has not occurred by 2157.

It is interesting to compare these time-dependent pro-
babilities to those predicted by the time-independent Poisson
model. For an assumed mean recurrence time of 194 years, the
probability in 20 years is 10%. Thus for times since the previ-
ous earthquake less than about 2/3 of the assumed recurrence
interval, the Poisson model predicts higher probabilities. At
about 2/3 of the interval, in this case about 1986, the models
predict comparable probabilities. At later times the Gaussian
model predicts progressively greater probabilities. This com-
parison illustrates the seismic gap concept: a gap exists when
it has been long enough since the last major earthquake that
time-dependent models predict an earthquake probability much
higher than expected from time-independent models.

The differences between the models can be illustrated by
comparing the earthquake histories that each predicts. Figure
4.7-10 shows synthetic earthquake histories generated by ran-
domly sampling probability distributions with the parameters
used in Fig. 4.7-9. In the simulation, both models yield ten
earthquakes after an earthquake at time zero. The earthquakes
from the Poisson model have a mean recurrence of 189 years
and a standard deviation of 107 years, whereas those for the
Gaussian model have a mean and standard deviation of 191
and 58 years, respectively. The difference results from the fact
that the Poisson process is time-independent, so there are both
shorter and longer intervals between earthquakes than for the
Gaussian process, which is more regular. The Poisson process
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6 This situation, discussed by Davis et al. (1989), has been likened to waiting for a
bus — the longer the bus fails to arrive, the less likely its arrival seems. A homework
problem illustrates these issues.

7 Sieh et al. (1989).
8 Savage (1991).

(multiple recurrences) will be needed to assess how well various
models predict large earthquakes on specific faults or fault
segments. The first challenge is to show that a model predicts
future earthquakes significantly better than the simple time-
independent Poissonian model.

Given human impatience, attempts have been made to con-
duct alternative tests using smaller earthquakes or many faults
over a short time interval. To date, the results are not encourag-
ing. As discussed in Section 1.2.5, the history of relatively small
(M 5–6) earthquakes near Parkfield, California, was used in
1985 to predict at 95% confidence level that the next one would
occur by 1993, whereas the earthquake has not materialized to
date (2002). Presumably the earthquake will occur eventually,
although its conditional probability seems to have been over-
estimated and might even be assumed to be decreasing, because
the longer the earthquake is delayed, the longer the mean recur-
rence interval inferred from the earthquake history becomes.6

Moreover, a global test of the seismic gap hypothesis, which
examined how well a gap map (Fig. 4.7-11) forecast the loca-
tions of major earthquakes, found that the map did no better
than random guessing. In fact, many more large earthquakes
occurred in areas identified as low risk than in the presumed
higher-risk gaps. This result, which appears inconsistent with

ideas of earthquake cycles and seismic gaps, has led to various
interpretations, including that the gap model applies only to the
largest events that break major portions of the plate boundary.

Perhaps the most sophisticated large-scale earthquake pro-
bability studies have been in California. Figure 4.7-12 shows
conditional probabilities estimated along segments of the San
Andreas fault. Such models can also include factors such as
variable slip in earthquakes and stress changes due to nearby
earthquakes (Section 5.7). Testing more complicated models
with more adjustable parameters, however, will be even more
challenging and take even longer.

Hence, at present, estimates of earthquake probabilities have
large uncertainties. For example, using the complex Pallett
Creek earthquake series (Fig. 1.2-15), in 1989 the range of
probabilities for a major earthquake before 2019 was estim-
ated as about 7–51%.7 Thus it has been suggested that it is
only meaningful to quote probabilities in broad ranges, such as
low (<10%), intermediate (10–90%), or high (>90%).8 How-
ever, despite these formidable difficulties, estimation of earth-
quake probabilities seems certain to remain an active research
area. If some probability model is ultimately demonstrated
to be reasonably successful, its use could advance efforts to
estimate earthquake hazards.
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Mavko (1981) reviews fault models and the use of geodetic data to study
faulting, and Burgmann et al. (2000) review the use of radar interfero-
metry. References for topics related to the tectonic setting of earthquakes,
use of the Global Positioning System, and the relation of earthquakes to
fault mechanics are given at the end of Chapter 5.

A detailed discussion of earthquake magnitudes is presented by Geller
and Kanamori (1977). Relations between fault parameters are given in
Kanamori and Anderson (1975); source spectra and scaling laws are dis-
cussed by Geller (1976). Our treatment of moment magnitude and earth-
quake energy follows Kanamori (1977a) and Hanks and Kanamori (1979).
Atkinson and Beresnev (1997) discuss the relation between stress drop as
a source parameter and as a tectonic quantity. Okal and Romanowicz
(1994) give an overview of frequency–magnitude relations. Turcotte
(1992) and Main (1996) review self-similar models for earthquakes.
References for topics related to earthquake forecasting and seismic gaps
are given at the end of Chapter 1. In particular, Kagan and Jackson (1991)
discuss the challenge of testing forecasts.

A voluminous literature deals with studies of individual earthquakes,
especially those that are of special interest because of their size, dam-
age, tectonic setting, or location near centers of seismological research.
Some recent examples include issues of the Bulletin of the Seismological
Society of America dealing with the 1989 Loma Prieta (October 1991
issue), 1992 Landers (June 1994 issue), and 1994 Northridge (Febru-
ary 1996 issue) earthquakes. Detailed studies of other earthquakes can
often be found using the American Geological Institute’s Georef WWW
search tool, available through many earth science departments and
libraries. The locations and focal mechanisms of post-1977 earthquakes
around the world are available at http://www.seismology.harvard.edu/
CMTsearch.html, and information about earthquakes in specific areas,
including seismograms, can often be found at WWW sites compiled
at http://www.geophys.washington.edu/seismosurfing.html or http://
www.iris.edu.

Further reading

Other treatments of earthquake sources are given by texts such as
Ben-Menahem and Singh (1981), Gubbins (1990), Lay and Wallace
(1995), and Shearer (1999). Many of the results presented here without
proof are derived in Aki and Richards (1980).

Some specific topics are covered in individual reviews. Kanamori (1994)
gives an overview of earthquake source parameters and earthquake
mechanics; papers in Kanamori and Boschi (1983) review various topics
about earthquake sources. Structural geology texts such as Ragan (1968)
discuss stereonet techniques. Jarosch and Aboodi (1970) derive analytic
expressions for the relations between the fault and auxiliary planes and
the stress axes. Helmberger and Burdick (1979), Kanamori and Stewart
(1976), and Okal (1992) discuss body wave modeling. For reasons includ-
ing compatibility of notation, our treatment of body wave modeling fol-
lows the latter two, that for surface wave modeling follows Kanamori and
Stewart (1976), and that for moment tensor inversion follows Kanamori
and Given (1981). Jost and Hermann (1989) give a general review of
moment tensor inversion, and Dziewonski et al. (1981) summarize the
Harvard CMT approach. Okal and Geller (1979) explore spurious iso-
tropic moment tensor components due to lateral heterogeneity, Michael
and Geller (1984) discuss inverting surface wave data with one nodal plane
constrained, and Romanowicz and Guillemant (1984) discuss inverting
surface waves for depth determination.

Opposing (double-couple versus slump) source models for the 1929
Grand Banks earthquake are explored by Hasegawa and Kanamori (1987)
and Bent (1995); Tappin et al. (1999) discuss a slump origin for the 1998
New Guinea tsunami. Julian and Sipkin (1985) and Wallace (1985) con-
sider CLVD versus double-couple models for earthquakes in the Long
Valley caldera. Heaton and Hartzell (1988) discuss source study using
near-field earthquake ground motions.

General treatments of geodesy include those by Lambeck (1988) and
Torge (1991). Geodetic solutions for faults are given by Okada (1985).

Problems

1. Using the travel time chart in Fig. 3.5-4 for earthquakes at a depth
of 600 km, graph the take-off angle of the P wave for stations at
distances from 2000 to 10,000 km. Assume that the P velocity at
600 km depth is 10 km/s. Use enough points for a smooth graph.

2. Plot the following focal mechanisms on a stereonet by using the
relations in Section 4.2.5 to find the second nodal plane. Indicate
the compressional and dilatational quadrants, mark the P and T
axes, and describe the type of faulting. Use the conventions of
Fig. 4.2-2, and remember that dip is defined from the −x2 axis
and is less than 90°.

(a) φ = 330°, δ = 65°, λ = 70°
(b) φ = 280°, δ = 60°, λ = 270°
(c) φ = 280°, δ = 60°, λ = 90°
(d) φ = 40°, δ = 80°, λ = 20°
(e) φ = 40°, δ = 80°, λ = 200°

3. Figure P4.1 gives a stereonet and first motion data for four earth-
quakes on stereonets of the same scale. Closed circles show com-
pressions, and open circles show dilatations. To evaluate the focal
mechanism for each earthquake:

(i) Find nodal planes that you consider the best solution. Show
these planes on the first motion plots, and measure their
strikes and dips.

(ii) Find two planes bounding the acceptable range for each
nodal plane.

(iii) For each best choice nodal plane, give the motion (right-
lateral strike-slip, left-lateral strike-slip, dip-slip – thrust or
normal) implied by the focal mechanism for slip on that
nodal plane. If the faulting is a combination of the above,
give the dominant type.

(iv) Find the B, P, and T axes and the two possible slip angles
(one for each nodal plane) implied by the best choice nodal
planes. Check that these are consistent with the answers to
part iii.

4. If a P wave leaves the focal sphere exactly on a nodal plane, it
should theoretically have zero amplitude. Explain why this is not
the case in reality.

5. Derive the travel time for sP (Eqn 4.3.11) using a geometry similar
to that of Fig. 4.3-6 (bottom).

6. For a fault plane solution in which one plane has strike φ1 and
dip δ1, and the second plane is striking at φ2, show that tan λ1 =
cot (φ2 − φ1)/cos δ1. For what angles will this not apply?

7. Compute the Love wave amplitude radiation pattern for an
isotropic source.

8. Use the expression for the moment tensor of a double couple
(Eqn 4.4.5) to prove that it obeys the tensor transformation law
(Eqn 2.3.18).

9. (a) Show how the moment tensor for a vertical dipole can be
decomposed into an isotropic source and a CLVD.
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Fig. P4.1 See problem 3.
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e. March 22, 1978: (43.86°N, 148.84°E)
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Fig. P4.2 See problem 13.

(b) Using the decomposition in Eqn 4.4.48, decompose the
diagonalized moment tensor in Eqn 4.4.47 into a double
couple and a CLVD. Find the ratios of the double-couple scalar
moment and CLVD scalar moment to the scalar moment of the
original tensor.

(c) Give an alternative decomposition to Eqn 4.4.48 that makes
the double couple smaller and the CLVD larger. Use this
decomposition on the diagonalized moment tensor in Eqn
4.4.47, and find the ratios of the double-couple scalar moment
and the CLVD scalar moment to the scalar moment of the
original tensor.

10. Show for an infinite buried strike-slip fault extending from depth
w to depth W that the maximum coseismic surface displacement
occurs at distance y = (wW)1/2 from the fault.

11. Assume that a geodetic position is measured with an uncertainty of
3 mm. How precise will estimates of its velocity be after 1, 5, and
10 years of measurements?

12. (a) Using the analytic expression for an interseismic velocity pro-
file across a strike-slip fault, define a criterion to estimate the
fault locking depth.

(b) Use this criterion to estimate the locking depth for the
GPS velocity profile across the San Andreas fault shown in
Fig. 4.5-13.

(c) For this profile, estimate the far-field slip rate.
(d) Use the analytic expression to find the rate that would be

estimated by measuring the velocity at this location, but on a
baseline extending only 5 km on either side of the fault.

13. Use the seismogram in Fig. P4.2 to determine the surface wave
magnitude of the earthquake. The scale bar indicates 1 cm on the
seismogram. Assume that the seismometer’s magnification is 3000,
and that the earthquake is 17° away.

14. Use the fault parameters given for the earthquakes in Table 4.6-1
and the theoretical relations in Eqns 4.6.18–20 to estimate the
stress drop for each. Use all three geometries, and note which seems
most geologically appropriate. (Part of this is done for the 1964
Alaska earthquake in the text.) How does the inferred stress drop
depend on the assumed geometry?

15. Assume that the largest earthquakes on the San Andreas fault have
the same fault width (10 km) and average slip (4 m) as estimated
for the 1906 earthquake. How long would the fault have to be for
these earthquakes to have the same seismic moment as the 1960
Chilean or 1964 Alaska earthquakes (Table 4.6-1)? Compare this
value to the length of the San Andreas fault (Fig. 5.2-3).

16. Plot log S versus log M0, as in Fig. 4.6-11, for the six earthquakes in
Table 4.6-1. If you fit a line through these six points and assume a
constant stress drop, does the slope agree with Eqn 4.6.17?

17. For the observed earthquake source spectrum in Fig. 4.6-8, estim-
ate the corner frequency. Making the necessary assumptions,
estimate a source dimension and stress drop. Given the different

assumptions and models possible, your values are likely to differ
from the 30 km and 65 bars inferred by the study shown.

18. Ms magnitudes are usually measured at a period of 20 s. If they
were measured at 30 s instead, would Ms values saturate at a higher
or a lower value than usual Ms values, and why?

19. (a) Derive Eqn 4.6.29 for the seismic efficiency.
(b) Assuming that the average stress in the earth during faulting

is 1.5 kbar, estimate the seismic efficiency for a typical earth-
quake? What does this say about the fraction of the strain
energy that goes into seismic waves?

20. The largest earthquakes release more total energy than smaller
events, because if all the magnitude 6s released more energy than
the magnitude 7s, the magnitude 5s released more energy than
the magnitude 6s, and so on, then the seismic energy released by the
smallest-magnitude events would approach infinity. What is the
largest possible global value of b without this impossible scenario
occurring, if b were constant down to very small magnitudes
(which it is not)?

21. From the values given in Section 4.7.1, estimate the mean recur-
rence time for earthquakes with magnitudes greater than 6, 7, and
8 in Japan, southern California, and the New Madrid seismic zone.

22. Using only the instrumental data in Fig. 4.7-6, estimate the recur-
rence interval for an earthquake with magnitude 7.5 or greater in
the Wasatch fault zone (Utah). Compare this estimate to that
shown for the paleoseismic data.

Computer problems
C-1. (a) Write a subroutine to compute the elements of a fault’s

normal vector and slip vector given the three fault angles.
(b) Use this routine to compute 4 and 2 for the focal mechan-

isms in problem 2. Compare your results to those obtained
from the stereonet.

(c) Test numerically that 4 and 2 for all these mechanisms are
orthogonal. A subroutine from the computer problems in the
Appendix, C-4, can be used.

C-2. (a) Write a subroutine to compute the elements of vectors in the
directions of the P and T axes using the results of C-1.

(b) Use this routine to find the directions of the P and T axes for
the focal mechanisms in problem 2. Compare your results to
those obtained from the stereonet.

C-3. (a) Write a subroutine to compute the elements of the moment
tensor using the results of C-1.

(b) Use this routine to find the moment tensors for the focal
mechanisms in problem 2.

C-4. (a) Write a subroutine to convert the elements of the moment
tensor to P and T axes by diagonalizing the tensor. The
eigenvalue–eigenvector routine from the Appendix, prob-
lem C-12, may be useful.
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(c) Calculate the values for the same periods, but using a mean
recurrence of 132 years and a standard deviation of 105
years, which correspond to the full Pallett Creek earthquake
series. Explain how and why the results change.

C-9. Use the routine from C-8 to estimate the Poisson and Gaussian
conditional probabilities of a major earthquake in the New
Madrid seismic zone in the next 20 years, assuming that the past
one occurred in 1812. Assume that major earthquakes have:

(a) a mean recurrence time of 500 years with standard
deviation 100 years.

(b) a mean recurrence time of 750 years with standard
deviation 250 years.

(c) a mean recurrence time of 1000 years with standard
deviation 500 years.

C-10. Write a subroutine (or set up a spreadsheet) to compute the
mean and standard deviation of series of numbers.

C-11. By combining the results from C-8 and C-10:
(a) Find the mean and standard deviation of recurrence inter-

vals for the series of Parkfield earthquakes that occurred
in the years 1857, 1881, 1901, 1922, 1934, and 1966.
Compute Poisson and Gaussian conditional probabilities
starting in 1985 for an earthquake in the eight-year inter-
val until 1993.

(b) Do the same calculation if the 1934 earthquake had
occurred in 1944, as implicitly assumed when the pre-
diction discussed in Section 1.2.5 was made. How do the
values change and why?

(c) The awaited earthquake may or may not have occurred
by the time you do this problem. In either event, assume
that it has not occurred by 2010, and find the mean and
standard deviation of the recurrence times from the dates
in (a), also including the interval 1966–2010. Calculate
the Poisson and Gaussian conditional probabilities that
the earthquake will occur in eight years from 2010.

(d) Do the same assuming the earthquake has not occurred
by 2020.

(e) Compare the results of (a), (c), and (d) and explain the
differences.

(b) Use this routine to find the directions of the P and T axes for
the focal mechanisms in problem 2. Compare your results to
those obtained in C-2.

C-5. Write subroutines to generate the amplitude radiation patterns
for Love and Rayleigh waves. Use these, with values of the
excitation functions

PL = −2.75, QL = −0.34, and SR = 4.0, PR = 2.7, QR = −1.6

to replicate the examples of Fig. 4.3-12.
C-6. Figure P4.3 shows three ways to evaluate integrals numerically.

To see how these work:
(a) Analytically integrate the function y = x2 over the interval

0 ≤ x ≤ 10.
(b) Write a subroutine to numerically integrate this function

using inscribed rectangles as in Fig. P4.3a. Try this with
intervals of 2 (as shown) and 0.02. What is the percentage
difference between these results and the true value in part
(a)?

(c) Repeat (b) using intermediate rectangles, as shown in
Fig. P4.3b.

(d) Repeat (b) using trapezoids, as in Fig. P4.3c.
C-7. (a) Write a subroutine that uses one of the methods in C-6 to

integrate the Gaussian probability function p(t, τ, σ) (Eqn
4.7.13) over an interval from −t to t.

(b) Use the subroutine to find the integral of p(t, τ, σ ) (Eqn
4.7.13) over the interval −10 ≤ t ≤ 10 with τ = 0 and σ  = 5, and
explain the result.

C-8. (a) Write a program to estimate the conditional probability,
using Gaussian and Poisson models, that an earthquake will
occur in a specified time interval, given the time of the last
earthquake and the mean and standard deviations of the
recurrence time. The routine in C-7 will be useful for the
Gaussian model.

(b) Check the routine using the San Andreas example in Fig.
4.7-9 for 20-year periods beginning in 1983, 2057, and
2157.

Fig. P4.3 See problem C-6.
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weaker asthenosphere below. The lithosphere and astheno-
sphere are mechanical units defined by their strength and the
way they deform. The lithosphere includes both the crust and
part of the upper mantle.

Figure 5.1-1 shows the three basic types of plate bound-
aries. Warm mantle material upwells at spreading centers,
also known as mid-ocean ridges, and then cools. Because the
strength of rock decreases with temperature (Section 5.7.3),
the cooling material forms strong plates of new oceanic litho-
sphere. The cooling oceanic lithosphere moves away from the
ridges, and eventually reaches subduction zones, or trenches,2

where it descends in downgoing slabs back into the mantle, re-
heating as it goes. The direction of the relative motion between
two plates at a point on their common boundary determines
the nature of the boundary. At spreading centers both plates
move away from the boundary, whereas at subduction zones
the subducting plate moves toward the boundary. At the third
boundary type, transform faults, relative plate motion is paral-
lel to the boundary.

As discussed in Section 3.8, seismology shows that the
structure of the mantle and the core varies with depth, due to
changes in temperature, pressure, mineralogy, and composi-
tion. Plate tectonics describes the behavior of the lithosphere,
the strong outer shell of the mantle, which is the cold outer
boundary layer of the thermal convection system involving the
mantle and the core that removes heat from the earth’s interior.
Although much remains to be learned about this convective
system, especially in the lower mantle and the core (Fig. 5.1-2),
there is general agreement that at shallow depths the warm,

5.1 Introduction

Two of the major advances in the earth sciences since the 1960s
have been the growth of global seismology and the develop-
ment of our understanding of global plate tectonics. The two
are closely intertwined because seismological advances pro-
vided some of the crucial data that make plate tectonics the
conceptual framework used to think about large-scale pro-
cesses in the solid earth.

The theory of plate tectonics grew out of the earlier theory
of continental drift, proposed in its modern form by Alfred
Wegener in 1915. The idea that continents drifted apart was an
old one, rooted in the remarkable fit of the coasts of South
America and Africa. Still, without compelling evidence for
motion between continents, the idea that such motions were
physically impossible prevented most geologists from accept-
ing Wegener’s ideas. By the 1970s the story was very different.
Geologists accepted continental drift in large part because
paleomagnetic measurements, based on the geometry and his-
tory of the earth’s magnetic field, showed that continents had in
fact moved over millions of years. Combination of these obser-
vations with results from seismology and marine geology and
geophysics led to the realization that all parts of the earth’s
outer shell, not just the continents, were moving.

Plate tectonics is conceptually simple: it treats the earth’s
outer shell as made up of about 15 rigid plates, about 100 km
thick, which move relative to each other at speeds of a few cm
per year.1 The plates are rigid in the sense that little (ideally
no) deformation occurs within them, so deformation occurs
at their boundaries, giving rise to earthquakes, mountain
building, volcanism, and other spectacular phenomena. These
strong plates form the earth’s lithosphere, and move over the

5 Seismology and Plate Tectonics

The acceptance of continental drift has transformed the earth sciences from a group of rather unimaginative studies based on pedes-
trian interpretations of natural phenomena into a unified science that holds the promise of great intellectual and practical advances.

J. Tuzo Wilson, Continents Adrift and Continental Aground, 1976

1 This is about the speed at which fingernails grow.

2 Boundaries are described either as mid-ocean ridges and trenches, emphasizing
their morphology, or as spreading centers and subduction zones, emphasizing
the plate motion there. The latter nomenclature is more precise, because there are
elevated features in the ocean basins that are not spreading ridges, and spreading
centers like the East African rift exist within continents.



differences between granitic and basaltic rocks discussed in
Section 3.2), and so does not subduct. The oceanic lithosphere
is continuously subducted and reformed at ridges, and so never
gets older than about 200 Myr. The continental lithosphere,
however, can be billions of years old.

Put another way, plate tectonics is the primary surface mani-
festation of the heat engine whose nature and history govern
the planet’s thermal, mechanical, and chemical evolution.3

Earth’s heat engine is characterized by the balance between
three modes of heat transfer from the interior: the plate tectonic
cycle involving the cooling of oceanic lithosphere; mantle
plumes, which are thought to be a secondary feature of mantle
convection; and heat conduction through continents that are
not subducted and hence do not participate directly in the
oceanic plate tectonic cycle. Based on estimates from sea floor
topography and heat flow, discussed shortly, terrestrial heat
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Fig. 5.1-2 Schematic diagram showing
ideas about mantle convection. Ridges
reflect upper mantle upwelling. Slabs
penetrate into the lower mantle, causing
heterogeneity there, and in some cases
descend to the base of the mantle. Mantle
(hot spot) plumes reflect lower mantle
upwelling. Many features shown are
controversial and subject to change without
notice. (Modified from Stacey, 1992.)

3 It has been said that heat is the geological lifeblood of planets.
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and hence less dense, material rising below spreading centers
forms upwelling limbs, whereas the relatively cold, and hence
dense, subducting slabs form downwelling limbs. Although
the lithosphere is a very thin layer compared to the rest of the
mantle (100 km is 1/29 of the mantle’s radius), it is where
the greatest temperature change occurs, from about 1300° to
1400°C at a depth of 100 km to about 0°C at the surface. For
this reason, the lithosphere is called a thermal boundary layer.
Because of this temperature change, the lithosphere is much
stronger than the underlying rock, and so is also a mechanical
boundary layer. This strong boundary layer is thought to be a
primary reason why plate tectonics is much more complicated
than expected from simple convection models. Moreover,
the lithosphere, which contains the crust, is also a chemical
boundary layer distinct from the remainder of the mantle. Con-
tinental lithosphere is especially distinct: although individual
plates can contain both oceanic and continental lithosphere,
the latter is made of less dense rock than the former (recall the

Oceanic plate Ridge Trench

Continental
plate

Magnetic
anomalies

Transform
fault

Lithosphere

Asthenosphere

Fracture zone

Fig. 5.1-1 Plate tectonics at its simplest.
Oceanic lithosphere is formed at ridges and
subducted at trenches. At transform faults,
plate motion is parallel to the boundaries.
Each boundary type has typical
earthquakes.
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Fig. 5.1-3 Cartoon summarizing some of
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the solid earth’s interior and the fluid ocean
and atmosphere system. (Stein et al., 1995.
Seafloor Hydrothermal Systems, 425–45,
copyright by the American Geophysical
Union.)

are even more apparent in the lower panel showing earth-
quakes with focal depths greater than 100 km, because mid-
ocean ridge earthquakes are shallow and thus do not appear.

It is especially impressive to plot the locations of earthquakes
on cross-sections across trenches (Fig. 5.1-5). Inclined zones of
seismicity delineate the subducting oceanic plates, which travel
time and attenuation studies show to be colder and stronger
than the surrounding mantle. These zones, identified before
their plate tectonic significance became clear, are known as
Wadati–Benioff zones after their discoverers.4

The interplate earthquakes both delineate plate boundaries
and show the motion occurring there. We will see that the
direction of faulting reflects the spreading at mid-ocean ridges
and subduction at trenches. The earthquake locations and
mechanisms also show that plate boundaries in continents are
often complicated and diffuse, rather than the simple narrow
boundaries assumed in the rigid plate model that are a good
approximation to what we see in the oceans. For example,
seismicity shows that the collision of the Indian and Eurasian
plates creates a deformation zone which includes the Hima-
layas but extends far into China. Similarly, the northward
motion of the Pacific plate with respect to North America
creates a broad seismic zone, indicating that the plate boundary
zone spans much of the western USA and Canada.

In addition, intraplate earthquakes occur within plate
interiors, far from boundary zones. For example, Fig. 5.1-4
shows earthquakes in eastern Canada and central Australia.
Such earthquakes are much rarer than plate boundary zone
earthquakes, but are common enough to indicate that plate
interiors are not perfectly rigid. In some cases these earth-
quakes are associated with intraplate volcanism, as in Hawaii.
Intraplate earthquakes are studied to provide data about where
and how the plate tectonic model does not fully describe tec-
tonic processes.

4 Kiyoo Wadati (1902–95) discovered the existence of deep seismicity and its
geometry under Japan; Hugo Benioff (1899–1968), also known for important
contributions to seismological instrumentation, discussed the global nature of deep
earthquakes and their relation to surface features (Fig. 1.1-10).

loss seems to occur primarily (about 70%) via plate tectonics,
with about 5% via hot spots (mantle plumes). By contrast,
Earth’s grossly similar sister planets, Mars and Venus, seem to
function quite differently, because large-scale plate tectonics
appears absent, at least at present.

Plate tectonics is also crucial for the evolution of Earth’s
ocean and atmosphere, because it involves many of the primary
means (including volcanism, hydrothermal circulation through
cooling oceanic lithosphere, and the cycle of uplift and erosion)
by which the solid earth interacts with the ocean and the atmo-
sphere (Fig. 5.1-3). The chemistry of the oceans and the atmo-
sphere depends in large part on plate tectonic processes, and
many long-term features of climate are influenced by moun-
tains that are uplifted by plate convergence and the positions of
continents that control ocean circulation. In fact, the presence
of plate tectonics may explain how life evolved on earth (at
mid-ocean ridge hot springs) and be crucial for its survival (the
atmosphere is maintained by plate boundary volcanism, and
plate tectonics raises the continents above sea level).

As a result, plate tectonics is heavily studied by earth scient-
ists. Our goal in this chapter is to introduce some of the ways
in which seismology contributes to these studies. Some sources
for more general and more detailed treatments of these topics
are listed at the end of the chapter.

Seismology plays several key roles in our studies of plate
tectonics. The distribution of earthquakes provides strong
evidence for the idea of essentially rigid plates, with deforma-
tion concentrated on their boundaries. Figure 5.1-4 shows
maps of global seismicity covering the time period 1964–97.
Such maps did not become available until the early 1960s,
when the World Wide Standardized Seismographic Network
(WWSSN) allowed accurate locations for earthquakes of
magnitude 5 or greater anywhere in the world. The map shows
several remarkable patterns.

The mid-ocean ridge system, where the oceanic lithosphere
is created, is beautifully outlined by the earthquake locations.
For example, the Mid-Atlantic ridge and East Pacific rise can be
followed using epicenters for thousands of kilometers. The loca-
tions of the trenches, where oceanic lithosphere is subducted,
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Fig. 5.2-1 Geometry of plate motions. Linear velocity at point r is given
by vji = ωωωωωji × r. The Euler pole is the intersection of the Euler vector with
the earth’s surface. Note that west longitudes and south latitudes are
negative.

point r along the boundary between plate i and plate j, with
latitude λ and longitude µ, the linear velocity of plate j with
respect to plate i is

vji = ωωωωω ji × r. (1)

This is the usual formulation for rigid body rotations in
mechanics. r is the position vector to the point on the bound-
ary, and ωωωωω ji is the angular velocity vector, or Euler vector. Both
vectors are defined from an origin at the center of the earth.

The direction of relative motion at any point on the bound-
ary is a small circle, a parallel of latitude about the Euler pole
(not a geographic parallel about the North Pole!). For example,
in Fig. 5.2-2 (top) the pole shown is for the motion of plate 2
with respect to plate 1. The convention used is that the first
named plate ( j = 2) moves counterclockwise (in a right-handed
sense) about the pole with respect to the second named plate
(i = 1). The segments of the boundary where relative motion is
parallel to the boundary are transform faults. Thus transforms
are small circles about the pole, and earthquakes occurring on
them should have pure strike-slip mechanisms. Other segments
have relative motion away from the boundary, and are thus
spreading centers. Figure 5.2-2 (bottom) shows an alternative
case. The pole here is for plate 1 ( j = 1) with respect to plate 2
(i = 2), so plate 1 moves toward some segments of the bound-
ary, which are subduction zones.

The magnitude, or rate, of relative motion increases with
distance from the pole because

| vji | = | ωωωωω ji | | r | sin γ , (2)

where γ  is the angle between the Euler pole and the site (corres-
ponding to a colatitude about the pole). All points on a plate

1 This term comes from Euler’s theorem, which states that the displacement of any
rigid body (in this case, a plate) with one point (in this case, the center of the earth)
fixed is a rotation about an axis.

In summary, seismology provides crucial information
about both plate kinematics, the directions and rates of plate
motions, and plate dynamics, the forces causing plate motions.
As we will see, seismicity is one of the major tools used to
identify and delineate plate boundary zones, and earthquake
mechanisms are among the primary data used to determine the
motion within plate boundary zones. The mechanisms also
provide information about the stresses acting at plate boundar-
ies and within plates, which, together with earthquake depths
and seismic velocity structure, are important in developing
ideas about the forces involved and the physical processes by
which rocks deform and cause earthquakes. Conversely, plate
motion data are used to draw inferences about the locations
and times of future earthquakes and their societal risks. Thus it
is often hard, and sometimes pointless, to decide where seismo-
logy ends and plate tectonics begins, or vice versa.

5.2 Plate kinematics

Understanding the distribution and types of earthquakes
requires an understanding of the geometry of plate motions, or
plate kinematics. In this section we sketch some basic results,
of which we assume most readers have some knowledge. As
full exploration of this topic is beyond our scope, readers are
encouraged to delve into the suggested literature.

5.2.1 Relative plate motions

A basic principle of plate tectonics is that the relative motion
between any two plates can be described as a rotation about an
Euler pole1 (Fig. 5.2-1). This condition controls the types of
boundaries and the focal mechanisms of earthquakes resulting
from relative motions, as discussed later. Specifically, at any
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vy = a | ωωωωω | (sin θ cos λ cos µ − cos θ cos φ sin λ)

vz = a | ωωωωω | cos θ cos λ sin (µ − φ). (5)

At the point r, the north–south and east–west unit vectors
can be written in terms of their Cartesian components using
Eqn A.7.4,

êNS = (−sin λ cos µ, −sin λ sin µ, cos λ),

êEW = (−sin µ, cos µ, 0), (6)

so we find the north–south and east–west components of v by
taking dot products of its Cartesian components (Eqns 5) with
the unit vectors (Eqns 6), and obtain

vNS = a | ωωωωω | cos θ sin (µ − φ),

vEW = a | ωωωωω | [sin θ cos λ − cos θ sin λ cos (µ − φ)]. (7)

We can then find the rate and direction of plate motion,

rate = | v |     = + ( )  ( )v vNS EW2 2

azimuth = 90° − tan−1 [(v NS)/(v EW)], (8)

such that azimuth is measured in the usual convention, degrees
clockwise from North.

In evaluating these expressions, it is important to be careful
with dimensions. Although rotation rates are typically reported
in degrees per million years, they should be converted to
radians per year. The resulting linear velocity will have the
same dimensions as Earth’s radius. By serendipity, converting
radius in km to mm and Myr to years cancel out, so only the
degrees to radians (× π /180°) conversion actually needs to be
done to obtain a linear velocity in mm/yr. Plate motions are
often quoted as mm/yr, because a year is a comfortable unit
of time for humans and 1 mm/yr corresponds to 1 km/Myr,
making it easy to visualize what seemingly slow plate motion
accomplishes over geologic time.

To see how this works, consider Fig. 5.2-3, which shows the
North America–Pacific boundary zone. The map is drawn in a
projection about the Euler pole, so the expected relative motion
is parallel to small circles like the one shown. By analogy to
Fig. 5.2-2, this geometry predicts NW–SE-oriented spreading
along ridge segments in the Gulf of California, which are rifting
Baja California away from the rest of Mexico. Further north,
the San Andreas fault system is essentially parallel to the
relative motion, so is largely a transform fault. In Alaska, the
eastern Aleutian arc is perpendicular to the plate motion, so
the Pacific plate subducts beneath North America. Thus this
plate boundary contains ridge, transform, and trench portions,
depending on the geometry of the boundary.2 In addition, the

Fig. 5.2-2 Relationship of motions on plate boundaries to the Euler
pole. Relative motions occur along small circles about the Euler pole
(short dashed lines) at a rate that increases with distance from the pole.
Note the difference the sense of rotation makes: ωωωωωji is the Euler vector
corresponding to the rotation of plate j counterclockwise with respect to i.

5.2 Plate kinematics 291

boundary have the same angular velocity, but the magnitude of
the linear velocity varies from zero at the pole to a maximum
90° away.

The components of the vectors can be written in Cartesian
(x, y, z) coordinates (Fig. 5.2-1). The position vector is

r = (a cos λ cos µ, a cos λ sin µ, a sin λ), (3)

where a is the earth’s radius. Similarly, if the Euler pole is at
latitude θ and longitude φ, the Euler vector is written (neglect-
ing the ij subscripts for simplicity) as

ωωωωω = ( | ωωωωω | cos θ cos φ, | ωωωωω | cos θ sin φ, | ωωωωω | sin θ), (4)

where the magnitude, | ωωωωω |, is the scalar angular velocity or
rotation rate. To find the Cartesian components of the linear
velocity v, we evaluate the cross product (Eqn 1) using its
definition (Eqn A.3.28), and find

v = (vx, vy, vz),

vx = a | ωωωωω | (cos θ sin φ sin λ − sin θ cos λ sin µ)

2 A good way to visualize the plate motion is to photocopy Fig. 5.2-3, cut along
the boundary of the Pacific plate, and then photocopy the “Pacific” onto another
piece of paper. Putting the “Pacific” beneath “North America” and rotating around a
thumbtack through the pole shows the ridge, transform, and trench motions both
forward and backward in time.



292 Seismology and Plate Tectonics

22
0°

220°
24

0°

24
0°

26
0°

26
0°

28
0°

28
0°

20°

40°

40°

60°

60°

80°

200°

JF
plate

 

  
 

   

 

 
 

 

 

 

 

 

 
 

 

 
 

   
San Francisco1906

Parkfield

Alaska1964

San Fernando

Borah Peak

.

.

.

.

.

Landers

Northridge

Loma Prieta

Trench

ridge

SA
F transform

Basin and
RANGERange

PA–NA

pole

 

V
 PA

-N
A   59 m

m
/yr

80°

JF-NAV             42 mm/yr

GPS site
motion

boundary zone contains the small Juan de Fuca plate, which
subducts beneath the Pacific Northwest at the Cascadia
subduction zone.

Equation 8 lets us find how the motion varies. The predicted
motion of the Pacific plate with respect to the North American
plate at a point on the San Andreas fault (36°N, 239°E) has
a rate of 46 mm/yr at an azimuth of N36°W. The predicted
direction agrees reasonably well with the average trend of
the San Andreas fault, N41°W. Thus, to first order, the San
Andreas is a Pacific–North America transform plate boundary
with right-lateral motion. However, there are some deviations
from pure transform behavior. As we will see, the rate on the
San Andreas fault is less than the total plate motion because
some of the motion occurs elsewhere within the broad plate
boundary zone. In addition, in some places the San Andreas
trend differs enough from the plate motion direction that dip-

slip faulting occurs. Hence we think of the San Andreas as the
primary feature of the essentially strike-slip portion of the plate
boundary zone.

Similarly, at a point on the Aleutian trench near the site
of the great 1964 Alaska earthquake (Fig. 4.3-15) (62°N,
212°E), we predict Pacific motion of 53 mm/yr at N14°W with
respect to North America. This motion is into the trench, which
is a Pacific–North America subduction zone. It is worth noting
that for a given convergent relative motion either plate can be
subducting. However, the relative direction is important, so the
plates cannot be interchanged: if N14°W were the direction of
motion of North America with respect to the Pacific, the mo-
tion would be away from the boundary, which would then be
a spreading center with the same rate. As for the San Andreas,
the actual boundary zone shown by earthquakes and other
deformation is wider and more complicated than the ideal.

Fig. 5.2-3 Geometry and focal mechanisms
for a portion of the North America–Pacific
boundary zone that also includes the small
Juan de Fuca (JF) plate. The map projection
is about the Pacific–North America Euler
pole, so the line with dots shows a small
circle and thus the direction of plate
motion. This small circle is further from the
pole than the San Andreas fault, so the rate
of motion on it is larger. The variation in
the boundary type along its length from
extension, to transform, to convergence, is
shown by the focal mechanisms. The diffuse
nature of the boundary zone is shown by
seismicity (small dots), focal mechanisms,
topography (elevation above 1000 m is
shaded), and vectors showing the motion of
GPS and VLBI sites (squares) (Bennett et al.,
1999) with respect to the stable interior of
North America. The velocity scale is shown
by the plate motion arrows; some site
motion vectors are too small to be seen.
(Stein and Klosko, 2002. From The
Encyclopedia of Physical Science and
Technology, ed. R. A. Meyers, copyright
2002 by Academic Press, reproduced by
permission of the publisher.)



Earthquake focal mechanisms within the boundary zone are
consistent with the overall plate motions and illustrate some of
their complexities. In the Gulf of California we see both strike-
slip faulting along oceanic transforms and normal faulting on
ridge segments. The San Andreas fault system, composed of the
main fault and some others, has both pure strike-slip earth-
quakes (Parkfield) and earthquakes with some dip-slip motion
(Northridge (Section 4.5.3), San Fernando, and Loma Prieta)
when it deviates from pure transform behavior. The seismicity
also shows that the plate boundary zone is quite broad.
Although the San Andreas fault system is the locus of most
of the plate motion (Fig. 4.5-13) and hence large earthquakes,
seismicity extends as far eastward as the Rocky Mountains. For
example, the Landers earthquake shows strike-slip motion east
of the San Andreas, and the Borah Peak earthquake illustrates
the extensional faulting that occurs in the Basin and Range.
These focal mechanisms are consistent with the motions shown
by space-based geodetic measurements, discussed shortly, and
with geologic studies.

5.2.2 Global plate motions

The relative plate motions show how the plate boundary geo-
metry is evolving and has evolved. The Juan de Fuca plate is
subducting under North America faster than new lithosphere
is being added to it by sea floor spreading at its boundary with
the Pacific plate, so this plate was larger in the past and is
shrinking. Rotating the Pacific plate backwards with respect
to North America shows that 10 million years ago the Gulf of
California had not yet begun to open by sea floor spreading.
These changes are part of the evolution of the plate boundary
in western North America, in which the large oceanic Farallon
plate that used to be between the Pacific and North American
plates began subducting under North America at about
40 Ma,3 leaving the Juan de Fuca plate as a remnant and
forming the San Andreas fault.

At this point you may be wondering how Euler poles are
found. Until recently, this was done by combining three dif-
ferent types of data from different boundaries. The rates of
spreading are found from sea floor magnetic anomalies, which
form as the hot rock at ridges cools and acquires magnetization
parallel to the earth’s magnetic field. Because the history of
reversals of the earth’s magnetic field is known, the anomalies
can be dated, so their distance from the ridge where they
formed shows how fast the sea floor moved away from the
ridge. The directions of motion are found from the orientations
of transform faults and the slip vectors of earthquakes on trans-
forms and at subduction zones. Euler vectors are found from
the relative motion data, using geometrical conditions we have
discussed. The process is easy to visualize. Because slip vectors
and transform faults lie on small circles about the pole, the pole
must lie on a great circle at right angles to them (Fig. 5.2-2).
Similarly, the rate of plate motion increases with the sine of

the distance from the pole (Eqn 2). These constraints make it
possible to locate the poles. Determination of Euler vectors for
all the plates can thus be treated as an overdetermined least
squares problem whose solution (Section 7.5) gives a global
relative plate motion model. Because these models use spread-
ing rates determined from magnetic anomaly data that span
several million years, they describe plate motions averaged
over the past few million years.4

Table 5.2-1 gives such a model, known as NUVEL-1A,5

which specifies the motions of plates (Fig. 5.2-4) with respect
to North America. The vectors follow the convention that each
named plate moves counterclockwise relative to North America.
Although the table lists only Euler vectors with respect to
North America, the motion of plates with respect to other
plates is easily found using vector arithmetic. For example,

ω ij = −ω ji, (9)

so we reverse the plate pair using the negative of the Euler
vector. The pole for the new plate pair is the antipole, with
latitude of opposite sign and longitude increased by 180°. The
magnitude (rotation rate) stays the same. We can also reverse
the plate pair by keeping the same pole and making the rota-
tion rate negative (clockwise rather than counterclockwise).
Although we usually use positive rotation rates, negative ones
sometimes help us visualize the motion. For example, the table
shows the Pacific–North America pole at about −49°N, 102°E,
so the North America–Pacific pole is at about 49°N, (102 + 180
= 282)°E, which is in southeastern Canada. Thus, about this
pole, North America rotates counterclockwise with respect to
the Pacific, or the Pacific rotates clockwise with respect to
North America, as shown in Fig. 5.2-3.

For other plate pairs we assume that the plates are rigid, so
all motion occurs at their boundaries. We can then add Euler
vectors,

ω jk = ω ji + ω ik (10)

because the motion of plate j with respect to plate k equals
the sum of the motion of plate j with respect to plate i and the
motion of plate i with respect to plate k. Thus if we start with a
set of vectors all with respect to one plate, e.g., i, we use

ω jk = ω ji − ωki (11)

to form any Euler vector needed. These operations are easily
done using the Cartesian components (Eqn 4), as shown in
this chapter’s problems. We can also perform the analogous
operations on linear velocity vectors at a specific site.

3 “Ma” is often used to denote millions of years before the present.

4 The most recent magnetic reversal occurred about 780,000 years ago, so any plate
model based on paleomagnetic data must average at least over that interval.
5 NUVEL-1 (Northwestern University VELocity) was developed as a new
(“nouvelle”) model (DeMets et al., 1990). The multiyear development prompted
the suggestion that “OLDVEL” might be a better name. Due to changes in the
paleomagnetic time scale the model was revised to NUVEL-1A (DeMets et al., 1994).
This change caused a slight difference in the rates of relative motion, but not in the
poles and hence directions of relative motion.

5.2 Plate kinematics 293
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Table 5.2-1 Euler vectors with respect to North America (NA).

Plate Pole latitude (°N) Longitude (°E) |w | (°/Myr)

Pacific (PA) −48.709 101.833 0.7486
Africa (AF) 78.807 38.279 0.2380
Antarctica (AN) 60.511 119.619 0.2540
Arabia (AR) 44.132 25.586 0.5688
Australia (AU) 29.112 49.006 0.7579
Caribbean (CA) 74.346 153.892 0.1031
Cocos (CO) 27.883 −120.679 1.3572
Eurasia (EU) 62.408 135.831 0.2137
India (IN) 43.281 29.570 0.5803
Nazca (NZ) 61.544 −109.781 0.6362
South America (SA) −16.290 121.876 0.1465
Juan de Fuca (JF) −22.417 67.203 0.8297
Philippine (PH) −43.986 −19.814 0.8389
Rivera (RI) 22.821 −109.407 1.8032
Scotia (SC) −43.459 123.120 0.0925
NNR* 2.429 93.965 0.2064

Source: After DeMets et al. 1994.
*No net rotation, defined in Section 5.2.4.

Fig. 5.2-4 Relative plate motions for the NUVEL-1 global plate motion model. Arrow lengths are proportional to the displacement if plates maintain their
present relative velocity for 25 Myr. Divergence across mid-ocean ridges is shown by diverging arrows. Convergence is shown by single arrows on the
underthrust plate. Plate boundaries are shown as diffuse zones implied by seismicity, topography, or other evidence of faulting. Fine stipple shows mainly
subaerial regions where the deformation has been inferred from seismicity, topography, other evidence of faulting, or some combination of these. Medium
stipple shows mainly submarine regions where the nonclosure of plate circuits indicates measurable deformation; in most cases these zones are also
marked by earthquakes. Coarse stipple shows mainly submarine regions where the deformation is inferred mostly from the presence of earthquakes. The
geometry of these zones, and in some cases their existence, is under investigation. (Gordon and Stein, 1992. Science, 256, 333–42, copyright 1992
American Association for the Advancement of Science.)

PA

NA

SA

CO

RI

JF

AF

NZ

SC

AN

AU

PH

EU

AR IN
CA

Such vector addition is important because we only have
certain types of data for individual boundaries (Fig. 5.2-5).
Although spreading centers provide rates from the magnetic
anomalies and azimuths from both transform faults and slip

vectors, only the direction of motion is directly known at
subduction zones. As a result, convergence rates at subduction
zones are estimated by global closure, combining data from all
plate boundaries (Section 7.5). Thus the predicted rate at which



Earthquakes are among the best tools for investigating plate
boundary zones and other deviations from plate rigidity. They
provide one of the best indicators of the location of boundary
zones, so new earthquakes often change our views. We also
use plate motion data, many of which are earthquake slip vec-
tors. For example, Fig. 5.2-4 shows zones of seismicity in the
Central Indian Ocean (Section 5.5.2) as boundaries between
distinct Indian and Australian plates, rather than as within a
single Indo-Australian plate, because spreading rates along the
Central Indian Ocean ridge are better fit by a two-plate model.
A similar argument justifies the assumption of a small Rivera
plate distinct from the Cocos plate. Another approach is to use
the global plate circuit closures (Fig. 5.2-5). Recall that forming
a Euler vector from two others (Eqn 10) assumes that all three
plates are rigid. Hence this assumption can be used to test for
deviations from rigidity. To do this, we form a best-fitting vec-
tor for a plate pair, using only data from that pair of plates’
boundary, and a closure fitting vector from data elsewhere in
the world. If the plates were rigid, the two vectors would be
the same. However, a significant difference between the two
indicates a deviation from rigidity, or another problem with
the plate motion model. For example, such analysis shows
systematic deviations along some subduction zones, suggesting
that the slip vectors of the trench earthquakes do not exactly
reflect plate motions because a sliver of forearc material in the
overriding plate moves separately from the remainder of the
overriding plate (Section 5.4.3).

A variant of this approach is to examine the Euler vectors for
three plates that meet at a triple junction, compute best-fitting
Euler vectors for each of the three plate pairs, and sum them.
For rigid plates, Eqn 10 shows that the sum should be zero.
However, when this was done for the junction in the Central
Indian Ocean, assuming that it was where the African, Indo-
Australian, and Antarctic plates met, the Euler vector sum dif-
fered significantly from zero, indicating deviations from plate
rigidity. As plate motion data improve, it seems that what
was treated as a three-plate system may include as many as
six resolvable plates (Antarctica, distinct Nubia (West Africa)
and Somalia (East Africa), India, Australia, and Capricorn
(between India and Arabia)). Hence models of plate
boundaries and motions improve with time (Fig. 1.1-9). For
example, although the model in Fig. 5.2-4 has a single African
plate, recent models seek to resolve the motion between Nubia
and Somalia (Fig. 5.6-2).

5.2.3 Space-based geodesy

New plate motion data have become available in recent years
due to the rapidly evolving techniques of space-based geodesy.
Using space-based measurements to determine plate motions
was suggested by Alfred Wegener when he proposed the theory
of continental drift in 1915. Wegener realized that proving
continents moved apart was a formidable challenge. Although
geodesy a the science of measuring the shape of, and distances
on, the earth a was well established, standard surveying

Fig. 5.2-5 Global plate circuit geometry for the NUVEL-1 plate motion
model. Relative motion data are used on the boundaries indicated.
(De Mets et al., 1990. Geophys. J. Int., 101, 425–78.)
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the Cocos plate subducts beneath North America, causing
large earthquakes in Mexico, depends on the measured rates of
Cocos–Pacific spreading on the East Pacific rise and Pacific–
North America spreading in the Gulf of California. In some
cases, such as relative motion between North and South Amer-
ica, no direct data were used because the boundary location and
geometry are unclear, so the relative motion is inferred entirely
from closure. Not surprisingly, the motions of plate pairs based
on both rate and azimuth data appear to be better known.

Figure 5.2-4 shows the predicted relative motions at plate
boundaries around the world. As shown for the Pacific–North
America boundary in Fig. 5.2-3 and discussed in general terms
in later sections, the predicted motions correspond to the earth-
quake mechanisms. Moreover, we can use the plate motions to
make inferences about future earthquakes. For example, even
though we do not have seismological observations of large
earthquakes along the boundary between the Juan de Fuca
and North American plates, the plate motions predict that
such earthquakes could result from the subduction of the Juan
de Fuca plate beneath North America. Evidence for this sub-
duction is given by the presence of the Cascade volcanoes (such
as Mount Saint Helens and Mount Rainer) and paleoseismic
records (Section 1.2.5) that are interpreted as evidence of large
past earthquakes.

Figure 5.2-4 also illustrates that boundaries between plates
are often diffuse. Seismicity, active faulting, and elevated topo-
graphy often indicate a broad zone of deformation between
plate interiors. This effect is evident in continental lithosphere,
such as the India–Eurasia collision zone in Asia or the Pacific–
North America boundary zone in the western USA, but can
also sometimes be seen in oceanic lithosphere, as in the Central
Indian Ocean. Plate boundary zones cover about 15% of the
earth’s surface, and about 40% of the earth’s population lives
within them.
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tive plate motions. One of the most important results of space
geodesy for seismology is that plate motions have remained
generally steady over the past few million years. This is shown
by the striking agreement between motions measured over a
few years by space geodesy and the predictions of global plate
motion models that average over the past three million years
(Fig. 5.2-6). The general agreement is consistent with the idea
that although motion at plate boundaries can be episodic, as
in large earthquakes, the viscous asthenosphere damps out
the transient motions (much like the damping element in a
seismometer, Section 6.6) and causes steady motion between
plate interiors. This steadiness implies that plate motion
models can be used for comparison with earthquake data.

Space geodesy surmounts a major difficulty faced by models
like NUVEL-1A: namely, that the data used (spreading rates,
transform azimuths, and slip vectors) are at plate boundaries,
so the model provides only the net motion across a boundary.
By contrast, space geodesy can also measure the motion of sites
within plate boundary zones. For example, Fig. 5.2-3 shows
the motions of GPS and VLBI sites within the North America–
Pacific boundary zone. Sites in eastern North America move
so slowly a less than 2 mm/yr a with respect to each other that
their motion vectors cannot be seen on this scale. These sites
thus define a rigid reference frame for the stable interior of the
North American plate. Sites west of the San Andreas fault move
at essentially the rate and direction predicted for the Pacific
plate by the global plate motion model. The site vectors show
that most of the plate motion occurs along the San Andreas
fault system, but significant motions occur for some distance
eastward. The geodetic motions are consistent with the focal
mechanisms and geological data. Thus, as discussed further in
Section 5.6, the different data types are used together to study
how the seismic and aseismic portions of the deformation vary
in space and time in the diffuse deformation zones that charac-
terize many plate boundaries. This is done both on large scales,
as shown here, and for studies of smaller areas and individual
earthquakes (Section 4.5).

Space geodesy is also used to study the relatively rare, but some-
times large, earthquakes within plates. Global plate motion
models give no idea where or how often intraplate earthquakes
should occur, beyond the trivial prediction that they should not
occur because there is no deformation within ideal rigid plates.
Space geodesy is being combined with earthquake locations,
focal mechanisms, and other geological and geophysical data
to investigate the motions and stresses within plates and how
they give rise to intraplate earthquakes (Section 5.6.3).

5.2.4 Absolute plate motions

So far, we have discussed the relative motions between plates,
which have traditionally been of greatest interest to seismolog-
ists because most earthquakes reflect these motions. However,
in some applications it is important to consider absolute plate
motions, those with respect to the deep mantle.

In general, both plates and plate boundaries move with
respect to the deep mantle. To see this, assume that the African

Fig. 5.2-6 Comparison of rates determined by space geodesy with those
predicted by the NUVEL-1 global plate motion model. The space geodetic
rates are determined from sites located away from plate boundaries to
reduce the effects of deformation near the boundaries. The slope of the
line is 0.94, indicating that plate motions over a decade are very similar to
those predicted by a model averaging over 3 million years. (Robbins et al.,
1993. Contributions of Space Geodesy to Geodynamics, 21–36, copyright
by the American Geophysical Union.)
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methods offered no hope of measuring slow motions between
continents far apart. Wegener thus decided to measure the dis-
tance between continents using astronomical observations.6

However, because measuring continental drift called for meas-
urement accuracies far greater than ever before to show small
changes in positions over a few years, Wegener’s attempts
failed, and the idea of continental drift was largely rejected.

By the 1970s the story was very different. Geologists ac-
cepted continental drift, in large part because paleomagnetic
measurements showed that continents had in fact moved over
millions of years. It thus seemed natural to see if modern
space-based technology could accomplish Wegener’s dream of
measuring continental motions over a few years. Three basic
approaches were attempted. Each faced formidable technical
challenges a and all succeeded. Hence, using the techniques
discussed in Section 4.5.1, plate motions can now measured to
a precision of a few mm/yr or better, using a few years of data
from systems including Very Long Baseline Interferometry
(VLBI), Satellite Laser Ranging (SLR), and the Global Position-
ing System (GPS).

Space geodesy measures both the rate and the azimuth of the
motions between sites, and can thus be used to compute rela-

6 Using an extraterrestrial reference has a long history; in about 230 BC Eratosthenes
found the Earth’s size from observations of the sun’s position at different sites, and
navigators have found their positions by observing the sun and stars.
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the overriding plate is oceanic, its motion causes a progression
from active volcanism that builds the islands, to older islands,
to underwater seamounts as the sea floor moves away from
the hot spot, cools, and subsides. This process leaves a broad,
shallow, topographic swell around the hot spot and a charac-
teristic volcanic age progression away from it, as shown for the
Hawaiian–Emperor seamount chain. The ages of volcanism
range from present, on the currently active island of Hawaii, to
a few million years on the other Hawaiian islands,7 to about 28
Ma at Midway island, and about 70 Ma where the seamount
chain vanishes into the Aleutian trench. Thus the direction and
age of the volcanic chain give the motion of the plate with
respect to the hot spot. For example, the bend in the Hawaiian–
Emperor seamount chain has been interpreted as indicating
that the Pacific plate changed direction about 40 million years
ago. Hence using hot spot tracks beneath different plates, and
assuming that the hot spots are fixed with respect to the deep
mantle (or move relative to each other more slowly than
plates), yields a hot spot reference frame.

It is often further assumed that hot spots result from plumes
of hot material rising from great depth, perhaps even the core-
mantle boundary (Fig. 5.1-2). The concepts of hot spots and
plumes are attractive and widely used, but the relation between
the persistent volcanism and possible deep mantle plumes re-
mains a subject of active investigation because there are many
deviations from what would be expected. Some hot spots
move significantly, some chains show no clear age progression,
evidence for plate motion changes associated with bends like
that in Fig. 5.2-7 is weak, and oceanic heat flow data show little
or no thermal anomalies at the swells. Seismological studies
find low-velocity anomalies, but assessing their depth extent
and relation to possible plumes is challenging. However, the
hot spot reference frame is similar to one obtained by assuming
there is no net rotation (NNR) of the lithosphere as a whole,
and hence that the sum of the absolute motion of all plates
weighted by their area is zero. Thus despite unresolved ques-
tions about the nature and existence of hot spots and plumes,
NNR reference frames are often used to infer absolute motions.

To compute absolute motions, we recognize that motions
in an absolute reference frame correspond to adding a rotation
to all the plates. Thus we use the Euler vector formulation and
treat the absolute reference frame as mathematically equival-
ent to another plate. We define Ωi as the Euler vector of plate i
in an absolute reference frame. For example, Table 5.2-1 gives
the NNR Euler vector relative to the North American plate
(ωωωωω NNR−NA), so its negative (ωωωωω NA−NNR) is the absolute Euler
vector ΩNA for North America in the NNR reference frame.
The linear velocity at a point r is found by analogy to Eqn 1:

vi = Ω i × r. (12)

Thus we find the motion of North America with respect to
the hot spot thought to be producing the volcanism and
earthquakes in Yellowstone National Park (44°, −110°) to be

Fig. 5.2-7 Top: Illustration of the formation of a volcanic island chain by
plate motion over a fixed hot spot. Bottom: Ages, in millions of years, of
volcanoes in the Hawaiian–Emperor chain.
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plate were not moving with respect to the deep mantle. In this
case, as lithosphere was added to the plate by sea floor spread-
ing at the Mid-Atlantic ridge (Fig. 5.2-4), both the ridge and the
South American plate would move westward with respect to
the mantle. Conversely, as the African plate lost area by sub-
duction beneath the Eurasian plate in the Mediterranean, the
trench would “roll backward,” causing both it and Eurasia to
move southward relative to the mantle. Such motions can have
important consequences for processes at plate boundaries (e.g.
Fig. 5.3-10).

Absolute plate motions cannot be measured directly. Hence
we infer these motions in two ways. One uses the hot spot
hypothesis, in which certain linear volcanic trends result from
the motion of a plate over a hot spot, or fixed source of volcan-
ism, which causes melting in the overriding plate (Fig. 5.2-7). If

7 This age progression was recognized by native Hawaiians, who attributed it to the
order in which the volcano goddess Pele plucked the islands from the sea.
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Fig. 5.2-8 Comparison of the predicted absolute motion of North
America to the Snake River Plain basalts, which are thought to be the
track of a hot spot now producing volcanism in Yellowstone National
Park. (After Smith and Braile, 1994. J. Volcan. Geotherm. Res., 61,
121–87, with permission from Elsevier Science.)

Fig. 5.3-1 Possible tectonic settings of earthquakes at an oceanic
spreading center. Most events occur on the active segment of the
transform and have strike-slip mechanisms consistent with transform
faulting. On a slow-spreading ridge, like the Mid-Atlantic, normal fault
earthquakes also occur.

5.3 Spreading centers

Because the lithosphere forms at spreading centers, we begin
with an overview of such systems and the earthquakes within
them. We will see that seismological observations both de-
monstrate and reflect the basic kinematic model for ridges
and transforms. Moreover, they provide key evidence for the
thermal-mechanical processes that control the formation and
evolution of the oceanic lithosphere.

5.3.1 Geometry of ridges and transforms

Mid-ocean ridges are marked by earthquakes, which provide
important information about the sea floor spreading process.
Figure 5.3-1 is a schematic diagram of a portion of a spreading
ridge offset by transform faults. Because new lithosphere forms
at ridges and then moves away, transform faults are segments
of the boundaries between plates, across which lithosphere
moves in opposite directions. A given pair of plates can have
either right- or left-lateral motion, depending on the direction
in which a transform offsets the ridge; both reflect the same
direction of relative plate motion. This motion across the
transform is not what produced the offset of the ridge crest. In
fact, in the usual situation such that spreading is approxim-
ately symmetric (equal rates on either side), the length of the
transform will not change with time. This is a very different
geometry from a transcurrent fault, where the offset between
ridge segments is produced by motion on the fault and in-
creases with time.

The focal mechanisms illustrate these ideas. Figure 5.3-2
(top) shows a portion of the Mid-Atlantic ridge composed of
north–south-trending ridge segments that are offset by trans-
form faults such as the Vema transform that trend approxim-

18 mm/yr directed N239°E. This motion is along the trend
connecting the present volcanism in Yellowstone to the
Snake River Plain basalts (Fig. 5.2-8), which are thought to be
its track, a continental analogy to the Hawaiian–Emperor
seamount chain.

Relative and absolute Euler vectors are simply related because

ωωωωω ij = Ω i − Ωj, (13)

the relative Euler vector for two plates, is the difference
between their absolute Euler vectors. Thus, if we know one
plate’s absolute motion, we can find all the others from the
relative motions. For example, the absolute motion of the
Pacific plate can be found from Table 5.2-1, which gives its
vector relative to North America, using

ΩPA = ωPA−NA + ΩNA. (14)

Absolute motions are important in several seismological
applications. Seismology is used to study hot spots and their
effects, including the resulting intraplate earthquakes like
those associated with the volcanism in Hawaii. For example,
Fig. 2.8-5 illustrated the use of surface wave dispersion to study
the velocity structure under the Walvis ridge, which is thought
to be the track produced by a hot spot under the Mid-Atlantic
ridge. A second application involves seismic anisotropy in the
mantle (Section 3.6), which is thought to reflect flow of olivine-
rich material in a direction that is often consistent with the pre-
dicted absolute plate motions. Thus seismic anisotropy, seismic
velocities, and absolute motions are being combined to model
mantle flow.
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Earthquakes also occur on the spreading segments. Their
focal mechanisms show normal faulting, with nodal planes
trending approximately along the ridge axis. These normal
fault earthquakes are thought to be associated with the forma-
tion of the axial valley. For example, Fig. 5.3-3 shows a cross-
section through the Mid-Atlantic ridge. The fault planes
inferred from teleseismic focal mechanisms and the locations
of microearthquakes determined using ocean bottom seismo-
meters are consistent with normal faulting along the east side of
the valley. Slip on this fault over 10,000 years would be enough
to produce the observed geometry, including the eastward tilt
of the valley floor.

The seismicity differs along the East Pacific rise. Here (Fig.
5.3-2, bottom) earthquakes occur on the transform faults with
the expected strike-slip mechanisms, but few earthquakes occur
on the ridge crest. This is probably because the East Pacific rise
has an axial high, rather than the axial valley that occurs at
the Mid-Atlantic ridge.2 This difference appears to reflect the
spreading rates: ridges spreading at less than about 60 mm/yr
usually have axial valleys, whereas faster-spreading ridges have
axial highs and thus do not have ridge crest normal faulting.

These examples show the spreading process at its simplest,
but there can be complexities. Spreading can be asymmetric
(one flank faster than the other) or oblique, such that the
spreading is not perpendicular to the ridge axis. In addition, the
geometry of a ridge system can change with time, as discussed
in Section 5.3.3.

5.3.2 Evolution of the oceanic lithosphere

To understand the difference between fast- and slow-spreading
ridges, and the nature of the earthquakes associated with
them, it is important to understand the evolution of the oceanic

Fig. 5.3-2 Maps contrasting faulting on slow- and fast-spreading
centers. Top: The slow Mid-Atlantic ridge has earthquakes on both the
active transform and the ridge segments. Strike-slip faulting on a plane
parallel to the transform azimuth is characteristic. On the ridge segments,
normal faulting with nodal planes parallel to the ridge trend is seen.
Bottom: The fast East Pacific rise has only strike-slip earthquakes on the
transforms. (Stein and Woods, 1989.)

Fig. 5.3-3 Cross-section through the Mid-Atlantic ridge. The fault plane
inferred from the focal mechanisms of large earthquakes is consistent with
the locations of microearthquakes (dots) determined using ocean bottom
seismometers. Dashed lines show P-wave velocity structure. (Toomey
et al., 1988. J. Geophys. Res., 93, 9093–112, copyright by the American
Geophysical Union.)
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ately east–west. Both the ridge crest and the transforms are
seismically active. The mechanisms show that the relative
motion along the transform is right-lateral. Sea floor spread-
ing must be occurring on the ridge segments to produce the
observed relative motion. For this reason, earthquakes occur
almost exclusively on the active segment of the transform fault
between the two ridge segments, although an inactive exten-
sion known as a fracture zone extends to either side. Although
no relative plate motion occurs on the fracture zone,1 it is
often marked by a topographic feature due to the contrast
in lithospheric ages across it.

1 Unfortunately, some transform faults named before this distinction became clear
are known as “fracture zones” along their entire length. 2 This is often shown incorrectly on older maps.
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lithosphere. This process can be described using a simple, but
powerful, model for the formation of the lithosphere by hot
material at the ridge, which cools as the plate moves away.

In this model, material at the ridge at a mantle temperature
Tm (1300–1400 °C) is brought to the ocean floor, which has a
temperature Ts. The material then moves away at a velocity v,
while its upper surface remains at Ts (Fig. 5.3-4). Because the
plate moves away from the ridge faster than heat is conducted
horizontally, we can consider only vertical heat conduction.
Mathematically, this is the same as the cooling of a halfspace
originally at temperature T = Tm, whose surface is suddenly
cooled to Ts at time t = 0.

The temperature as a function of depth and time is given
by the one-dimensional heat flow equation, which relates the
temperature change with time in a piece of material to the rate
at which heat is conducted out of it,
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κ, known as the thermal diffusivity, is a property of the
material that measures the rate at which heat is conducted. It
has units of distance squared divided by time, and is defined as
κ = k/ρCp, where k is the thermal conductivity, ρ is the density,
and Cp is the specific heat at constant pressure.

The well known solution to Eqn 1 is

T(z, t) = Ts + (Tm − Ts) erf
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is known as the error function. Figure 5.3-5 (right) shows how
this function varies between erf (0) = 0 and erf (3) ≈ 1. Thus
cooling starts at the surface and deepens with time (Fig. 5.3-5,
left).

Assuming that any column of oceanic lithosphere cools this
way, and that the sea floor temperature is Ts = 0 °C, then

Fig. 5.3-4 Model for the cooling of an oceanic plate as it moves away from the ridge axis (left). Because a column moves away from the ridge faster than
heat is conducted in the horizontal direction (right), the cooling in the vertical direction can be treated as a one-dimensional problem. (After Turcotte
and Schubert, 1982.)
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Fig. 5.3-5 Left: Cooling of a halfspace as described by the one-
dimensional heat flow equation. The surface is cooled at time zero, and
then the interior cools with time. Right: The error function, which
controls the cooling solution shown.
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gives the temperature at a depth z for material of age t. The
lithosphere moves away from the ridge at half the total spread-
ing rate, so the age of the lithosphere is t = x/v, its distance from
the ridge divided by the half-spreading rate v. Thus the tem-
perature (Eqn 4) as a function of distance and depth is

T(x, z) = Tm erf
    

z

x v2 κ /
.
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⎝⎜
⎞

⎠⎟
(5)

It is useful to think of isotherms, lines of constant temperature,
in the plate. An isotherm is a curve on which the argument of
the error function is constant,
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t
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2
κ

κ  ,   ,= =or (6)

so that the depth to a given temperature increases as the square
root of the lithospheric age.

This is an example of a general feature of heat conduction
problems: setting c = 1 and examining Fig. 5.3-5 for erf (1)



Fig. 5.3-6 The increase in ocean depth with lithospheric age due to the
cooling of the lithosphere can be modeled using isostasy, the assumption
that the mass in a vertical column is the same for all ages.

Water
z = 0

z = h(t)

z = m(t)

Plate

Asthenosphere

3 Isostasy is the general idea that topography results from equal masses in different
columns. Here we consider thermal isostasy, in which density changes produced by
temperature variations cause topographic differences. Another common model, Airy
isostasy, is used to explain the relation between crustal thickness variations and to-
pography, such as crustal roots under mountains.

4 Normally, this equation requires a minus sign because heat flows from hot objects
to cold ones. Without this sign, hot objects would get hotter. There is none here be-
cause of our customary but inconsistent definitions: heat flow is measured upward
whereas depth is measured downward.
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shows that most of the temperature change has propagated a
distance     2 κ t in a time t. For example, after a lava flow erupts,
it cools as the square root of time. Such square root of time
behavior occurs for any process described by a diffusion equa-
tion, of which the heat equation is an example.

The concept that the lithosphere cools with time such that
isotherms deepen with the square root of age has many observ-
able consequences. The simplest is that ocean depth should
vary with age, which makes sense, because spreading centers
are ridges precisely because the ocean deepens on either side.
To model this effect, we consider the mass in two columns, one
at the ridge and one at age t, and invoke the idea of isostasy,
which means that the masses in the two columns balance
(Fig. 5.3-6).3

Assume that the lithosphere, defined by the T = Tm isotherm,
has thickness zero at the ridge and z = m(t) at age t, where the
water depth is h(t). Similarly, we assume that the astheno-
sphere is at temperature Tm and has density ρm. However, the
temperature and thus density in the cooling lithosphere vary,
such that at the point (z, t) the temperature is T(z, t) and the
corresponding density is

ρ(z, t) ≈ ρm + 
  

∂
∂

ρ
T

[T(z, t) − Tm] = ρm + ρ′(z, t). (7)

The change in density due to temperature, at constant pressure,
is given by the coefficient of thermal expansion,
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(the minus sign is because ∂ρ/ ∂T is negative). Thus the density
perturbation for the halfspace cooling model is

ρ′(z, t) = αρm[Tm − T(z, t)] = αρmTm
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If the density of water is ρw, equal mass in the two columns
requires that

ρmm(t) = ρwh(t) + 
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which gives the isostatic condition for ocean depth,
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Because temperature and density in the plate are defined for all
values of z (the thickness of the plate is defined as some chosen
isotherm), let z ′ = z − h(t) and m(t) → ∞. Then
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To evaluate the integral, substitute s z t  = ′/2 κ  and integrate by
parts (try it!) to show that

    

�
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[1 − erf (s)] ds =  1/ .π (13)

Thus ocean depth should increase as the square root of plate
age,
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The cooling of the lithosphere should also cause heat flow
at the sea floor to vary with age. By Fourier’s law of heat con-
duction, the heat flow at the sea floor is the product

  
q k

dT

dz
  = at z = 0 (15)

of the temperature gradient at the sea floor and the thermal
conductivity k.4 An easy approximation to see how heat flow
varies with age is to consider the Tm isotherm as the base of the
lithosphere, so that the thickness of the lithosphere increases
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Fig. 5.3-7 Models and data for thermal
evolution of the oceanic lithosphere.
Left: Isotherms for thermal models. The
lithosphere continues cooling for all ages
in a halfspace model, but equilibrates for
~70 Ma lithosphere in a plate model with
a 95 km-thick thermal lithosphere. The
plate model shown has a higher basal
temperature than the halfspace model.
Right: Comparison of thermal model
predictions to different data. All show a
lithospheric cooling signal, and are better
(but far from perfectly) fit by the predictions
of a plate model (solid lines) than by
those of a halfspace model (dashed lines).
(Richardson et al., 1995. Geophys. Res.
Lett., 22, 1913–16, copyright by the
American Geophysical Union.)
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where cn = 2/(nπ), βn = (R2 + n2π 2)1/2 − R, R = vL/(2κ). The con-
stant R, known as the thermal Reynolds number, relates the
rates at which heat is transported horizontally by plate motion
and conducted vertically. In this model isotherms initially
deepen as the square root of age, but eventually level out. The
flattening reflects the fact that heat is being added from below,
which the model approximates by having old lithosphere reach
a steady-state thermal structure that is simply a linear geotherm
(Fig. 5.3-8, top). As a result, the predicted sea floor depth and
heat flow also behave for young ages like in the halfspace
model, but evolve asymptotically toward constant values for
old ages. Both have simple interpretations: the heat flow is pro-
portional to the geotherm, and thus Tm /L, whereas the depth is
proportional to the thermal subsidence and hence heat lost
since the plate formed at the ridge, and thus the product TmL.
The model parameters can be estimated by an inverse problem,
finding those that best fit a set of depth and heat flow data
versus age (Fig. 5.3-8, bottom).

Comparison with data shows that the plate thermal model
is a good, but not perfect, fit to the average data because pro-
cesses other than this simple cooling are also occurring. For
example, ocean depth is also affected by uplift associated with
hot spots (Section 5.2.4). Water flow in the crust transports
some of the heat for ages less than about 50 Ma, making the
observed heat flow lower than the model’s predictions, which
assume that all heat is transferred by conduction. Some topo-
graphic effects, including the spectacular volcanic oceanic
plateaus, result from crustal thickness variations. Because these
and other effects vary from place to place, the data vary about
their average values for a given age.

with the square root of age. Approximating the gradient at the
surface by the average gradient through the lithosphere,
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predicts that the heat flow decreases as the square root of age.
The same result can be obtained by differentiation of the tem-
perature structure (Eqn 4) using
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This model, which predicts that lithospheric thickness, heat
flow, and ocean depth vary as the square root of age for all ages
is called a halfspace model (Fig. 5.3-7, upper left). In it, the
lithosphere is the upper layer of a halfspace that continues
cooling for all time. (In reality, oceanic lithosphere never gets
older than 200 million years old because it gets subducted.)
The model does a good job of describing the average variation
in ocean depth and heat flow with lithospheric age.

However, because ocean depth seems to “flatten” at about
70 Myr, we often use a modification called a plate model
(Fig. 5.3-7, lower left), which assumes that the lithosphere
evolves toward a finite plate thickness L with a fixed basal tem-
perature Tm. In this model,



Fig. 5.3-8 Top: Asymptotic thermal structure for old lithosphere in
a plate model. The sea floor subsidence from the ridge, and thus ocean
depth, is proportional to the shaded area between the geotherm and
T = Tm, whereas heat flow is proportional to the geotherm. A schematic
adiabatic temperature gradient (Section 5.4.1) is shown beneath the plate.
(Stein and Stein, 1992. Reproduced with permission from Nature.)
Bottom: Fitting process used for thermal model parameters. The misfit to a
set of depth and heat flow data has a minimum at the point labeled GDH1,
a plate thermal thickness of 95 ± 15 km and basal temperature of 1450 ±
250°C. (Stein and Stein, 1996. Subduction, 1–17, copyright by the
American Geophysical Union.)
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We can view ocean depth, heat flow, and several other
properties of the oceanic lithosphere as observable measures
of the temperature in the cooling lithosphere. Because the
observables depend on different combinations of parameters
(Table 5.3-1), they can be used together to constrain individual
parameters (a halfspace model corresponds to an infinitely
thick plate). The depth depends on the integral of the temper-
ature (Eqn 11), whereas the heat flow depends on its derivative
at the sea floor (Eqn 15). Similarly, the slope of the geoid, a
function of the gravity field depending on a weighted integral of
the density, also varies with age in general agreement with the
plate model’s prediction (Fig. 5.3-7).

In addition, the elastic thickness of the lithosphere in-
ferred from the deflection caused by loads such as seamounts
(Fig. 5.3-9a), the maximum depth of intraplate earthquakes
within the oceanic lithosphere (Fig. 5.3-9b), and the depth to
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Table 5.3-1 Constraints on thermal models T(z, t).

Observable Proportional to Reflects

Young ocean depth
      
�T z t dz( , ) k1/2aTm

Old ocean depth
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Old ocean heat flow
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Geoid slope
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Source: Stein and Stein (1996).
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Fig. 5.3-9 Comparison of isotherms as functions of age for a plate model
to three datasets whose variation with age is consistent with cooling of the
lithosphere. The effective elastic thickness (a), deepest intraplate seismicity
(b), and depth to the low-velocity zone, shown by velocity profiles at
different ages (c), all increase with age. (After Stein and Stein, 1992.
Reproduced with permission from Nature.)
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the low-velocity zone determined from surface wave dispersion
(Figs. 5.3-9c and 2.8-7), all increase with age. Hence the
cooling of oceanic lithosphere causes the expected increase
in strength and seismic velocity. Moreover, as discussed in
Section 5.5, the resulting density increase is thought to provide
a major force driving plate motions.

Because various properties vary with age, the oceanic litho-
sphere can be defined in various ways, so terms like “seismic
lithosphere,” “elastic lithosphere,” and “thermal lithosphere”
are often used. Interestingly, these thicknesses differ. It looks as
if the deepest earthquakes are bounded by about 600–800 °C,
such that hotter material cannot support seismic failure. The
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Fig. 5.3-10 Top: Geological interpretation
of a multichannel seismic velocity study on
the East Pacific rise. A low-velocity region
under the axis is interpreted as a hot region
of melting, capped by a magma lens. Dashed
lines are possible paths of water circulation.
(Vera et al., 1990. J. Geophys. Res., 95,
15,529–56, copyright by the American
Geophysical Union.) Bottom: Schematic
cross-section across the East Pacific rise. The
broad region of low velocities is interpreted
as the primary melting region. Small ellipses
are directions of preferred olivine alignment
inferred from anisotropy. Lines with arrows
indicate inferred mantle flow, causing the
distortion shown of an initially vertical line.
Absolute velocities of the two plates (Pacific
on left, Nazca on right) are given by small
horizontal arrows. (Forsyth et al., 1998.
Science, 280, 1215–18, copyright 1998
American Association for the Advancement
of Science.)
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1979. J. Geophys. Res., 84, 6831–9, copyright by the American Geophysical Union.)

elastic thickness corresponds approximately to the 400 °C
isotherm, whereas the low-velocity zone begins approximately
below the 1000 °C isotherm (Fig. 5.3-9c). These differences,
discussed in Section 5.7, likely result from rock being stronger
for more rapid deformation. All of these thicknesses, however,
only approximate what we would like to know but cannot
directly measure: the depth of the base of the moving plate,
which is likely to be a gradational rather than a distinct
boundary.

5.3.3 Ridge and transform earthquakes and processes

Seismology makes important contributions to understanding
the properties and behavior of spreading centers. Ocean
bottom seismometers yield locations of microearthquakes and
data for travel time and waveform studies. Larger earthquakes
are also studied using teleseismic body and surface waves. The
seismological results are being integrated with marine geo-
physical and petrological data to develop better models. For
example, Fig. 5.3-10 (top) shows a geological interpretation of
a multichannel seismic study (Section 3.3) that used air gun and
explosive sources to image velocity structure under the East
Pacific rise to a depth of about 10 km. A low-velocity region
under the axis is interpreted as a hot melting region capped by a
magma lens. Other studies using ocean bottom seismometers
and distant earthquake sources map the structure to greater
depth, including inferring flow directions under the ridge axis
using anisotropy (Fig. 5.3-10, bottom). Such studies are find-
ing interesting features of the spreading process. For example,
the broad region of low velocity presumed to be the primary
melting area extends further west than east of the axis. This
asymmetry may occur because the westward absolute motion
of the Pacific plate is much faster than the eastward absolute
motion of the Nazca plate, causing the ridge to migrate west-
ward relative to the deep mantle. Thus the spreading process,
which depends on the relative plate motion (spreading rate),
also seems affected by the absolute motion.

Some effects of the spreading rate are illustrated by a model

shown in Fig. 5.3-11. At a given distance from the ridge, faster
spreading produces younger lithosphere and isotherms closer
to the surface than does slow spreading. If the region beneath
the 1185 °C isotherm and above the Moho depth of 5 km is
considered to be a magma chamber, a fast ridge has a larger
magma chamber. Hence crust moving away from a fast-
spreading ridge is more easily replaced than that moving away
from a slow ridge. Thus, in contrast to the axial valley and
normal faulting earthquakes on a slow ridge, a fast ridge has an
axial high and an absence of earthquakes. Similarly, both the
depths and the maximum seismic moments5 of ridge crest
normal faulting earthquakes decrease with spreading rate
(Fig. 5.3-12). These observations are consistent with the fault
area decreasing on faster-spreading and hotter ridges, because
faulting requires that rock be below a limiting temperature,
above which it flows (Section 5.7). The idea that the faulting
depends on temperature is also implied by the increase in the
maximum depth of oceanic intraplate earthquakes with age
(Fig. 5.3-9b).

Transform fault earthquakes also depend on thermal struc-
ture. The temperatures along a transform fault should be essen-
tially the average of the expected temperature on the two sides;
coolest at the transform midpoint and hottest at either end
(Fig. 5.3-13). As expected from the area available for fault-
ing, the maximum seismic moment for transform earthquakes
decreases with spreading rate (Fig. 5.3-14), consistent with the
idea of faulting limited to a zone bounded by the isotherms.

An interesting question is how the seismic moments of trans-
form earthquakes relate to the plate motion. The average slip
rate from earthquakes can be inferred from the total seismic
moment released on a transform, assuming that

  
seismic slip rate  

total seismic moment

(fault area)(rigidity)(time period)
= . (20)

5 Recall (Section 4.6) that the seismic moment is the product of the rigidity, the slip
in the earthquake, and the fault area.
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Fig. 5.3-12 Left: Shallowing of focal depth for ridge crest normal fault earthquakes with half-spreading rate. (After Huang and Solomon, 1988.
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Fig. 5.3-13 Thermal model of the Romanche Transform.
Top: Temperatures on either flank predicted by the cooling halfspace
model. Bottom: Average temperature distribution along the transform.
(After Engeln et al., 1986. J. Geophys. Res., 91, 548–77, copyright by
the American Geophysical Union.)

Fig. 5.3-14 Seismic moment versus spreading rate for oceanic transforms.
The maximum moment decreases with spreading rate, as expected from
thermal considerations. (After Solomon and Burr, 1979. Tectonophysics,
55, 107–26, with permission of Elsevier Science.)
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Using this relation requires inferring the fault area, which
depends on both the transform length and the depth to which
faulting occurs. Assuming the area above the 600–700 °C
isotherms fails seismically, the seismic slip rate for major
Atlantic transforms is generally less than predicted by the plate
motion. Thus, if the time period sampled is long enough to
be representative a a major question a some of the plate
motion occurs aseismically. The issue of how much slip occurs
seismically remains unresolved, as we will see when we discuss
subduction zones (Section 5.4.3) and intraplate deformation
zones (Section 5.6.2).

In addition, seismology helps study how ridge-transform
systems evolve. For example, the East Pacific rise near Easter
Island contains two approximately parallel sections (Fig. 5.3-
15, top). Earthquakes occur on these ridges, but not between
them, suggesting that the area in between is an essentially rigid
microplate. The normal fault earthquakes on the microplate’s
southern boundary are surprising because the East Pacific
rise here is a very fast-spreading (15 cm/yr) ridge, which should
not have normal fault earthquakes (Fig. 5.3-12). Magnetic
anomalies show that the east ridge segment is propagating
northward and taking over from the old (west) ridge segment.
Figure 5.3-15 (bottom) shows a simplified model of this pro-
cess. Because finite time is required for the new ridge to transfer
spreading from the old ridge, both ridges are active at the
same time, and the spreading rate on the new ridge is very slow
at its northern tip and increases southward. As a result, the
microplate rotates, causing compression (thrust faulting) and
extension (normal faulting) at its north and south boundaries,
respectively. Ultimately the old ridge will die, transferring
lithosphere originally on the Nazca plate to the Pacific plate,
and leaving inactive fossil ridges on the sea floor. Both V-
shaped magnetic anomalies characteristic of ridge propagation
and fossil ridges are widely found in the ocean basins, showing
that this is a common way that ridges reorganize. Even for
smaller (a few km) propagating ridge systems, studies of the
associated earthquakes can yield useful information about the
propagation process.

5.4 Subduction zones

We have seen that earthquakes at spreading centers, which at
shallow depths are upwelling limbs of the mantle convection
system, reflect the processes forming oceanic lithosphere there.
In a similar way, earthquakes at subduction zones, downwell-
ing limbs of the convection system, reflect the processes by
which oceanic lithosphere reenters the mantle. Plate conver-
gence takes different forms, depending on the plates involved.
Figure 5.4-1 shows the basic model for a situation where
oceanic lithosphere of one plate subducts beneath oceanic
lithosphere of the overriding plate. Typically, a volcanic island
arc forms, and sea floor spreading occurs behind the arc,
forming a back-arc basin or marginal sea. Earthquakes occur
both at the trench and to great depth, forming a dipping
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Fig. 5.3-15 The Easter microplate on the East Pacific rise. Top: Seismicity
(dots) and focal mechanisms in the microplate region. Note the normal
faulting on the southern boundary. (After Engeln and Stein, 1984.)
Bottom: Schematic model for the evolution of a rigid microplate between
two major plates by rift propagation. Successive isochrons illustrate the
northward propagation of the east ridge, slowing of spreading on the west
ridge, the rotation of the microplate, the reorientation of the two ridges,
and the conversion of the initial transform into a slow and obliquely
spreading ridge. (Engeln et al., 1988. J. Geophys. Res., 93, 2839–56,
copyright by the American Geophysical Union.)
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Fig. 5.4-1 Schematic diagram of processes
associated with the subduction of one
oceanic plate beneath another.
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Fig. 5.4-2 Composite subduction zone showing some earthquake types.
Not all are observed at all subduction zones.

Wadati–Benioff zone. By contrast, when oceanic lithosphere
subducts beneath a continent, a mountain chain like the Andes
forms on the continent, and the oceanic lithosphere forms
a Wadati–Benioff zone. Finally, because continental crust
cannot subduct, convergence between two continental plates,
as in the Himalayas, causes crustal thickening, mountain build-
ing, and shallow earthquakes but does not create a Wadati–
Benioff zone.

Subduction zones have a wide variety of earthquakes with
different focal mechanisms and depths. There are shallow (less
than 70 km deep), intermediate (70–300 km deep), and deep
(more than 300 km deep) focus earthquakes.1 These earth-
quakes occur in different tectonic environments. The inter-
mediate and deep earthquakes forming the Wadati–Benioff
zone occur in the cold interiors of downgoing slabs. The shallow
earthquakes are associated with the interaction between the
two plates. The largest and most common of these shallow
earthquakes occur at the interface between the plates, and
release the plate motion that has been locked at the plate inter-
face. In addition, shallow earthquakes can occur within both
the overriding and the subducting plates. Figure 5.4-2 shows
some features of seismicity observed in subduction zones. Not
all features have been observed at all places. For example, the
dips and shapes of subduction zones vary substantially. Some
show double planes of intermediate or deep seismicity, whereas
others do not.

In discussing subduction zones, we follow an approach
similar to that used in the last section for ridges. We introduce
thermal models for subduction, then use them to gain insight
into earthquake and seismic velocity observations. We will see
that seismological observations, thermal models, and calcula-
tions of the behavior of materials at high temperature and pres-
sure are combined to investigate these complicated regions. In
general, the seismological observations are fairly clear, but they
can be interpreted in terms of a variety of models. As a result,
subduction zone studies remain active, fruitful, and exciting.

5.4.1 Thermal models of subduction

The essence of subduction is the penetration and slow heating
of a cold slab of lithosphere as it descends into the warmer
mantle. As we will see, slabs subduct rapidly compared to the
time needed for heat conducted from the surrounding mantle
to warm them up. Thus they remain colder, denser, and me-
chanically stronger than the surrounding mantle. Consequently,
slabs transmit seismic waves faster and with less attenuation
than the surrounding mantle, making it possible to map slabs
and to show that deep earthquakes occur within them. More-
over, the negative thermal buoyancy of cold slabs appears to be
the primary force driving plate motions and provides a major
source of stress within them that causes deep earthquakes.

To explore the thermal evolution of slabs, we use two
approaches. First, we discuss a simplified analytic thermal
model that allows insights into the physics. We then discuss
numerical models that incorporate additional effects in the
hope of providing a more realistic description. We highlight
some significant points, and more complete information can be
found in the references.
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The analytic model (Fig. 5.4-3) considers a semi-infinite slab
of thickness L subducting at rate v. The surrounding mantle is
at temperature Tm, and the plate enters the trench with a linear
temperature gradient from T = 0 at its top to Tm at its base. We
define the x axis down the dip of the slab, and the y axis across
the slab. The evolution of the region is given by a slightly more
complicated version of the heat equation (Eqn 5.3.1) used to
model the cooling of the lithosphere as it moves away from the
ridge. This version,
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⎞

⎠⎟
∇∇  = ∇∇∇∇∇ · (k∇T ) + ε , (1)

describes the evolution of the temperature field, T(x, y, t), as a
function of time and the two space coordinates. In addition to
the heat conduction term ∇∇∇∇∇ · (k∇∇∇∇∇T ), Eqn 1 includes a v∇∇∇∇∇T term
describing the transfer (or advection) of heat by movement of
material, and the ε term representing additional sources or
sinks of heat such as radioactivity and phase changes. This
form allows key parameters such as the density ρ, specific heat
Cp, thermal conductivity k, and heat sources or sinks ε to vary
with position. For a simple analytic solution, we assume that
the problem is steady state (∂T/ ∂t = 0) and neglect heat sources
and sinks (ε = 0). We further assume that the physical propert-
ies of the material (ρ, Cp, k, and hence the thermal diffusivity
κ  = k/ρCp) are independent of position.

With these simplifications, Eqn 1 becomes
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which has a series solution

T(x, y) = Tm[1 + 2
n=

∞

∑
1

cn exp (−βnx/L) sin (nπy/L)], (3)

with

cn = (−1)n/(nπ), βn = (R2 + n2π 2)1/2 − R, R = vL/(2κ).

R, the dimensionless thermal Reynolds number, is the ratio of
the rate at which cold material is subducted to that at which it
heats up by conduction. This solution resembles the temperat-
ure field in the plate model of cooling lithosphere (Eqn 5.3.19),
because both models describe the thermal evolution of a plate
of finite thickness with temperature boundary conditions at the
top, bottom, and one end. In the previous case the plate cools,
whereas in this case it heats up.

To find how far along the slab a given isotherm penetrates,
we approximate the series by its first term and use the fact that
R >> π, so

T(x, y) ≈ Tm[1 − (2/π) exp (−π 2x/(2RL)) sin (πy/L)]. (4)

Solving for the point where ∂T/∂y = 0 yields y = L/2, the middle
of the slab. In fact, taking additional terms shows that this
point is actually closer to the colder top (Fig. 5.4-3). Using the
first-term approximation, a temperature T0 goes furthest into
the subduction zone at

T0(x0, L/2) = Tm[1 − (2/π) exp (−π 2x0 /(2RL)], (5)

and reaches a maximum down-dip distance

x0 = −vL2/(π 2κ) ln [π(Tm − T0)/(2Tm)]. (6)

To convert this distance to depth in the mantle, we multiply by
sin δ, where δ is the slab dip. This correction converts the
subduction rate v to the slab’s vertical descent rate v sin δ.
Thus an isotherm’s maximum depth is proportional to the
subduction rate and the square of the plate thickness, so faster
subduction or a thicker slab allows material to go deeper before
heating up. If we assume that the square of the plate thickness is
proportional to its age, the maximum depth to an isotherm in
the downgoing slab is proportional to the vertical descent rate
times the age, t, of the subducting lithosphere.

This idea can be tested by assuming, as we did for spreading
center earthquakes, that the maximum depth of earthquakes
is temperature-controlled, so earthquakes should cease once
material reaches a temperature that is too high. To compare
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Fig. 5.4-3 An analytic model for
temperatures in a subducting plate.
Left: model geometry. Right: Results,
showing the cold slab heating up as it
descends through the hotter surrounding
mantle.
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Fig. 5.4-4 Maximum earthquake depths for different subduction zones
as a function of thermal parameter, the product of vertical descent rate
and lithospheric age. If earthquakes are limited by temperature, this
observation is consistent with the simple thermal model’s prediction
that the maximum depth to an isotherm should vary with the thermal
parameter. (After Kirby et al., 1996b. Rev. Geophys., 34, 261–306,
copyright by the American Geophysical Union.)

2 The oceanic lithosphere takes about 70 Myr to cool to equilibrium with the mantle
below, and so takes about half that time to heat up again from both sides after it
subducts.

various subduction zones, we examine the maximum depth of
earthquakes as a function of their thermal parameter

φ = tv sin δ. (7)

Figure 5.4-4 shows that the maximum depth increases with
thermal parameter, and deep earthquakes below 300 km occur
only for slabs with a thermal parameter greater than about
5000 km.

However, the fact that the earthquakes stop does not mean
that the slab has equilibrated with the surrounding mantle.
Figure 5.4-5 shows the predicted minimum temperature within
a slab as a function of time since subduction, assuming it
maintains its simple planar geometry and does not buckle or
thicken. The coldest portion reaches only about half the mantle
temperature in about 10 Myr, which is about the time required
for the slab to reach 660 km. Thus the restriction of seismicity
to depths shallower than 660 km does not indicate that the slab
is no longer a discrete thermal and mechanical entity. From a
thermal standpoint, there is no reason for slabs not to penetrate
into the lower mantle, an issue we discuss shortly. If a slab
descended through the lower mantle at the same rate (in fact,
it would probably slow down due to the more viscous lower
mantle), it would retain a significant thermal anomaly at the
core–mantle boundary, consistent with some models of that
region (Section 3.8.4).2

The thermal model can be improved with simple modific-
ations. Although we assumed that the slab subducts into an
isothermal mantle, temperature should increase with depth,

Fig. 5.4-5 Minimum temperature within a slab as a fraction of the mantle
temperature, as a function of the time since subduction, computed using
the analytic thermal model (Fig. 5.4-3). The coldest portion reaches half
the mantle temperature in about 10 Myr, by which time a typical slab is
approximately at 670 km depth, and 80% of it in 40 Myr, by which time
a slab that continued descending at the same rate would reach the core–
mantle boundary. Slabs can thus remain thermally distinct for long
periods of time. (Stein and Stein, 1996. Subduction, 1–17, copyright
by the American Geophysical Union.)
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as the material is compressed due to increasing pressure from
the overlying rock. Because the mantle below the lithosphere
is thought to be convecting, it is often assumed that self-
compression occurs adiabatically, such that material moving
vertically neither loses nor gains heat. In this case, equilibrium
thermodynamics requires that the effects of temperature and
pressure changes exactly offset each other,

dS
C

T
dT dPp      ,= − =

α
ρ

0 (8)

so that the entropy S does not change. This condition gives the
adiabatic temperature gradient, or adiabat, as
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where α is the coefficient of thermal expansion. Because pres-
sure increases with depth as dP/dz = ρg, temperature increases
with depth as
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We can thus correct the temperatures for the isothermal mantle
case to include adiabatic heating. Using the entropies requires
using absolute (Kelvin) temperatures, equal to the Celsius
temperature plus 273.15°. Thus if the absolute temperature at



depth z0, the base of the plate, is T K
0, we integrate Eqn 10 to find

the absolute temperature at depth z,

TK(z) = TK
0 exp [(αg/Cp)(z − z0)]. (11)

Another possibly important effect is that of heat sources and
sinks. For example, the olivine to spinel transition, which gives
rise to the 410 km discontinuity outside the slab, should release
heat as it occurs in the slab. Heat might also be generated by
friction at the top of the downgoing slab. The heat produced
is the product of the subduction rate and the shear stress on
the slab interface. The magnitude of this effect is difficult to
estimate. It should not be significant unless the shear stress is
greater than a few kilobars. As discussed later (Section 5.7.5),
the stress on faults is unknown. A further complexity results
from the fact that the viscosity of the mantle, which controls
the stress, decreases exponentially with temperature. Thus, if
frictional heating raises the temperature at the slab interface,
viscosity, and hence stress, would decrease, tending to counter-
act the effect.

To address these complexities, we use numerical models to
solve the heat equation at every point in the slab. These models
allow parameters such as density to vary with position. In addi-
tion, heat sources and sinks such as radioactive heating, phase
changes, and frictional heating can be incorporated. The
results of such calculations are similar to those of the analytic
model and are used to explore how temperatures should
vary between subduction zones. For example, Fig. 5.4-6 com-
pares models for a relatively younger and slower-subducting
slab (thermal parameter about 2500 km), approximating the
Aleutian arc, and an older, faster-subducting slab (thermal
parameter approximately 17,000 km), approximating the
Tonga arc. As expected, the slab with the higher thermal
parameter warms up more slowly, and is thus colder. This
prediction is consistent with the observation that Tonga has
deep earthquakes, whereas the Aleutians do not (Fig. 5.4-4).

Although we can compute such thermal models, a question is
whether they make sense. We test them using two seismological
datasets: earthquake locations and seismic velocities. Travel
time tomography (Section 7.3) across subduction zones shows
high-velocity slabs (Fig. 5.4-7). These results are compared to
the velocities predicted using a thermal model of the sub-
ducting slab and laboratory values for the variation in velocity
with temperature. The model predicts coldest temperatures in
the slab interior where the earthquakes occur. Because the
tomographic inversion finds the velocity within rectangular
cells, the model is converted to that grid and then “blurred”
because the seismic rays do not uniformly sample the slab. As
shown by the hit count, the number of rays sampling each cell,
most rays go down the high-velocity slab, yielding a somewhat
distorted image. The fact that this image and the tomographic
result are similar suggests that the model is a reasonable de-
scription of the actual slab. A similar conclusion emerges from
the observation that the tomographic result also resembles
parts of the model image that are artifacts, velocity anomalies

Fig. 5.4-6 Comparison of thermal structure for a relatively younger,
slower-subducting slab (50 Myr-old lithosphere subducting at 70 mm/yr;
thermal parameter about 2500 km), which approximates the Aleutian arc,
and an older, faster-subducting slab (140 Myr-old lithosphere subducting
at 140 mm/yr; thermal parameter about 17,000 km) which approximates
the Tonga arc. (Stein and Stein, 1996. Subduction, 1–17, copyright by the
American Geophysical Union.)
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that are not present in the original model. These artifacts, gen-
erally of low amplitude, cause the slab to appear to broaden,
shallow in dip, or flatten out. Hence, although slab thermal
models are simplifications of complicated real slabs, and many
key parameters are not well known, it seems likely that the
models are reasonable approximations (perhaps accurate to a
few hundred degrees) to the temperatures within actual slabs.

Seismology provides other tools to study the contrast
between the cold, rigid, downgoing plate and the hotter, less
rigid material around it. Figure 3.7-20 showed that a cold slab
transmits seismic energy with less attenuation than its sur-
roundings. Figure 5.4-8 shows some of the earliest data for this
effect: seismograms from a deep earthquake are contrasted at
stations NIU, to which waves travel through the downgoing
plate; and VUN, to which waves arrive through the surround-
ing mantle. The VUN record shows much more long-period
energy, especially for S waves, than that at NIU. Thus the
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Fig. 5.4-7 Comparison of a seismic tomographic image of a subducting slab, indicated by the velocity anomaly and earthquake hypocenters (dots) (upper
left) to the image (lower left) predicted for a slab thermal model. The seismic velocity anomaly predicted by the thermal model (upper right) is imaged by a
simulated tomographic study using the same seismic ray path sampling as the data. The hit count (lower right) shows the number of rays sampling each cell
used in the inversion. As a result of ray geometry and noise, the slab model gives a somewhat distorted image (lower left), showing how the model would
appear in such a tomographic study. The similarity of the image of the model and the tomographic result suggests that the model generally describes the
major features of the actual slab. Left scale bar gives velocity perturbations in percent, with positive values representing fast material. Right scale bar is
for hit count, showing values as logarithm to base 10; the white region in the hit count plot is densely sampled and off scale. (Spakman et al., 1989.
Geophys. Res. Lett., 16, 1097–110, copyright by the American Geophysical Union.)

high-frequency components were more absorbed on the
path to VUN due to higher attenuation (lower Q) than on the
more rigid slab path to NIU. In addition, the sharp contrast in
seismic velocity at the top of slabs can be detected using
reflected and converted seismic waves (Fig. 2.6-15).

5.4.2 Earthquakes in subducting slabs

The deep and intermediate earthquakes forming the Wadati–
Benioff zone extend in some places to depths of almost 700 km
(Fig. 5.4-9). These are the deepest earthquakes that occur:
away from subduction zones, earthquakes below about 40 km
are rare. The Wadati–Benioff zone earthquakes illustrate that
material cold enough to fail seismically (rather than flow) is
being subducted, and give our best information about the
geometry and mechanics of slabs.

The number of earthquakes as a function of depth illustrates
why we distinguish intermediate and deep earthquakes; seis-
micity decreases to a minimum near about 300 km, and then
increases again. Deep earthquakes, those below about 300 km,

are thus generally treated as distinct from intermediate earth-
quakes. Deep earthquakes peak at about 600 km, and then
decline to a minimum before 700 km. The focal mechanisms
also vary with depth; those shallower than 300 km show gen-
erally down-dip tension, whereas those below 300 km show
generally down-dip compression (Fig. 5.4-10).

Various explanations for this distribution of earthquakes
and focal mechanisms are under consideration. One is that
near the surface the slab is extended by its own weight, whereas
at depth it encounters stronger lower mantle material, caus-
ing down-dip compression. Another possible factor may be
mineral phase changes that occur at different depths in the cold
slab than in the surrounding mantle.

It is generally assumed that the most crucial effect is the
negative buoyancy (sinking) of the cold and dense slabs. The
thermal model gives the force driving the subduction due to
the integrated negative buoyancy of a slab resulting from the
density contrast between it and the warmer and less dense
material at the same depth outside. Because the slab does not
have a discrete lower end in the analytic model, the net force is
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Fig. 5.4-8 Seismological observations showing the difference between the
cold slab and hotter ambient mantle. Comparison of the seismograms at
NIU and VUN shows that high frequencies are transmitted better by the
slab, so the slab is a less attenuating, or higher Q path. (Oliver and Isacks,
1967. J. Geophys. Res., 72, 4259–75, copyright by the American
Geophysical Union.)
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Fig. 5.4-10 Stress orientations inferred
from focal mechanisms of subduction zone
earthquakes. The P and T axes are rotated
so that the down-dip direction is at the
center of each plot, and their distributions
are contoured. Top: Events below 300 km
are dominated by down-dip compression.
Bottom: Events from 70–300 km are
dominated by down-dip tension. (After
Vassiliou, 1984. Earth Planet. Sci. Lett.,
69, 195–201, with permission from
Elsevier Science.)
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Fig. 5.4-9 Distribution of seismicity with depth.
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Fig. 5.4-11 Stress within a vertical column of material under its own
weight, a simple analogy to stress within a downgoing slab. For the same
body force, different stress distributions result from different boundary
conditions. If the load is supported at the bottom, the column is under
compression; if the support is at the top, the column is under tension.
A combination of the two produces a transition.
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g[ρ(x, y) − ρm]dxdy. (12)

If material outside the slab is at temperature Tm and density ρm,
material in the slab at the point (x, y) has density

ρ(x, y) ≈ ρm + 
  

∂
∂

ρ
T

[T(x, y) − Tm] = ρm + ρ′(x, y). (13)

As for the cooling plate (Eqn 5.3.9), the density perturbation is

ρ′(x, y) = αρm[Tm − T(x, y)], (14)

so for the analytic temperature model (Eqn 3) the integral over
the slab yields a force

    
F

g T vLm m  .=
αρ

κ

3

24
(15)

This force, known as “slab pull,” is the plate driving force
due to subduction. Specifically, it is the negative buoyancy
associated with a cold downgoing limb of the convection
pattern. Its significance for stresses in the downgoing plate and
for driving plate motions depends on its size relative to the
resisting forces at the subduction zone. There are several such
forces. As the slab sinks into the viscous mantle, the material
displaced causes a force depending on the viscosity of the man-
tle and the subduction rate. The slab is also subject to drag
forces on its sides and to resistance at the interface between the
overriding and downgoing plates, which is often manifested
as earthquakes.

To gain insight into the relative size of the negative buoy-
ancy (“slab pull”) and resistive forces, we consider the stress
in the downgoing slab and the resulting focal mechanisms.
Figure 5.4-11 shows a simple analogy, the stress due to the
weight of a vertical column of length L of material with density
ρ. Using the equilibrium equation (Eqn 2.3.49), we equate the
stress gradient to the body force,

  

∂
∂

σ
ρzz z

z
g

( )
  ,= − (16)

so the stress as a function of depth is found by integration,

σzz(z) = −ρgz + C, (17)

where C is a constant of integration. To determine C, and thus
the stress in the column, the boundary conditions must be
known.

First, suppose the stress is zero at the top, z = 0. In this case
C = 0 and

σzz(z) = −ρgz, (18)

which is negative, corresponding to compression everywhere.
The forces required at the top and the bottom to maintain equi-
librium are given by the relation between the traction, stresses,
and outward normal vector on a surface (Eqn 2.3.8),

Tz = σzznz . (19)

At the top Tz(0) = 0, whereas at the bottom a force

Tz(L) = −ρgL (20)

holds the column up. This situation is like a column of material
sitting on the earth’s surface, under compression everywhere.

Alternatively, suppose the stress is zero at the bottom. In this
case the constant is chosen so that

σzz(z) = ρg(L − z) (21)

and the column is in extension (σzz positive) everywhere. The
force at the bottom is zero, and the force at the top,

Tz(0) = ρgL, (22)

supports the column, because nz points in the −z direction. This
situation corresponds to the material hanging under its own
weight.

If the column is supported equally at both ends, the forces at
either end are equal, so we find the stress from the condition
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Fig. 5.4-12 The absolute velocity of lithospheric plates increases with the
fraction of the plate’s boundary formed by subducting slabs, suggesting
that slabs provide a major driving force for plate motions. (Forsyth and
Uyeda, 1975.)
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Fig. 5.4-13 Phase diagram for transitions in olivine with increasing depth.
The phase boundaries as functions of temperature and pressure are known
as Clapeyron curves. The downwelling and upwelling lines contrast
conditions in slabs and plumes, respectively, to those in the ambient
mantle. A reaction with a positive slope, such as the olivine (α phase) to
spinel (β phase) change thought to give rise to the 410 km discontinuity
outside the slab, is displaced upward (to lower pressure) within the cold
slab. By contrast, the γ  spinel to perovskite plus magnesiowustite (pv +
mw) transition has a negative slope, so the 660 km discontinuity should
be deeper in slabs than outside. (After Bina and Liu, 1995. Geophys.
Res. Lett., 22, 2565–8, copyright by the American Geophysical Union.)

Tz(0) = −Tz(L), (23)

which gives

σzz(z) = ρg(L/2 − z). (24)

Thus the column is in extension in its upper half, z < L/2, and in
compression below this point.

The stress in the column shows how the body force due to
gravity is balanced by forces on the boundaries. By analogy, if
the downgoing slab were in tension, the negative buoyancy
force must exceed the resistive forces at the subduction zone,
and the slab would be “pulling” on and supported by the
remainder of the plate outside the subduction zone. In fact,
most earthquakes in the deeper portions of the slab show
down-dip compression, whereas the intermediate earthquakes
show down-dip tension (Fig. 5.4-10). This situation is like the
column supported at both ends.

These ideas about the forces within subduction zones are
consistent with two important pieces of data. First, the average
absolute velocity of plates increases with the fraction of their
area attached to downgoing slabs (Fig. 5.4-12), suggesting
that slabs are a major determinant of plate velocities. Second,
as discussed in Section 5.5.2, earthquakes in old oceanic
lithosphere have thrust mechanisms, demonstrating deviatoric
compression. Thus the net effect of the subduction zone on the
remainder of the plate is not a “pull,” so the term “slab pull”
is misleading. Instead, as implied by the slab stress models,
the “slab pull” force is balanced by local resistive forces, a com-
bination of the effects of the viscous mantle and the interface

between plates. This situation is like an object dropped in a
viscous fluid, which is accelerated by its negative buoyancy
until it reaches a terminal velocity determined by its density and
shape and the viscosity and density of the fluid.

An interesting possible complication is that slabs are not just
thermally different from their surroundings; they are probably
also mineralogically different. Slabs extend through the mantle
transition zone, where mineral phase changes are thought to
occur (Section 3.8). However, because a downgoing slab is
colder than material at that depth elsewhere, phase changes
within the slab are displaced relative to their normal depth.
The displacement can be calculated using the thermodynamic
relation, known as the Clapeyron equation, for the boundary
between two phases as a function of pressure and temperature.
If ∆H and ∆V are the heat and volume changes resulting from
the phase change, then a change dT in temperature moves the
phase change by a pressure dP given by the Clapeyron slope
(the reciprocal of Eqn 9),

  
γ     .= =

dP

dT

H

T V

∆
∆

(25)

For example, the 410 km discontinuity is attributed to the
phase change with increased pressure from olivine to a denser
spinel structure (the β phase, wadsleyite) described by a phase
diagram like that in Fig. 5.4-13. Because the spinel phase is
denser, ∆V is less than zero. This reaction is exothermic (gives
off heat), so ∆H is also negative, causing a positive Clapeyron
slope. If we know the depth (pressure) and temperature at
which a phase change occurs in the mantle, the Clapeyron
equation gives its position in the slab. The slab is colder than
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Fig. 5.4-14 Predicted mineral phase boundaries
and resulting buoyancy forces in a downgoing slab
without (left panels) and with (right panels) a
metastable olivine wedge. Assuming equilibrium
mineralogy the cold slab has negative thermal
buoyancy, negative compositional buoyancy
associated with the elevated 410 km discontinuity,
and positive compositional buoyancy associated
with the depressed 660 km discontinuity.
A metastable wedge gives positive compositional
buoyancy and hence decreases the force driving
subduction. Negative buoyancy favors subduction,
whereas positive buoyancy opposes it. (Stein and
Rubie, 1999. Science, 286, 909–10, copyright 1999
American Association for the Advancement of
Science.)

upcoming plumes, however, because the phase diagram shows
that at these higher temperatures the Clapeyron curve for the
perovskite plus magnesiowustite transition is vertical, so the
transition is not displaced (Fig. 5.4-13).

The position of the olivine–spinel phase change may be further
affected. The Clapeyron slope predicts what happens if a phase
change occurs at equilibrium. However, the phase change actu-
ally occurs by a process in which grains of the high-pressure
phase nucleate on the boundaries between grains of the lower-
pressure phase and then grow with time (Fig. 5.4-15). Studies
of mineral nucleation and growth rates suggest that in the
coldest slabs the phase transformation cannot keep pace with
the rate of subduction, causing a wedge of olivine in the cold
slab core to persist metastably3 to greater depths (Fig. 5.4-14).

the ambient mantle (dT < 0), so this phase change occurs at a
lower pressure (dP < 0), corresponding to a shallower depth.
Converting the pressure change to depth, the vertical displace-
ment of this phase change is

  

dz

dT g
  .=

γ
ρ

(26)

By contrast, the ringwoodite (γ  spinel phase) to perovskite plus
magnesiowustite transition, thought to give rise to the 660 km
discontinuity, is endothermic (absorbs heat), so ∆H is positive.
Because this is a transformation to denser phases (∆V less than
zero), the Clapeyron slope is negative, and the 660 km discon-
tinuity should be deeper in slabs than outside. These opposite
effects a upward deflection of the 410 km and downward
deflection of the 660 km discontinuities (Fig. 5.4-14) a have
been observed in travel time studies. An interesting way to
think about these is to note that the negative buoyancy asso-
ciated with the elevated 410 km discontinuity helps the sub-
duction, whereas the positive buoyancy associated with the
depressed 660 km discontinuity opposes the subduction. The
reverse effect should not occur at the 660 km discontinuity for

3 Metastability describes the situation where a mineral phase survives outside its
equilibrium stability field in temperature–pressure space. Such metastable persistence
is expected because the relatively colder temperatures in slabs should inhibit reaction
rates. This effect explains why diamonds, which are unstable at the low pressures of
earth’s surface, survive metastably rather than transform to graphite. The situation in
slabs is similar to that of supercooled water, which persists as a liquid at temperatures
below its equilibrium freezing point.
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Fig. 5.4-15 Diagram showing the early
stages of a phase transformation. Grains of
the new phase (shaded) nucleate on grain
boundaries and grow by consuming the
original phase until none remains. (Kirby
et al., 1996b. Rev. Geophys., 34, 261–306,
copyright by the American Geophysical
Union.)

Fig. 5.4-16 Numerical model of mantle flow fields (lower left) and resulting stresses (upper right) within a downgoing slab for the cases of a slab that (A)
encounters higher-viscosity material below 670 km and (B) cannot penetrate below this depth. η values show relative viscosities. Both predict down-dip
tension in the upper portion of the slab and down-dip compression in the lower portion. The calculated stresses are highest near the bottom of the slab.
(Vassiliou et al., 1984. J. Geodynam., 1, 11–28, with permission from Elsevier Science.)

The deflections of the phase boundaries have several pos-
sible consequences. First, phase changes affect the thermal
structure of the slab due to the heat of the phase change. Thus
the exothermic olivine–spinel change should add heat to
slabs. This effect is simulated in thermal models by increas-
ing the temperature at the phase change. Second, the phase
boundaries are probably important for the buoyancy and
stresses within slabs. We have already discussed the idea that
the cold slabs are denser than their surroundings, causing
negative thermal buoyancy, which favors sinking. The phase
boundaries cause additional mineralogical buoyancy. For
example, if the olivine–spinel boundary is uplifted in the slab,
the presence of slab material denser than at that depth outside
causes additional negative buoyancy. However, if a wedge of
metastable olivine exists, it would be less dense than material at

that depth outside and produce positive buoyancy (Fig. 5.4-14)
in addition to that caused by the downward deflection of the
660 km discontinuity. Although the net buoyancy must be
negative because slabs subduct, the details of the buoyancy can
be important. For example, metastable olivine may help regu-
late subduction rates. Faster subduction would cause a larger
wedge of low-density metastable olivine, reducing the driving
force and slowing the slab.

A third possibility is that a phase change causes deep
earthquakes. Although this idea is a natural consequence of
the observation that deep earthquakes occur at transition
zone depths, it was not given serious consideration for a long
time because deep earthquake focal mechanisms show slip
on a fault, rather than isotropic implosions (Section 4.4.6).
However, laboratory studies now suggest that an instability
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Fig. 5.4-17 Numerical models of stresses
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3301–4, copyright by the American
Geophysical Union.)

Together these ideas offer several possible explanations
for features of slab earthquakes. One key feature is the depth
variation in seismicity and focal mechanisms. The first ex-
planation is that the depth distribution and stresses are largely
due to the negative thermal buoyancy of slabs and their en-
countering either a region of much higher viscosity or a barrier
to their motion at the 660 km discontinuity. Numerical models
(Fig. 5.4-16) predict stress orientations similar to those implied
by the focal mechanisms. Moreover, the magnitude of the
stress varies with depth in a fashion similar to the depth dis-
tribution of seismicity a a minimum at 300–410 km and an
increase from 500 to 700 km. Alternatively, numerical models
including the buoyancy effects of the phase changes (Fig. 5.4-
14) also predict a similar variation in stress magnitude and
orientation with depth (Fig. 5.4-17), without invoking a
barrier or higher viscosity in the lower mantle. Thus, in such

called transformational faulting can cause slip along thin shear
zones where metastable olivine transforms to denser spinel.
Such faulting can occur for the exothermic olivine to spinel
transition, but not for the endothermic spinel to perovskite plus
magnesiowustite transition, so deep earthquakes would occur
only in the transition zone. Because the metastable wedge’s
lower boundaries are essentially isotherms, this model offers a
physical mechanism for the observation (Fig. 5.4-4) that the
depth of earthquakes increases with thermal parameter. This
idea is attractive, but to date seismological studies show no
evidence for a metastable wedge, and large deep earthquakes
occur on fault planes that appear to extend beyond the bounda-
ries of the expected metastable wedge. If such wedges exist,
earthquakes may nucleate by transformational faulting, but
then propagate outside the wedge via another failure mecha-
nism.
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Fig. 5.4-18 North–south cross-section
showing seismicity of subduction zones of
the Northwest Pacific. Seismicity shallows
near the cusps where arcs meet, making
individual Wadati–Benioff zones tongue-
shaped. Large deep earthquakes (M0 greater
than 1026 dyn-cm), shown by open circles,
tend to be at the edges or bottoms of deep
seismicity, or isolated from the main
Wadati–Benioff zones. (Kirby et al., 1996b.
Rev. Geophys., 34, 261–306, copyright by
the American Geophysical Union.)

models, deep earthquakes need not be physically different from
intermediate ones, because the minimum in seismicity reflects
a stress minimum.

A second key issue is how deep earthquakes can occur at all.
As discussed in Section, 5.7, the strength of rock that must be
exceeded for fracture increases with pressure. The pressures
deep in a subducting slab should be high enough to prevent
fracture. One possibility is that the slabs become hot enough
that water released by decomposition of hydrous minerals
lubricates (reduces the effective stress on) faults. Another
possibility, mentioned earlier, is transformational faulting in
metastable olivine. It is also possible that the earthquakes occur
by very rapid creep, possibly associated with weakening due to
unusually small spinel grains formed in the coldest slabs.

The different explanations offered by these models all have
attractive features and may be true in part. However, although
such simple models based on idealized slabs explain some gross
features of deep earthquakes, none fully explains the com-
plexity of deep earthquakes. As shown by Fig. 5.4-18, a cross-
section along the subduction zones of the Northwest Pacific,
deep seismicity is “patchy” and variable. For example, it
shallows dramatically at the cusps between the Marianas,
Izu-Bonin, NE Japan, and Kuril-Kamchatka arcs. Moreover,
the largest earthquakes occur at the edges of the regions of deep
seismicity, as especially evident at the northern edge of the
Izu-Bonin seismicity. These sites may reflect tears in the down-
going lithosphere at the junctions between arcs, where hot
mantle material penetrates slabs. A further complexity is that
some deep earthquakes occur in unusual locations off the
down-dip extension of the main Wadati–Benioff zones and
have focal mechanisms differing from those of the deepest
earthquakes in the main zone (Fig. 5.4-19). Some other deep
earthquakes are isolated from actively subducting slabs. Such
unusual earthquakes may occur in slab fragments where meta-
stable olivine survives, and thus have mechanisms related to
local stresses rather than those expected for continuous slabs.

Another interesting observation from precise earthquake
locations in some subduction zones (Fig. 5.4-20) shows that
the Wadati–Benioff zone is made up of two distinct planes,
separated by 30–40 km. The upper plane seems to coincide
with the conversion plane for ScSp (Fig. 2.6-15), a sharp
velocity contrast that is presumably near the slab top. Focal
mechanisms suggest that the upper plane is in down-dip com-
pression and the lower one in down-dip extension. A variety of
models have been proposed. One is that the double plane re-
sults from “unbending” of the slab a the release of the bending
stresses produced when the slab began to subduct. Another
model is that the slab “sags” under its own weight, because at
depth it runs into a more viscous mesosphere, while at inter-
mediate depths it encounters a less viscous asthenosphere.
Explaining the phenomenon is complicated by the observation
that only some subduction zones have double zones.

The nature of deep earthquakes, especially the mechanism
restricting them to the transition zone, has implications for
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mantle flow. The simplest explanation for the cessation of deep
seismicity is that slabs cannot penetrate the lower mantle.
However, as shown in Fig. 5.4-21, tomographic studies (Chap-
ter 7) indicate that although some slabs are deflected at
660 km, they eventually penetrate deeper. Hence models in
which earthquakes stop either because the stress is not high
enough or because the phase changes causing them no longer
occur seem more likely. The issue is important because heat
and mass transfer between the upper and lower mantles have
major implications for the dynamics and evolution of the earth
(Section 3.8). At present, most models favor some degree of
communication between the two (Fig. 5.1-2). Slabs are some-
times deflected at the 660 km discontinuity, where they warm
further, lose any buoyant metastable wedge, and then penetrate
into the lower mantle. Thus the slab geometry we see likely re-
flects a complex set of effects. To cite another, some flat-lying
slabs at the 660 km discontinuity may be caused by the trench
“rolling backward” in the absolute (mantle) reference frame.

There has also been considerable discussion about the nature
of intermediate depth earthquakes. Figure 5.4-22 shows a
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schematic model in which the earthquakes are presumed to
occur in subducting oceanic crust, rather than throughout the
subducting mantle that makes up most of the slabs, because
detailed location studies show that the earthquakes are close to
the top of the subducting slabs. The crust should undergo two
important mineralogical transitions as it subducts. Hydrous
(water-bearing) minerals formed at fractures and faults should
warm up and dehydrate. Eventually, the gabbro transforms to
eclogite, a rock of the same chemical composition composed
of denser minerals.4 Under equilibrium conditions, eclogite
should form by the time slab material reaches about 70 km
depth. However, travel time studies in some slabs find a low-
velocity waveguide interpreted as subducting crust extending
to deeper depths. Hence it has been suggested that the eclogite-
forming reaction is slowed in cold downgoing slabs, allowing
gabbro to persist metastably. Once dehydration occurs, the
freed water weakens the faults, favoring earthquakes and
promoting the eclogite-forming reactions. In this model the
intermediate earthquakes occur by slip on faults, but the phase
changes favor faulting. The extensional focal mechanisms may
also reflect the phase change, which would produce extension
in the subducting crust. Support for this model comes from the
fact that the intermediate earthquakes occur below the island
arc volcanoes, which are thought to result when water released
from the subducting slab causes partial melting in the overlying
asthenosphere.

The fact that various explanations are under discussion illus-
trates the difficulty in understanding the complex thermal
structure, mineralogy, rheology, and geometry of real slabs.
We can think of the deep subduction process as a chemical
reactor that brings cold shallow minerals into the temperature
and pressure conditions of the mantle transition zone, where
these phases are no longer thermodynamically stable (Fig. 5.4-
23). Because we have no direct way of studying what is happen-
ing and what comes out, we seek to understand this system by
studying earthquakes that somehow reflect what is happening.
This is a major challenge, and we have a long way to go.

5.4.3 Interplate trench earthquakes

Much of what is known about the geometry and mechanics of
the interaction between plates at subduction zones comes from
the distribution and focal mechanisms of shallow earthquakes
at the interface between the plates. These include the largest
earthquakes that occur, as illustrated by Fig. 5.4-24, showing
the largest earthquakes (surface wave magnitude greater than
8.0) during 1904–76. Among these are the two largest earth-
quakes ever recorded seismologically: the 1960 Chilean (M0 2
× 1030 dyn-cm, Ms 8.3) and 1964 Alaska (M0 5 × 1029 dyn-cm,
Ms 8.4) earthquakes. Figure 5.4-25 shows the geometry of the
Chilean earthquake: 21 meters of slip occurred on a fault

4 Most of the oceanic crust consists of gabbro, the intrusive version of the extrusive
basalt seen at mid-ocean ridges (Section 3.2.5). With increasing pressure, gabbro
becomes eclogite as feldspar and pyroxene transform to garnet.
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Fig. 5.4-23 Cartoon of subducting slabs in the transition zone as a
chemical reactor. (Kirby et al., 1996b. Rev. Geophys., 34, 261–306,
copyright by the American Geophysical Union.)

800 km long along strike, and 200 km wide down-dip. The
mechanism shows thrusting of the South American plate over
the subducting oceanic lithosphere of the Nazca plate. The
aftershock zone was 800 km long, and the surface deformation
was dramatic, reaching 6 meters of uplift in places. Thrust
earthquakes of this type, although smaller, make up most of the
large, shallow events at subduction zones. Such interplate
earthquakes release the plate motion that has been locked at
the plate interface. As we saw in Section 4.6.1, these can be
much bigger than the largest earthquakes at transform fault
boundaries like the San Andreas. For example, even the 1906
San Francisco earthquake was tiny (100 times smaller seismic
moment) compared to the 1964 Alaska earthquake, although
both occurred along different segments of the same plate
boundary. The difference reflects the fact that faulting occurs
only when rock is cooler than a limiting temperature. Thus a
vertically dipping transform like the San Andreas has a much
shorter cold down-dip extent than the shallow-dipping thrust
interfaces (sometimes called megathrusts) at subduction zones.

Major thrust earthquakes at the interface between sub-
ducting and overriding plates directly indicate the nature of
subduction. In most cases, their focal mechanisms show slip
toward the trench, approximately in the convergence direction
predicted by global plate motion models or space-based geo-
desy (Section 5.2) (Fig. 5.2-3). However, in some cases when
the plate motion is oblique to the trench, a forearc sliver moves
separately from the overriding plate (Fig. 5.4-26). This effect,
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Fig. 5.4-24 Location of the largest earthquakes between 1904 and 1976. Ms values are in parentheses and Mw values in square brackets. Most are at
subduction zones and result from thrust faulting at the interface between the two plates. (Kanamori, 1978. Reproduced with permission from Nature.)

Fig. 5.4-25 Fault geometry and aftershock
distribution (insert) for the 1960 Chilean
earthquake. (Kanamori and Cipar, 1974.
Phys. Earth Planet. Inter., 9, 128–36, with
permission from Elsevier Science.)

5 Due to its location where between four and six plates (North America, Pacific,
Philippine, Eurasia, and perhaps Okhotsk and Amuria) interact, Japan has a high
level of seismicity, which was originally attributed to the motion of the namazu, a
giant underground catfish. As a result, Japan has an outstanding tradition of seismo-
logy and some of the best data in the world for studying subduction-related
earthquakes.

called slip partitioning, makes earthquake slip vectors at the
trench trend between the trench-normal direction and the
predicted convergence direction, and causes strike-slip motion
between the forearc and the stable interior of the overriding
plate. This effect can be seen in plate motion studies and with
GPS data, and can cause misclosure of plate circuits. In the
limiting case of pure slip partitioning, pure thrust faulting
would occur at the trench, and all the oblique motion would be
accommodated by trench-parallel strike-slip.

How the thrust earthquakes release the accumulated plate
motion is both interesting scientifically and important for
assessing earthquake hazards. In many subduction zones,

thrust earthquakes have characteristic patterns in space and
time. For example, large earthquakes have occurred in the
Nankai trough area of southern Japan approximately every
125 years since 1498 with similar fault areas (Fig. 5.4-27).5 In
some cases the entire region seems to have slipped at once; in
others, slip was divided into several events over a few years.
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Fig. 5.4-26 Schematic illustration of forearc sliver motion when
convergence is oblique. (Courtesy of D. Davis.)
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Fig. 5.4-27 Time sequence of large subduction zone earthquakes along
the Nankai trough, suggesting both some space and time periodicity
and some variability. (Ando, 1975. Tectonophysics, 27, 119–40, with
permission from Elsevier Science.)
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blems including the variability of earthquakes on a given plate
boundary, the issue of whether the time sample is long enough,
and the difficulty in estimating source parameters for earth-
quakes that pre-dated instrumental seismology. Given the un-
certainties in estimating the slip in an earthquake even with
seismological data (Section 4.6), doing so without such data is
particularly challenging. An alternative approach to estimating
plate coupling, discussed in Sections 4.5.4 and 5.6.2, uses GPS
geodesy to measure the deflection of the overriding plate,
which will be released in future large earthquakes. This deflec-
tion depends on the mechanical coupling at the interface, so
directly measures what we infer indirectly from the earthquake
history. However, the GPS data sample only the present earth-
quake cycle, which may not be representative of long-term
behavior.

Perhaps for similar reasons, efforts to interpret the seismic
slip fraction in terms of the physical processes of subduction
have not yet been successful. Although the term “seismic
coupling” implies a relation between the seismic slip fraction
with properties such as the mechanical coupling between the
subducting and overriding lithospheres, this has been hard
to establish. This relation was originally posed in terms of
two end members: coupled Chilean-type zones with large
earthquakes and uncoupled Mariana-style zones with largely
aseismic subduction. The largest subduction zone earthquakes
appear to occur where young lithosphere subducts rapidly
(Fig. 5.4-30, top), where we might expect the minimum “slab
pull” effects and hence the strongest coupling. However,

Given such repeatability, it seems likely that a segment of a
subduction zone that has not slipped for some time constitutes
a seismic gap and is due for an earthquake. For example, the
Tokai area (segment D) may be such as case and is the focus of
extensive earthquake prediction studies. However, despite the
intuitive appeal of the gap idea, efforts to predict the location
of future earthquakes using it have not generally been success-
ful (Sections 1.2.5, 4.7.3).

One difficulty is that not all of the plate motion occurs
seismically. Figure 5.4-28 shows that during 1952–73 a large
segment of the Kuril trench slipped in a series of six major
earthquakes with similar thrust fault mechanism. Seismic
moment studies show that the average slip was 2–3 meters.
Since the previous major earthquake sequence in the area
occurred about 100 years earlier, the average seismic slip rate
is 2–3 cm/yr, about one-third of the plate motion predicted
from relative motion models. The remaining two-thirds of the
slip occurs aseismically, as postseismic or interseismic motion.
Similar studies around the world find that the fraction of plate
motion that occurs as seismic slip, sometimes called the seismic
coupling factor, is generally much less than 1, implying that
much of the plate motion occurs aseismically if the time
interval sampled is adequate.

The Chilean subduction zone shows the other extreme. The
seismic slip rate, estimated from the slip in the great 1960
earthquake and historical records indicating that major earth-
quakes occurred about every 130 years during the past 400
years, exceeds the convergence rate predicted by plate motion
models (Fig. 5.4-29). Because the convergence rate is an upper
bound on the seismic slip rate, the two estimates are inconsist-
ent. One possibility is that the seismic slip is overestimated:
either the earlier earthquakes were significantly smaller than
the 1960 event or their frequency in the past 400 years is higher
than the long-term average.

More generally, these examples illustrate the difficulty in
inferring seismic slip from historical seismicity, owing to pro-
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Fig. 5.4-28 Rupture areas for a sequence
of large subduction zone earthquakes along
the Kuril trench. Different segments of the
boundary slip seismically over time. Arrows
show the direction and rate of seismic slip
and plate motion. If such sequences occur
about every 100 years and this time sample
is representative, the seismic slip is only
about one-third of the plate motion.
(Kanamori, 1977b. Island Arcs, Deep Sea
Trenches and Back Arc Basins, 163–74,
copyright by the American Geophysical
Union.)

Fig. 5.4-29 Comparison of seismic slip rate and plate motions for the
area of the great 1960 Chilean earthquake. Shaded region gives slip rate
estimated from slip in the 1960 event and recurrence of large trench
earthquakes in the last 400 years. The estimated slip rate exceeds that
predicted by any of the four plate motion models shown. (Stein et al.,
1986. Geophys. Res. Lett., 13, 713–16, copyright by the American
Geophysical Union.)

6 The observation that more recent grizzly bear attacks have occurred in Montana
than in Illinois might indicate either a perilous “gap” in Illinois or a greater intrinsic
hazard in Montana.

efforts to correlate the seismic slip fraction with subduction
zone properties such as convergence rate or plate age find no
clear pattern (Fig. 5.4-30, bottom). It has also been suggested
that seismic coupling may be lowest for sedimented trenches
and where normal stress on the plate interface is low, although
these plausible ideas have yet to be demonstrated. Thus, al-
though seismic coupling can be defined from the seismic slip
fraction, its relation to the mechanics of plate coupling is still
unclear. It appears that most subduction zones have significant
components of aseismic slip, as do oceanic transforms and
many continental plate boundaries (Section 5.6.2). Hence,
even given the considerable uncertainties in such estimates, it
appears common for a significant fraction of plate motion to
occur aseismically.

The difficulty in estimating seismic coupling and under-
standing the process of aseismic plate motion has consequ-
ences for estimating the recurrence of earthquakes on a plate
boundary and the seismic gap concept. It may be difficult to
distinguish between gaps and areas where much of the slip is
aseismic. For example, we would not want to say both that
areas with recent major seismicity have high seismic hazard
and that areas with little recent seismicity are gaps with high
seismic hazard.6 Moreover, as discussed in Sections 1.2 and
4.7.3, the process of earthquake faulting may be sufficiently
random that it is hard to use the plate motion rate and seismic
history to usefully predict how long it will be until the next
large earthquake.

Although most shallow subduction zone seismicity is at the
plate interface, some earthquakes occur within either plate.
Some appear to result from flexural bending of the downgoing
plate as it enters the trench (Fig. 5.4-31). Focal depth studies
show a pattern of normal faulting in the upper part of the plate
to a depth of 25 km, and thrusting in its lower part, between 40
and 50 km. These observations constrain the position of the
neutral surface dividing the mechanically strong lithosphere
(Section 5.7.4) into upper extensional and lower compres-
sional zones. In some cases the normal fault earthquakes are so
large that they may be “decoupling” events due to “slab pull”
that rupture the entire downgoing plate (Fig. 5.4-32). After-
shock distributions and studies of the rupture process indicate
that faulting extended through a major portion, and perhaps
all, of the lithosphere. Rupture through the entire lithosphere
favors the decoupling model. If only a portion of the litho-
sphere breaks, the interpretation is more complicated. Rupture
may have been restricted to one side of the neutral surface (in
the flexural model) or reflect the material below being too hot
and weak for seismic rupture. In the latter case, the entire
lithosphere could have failed, with the deeper rupture being
aseismic.



Ra
te

 (c
m

/y
r)

12

10

8

6

4

2

0

9.5
S. Chile

Maximum known earthquake magnitude, MW

8.2
NE Japan 8.5

Kuriles
9.0

Kamchatka

8.2
Peru

8.5
C. Chile

9.0

8.1
C. America 8.8

Colombia

8.5

9.1
Aleutians

7.9
Sumatra 8.0

Ryukyus

Alaska
9.2

8.0

7.9
New Hebrides

Scotia
7.07.5

7.5
Caribbean

7.0

Marianas
7.2

Izu-Bonin
7.2

7.1
Java

8.1
Kermadec

7.8
New Zealand

Tonga
8.3

160 140 120 100 80 60 40 20 0
Age (Ma)

Se
is

m
ic

 c
ou

pl
in

g 1.2

0.8

0.4

0.0
0 50 100 150

1.2

0.8

0.4

0.0
30 50 70 90 110

Age (Ma) Rate (mm/yr)

Fig. 5.4-30 Top: Variation in the magnitude (Mw) of
the largest known subduction thrust fault earthquake
between subduction zones as a function of the convergence
rate and age of the subducting lithosphere. (Ruff and
Kanamori, 1980. Phys. Earth Planet. Inter., 23, 240–52,
with permission from Elsevier Science.) Bottom: Seismic
coupling fraction estimated from historical seismicity at
various subduction zones. Although most subduction zones
show considerable aseismic slip, there is no obvious
correlation with either age of the subducting lithosphere
(left) or subduction rate (right). (Pacheco et al., 1993.
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Fig. 5.4-31 Focal depths of flexural earthquakes due to the bending of
subducting plates as they enter the trench. Tensional events occur above
the neutral surface, and compressional events occur below it. The plate
mechanical thickness, H, increases with age, as expected from thermal
models. (After Bodine et al., 1981. J. Geophys. Res., 86, 3695–707,
copyright by the American Geophysical Union.)

Fig. 5.4-32 Large normal faulting earthquakes at trenches, such as the
1965 Ms 7.5 Rat Island earthquake, may be due to flexure or failure of the
lithosphere under its own weight. The extent of aftershocks, which appear
not to cut the entire lithosphere, may reflect the extent of rupture or be a
temperature effect. (Wiens and Stein, 1985. Tectonophysics, 116, 143–62,
with permission from Elsevier Science.)

Aleutian trench

300°

600°

900°

main shock,
Mar. 30, 1965

aftershock50 km

Oceanic lithosphereD
ep

th
 (k

m
)

0

20

40

60

80

Neutral
surface

0 40 80 120 160 180

Age  (Ma)

Brittle

Ductile
tensional
compressional H

Bending
Lithosphere

Asthenosphere



326 Seismology and Plate Tectonics

5.5 Oceanic intraplate earthquakes and tectonics

The vast majority of earthquakes a especially when measured
in terms of seismic moment release a occur on plate boundaries
and reflect the relative plate motions there. However, intra-
plate earthquakes, those within plates, also provide important
tectonic information. We discuss intraplate earthquakes that
occur in oceanic lithosphere in this section, and then discuss
their counterparts in continental lithosphere in the next.

5.5.1 Locations of oceanic intraplate seismicity

Figure 5.5-1 illustrates the distribution of earthquakes in the
Atlantic Ocean, excluding those along the Mid-Atlantic ridge.
Although these earthquakes are rarer than those along the

ridges and transforms making up the Mid-Atlantic ridge plate
boundaries, there are enough to justify interest. They nicely
illustrate that plates deviate from the ideal case of perfect rigid-
ity without internal deformation, such that all motion occurs at
narrow boundaries. Instead, as noted in Section 5.2, real plates
are complicated entities that have both internal deformation
and diffuse boundary zones.

One way to think about these earthquakes is to consider a
hierarchy, from slow-moving plate boundaries, to recognizable
weak structures, and then to apparently isolated earthquakes.
For example, the Atlantic portion of the boundary between the
Eurasian and African plates, which stretches from Gibraltar to
the Azores, is poorly defined by topography and seismicity
compared to the Mid-Atlantic ridge. However, the focal
mechanisms (Fig. 5.5-2, top) show a transition from extension
at the Terceira Rift near the Azores, to strike-slip along a
segment that includes the mapped Gloria transform fault, to
compression near Gibraltar, and then into the Mediterranean.
This transition reflects the fact that the Euler pole is close
enough that the relative motions are small and change rapidly
with distance (Fig. 5.5-2, bottom). For example, near the triple
junction the NUVEL-1A model (Table 5.2-1) predicts 4 mm/yr
of extension resulting from the small difference between
Eurasia–North America (23 mm/yr at N97°E) and Africa–
North America (20 mm/yr at N104°E) spreading across the
Mid-Atlantic ridge. Even in the western Mediterranean, the
motions are too slow to generate a well-developed subduction
zone like those of the Pacific, but instead cause a broad con-
vergent zone indicated by large earthquakes like the 1980 Ms
7.3 El Asnam, Algeria, earthquake.

Even slower motion appears to be why sea floor topography
shows no clear evidence for the boundary between the North
American and South America plates shown by the dashed
line in Fig. 5.5-1, despite a diffuse zone of seismicity in this
area. This zone is considered to be a plate boundary, based on
detailed studies of plate motions. These studies invert plate
motion data (spreading rates, transform fault directions, and
earthquake slip vectors; Section 5.2.2) to find Euler vectors
under two different assumptions: either there is a single Amer-
ican plate, or there are two. The Euler vectors derived by assum-
ing there are two plates fit the data better, which would be
expected, because a model with more parameters always fits
data better. However, statistical tests (Section 7.5.2) show that
the fit to the data improves more than expected purely by
chance due to the additional parameters, implying that the two
plates are distinct.

The North America–South America Euler vector that results
from inverting the data is not well constrained, because it is
not derived directly from data recording the motion between
North America and South America, but is estimated from
closure of the plate circuit (Fig. 5.2-5). Thus the estimate of
motion results from the difference between North America–
Africa and South America–Africa motions, which are quite
similar (if they were not, the data would clearly show two dis-
tinct American plates). The predicted motion along the North

Fig. 5.5-1 Distribution of earthquakes in the Atlantic Ocean other than
those on ridge and transform segments of the Mid-Atlantic ridge system.
(Wysession et al., 1995. © Seismological Society of America. All rights
reserved.)
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America–South America boundary is only about 1 mm/yr a
much slower than the approximately 20 mm/yr along the Mid-
Atlantic ridge. The North America–South America boundary
is thus considered a diffuse, slow-moving boundary zone,
although its location and motion are not well constrained.
Another reason for treating this as a boundary zone is that
paleomagnetic reconstructions find that over the past 70 Myr
the two plates have moved relative to each other as the Atlantic
Ocean opened.

In general, 1–2 mm/yr is an approximate lower limit for
plate boundary deformation. Regions with motions faster
than this are generally viewed as plate boundaries, and slower
deformation is generally treated as intraplate. However, there
is no generally accepted criterion, and evidence from seismicity
and topography is also considered. Put another way, in many
cases one can regard a region as either a slow-moving plate
boundary zone or a zone of intraplate deformation, and
“intraplate” earthquakes are often just ones not on an obvious
plate boundary.

The Atlantic example (Fig. 5.2-1) shows that in addition
to the North America–South America boundary zone, some
intraplate seismicity is concentrated in other areas associated
with tectonic features. For example, seismicity between Green-

1 Numerical models that infer the amount of upwelling mantle material from how
elevated the sea floor is relative to the normal depth–age curves estimate that Hawaii
has a buoyancy flux 5–10 times greater than that of Bermuda (Sleep, 1990).

land and North America is likely related to the former spread-
ing ridge that opened this part of the Atlantic (the Labrador
Sea). Although this spreading stopped about 43 Myr ago, the
fossil ridge appears to remain a weak zone along which
intraplate stresses cause some motion. Intraplate seismicity is
often associated with such fossil structures. Concentrations of
seismicity are also associated with the Bermuda (32°N, 65°W),
Cape Verde (17°N, 25°W), and Canary (26°N, 17°W) hot
spots. Focal mechanism studies are consistent with the earth-
quakes reflecting heating of the lithosphere by the hot spots.

Hawaii, the most impressive hot spot trace in the oceans
(Fig. 5.2-7),1 provides the best example of intraplate earth-
quakes associated with hot spot processes (Fig. 5.5-3). Small
earthquakes are associated with magma upwelling in the rift
zones. Larger earthquakes, which occur on a time scale of tens
of years, reflect sliding of the volcanic edifice on subhorizontal
faults that are thought to be a layer of weak sediments at the
top of the old oceanic crust on which the volcanic island
formed. These earthquakes can be quite large a the 1975
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Fig. 5.5-2 Top: Focal mechanisms along
the western section of the Eurasia–Africa
plate boundary. Note the transition from
extension near the Azores, to strike-slip (the
Gloria fault is a transform), to compression
near Gibraltar and into the Mediterranean.
Bottom: Motions with respect to Africa
along the boundary predicted by an Euler
pole slightly south of the mapped area, near
20°N, 20°W. The dashed line is a small circle
about this pole. (Argus et al., 1989. J.
Geophys. Res., 94, 5585–5602, copyright
by the American Geophysical Union.)
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more prone to future earthquakes than other areas, and
what the recurrence time of such earthquakes might be. Sim-
ilar issues arise in considering the intraplate seismicity and
associated seismic hazard in the more structurally complex
continents.

Oceanic intraplate seismicity often occurs in swarms.
Regions without previously known seismicity sometimes be-
come active for several years, with hundreds of teleseismically
located earthquakes.3 The seismicity then dies out, and seems
not to recur. For example, during 1981–3, an intraplate earth-
quake swarm occurred near the Gilbert Islands in Micronesia.
A total of 225 earthquakes were detected, mostly over a 15
month period, with 87 above mb 5. No major tectonic features
are known in this area, and a ship survey found no bathymetric
anomalies. Before and after the swarm, no other earthquakes
have been recorded in this region. The swarms thus differ from
plate boundary seismicity, which occurs on features that re-
main active for long periods even if there are intervening quiet
intervals. Moreover, the intraplate swarms often appear not
to have a single well-developed fault, and no event is signific-
antly bigger than the others. By contrast, plate boundary
earthquakes usually have one or two main ruptures and many
aftershocks, perhaps reflecting local adjustments to the stress
field after the mainshock has ruptured the entire fault.

These swarms raise an interesting issue. We can assume that
these areas are analogous to plate boundaries in having special,
if not yet understood, tectonic significance. If so, they are likely
to be the sites of future swarms. Alternatively, perhaps all areas
of oceanic lithosphere are equally susceptible to such swarms.
In this case, over time, swarms will occur in many places, and
future swarms are no more likely in one place than another. We
will see that similar issues surface in trying to estimate seismic
hazards due to intraplate earthquakes within continents.

5.5.2 Forces and stresses in the oceanic lithosphere

In addition to using oceanic intraplate seismicity to investigate
the specific processes acting at individual sites, we study the
seismicity to learn about plate-wide processes. For example,
Fig. 5.5-4 shows the variation of mechanism type with
lithospheric age. Most of the oceanic lithosphere seems to be in
horizontal deviatoric compression, as shown by thrust and
strike-slip mechanisms. This compression is in approximately
the spreading direction, and is thought to be related to “ridge
push”: the plate driving force due to lithospheric cooling and
subsidence. The major exceptions are the extensional events
occurring in the central Indian Ocean. Although originally re-
garded as intraplate, these earthquakes now appear to be in
a diffuse plate boundary zone (Section 5.2.2). In the model
shown, the focal mechanisms (Fig. 5.5-5) reflect counterclock-
wise rotation of Australia with respect to India, causing normal
fault earthquakes in the young lithosphere near the Euler pole

Fig. 5.5-3 Schematic model for large intraplate earthquakes below the
island of Hawaii. Small earthquakes are associated with magma upwelling
in the rift zones. Larger earthquakes, at dates shown, reflect sliding of the
volcanic edifice on subhorizontal faults. The portion of the basal fault
that has not ruptured in historic time may be a seismic gap. (Wyss and
Koyanagi, 1992. © Seismological Society of America. All rights reserved.)
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2 This situation is analogous to timbers creaking as a wooden boat rocks in the
waves.

3 There may be many more smaller earthquakes associated with these swarms, but
because the swarms often occur in remote regions, only the larger events are detected.

Kalapana earthquake had Ms 7.2, caused a tsunami that
killed two campers on the seashore, and did considerable
property damage. The earthquake was followed by a small
volcanic eruption near the summit of Kilauea, perhaps because
the ground shaking triggered an eruption of shallow magma.
Curiously, some earthquakes occur to considerable depths
under Hawaii, including a magnitude 6.2 earthquake at 48 km
depth.

Although many oceanic intraplate earthquakes are associated
with tectonic features, some appear to occur far from plate
boundaries, hot spots, or major bathymetric features. Thus the
stresses generated by plate driving forces and other sources,
including mantle flow near hot spots, appear to reactivate weak
zones in the plate resulting from small-scale structure acquired
during the lithosphere’s evolution.2

These earthquakes can be dramatic. For example, the
enormous (Mw 8.2) intraplate earthquake that occurred near
the Balleny Islands in an oceanic part of the Antarctic plate
(63°S, 149°E) in March 1998 was the largest earthquake that
had occurred on earth for several years. The fault inferred from
waveform modeling (Section 4.3) followed no observable linea-
ments and cut straight across existing fracture zones. More-
over, in the previous hundred years, no other earthquakes
had been located in this region. It is not clear what caused the
earthquake or whether this area has any special properties or
stress acting there. Although the earthquake occurred south of
a puzzling hypothesized deformation zone in the extreme
southeast corner of the Australian plate (Fig. 5.2-4), its fault
plane solution is inconsistent with its being on the boundaries
of a microplate. It is thus unclear whether this area is now any
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11, 442–64, copyright by the American Geophysical Union.)

F2 =

      

�
0

h t( )

ρw gzdz = ρwg(h(t))2/2. (2)

F3 is the remaining horizontal force due to lithospheric pressure
P(z, t),

F3 =

      

�
h t

m t

( )

( )

P(z, t)gzdz, (3)

where the pressure depends on the density perturbation due to
lithospheric cooling (Eqn 5.3.7),

P(z, t) = ρw gh(t) + g

      

�
h t

z

( )

[ρm + ρ′(z ′, t)]dz ′. (4)
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Fig. 5.5-5 Schematic map of earthquake mechanisms in the central
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the Indian and Australian plates. Later studies have refined the location
and geometry of the boundary zone (Fig. 5.2-4) and pole (triangle) (Wiens
et al., 1985. Geophys. Res. Lett., 12, 429–32, copyright by the American
Geophysical Union.)

4 Although hot spot tracks like the Ninetyeast and Chagos-Laccadive ridges have
been termed “aseismic” ridges, to distinguish them from spreading ridges, these two
are more seismically active in terms of moment release than many spreading ridges.

Ridge push force

F1

F2

F1

F3

F2

z = m(t)

z = h(t)
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x

Fig. 5.5-6 Derivation of the “ridge push” force.

and thrust and strike-slip earthquakes to the east. These earth-
quakes reach magnitude 7 on the Ninetyeast ridge.4

The general trend of compressive mechanisms in the oceanic
plates is consistent with the plate driving force due to the cool-
ing of the oceanic lithosphere. Consider a plate, defined as the
area above the m(t) isotherm, out to age t, where the water
depth is h(t) (Fig. 5.5-6). The plate is cooler, and thus denser,
than material below. The thermal model we used for ocean
depth and heat flow also predicts the resulting force.

The total horizontal force on the base of the lithosphere, F1,
equals the integrated horizontal pressure force of the astheno-
sphere at the ridge, because the material is in hydrostatic
equilibrium:

F1 =

      

�
0

m t( )

ρm gzdz = ρm g(m(t))2/2. (1)

Similarly, F2, the horizontal force due to water pressure on the
plate, equals the integrated horizontal pressure force of the
water,
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Ridge push force
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σ

Fig. 5.5-7 Geometry for a simple model of intraplate stresses.

5 Verhoogen (1980) offers the analogy that rain occurs because of the negative
buoyancy of the drops relative to the surrounding air, as part of the process by which
solar heat evaporates water which rises as vapor due to positive buoyancy and is
transported by wind to the point where it cools, condenses into drops, and then falls.

If the plate is not accelerating, the force difference is
balanced by a net horizontal force

FR = F1 − F2 − F3. (5)

For the cooling halfspace temperature structure (Eqn 5.3.2),
this force is

FR = gαρmTmκ t, (6)

whereas for a plate model it approaches a constant value
for old lithosphere. The convention of calling this force “ridge
push” is confusing because it is zero at the ridge and increases
linearly with plate age. It results not from force at the ridge but
from the total force due to the density anomaly within the
cooling plate out to any given age.

The expression for the “ridge push” force is similar to that
for the “slab pull” force (Eqn 5.4.15) because both are thermal
buoyancy forces due to the density contrast resulting from the
temperature difference between the plate and its surroundings.
The two depend in the same way on the gαρmTm term that
describes the force due to the density contrast, but differently
on κ because faster cooling increases ridge push whereas faster
heating decreases slab pull. Although it is useful to think of
the forces separately, both are net buoyancy forces due to the
mantle convection system of which the plates are a part.5

To discuss the stresses within the oceanic lithosphere, we
compare the ridge push force to the other forces applied at the
boundaries of the plate. These include forces at the plate base
and forces at the subduction zone. As for the downgoing slab,
earthquake focal mechanisms constrain the relative size of the
forces. Here, we use the observation (Fig. 5.5-4) that stress in
the spreading direction is typically compressive at all ages.

Consider a simple model of stress in the oceanic lithosphere,
using the geometry of Fig. 5.5-7. Using the stress equilibrium
equation (Eqn 2.3.49) in the spreading (x) direction, we relate
the deviatoric stresses to the body force f(x, z), which is the
contribution to ridge push from the material at (x, z),

    

∂
∂

∂
∂

σ σxx xzx z

x

x z

z
f x z

( , )
  

( , )
  ( , )  .+ + = 0 (7)

Integrating first with respect to x and then with respect to z
from z = 0 to the base of the lithosphere m(x) yields the force
balance

    
σ

σ
σxx

b R
rx

x F x

m x
( )  

  ( )

( )
  .=

−
+ (8)

Here the stress in the spreading direction is given by its vertical
average     σ σ σxx r xxx( );   ( )= 0  characterizes the strength of the
ridge; the drag force at the base of the plate is given by the basal
shear stress σb; and FR(x) is the net ridge push force

   

F x f x z dxdzR

m t x

( )   ( , ) .

( )

= � �
0 0

(9)

Written in terms of plate age, t,

    
σ

σ
σxx

b R
rt

vt F t

m t
( )  

  ( )

( )
  ,=

−
+ (10)

where v is a half spreading rate, assumed constant. A useful
form for comparing different plates comes from the usual
assumption that the basal drag force equals the product of
absolute velocity u and drag coefficient C (σb = Cu),

    
σ σxx

R
rt

Cuvt F t

m t
( )  

  ( )

( )
  =

−
+ (11)

Thus a drag depending on absolute velocity is applied over
an area proportional to the spreading rate. For simplicity, we
assume that v = u, spreading rate equals absolute velocity (the
ridge is fixed with respect to the mantle), so the net drag force is
proportional to velocity squared.

A subduction zone would provide a boundary condition on
the oldest lithosphere. For example, if focal mechanisms in the
lithosphere near trenches were extensional, an extensional con-
dition could be imposed. Because such mechanisms are not
seen, it is often assumed that the negative buoyancy of slabs
(slab pull) is balanced by local resistive forces (Section 5.4.2).
Thus, although the ridge push force is probably smaller than
the slab pull forces, the thrust fault mechanisms suggest that it
is more crucial for determining stress in oceanic lithosphere.

Although this stress model is schematic and does not
describe any individual plate, it lets us use focal mechanism
observations to estimate several important quantities. Fig-
ure 5.5-8 shows the predicted intraplate stress as a function
of plate age and drag coefficient. For zero drag the stress is
purely compressive     (  )σ xx < 0 and varies as   t , because the
force increases linearly with age, whereas the plate thickens as
its square root. For larger drag coefficients,   σ xx follows   t 
curves corresponding to less and less compression, until the
lithosphere is in extension for all ages. All lithospheric plates
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zone (Fig. 5.5-5) that are generally consistent with the focal
mechanisms and the folding seen in gravity and seismic reflec-
tion data.

5.5.3 Constraints on mantle viscosity

The last section’s analysis relating earthquake mechanisms
to drag at the base of the lithosphere also gives insight into the
viscosity of the mantle. The viscosity,6 the proportionality
constant between shear stress and the strain rate (or velocity
gradient), controls how the mantle flows in response to applied
stress, and is thus crucial for mantle convection. If the drag on
the base of a plate is due to motion over the viscous mantle,
compressive earthquake mechanisms in old lithosphere con-
strain the viscosity.

Consider a simple two-dimensional geometry where mass
flux due to the moving plate is balanced by a return flow at
depth (Fig. 5.5-11, top). The drag coefficient is proportional to
the viscosity and inversely proportional to the flow depth. Fig-
ure 5.5-12 shows that the basal drag constraint from the focal
mechanism data, C ≤ 4 MPa/(m/yr), requires an average mantle
viscosity less than 2 × 1020 poise if flow occurs to a depth of
700 km in the upper mantle, or 1021 poise if flow occurs in the
entire mantle. These values are lower than the 1–5 × 1022 poise
typically estimated from glacial rebound, earth rotation, and
satellite orbits.

This discrepancy can be reconciled by assuming that the plate
is underlain by a thin, low-viscosity asthenosphere (Fig. 5.5-11,
bottom). The low-viscosity layer, in which only a fraction of the
return flow occurs, decouples the plates from the underlying

Fig. 5.5-8 Intraplate stress in the spreading direction as a function of
lithospheric age and assumed basal drag coefficient for slow-moving
(1 cm/yr, top) and fast-moving (10 cm/yr, bottom) plates. The
compressional stresses in old oceanic lithosphere place an upper bound
on the drag coefficient of 4 MPa/(m/yr). (Wiens and Stein, 1985.
Tectonophysics, 116, 143–62, with permission from Elsevier Science.)

appear to be in compression, so a rapidly moving plate (such as
the Pacific, which moves at about 10 cm/yr) constrains the drag
coefficient to less than about 4 MPa/(m/yr). Similar results
emerge for a cooling plate model.

This model assumes a zero stress boundary condition at the
ridge axis, so the axis has no tensile strength. The predicted
stress in young lithosphere, especially the location of a possible
transition from compression to extension in the direction of
spreading, would be sensitive to the strength of the ridge
(Fig. 5.5-9). Models with substantial strength at the axis pre-
dict a wide band of extension in the spreading direction. Since
such a zone of normal-faulting earthquakes is not observed,
the axis seems weak.

Although this simple model describes only a hypothetical
average plate, more sophisticated models use realistic plate
geometries to calculate the stresses expected from ridge push,
slab pull, and basal drag forces. These models’ predictions can
be compared to earthquake focal mechanisms and other data
for specific areas. For example, Fig. 5.5-10 shows stresses
predicted for the Indian Ocean region. Although the model
was calculated assuming a single Indo-Australian plate, it pre-
dicts stresses in the region now considered a diffuse boundary
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Fig. 5.5-10 Intraplate stress predicted by a
force model for the Indo-Australian plate
The bars show the principal horizontal
deviatoric stresses, with arrowheads
marking tension. The location and
orientation of the highest stresses, such as
the transition between compression and
tension, are generally consistent with
earthquake mechanisms in the region now
regarded as a diffuse plate boundary
(Fig. 5.5-5). (Cloetingh and Wortel, 1985.
Geophys. Res. Lett., 12, 77–80, copyright
by the American Geophysical Union.)
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Fig. 5.5-11 Top: Velocity profile associated with a return flow of uniform-
viscosity asthenosphere that balances the mass flux due to plate motions.
Bottom: Velocity profile associated with a return flow of two layers of
different viscosity. The upper, low-viscosity layer decouples the plates
from the underlying mantle. (McKenzie and Richter, 1978.)
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Wilson cycle, the fundamental geological
process controlling the evolution of the
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ocean basin. (d): The ocean widens and is
flanked by sedimented passive margins. (e):
Subduction of oceanic lithosphere begins on
one of the passive margins, closing the ocean
basin (f) and starting continental mountain
building. (g): The ocean basin is destroyed by
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mountain building process. At some later
time, continental rifting begins again.
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1 Named after J. Tuzo Wilson (1908–93), whose key role in developing plate tec-
tonic theory included introducing the ideas of transform faults, hot spots, and that the
Atlantic had closed and then reopened.

mental geological processes controlling the evolution of the
continents. The basic process, known as the Wilson cycle,1 is
illustrated in Fig. 5.6-1. A continental region undergoes
extension, such that the crust is stretched, faulted, and sub-
sides, yielding a rift valley like the present East African rift.
Because the uppermost mantle participates in the stretching,
hotter mantle material upwells, causing partial melting and
basaltic volcanism. Sometimes the extension stops after only a
few tens of kilometers, leaving a failed or fossil rift such as the
1.2 billion-year-old mid-continent rift in the central USA. In
other cases the extension continues, so the continental rift
evolves into an oceanic spreading center (identifiable from sea
floor magnetic anomalies), which forms a new ocean basin like

mantle. Viscosity values that satisfy the focal mechanisms are
consistent with constraints from gravity and glacial isostasy,
and such decoupling is consistent with the lack of correlation
between oceanic plate area and absolute velocity (Fig. 5.4-12).

5.6 Continental earthquakes and tectonics

Although the basic relationships between plate boundaries,
plate interiors, and earthquakes apply to continental as well as
oceanic lithosphere, the continents are more complicated. The
continental crust is much thicker, less dense, and has different
mechanical properties from the oceanic crust. As a result, plate
boundaries in continental lithosphere are generally broader and
more complicated than in the oceanic lithosphere (Fig. 5.2-4).

Studies of continental plate boundaries, which rely heavily
on seismology, provide important insights into the funda-
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the Gulf of Aden or the Red Sea. With time, the ocean widens
and deepens due to thermal subsidence of oceanic lithosphere
(Section 5.3.2), and thick sediments accumulate on the con-
tinental margins, such as those on either side of the Atlantic.
These margins are not plate boundaries a the oceanic and
continental crust on the two sides are on the same plate a and
are called passive margins, to distinguish them from active con-
tinental margins, which are plate boundaries. Subduction often
begins along one of the passive margins, and the ocean basin
closes, such that magmatism and mountain building occur, as
along the west coast of South America today. Continental colli-
sion like that currently in the Himalayas occurs eventually, and
the mountain building process reaches its climax. If the con-
tinental materials on either side cease to move relative to each
other, this process leaves a mountain belt within the interior
of a single plate. At some future time, however, a new rifting
phase can begin, often near the site of the earlier rifting, and a
new ocean will start to grow. Thus the Appalachian Mountains
record a continental collision that closed an earlier Atlantic
Ocean about 270 million years ago, and remain despite the
opening of the present Atlantic Ocean during the past 200 Myr.

As a result, continental and oceanic crust have very different
life cycles. Because the relatively less dense continental crust is
not subducted, the continents have accreted over a much longer
time than the 200-million-year age of the oldest oceanic crust.
Hence the continents preserve a complex set of geologic struc-
tures, many of which can be sites of deformation, including
earthquake faulting. Thus both plate boundary and intraplate
deformation zones within continents are more complex than
their oceanic counterparts.

Earth scientists seek to understand the continental evolution
process for both intellectual and practical reasons. The process
is fundamental to how the planet works, but also provides
information about geologic hazards (earthquakes, volcanism,
uplift, and erosion) and mineral resources. In addition, the
large mountain belts have major impacts on earth’s climate.
Seismology contributes to these studies by providing data
about earthquakes and velocity structure in regions where dif-
ferent parts of the evolutionary cycle occur today or occurred
in the past. These data are combined with other geophysical
and geological data to form an integrated picture of the com-
plicated continental evolution processes. Hence, although the
processes are not fully understood, important progress con-
tinues to be made.

5.6.1 Continental plate boundary zones

As for oceanic boundaries, we seek to first describe the motion
(kinematics) within boundary zones, and then to combine
the kinematics with other data to investigate their mechanics
(dynamics). One example is the East African rift (Fig. 5.6-2),
a spreading center between the Nubian (West Africa) and
Somalian (East Africa) plates. The extension rate is so slow,
less than 10 mm/yr, that it is hard to resolve in plate motion
models, and the two plates are often treated as one (Fig. 5.2-4).

However, the rift topography, normal faulting, and seismicity
distribution show the presence of an extensional boundary
zone broader, more diffuse, and more complex than at a
mid-ocean ridge. For example, the seismicity ends in southern
Africa and has no clear connection to the southwest Indian
ridge, where the plate boundary must go. A recent estimate is
that the northern East Africa rift opens at about 6 mm/yr,
whereas the southern part opens at about half that, because the
Euler pole is to the south. Some of the complexity of such
continental extensional zones results from the fact that, unlike
a mid-ocean ridge, the lithosphere starts off with reasonable
thickness and then is stretched and thinned in the extending
zone. The rifting process can eventually progress far enough
that a new oceanic spreading center forms. This has already
occurred in the Gulf of Aden and the Red Sea, which are newly
formed (and hence narrow) oceans separating the Arabian
plate from Somalia and Nubia at rates of about 22 and 16
mm/yr, respectively. Whether the East African rift will evolve
this far is still unclear, because the geologic record shows many
rifts that, although active for some time, failed to develop into
oceanic spreading centers and simply died. As we will see, these
fossil rifts can be loci for intraplate earthquakes.

The earthquakes also indicate that the thermal and mech-
anical structure of continental rifts is more complicated than
on mid-ocean ridges. Normal-faulting earthquakes extend to
depths of 25–30 km, considerably deeper than at mid-ocean
ridges. Hence the lower crust appears to be surprisingly
stronger and colder than might be expected in an active rift.

Continental transforms are also more complicated than their
oceanic counterparts. As we saw in Section 5.2, the transform
portion of the Pacific–North America plate boundary in west-
ern North America is an active seismic zone hundreds of
kilometers wide (Fig. 5.2-3), in contrast to widths of less than
10 km for oceanic transforms. Thus the focal mechanisms
show primarily strike-slip motion on the San Andreas fault
itself and demonstrate complexities including thrust faulting
for events like the 1971 San Fernando and 1994 Northridge
earthquakes and normal faulting due to the regional extension
in the Basin and Range province. The earthquakes and space-
geodetic data show that although most of the motion occurs
along the San Andreas (Fig. 4.5-13) and nearby faults, a reason-
able fraction of the motion occurs elsewhere (Figs. 5.6-3 and
5.2-3). The boundary zone is further complicated by volcanism
in areas including the Long Valley caldera in eastern California
and the Yellowstone hot spot, which also have associated
seismicity. Hence, we think of a boundary zone in which the
overall steady motion between the plate interiors is distributed
in both space and time (Fig. 5.6-4). Although much of the
motion occurs in occasional large earthquakes or steady creep
on the main boundary segment, some deformation occurs else-
where in the zone.

The breadth of continental plate boundary zones has im-
portant implications for seismic hazards within them. Because
ground shaking decays rapidly with distance (Fig. 1.2-5),
nearby smaller earthquakes within a boundary zone, but not
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Fig. 5.6-3 Variation in motion of space-geodetic
sites across part of the Pacific–North America
boundary zone. Right: Horizontal velocities of
sites in California, Nevada, and Arizona relative
to stable North America. The velocity of the
southwesternmost site nearly equals the predicted
48 mm/yr velocity of the Pacific plate relative to
the North American plate. Left: Component of
motion tangent to small circles centered on the
Pacific–North America Euler pole versus angular
distance from that pole. Velocities increase with
distance from the Euler pole, with a discontinuity
due to the approximately 35 mm/yr of time-
averaged slip across the San Andreas fault.
(Gordon and Stein, 1992. Science, 256, 333–42,
copyright 1992 American Association for the
Advancement of Science.)
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Nisqually earthquake) or at shallow depth in the North
American plate.

Of the three boundary types, continental convergence zones
may be the most complicated compared to their oceanic coun-
terparts. One primary difference is that because continental
crust is much less dense than the upper mantle, it is not
subducted, and a Wadati–Benioff zone is not formed. As a
result, continental convergence zones in general do not have
intermediate and deep focus earthquakes. However, the plate
boundary tectonics occur over a broader and more complex
region than in the oceanic case.

A spectacular example is the collision between the Indian
and Eurasian plates. This area is the present type example of
mountain building by continental collision, which has pro-
duced a boundary zone extending thousands of km north-
ward from the nominal plate boundary at the Himalayan front
(Fig. 5.6-5). The total plate convergence is taken up in several
ways. About half of the convergence occurs across the locked
Himalayan frontal faults such as the Main Central Thrust
(Fig. 5.6-6), and gives rise to large destructive earthquakes.
These faults are part of the interface associated with the under-
thrusting Indian continental crust, which thickens the crust
under the high Himalayas. However, the earthquakes also show
normal faulting behind the convergent zone, in the Tibetan
plateau, presumably because the uplifted and thickened
crust spreads under its own weight. GPS data (Fig. 5.6-5) show
that this extension is part of a large-scale process of crustal
“escape,” or “extrusion,” in which large fragments of con-
tinental crust are displaced eastward by the collision along

Fig. 5.6-4 Schematic illustration of the distribution of motion in space
and time for a strike-slip boundary zone between two major plates.
(Stein, 1993. Contributions of Space Geodesy to Geodynamics, 5–20,
copyright by the American Geophysical Union.)

on the main boundary fault, can be more damaging than larger
but more distant ones on the main fault. Hence the Los Angeles
area is vulnerable to both nearby earthquakes like the 1994
Northridge (Mw 6.7) or 1971 San Fernando (Ms 6.6) earth-
quakes and larger ones on the more distant San Andreas Fault,
such as a recurrence of the 1857 Fort Tejon earthquake which
is estimated to have had Mw about 8. Similarly, the earthquake
hazard in the Seattle area involves both great earthquakes at
the subduction interface and smaller, but closer, earthquakes
in the subducting Juan de Fuca plate (like the 2001 Mw 6.7
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Fig. 5.6-7 Demonstration of the deformation of Asia, modeled by a striped block of plasticine, as the result of a collision with a rigid block simulating the
Indian subcontinent. The plasticine is constrained on the left side, so the impact forces blocks to be extruded to the right, analogous to the eastward motion
of blocks in Indochina and China. (Tapponnier et al., 1982. Geology, 10, 611–16, with permission of the publisher, the Geological Society of America,
Boulder, Co. © 1982 Geological Society of America.)
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intracontinental mountain belt, 1000–2000 km north of the
Himalayas, accommodates almost half the net plate conver-
gence in the western part of the zone.

In addition to providing data about a collision region’s
kinematics, seismological studies provide insight into its mech-

major strike-slip faults. This extrusion has been modeled assum-
ing that India acts as a rigid block indenting a semi-infinite
plastic medium (Asia), giving rise to a complicated faulting and
slip pattern (Fig. 5.6-7). The extent of the collision is illustrated
by GPS data and focal mechanisms showing that the Tien Shan
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2 Consider a melon seed squeezed between a thumb and a forefinger.
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large right-lateral strike-slip earthquakes (Fig. 5.6-8, b) such
as the 1999 Ms 7.4 Izmit earthquake, which occurred about
100 km east of Istanbul and caused more than 30,000 deaths.
To the west, the data show interesting deviations from a rigid
Anatolian plate. The increasing velocities toward the Hellenic
trench, where the Africa plate subducts below Crete and
Greece, show that western Anatolia and the Aegean region are
under extension, consistent with the normal fault mechanisms.
This region may be being “pulled” toward the arc, perhaps by
an extensional process similar to oceanic back-arc spreading,
as the trench “rolls back” (Section 5.2.4). By contrast, eastern
Turkey is being driven north-ward into Eurasia, causing
compression that appears as the thrust fault earthquakes in
the Caucasus mountains. The Dead Sea transform separates
Arabia from the region to the west, sometimes viewed as
the Sinai microplate. Strike-slip motion along this fault gives
rise to the earthquakes mentioned in the Bible that repeatedly
destroyed famous cities like Jericho.

5.6.2 Seismic, aseismic, transient, and permanent
deformation

The examples in the previous section illustrate that earthquakes
give powerful insights into the crustal deformation shaping the

anics. The collision process is thought to involve a complex
interplay between forces due directly to the collision, gravita-
tional forces due to the resulting uplift and crustal thickening,
and forces from the resulting mantle flow. Earthquake depths
and studies of seismic velocity, attenuation, and anisotropy are
providing data on crustal thicknesses, thermal and mechanical
structures, and mantle flow. For example, P-wave travel time
tomography shows high velocity under the presumably cold
Himalayas, which contrasts with low velocity under Tibet.
These and other seismological data are consistent with the idea
that Tibet deforms easily during the collision.

An equally complicated situation occurs in the eastern Medi-
terranean collision zone involving the African, Arabian, and
Eurasian plates. Combining GPS and focal mechanism data
shows the complex motions. Figure 5.6-8 (a) shows the motions
of sites in the western Mediterranean relative to Eurasia.
Northern portions of Arabia move approximately N40°W,
consistent with global plate motion models. Western Turkey
rotates as the Anatolian plate about a pole near the Sinai pen-
insula. Anatolia is thus “squeezed” westward between Eurasia
and northward-moving Arabia (Fig. 5.6-8, c).2 The motion
across the North Anatolian fault, about 25 mm/yr, gives rise to
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Fig. 5.6-10 Top: GPS site velocities relative to stable South America
(Norabuena et al., 1998. Science, 279, 358–62, copyright 1998 American
Association for the Advancement of Science), and selected earthquake
mechanisms in the boundary zone. Rate scale is given by the NUVEL-1A
vector. Bottom: Cross-section showing approximate velocity distribution
inferred from GPS data. (Stein and Klosko, 2002. From The Encyclopedia
of Physical Science and Technology, ed. R. A. Meyers, copyright 2002 by
Academic Press, reproduced by permission of the publisher.)

deform the overriding plate. This portion of the plate motion
corresponds to aseismic slip. The rest occurs across the sub-
Andean foreland fold-and-thrust belt, causing permanent
shortening and mountain building, as shown by the inland
thrust fault mechanisms. This portion of the plate motion
would be considered aseismic slip if we considered only the
fraction of the plate motion that appears in the trench seismic
moment release, whereas in reality it occurs as inland deforma-
tion. These interpretations come from analyzing the GPS data
in the convergence direction relative to the stable interior of
South America (Fig. 5.6-11). If all the convergence were locked
on the interplate thrust fault, the predicted rates would exceed
those observed within about 200 km of the trench. However, if
only about half of the predicted convergence goes into locking
the fault, the predicted rates near the trench are less, because
only the portion of the slip locked at the interface deforms the
overriding plate. Similarly, the data farther than about 300 km

continents. Other approaches to studying this deformation,
including various geodetic and geological means, sample the
deformation in different ways on various time scales (Fig. 5.6-
9). Hence, considerable attention goes into understanding how
what we see with these different techniques are related. For
example, as discussed earlier (Sections 4.5.4, 5.4.3), in many
places only part of the plate motion seems to occur as earth-
quakes, and the rest takes place as aseismic slip. A related ques-
tion is how the deformation shown by earthquakes, which has
a time scale of a few years, is related to the longer-term deforma-
tion that is recorded by topography and the geologic record.

To explore these ideas, consider the distribution of motion
within the boundary zone extending from the stable interior
of the oceanic Nazca plate, across the Peru–Chile trench to
the coastal forearc, across the high Altiplano and foreland
thrust belt, and into the stable interior of the South American
continent. Figure 5.6-10 shows GPS site velocities relative to
stable South America, which would be zero if the South Amer-
ican plate were rigid and all motion occurred at the trench plate
boundary. However, the site velocities are highest near the
coast and decrease relatively smoothly from the interior of the
Nazca plate to the interior of South America.

Figure 5.6-10 (bottom) shows an interpretation of these
data. In this model, about half of the plate convergence
(approximately 35 mm/yr) is locked at the subduction inter-
face, causing elastic strain of the overriding plate that will be
released in large interplate thrust earthquakes (Section 4.5.4)
like those whose focal mechanisms are shown. Thus the locked
fraction of the plate motion corresponds to the seismic slip rate,
perhaps via a process in which only a fraction of the interface
is locked at any time. Approximately 20 mm/yr of the plate
motion occurs by stable sliding at the trench, which does not



D
is

pl
ac

em
en

t 
ra

te
 (m

m
/y

r)

80

70

60

50

40

30

20

10

0

−10

1200

D
ep

th
 (k

m
)

10
0

−10
−20
−30
−40
−50
−60

0 200 400 600 800 1000 1200

Distance from trench (km)

Trench

Altiplano Fold-and-thrust belt

75
50
38
Surface trace of thrust faults

0
0
12

South segment

Coastal Altiplano FTB

0 200 400 600 800 1000

Distance from trench (km)

Normalized misfit

30

20

10

0

Sh
or

te
ni

ng
 f

ol
d-

an
d-

th
ru

st
-b

el
t

(m
m

/y
r)

0 30 60 90

North segment

30

20

10

0
0 30 60 90

South segment

Slip rate locked on interplate thrust (mm/yr)

2

2

1.5

1.25 1.5
1.25

1.5

5

2

2

5.6 Continental earthquakes and tectonics 341

3 Strain rates are often written using a dot to indicate the time derivative.

Fig. 5.6-11 Derivation of the model
in Fig. 5.6-10 (bottom). Top: Model
geometry, assuming partial slip locked at
the plate boundary and shortening in the
eastern Andes. Center: GPS site velocities
in the convergence direction and various
models, given by the rates of locked
slip and shortening. Solid line shows
predictions of best-fitting model,
including both partial slip locked at the
plate boundary and shortening in the
eastern Andes. Short dashed line shows
predictions of model with all slip locked
on the plate boundary and no shortening.
Long-short dashed line shows predictions
of model with no shortening and partial
slip locked on the plate boundary equal to
the sum of best-fitting slip and shortening.
Bottom: Contour plot showing misfit to
the data as a function of the slip rate locked
on the plate boundary and shortening rate
in the eastern Andes. The best fits (dots)
occur for about 30–40 mm/yr of locking
and about 10–20 mm/yr shortening.
(Norabuena et al., 1998. Science, 279,
358–62, copyright 1998 American
Association for the Advancement of
Science.)

from the trench are better fit by assuming that about 10 mm/yr
motion is locked on thrust faults in the eastern Andes. The lock-
ing and shortening rates are the best-fit parameters for this sim-
ple model, which does not include other possible complexities
such as deformation in the Altiplano.

The idea that about 40% of the plate motion at the trench
occurs by aseismic slip seems plausible, because studies using
the history of large earthquakes at trenches often estimate that
only about half the slip occurs seismically (Fig. 5.4-30). Given
the problems of estimating source parameters of earthquakes
from historical data, it is encouraging that the geodetic answer
seems similar.

The relation between the shortening rate in the thrust belt
inferred from GPS data and that implied by the earthquakes
can also be studied. Assessing the seismic slip rate is a little
more complicated than for transform faults (Section 5.3.3) or
subduction zone thrust faulting (Section 5.4.3), because in
continental deformation zones earthquakes occur over a dis-

tributed volume, rather than on a single fault, and have diverse
focal mechanisms. Thus we sum the earthquakes’ moment ten-
sors (Section 4.4) to estimate a seismic strain rate tensor3 using

Gij = ∑Mij /(2µVt), (1)

where t is the time interval, and µ is the rigidity. V, the assumed
seismic source volume, the product of the length and width of
the zone of seismicity and the depth to which seismicity ex-
tends. For example, the thrust belt can be assumed to be ap-
proximately 2000 km long, 250 km wide, and faulting extends
to about 40 km depth. We can then diagonalize the result and
consider the eigenvalue associated with the P axis. Scaling this
value by the assumed zone width gives an estimate of the short-
ening rate. The resulting value, less than 2 mm/yr, is signifi-
cantly less than the approximately 10 mm/yr indicated by the
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4 The similarity of the focal mechanism, GPS, and geological data illustrates the
principle of uniformitarianism, that studying present processes gives insight into the
past, a tenet of geology since Lyell and Hutton’s seminal work almost two centuries ago.

Fig. 5.6-12 Comparison of shortening
across the Andes with respect to stable
South America from GPS data (left)
and geological studies (right). The dashed
GPS vectors reflect elastic strain due to the
earthquake cycle at the trench, and are not
directly comparable to the permanent
shortening in the geological data. Motion
decreases toward the eastern extent of
the mountain range, shown by the solid line.
The geological vectors are largest at about
18°S and decrease to the north and south,
showing how the variation in shortening
that built the Andes bent them and made
them widest about this point. (Hindle
et al., 2002.)

GPS data. Thus, even given the usual problem that the seismic
history is short and may have missed the largest earthquakes,
an effect one can attempt to correct for using earthquake
frequency–magnitude data (Section 4.7.1), it looks like much
of the shortening occurs aseismically.

An interesting question is how what we see today with earth-
quakes and GPS data relates to what occurs over geologic time.
Figure 5.6-12 shows the results of geological studies, in which
the arrows indicate the deformation that occurred over the
past 10 Myr as the Andes formed. The directions and rates are
similar to what are seen today, suggesting that the mountain
building process has occurred relatively uniformly, although
there have been some rate changes.4

Putting all this together gives some ideas about how the dif-
ferent measures of crustal deformation are related in this area.
The first issue involves the relative amounts of seismic and
aseismic deformation. It appears that about half of the plate
motion at the trench occurs seismically. Similar fractions are
also seen in other subduction zones (Fig. 5.4-30), implying that
stable sliding at trenches is relatively common. Moreover, only
about 10–20% of the shortening in the foreland thrust belt
appears to occur seismically. Thus aseismic, and presumably
permanent, deformation of rocks in the thrust belt seems like
a major phenomenon. Similar results have also been observed
for other continental deformation zones (Fig. 5.6-13). The next
issue is that of permanent versus transient deformation. In the
model of Fig. 5.6-11, the deformation of the South American
plate due to the locked slip at the trench is transient, and will be
released in the upcoming large trench earthquake. However,
it seems likely that the deformation of the foreland thrust belt
is permanent, and goes into faulting and folding rocks. Over

time, this permanent displacement adds up (Fig. 5.6-12) to
build the mountains.

Similar studies are going on around the world, and should
lead to an improved understanding of the partitioning between
seismic, aseismic, transient, and permanent deformation. Models
are being developed to explore these issues (Section 5.7), which
are important both for understanding continental evolution
and for earthquake hazard assessment, because an apparent
seismic moment deficit could indicate either overdue earth-
quakes or aseismic deformation.

5.6.3 Continental intraplate earthquakes

Another important application of earthquake studies deals
with the internal deformation of the continental portions of the
major plates. Although idealized plates would be purely rigid,
intraplate earthquakes reflect the important and poorly under-
stood tectonic processes of intraplate deformation. As in the
oceans (Section 5.5.1), there appears to be a hierarchy of places
that have such earthquakes. There are areas like the East
African rift that can be thought of as either slow-moving plate
boundaries or intraplate deformation, less active zones associ-
ated with either fossil structures or other processes like hot
spots, and then intraplate earthquakes that are not easily cor-
related with any particular structure or cause.

One example is the New Madrid area in the central USA,
which had large earthquakes in 1811–12 and has small earth-
quakes today. Other continental interiors, including Australia,
western Europe, and India, have also had significant intraplate
earthquakes. Because motion in these zones is at most a few
mm/yr, compared to the generally much more rapid plate
boundary motions, seismicity is much lower (Fig. 5.6-14) and
thus harder to study. This difficulty is compounded by the fact
that, unlike at plate boundaries, where plate motions give in-
sight into why and how often earthquakes occur, we have little
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Fig. 5.6-13 Estimates of seismic deformation fractions for areas in the Mediterranean and Middle East. Seismicity appears to account for most or all of
the deformation in western Turkey, Iran, and the Aegean, much of the deformation in the Caucasus and eastern Turkey, and little of the deformation in
the Zagros and the Hellenic trench. (Jackson and McKenzie, 1988.)

idea of what causes intraplate earthquakes, and no direct way
to estimate how often they should occur. As a result, progress
in understanding these earthquakes is much slower than for
earthquakes on plate boundaries, and key issues may not be
resolved for a very long time.

Geodetic data illustrate the challenge. For example, com-
parison of the absolute velocities of GPS sites in North America
east of the Rocky Mountains to velocities predicted by model-
ing these sites as being on a single rigid plate shows that the
interior of the North American plate is rigid at least to the level
of the average velocity residual, less than 1 mm/yr (Fig. 5.6-15).
Similar results emerge from studies across the New Madrid
zone itself and for the interiors of other major plates, show-
ing that plates thought to have been rigid on geological time
scales are quite rigid on decadal scales. For example, 1 mm/yr
motion spread over 100 or 1000 km distance corresponds to
strain rates of 10−8 and 10−9 yr−1 (3 × 10−16 and 3 × 10−17 s−1),
respectively. Because the geodetic data include measurement
errors due to effects including instabilities of the geodetic
markers, it seems likely that the tectonic strains are even smal-
ler. However, over long enough time, even such small motions
can accumulate enough slip for large earthquakes to occur.

This idea is consistent with what is known about large
intraplate earthquakes. Although there is little seismological
data for such events because they are rare, insight can be
obtained from combining the seismological data with geodetic,
paleoseismological, and other geological and geophysical data.

For example, intensities estimated from historical accounts
of the 1811–12 New Madrid earthquakes (Fig. 1.2-4) suggest
magnitudes in the low 7 range. Paleoseismic studies (Section 1.2)
indicate that several previous large earthquakes, presumably
comparable to those of 1811–12, occurred 500–800 years
apart. Thus, in 500–1000 years (Fig. 5.6-16, top) steady strain
accumulation less than 2 mm/yr could provide up to 1–2 m of
motion available for future earthquakes, suggesting that they
would be about magnitude 7. A similar view comes from con-
sidering the earthquake history for the area. As discussed in
Section 4.7.1, earthquakes of a given magnitude are approx-
imately ten times less frequent than those one magnitude unit
smaller. Thus, although the instrumental data contain no
earthquakes with magnitude greater than 5, both these and a
historical catalog in which magnitudes were estimated from
intensity data can be extrapolated to imply that a magnitude
7 earthquake would occur about once every 1400 ± 600 years
(Fig. 5.6-16, bottom). Hence, as expected, major intracon-
tinental earthquakes occur substantially less frequently than
comparable plate boundary events (Fig. 5.6-17). However,
because of the lower attenuation in continental interiors (Sec-
tion 3.7.10), such earthquakes can cause greater shaking than
ones of the same magnitude on a plate boundary (Fig. 1.2-5).

Such earthquakes are generally thought to be due to the
reactivation of preexisting faults or weak zones in response
to either local or intraplate stresses. The New Madrid earth-
quakes, for example, are thought to occur on faults associated
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Fig. 5.6-14 Seismicity (magnitude 5 or greater since 1965) of the continental portion of the North American plate and adjacent area. Seismicity and
deformation are concentrated along the Pacific–North America plate boundary zone, reflecting the relative plate motion. The remaining eastern portion
of the continent, approximately that east of 260°, is much less seismically active. Within this relatively stable portion of the continent, seismicity, and thus
presumably deformation, are concentrated in several zones, most notably the New Madrid seismic zone. (Weber et al., 1998. Tectonics, 17, 250–66,
copyright by the American Geophysical Union.)

with a Paleozoic failed continental rift, now buried beneath
thick sediments deposited by the Mississippi river and its
ancestors (Fig. 5.6-18). As a result, the faults are not exposed at
the surface, so most ideas about them are based on inferences
from seismology and other data. The intraplate stress field
has been studied by combining focal mechanism and fault
orientations with data from drill holes and in situ stress
measurements (Fig. 5.6-19). In general, the eastern USA shows
a maximum horizontal stress oriented NE–SW, consistent with
the predictions of the stresses due to plate driving forces.
Similar stress maps are being developed for other areas and are
being used to investigate both intraplate deformation and plate
driving forces. As noted in Section 3.6.5, it appears that seismic
anisotropy in the lower continental crust may reflect the stress
field that acted during a major tectonic event such as mountain
building.

An intriguing question is why intraplate stresses cause earth-
quakes on particular faults, given that many weak zones could
serve this purpose. Geological and paleoseismic data, together
with the absence of significant fault-related topography, sug-
gest that individual intraplate seismic zones may be active for
only a few thousands of years, so intraplate seismicity migrates.
This possibility is akin to that suggested for intermittent
oceanic intraplate earthquake swarms. If so, there is nothing
special about New Madrid or the other concentrations of
intraplate seismicity we observe now a these zones will die off
and be replaced by others. Moreover, there are enough tectonic
structures available that (typically small) earthquakes will
occur almost randomly throughout continental interiors.

A special case of this phenomenon occurs at passive con-
tinental margins, where continental and oceanic lithospheres
join. Although these areas are in general tectonically inactive,
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magnitude 7 earthquakes can occur, as on the eastern coast of
North America (Fig. 5.6-20). Such earthquakes may be associ-
ated with stresses, including those due to the removal of glacial
loads, which reactivate faults remaining from the original
continental rifting (Fig. 5.6-1). Although such earthquakes
are observed primarily on previously glaciated margins, they
also occur on nonglaciated passive margins, perhaps due to
sediment loading. In some cases large sediment slides occur,
as was noted for the 1929 Ms 7.2 earthquake on the Grand
Banks of Newfoundland, because the slides broke trans-
Atlantic telephone cables and generated a tsunami that caused
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Fig. 5.6-15 Locations of continuously recording GPS sites used to estimate a Euler vector for the presumably stable portion of North America. For each,
the misfit between the observed velocity and that predicted for a single plate is shown. The average misfit is less than 1 mm/yr, showing that eastern North
America is quite rigid. (Newman et al., 1999. Science, 284, 619–21, copyright 1999 American Association for the Advancement of Science.)

27 fatalities.5 An interesting unresolved question is whether
tectonic faulting is required for such earthquakes, or whether
the slump itself can account for what is seen on seismograms.
Some studies find that the seismograms are best fit by a double-
couple fault source, whereas others favor a single force consist-
ent with the slump (Fig. 4.4-3). The issue is important because
slumps occur in the sedimentary record along many passive

5 These deaths account for all but one of Canada’s known earthquake fatalities to
date, although this situation could change after a large Cascadia subduction zone
earthquake.
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Fig. 5.6-16 Top: Relation between interseismic motion and the expected
recurrence of large New Madrid earthquakes. The recurrence estimates
from paleoseismic studies and geodetic data are jointly consistent with
slip in the 1811–12 earthquakes of about 1 m, corresponding to a low
magnitude 7 earthquake. Bottom: Earthquake frequency–magnitude
data for the New Madrid zone. Both the instrumental and historic (1816–
1984) data predict a recurrence interval of about 1000 yr for magnitude
7 earthquakes. (Newman et al., 1999. Science, 284, 619–21, copyright
1999 American Association for the Advancement of Science.)

margins, even those that have not been recently deglaciated.
Stresses associated with the removal of glacial loads may also
play a role in causing earthquakes within continental interiors
such as the northeastern USA and eastern Canada. It has also
been suggested that the huge 1998 Balleny Island intraplate

earthquake (Section 5.5.1) may have been triggered by stresses
due to the shrinking Antarctic ice cap.

As in the oceans, another interesting class of intraplate
seismicity is associated with hot spots. The area near the
Yellowstone hot spot in the western USA shows an intriguing
pattern of seismicity along the margins of the Snake River plain
(Fig. 5.6-21), which is the volcanic track the hot spot produced
as the North American plate moved over it (Fig. 5.2-8).
This seismicity, which includes the 1959 Ms 7.5 Hebgen Lake,
Montana,6 and 1983 Ms 7.3 Borah Peak, Idaho, earthquakes,
forms a parabolic pattern extending southwestward from
Yellowstone itself. It thus stands out from the regional seis-
micity (Fig. 5.2-3) associated with the extensional tectonics of
the eastern portion of the Basin and Range province, termed
the Intermountain Seismic Belt. The absence of seismicity
along the track itself seems likely to be a consequence of the
thermal and magmatic perturbations produced by the hot spot,
although the specific mechanism is still under discussion.
Seismic tomography (Fig. 5.6-21) shows a low-velocity anomaly
in the crust and upper mantle under Yellowstone itself, pre-
sumably due to partial melting and hydrothermal fluids, and a
deeper anomaly that persists along the track.

In summary, although continental intraplate seismicity is a
minor fraction of global seismic moment release, it has both
scientific and societal interest precisely because it is rare. It
provides one of our few ways of studying the limits of plate
rigidity and intraplate stresses, and poses the challenge of
deciding the appropriate level of earthquake preparedness
for rare, but potentially destructive, earthquakes.

5.7 Faulting and deformation in the earth

Because earthquake faulting is a spectacular manifestation of
the processes that deform the solid earth, we seek to under-
stand how earthquakes result from and reflect this deforma-
tion. Valuable insight comes from laboratory experiments
and theoretical models for the behavior of solid materials.
Although the experiments and models are much simpler than
the complexities of the real earth, they allow us to think about
key features. Seismology and geophysics thus exploit research
devoted to material behavior by a range of disciplines, includ-
ing engineering, materials science, and solid state physics. We
touch only briefly on some basic ideas, and more information
can be found in the references at the end of the chapter.

5.7.1 Rheology

Materials can be characterized by their rheology, the way
they deform. In seismology we typically take a continuum

6 This earthquake triggered an enormous landslide that buried a campground, caus-
ing 28 deaths and dammed the Madison River, forming Quake Lake. These dramatic
effects are still visible today and make the site well worth visiting. A visitor center and
parking lot are built on the slide.
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Fig. 5.6-18 Schematic tectonic model for the New Madrid earthquakes.
(Braile et al., 1986. Tectonophysics, 131, 1–21, with permission from
Elsevier Science.)
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Fig. 5.6-17 Schematic illustration of the relation between the recurrence times of seismicity and resulting seismic hazard for the intraplate New Madrid
seismic zone and the southern California plate boundary zone. Seismicity is assumed to be randomly distributed about an N–S line through 0, with
California 100 times more active, but New Madrid earthquakes causing potentially serious damage (circles show areas with acceleration 0.2 g or
greater, Table 1.2-4) over an area comparable to that for a California earthquake one magnitude unit larger.

approach, considering the earth to be a continuous deformable
material. This means that we focus on its aggregate behavior
(Section 2.3) rather than on how its behavior is determined
by what happens at a microscopic scale.

To do this, consider the strain that results from compressing
a rock specimen. The simplest case is shown in Fig. 5.7-1a. For
small stresses, the resulting strain is proportional to the applied
stress, so the material is purely elastic. Elastic behavior happens
when seismic waves pass through rock, because the strains are
small (Section 2.3.8). However, once the applied stress reaches
a value σf, known as the rock’s fracture strength, the rock
suddenly breaks. Such brittle fracture is the simplest model
for what happens when an earthquake occurs on a fault. Thus
brittle fracture a a deviation from elasticity a generates elastic
seismic waves.

Other materials show a change in the stress–strain curve for
increasing stresses (Fig. 5.7-1b). For stresses less than the yield
stress, σo, the material acts elastically. Thus, if the stress is re-
leased, the strain returns to zero. However, for stresses greater
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Fig. 5.6-19 Stress map for North America. (World Stress Map project, Muller et al., 2000.)

than the yield stress, releasing the stress relieves the elastic
portion of the strain, but leaves a permanent deformation
(Fig. 5.7-1c). If the material is restressed, the stress–strain curve
now includes the point of the permanent strain. The material
behaves as though its elastic properties were unchanged, but
the yield strength has increased from σo to σ′o. The portion of
the stress–strain curve corresponding to stress above the yield
stress is called plastic deformation, in contrast to the elastic
region where no permanent deformation occurs. Materials
showing significant plasticity are called ductile. A common
approximation is to treat ductile materials as elastic-perfectly
plastic: stress is proportional to strain below the yield stress
and constant for all strains when stress exceeds the yield stress
(Fig. 5.7-2).

An important result of laboratory experiments is that at low
pressures rocks are brittle, but at high pressures they behave
ductilely, or flow. Figure 5.7-3 shows experiments where a
rock is subjected to a compressive stress σ1 that exceeds a con-
fining pressure σ3. For confining pressures less than about
400 MPa the material behaves brittlely a it reaches the yield
strength, then fails. For higher confining pressures the material

flows ductilely. These pressures occur not far below the earth’s
surface a as discussed earlier, 3 km depth corresponds to
100 MPa pressure a so 800 MPa is reached at about 24 km.
This experimental result is consistent with the idea that the
strong lithosphere is underlain by the weaker asthenosphere.

A related phenomenon is that materials behave differently
at different time scales. A familiar example is that although an
asphalt driveway is solid if one falls on it, a car parked on it
during a hot day can sink a little ways into it. On short time
scales the driveway acts rigidly, but on longer time scales it
starts to flow as a viscous fluid. This effect is crucial in the
earth, because the mantle is solid on the time scale needed for
seismic waves to pass through it, but flows on geological time
scales.

5.7.2 Rock fracture and friction

The first question we address is how and when rocks break.
In the brittle regime of behavior, the development of faults
and the initiation of sliding on preexisting faults depend on the
applied stresses.
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Fig. 5.6-20 Earthquakes along the passive continental margin of eastern
Canada. These earthquakes may have occurred on faults remaining from
continental rifting. (Stein et al., 1979. Geophys. Res. Lett., 6, 537–40,
copyright by the American Geophysical Union.)
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Fig. 5.6-21 Top: Seismicity (1900–85) of the Intermountain area of the
western USA. Superimposed on the regional seismicity are earthquakes
forming a parabola along the margins of the Yellowstone–Snake River
plain (YRSP), the volcanic track of the Yellowstone hot spot. Bottom:
P-wave velocities across the hot spot track, shown by squares scaled in
size to the differences from a uniform-velocity model. The largest symbols
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(Smith and Braile, 1994. J. Volcan. Geotherm. Res., 61, 121–87, with
permission from Elsevier Science.)

Given a stress field specified by a stress tensor, we use the
approach of Section 2.3.3 to find the variation in normal and
shear stress on faults of various orientations. For simplicity, we
consider the stress in two dimensions. If the coordinate axes
(ê1, ê2) are oriented in the principal stress directions, the stress
tensor is diagonal,

σ σ
σij =

⎛

⎝⎜
⎞

⎠⎟
 .1

2

0
0

(1)

To find the stress on a plane whose normal ê ′1 is at an angle of θ
from ê1, the direction of σ1 (Fig. 5.7-4), we transform the stress
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Fig. 5.7-2 An elastic–perfectly plastic rheology, which is a commonly used
approximation for the behavior of ductile materials.
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tensor from the principal axis coordinate system to a new co-
ordinate system using the transformation matrix (Section 2.3.3)

  
A  cos sin

sin cos
=

−
⎛
⎝⎜

⎞
⎠⎟

θ θ
θ θ

(2)

so that the stress in the new (primed) system is

′ = =
−

⎛
⎝⎜

⎞
⎠⎟

⎛

⎝⎜
⎞

⎠⎟
−⎛

⎝⎜
⎞
⎠⎟

σ σ θ θ
θ θ

σ
σ

θ θ
θ θij

TA A  cos sin 
sin cos 

  cos sin 
sin cos 

1

2

0
0

  
= + −

− +

⎛

⎝⎜
⎞

⎠⎟
 

cos   sin (  ) sin  cos 
(  ) sin  cos sin   cos

.
σ θ σ θ σ σ θ θ
σ σ θ θ σ θ σ θ
1

2
2

2
2 1

2 1 1
2

2
2

(3)

The normal and shear stresses on the plane vary, depending
on the plane’s orientation. The normal stress component,
denoted by σ, is

σ = σ ′11 = σ1 cos2 θ + σ2 sin2 θ 
  
=

+
+

−
 
(  )

  
(  )

 cos ,
σ σ σ σ θ1 2 1 2

2 2
2

(4a)

and the shear component, denoted by τ, is

τ = σ ′12 = (σ2 − σ1) sin θ cos θ 
  
=

−
 
(  )

 sin .
σ σ θ2 1

2
2 (4b)

Figure 5.7-4 shows σ and τ as functions of θ for the case of
σ1 and σ2 negative ( |σ1 | > |σ2 |), which corresponds to com-
pression at depth in the earth. A graphic way to show these
is with Mohr’s circle, a plot of σ versus τ (Fig. 5.7-5). Values
for all different planes lie on a circle centered at σ = (σ1 + σ2)/2,
τ = 0, with radius (σ2 − σ1)/2. The point on the circle with angle
2θ, measured clockwise from the −σ axis, gives the σ, τ values
on the plane whose normal is at angle θ to σ1.1

Laboratory experiments on rocks under compression show
that fracture occurs when a critical combination of the absolute
value of shear stress and the normal stress is exceeded. This
relation, known as the Coulomb–Mohr failure criterion, can be
stated as

|τ | = τo − nσ, (5)

where τo and n are properties of the material known as
the cohesive strength and coefficient of internal friction. (The
minus sign reflects the convention that compressional stresses
are negative.) The failure criterion plots as two lines in the
τ–σ plane, with τ axis intercepts ±τo and slope ±n (Fig. 5.7-6).
If the principal stresses are σ1, σ2, such that Mohr’s circle does
not intersect the failure lines, the material does not fracture.
However, given the same σ2 but a higher σ ′1, Mohr’s circle
intersects the line, and the material breaks.

The failure lines show how much shear stress, τ, can be
applied to a surface subject to a normal stress σ before failure
occurs. The cohesive strength is the minimum (absolute value)
shear stress for failure. The coefficient of internal friction indic-
ates the additional shear stress sustainable as the normal stress
increases. Thus, deeper in the crust, where the pressure and
hence normal stress are higher, rocks are stronger, and higher
shear stress is required to break them.

The failure lines and Mohr’s circle show on which plane fail-
ure occurs for a given stress state. To find θ, the angle between
the plane’s normal and the maximum compressive stress (σ1)
direction, we write the failure lines as

|τ | = τo − σ tan φ, (6)

1 Following the seismological convention of compressive stresses being negative,
Mohr’s circle is shown for σ < 0. The opposite convention is often used in rock
mechanics, e.g. Figs. 5.7-3 and 5.7-10.
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For low (< 400 MPa) confining pressures, the material fractures, and its
strength increases with pressure. For higher pressures, the material is
ductile, and its strength increases only slowly with pressure. A semi-brittle
transition regime, in which both microfractures and crystal plasticity
occur, separates the brittle and ductile regimes. (Kirby, 1980. J. Geophys.
Res., 85, 6353–63, copyright by the American Geophysical Union.)

For example, in introducing the relation between fault plane
solutions and crustal stresses in Section 2.3.5, we made the
simplest assumption that fracture occurs at 45° to the principal
stress axes, corresponding to the case φ = 0°, n = 0, θ = 45°.
Physically, this means that the normal stress has no effect on
the strength of the rock. However, rocks typically have n about
1, so φ = 45°, θ = 67.5°, and the fault plane is closer (22.5°) to
the maximum compression (σ1) direction (Fig. 5.7-8). This idea
is important when using P and T axes of focal mechanisms to
characterize stress directions.

Figure 5.7-7 also shows how to find the stresses when frac-
ture occurs. Consider the point T on the failure line such that
Tσ2 is perpendicular to the σ axis. Because the angle ATσ2 is θ
(triangles AFT and Aσ2T are congruent),

Tσ2 = Aσ2 cot θ, (8)

or, since 
  
Aσ2 = (σ2 − σ1)/2,

Tσ2
  
=

−
 
(  )

 cot .
σ σ θ2 1

2
(9)

Similarly,

Tσ2  = τo − σ2 tan φ (10)

(the minus sign is because σ2 is negative), so

(  )
 cot 

σ σ θ2 1

2

−
 = τo − σ2 tan φ. (11)

This relation can be written in terms of the angle of the fracture
plane, using Eqn 7 and trigonometric identities,

 
tan   cot   

tan
  

tan   

tan
,φ θ

θ
θ

θ
= − =

−
=

−
2

1

2

1

2

2
(12)

yielding

σ1 = −2τo tanθ + σ2 tan2θ. (13)

We will use this relation between the stresses when fracture
occurs to estimate the maximum stresses in the crust.

Similar analyses show when the shear stress is high enough
to overcome friction and cause sliding on a previously existing
fault. The results are similar to those for a new fracture in
unbroken rock, except that at low stress levels the preexisting
fault has no cohesive strength. Thus slip on the fault occurs
when |τ | = −µσ, where µ is the coefficient of sliding friction,
which can be expressed by an angle of sliding friction

tan α = µ . (14)

where n = tan φ, and φ, the angle of internal friction, is formed
by extending the failure line to the σ axis (Fig. 5.7-7). Fracture
occurs at point F, where the failure line is tangent to Mohr’s
circle. Considering the right triangle AFB, we see that

φ = 2θ − 90°, so θ = φ /2 + 45°. (7)
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Fig. 5.7-5 Mohr’s circle: Given a state of stress described by principal
stresses σ1 and σ2, the normal stress, σ, and the shear stress, τ, for planes
of all orientations lie on a circle with radius (σ2 − σ1)/2. The point on the
circle with angle 2θ, measured clockwise from the −σ axis, gives σ and τ
on a plane whose normal is at an angle θ from the direction of σ1.
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Fig. 5.7-6 The Coulomb–Mohr failure criterion assumes that a material
fractures when Mohr’s circle intersects the failure line.

Figure 5.7-9 shows the Mohr’s circle representation of a rock
with preexisting faults. In addition to the failure line, there is a
frictional sliding line corresponding to

τ = −µσ = −σ tan α. (15)

Because the sliding line starts at the origin, it is initially below
the failure line. Assume that the stresses are large enough that
Mohr’s circle touches the failure line at the point yielding frac-

B

σA σ2σ1

τ

τoθ

2θ θ

T
F

φ

Fig. 5.7-7 Fracture occurs at point F, where a material’s failure line,
characterized by its cohesive strength, τo, and angle of internal friction,
φ, is tangent to Mohr’s circle. Hence θ is the angle of the plane on which
fracture occurs, and F gives the stresses at fracture. Point A is the center of
Mohr’s circle, B is where the failure line intersects the σ axis, and Tσ2  is
perpendicular to the σ axis. For simplicity, only the upper failure line for
τ > 0 is shown in this and subsequent figures.

Fig. 5.7-8 With no internal friction, fracture occurs at an angle of 45°. For
n = 1, the fracture angle is 67.5°, and the fault plane is closer (22.5°) to the
maximum compression (σ1) direction.
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At this point, it is worth noting other complexities. Both the
failure and sliding curves may be more complicated than
straight lines. These curves, known as Mohr envelopes, can be
derived from experiments at various values of stress. Addi-
tional complexity comes from the fact that water and other
fluids are often present in rocks, especially in the upper crust.
The fluid pressure, known as the pore pressure, reduces the
effect of the normal stress and allows sliding to take place at
lower shear stresses. This effect is modeled by replacing the
normal stress σ with O = σ − Pf , known as the effective normal
stress, where Pf is the pore fluid pressure.2 Because the pore
pressure is defined as negative, the effective normal stress is
reduced (less compressive). Similarly, effective principal stresses
taking into account pore pressure,

O1 = σ1 − Pf and O2 = σ2 − Pf , (16)

are used in the fracture theory.
The relations we have discussed can be used to estimate the

maximum stresses that the crust can support. Laboratory ex-
periments (Fig. 5.7-10) for sliding on existing faults in a variety
of rock types find relations sometimes called Byerlee’s law:

τ ≈ −0.85O, |O | < 200 MPa

τ ≈ 50 − 0.6O, |O | > 200 MPa. (17)

These relations, written in terms of the normal and shear
stresses on a fault, can be used to infer the principal stress as
a function of depth. To do so, we write the minimum com-
pressive stress as σ3, because we are in three dimensions. We
assume that the crust contains faults of all orientations, and
that the stresses cannot exceed the point where Mohr’s circle is
tangent to the frictional sliding line, or else sliding will occur
(Fig. 5.7-11). At shallow depths where |O | < 200 MPa, Eqn 17
shows that τ0 = 0. Thus Eqn 13, the relation between the
stresses when fracture occurs, yields

O1 =  O3 tan2 θs . (18)

Using Eqn 7 for the case of frictional sliding,

θs = α /2 + 45°, (19)

and the values in Eqn 17 give

µ = tan α = 0.85, α ≈ 41°, θs ≈ 66°, tan2 66° ≈ 5, (20)

so the stresses are related by

O1 ≈ 5O3. (21)

At greater depths, where |O | > 200 MPa, α ≈ 31° and θs = 60.5°,
so the stresses are related by

O1 ≈ −175 + 3.1O3. (22)

Fig. 5.7-9 Mohr’s circle for sliding on a rock’s preexisting faults. A new
fracture would form at an angle θ f , given by the failure line. However,
slip will occur on a preexisting fault if there are any with angles between
θs1

 and θs2
, given by the intersection of the circle with the frictional

sliding line.

2 The role of pore pressure in making sliding easier can be seen by trying to slide an
object across a dry table and then wetting the table.
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ture on a plane corresponding to an angle θf . Similarly, the
frictional sliding line intercepts the circle at two points, corres-
ponding to angles θs1

 and θs2
. Thus the rock can fail in several

ways. If there are preexisting faults with angles θs1
 or θs2

, slip on
these faults may occur. Alternatively, a new fracture may form
on the plane given by θf . However, because this fracture occurs
at higher shear stress than is needed for frictional sliding on the
preexisting faults, sliding is favored over the formation of a
new fracture. Thus, if the stress has gradually risen to this level,
sliding on preexisting faults would probably have prevented a
new fracture from forming.

This effect can have seismological consequences. The sim-
plest way to use focal mechanisms to infer stress orientations is
to assume that the earthquakes occurred on newly formed
faults. However, if the rock had been initially faulted, the
earthquakes may have occurred on preexisting faults. In the
representation of Fig. 5.7-9, if faults exist with normals
oriented between θs1

 and θs2
 to the maximum compressive stress,

slip on these faults will occur rather than the formation of a
new fracture. Thus the inferred stress direction will be some-
what inaccurate. For example, the thrust focal mechanisms
along the Himalayan front (Fig. 5.6-6) or eastern Andean fore-
land thrust belt (Fig. 5.6-10) have fault planes that rotate as the
trend of the mountains changes, suggesting that the fault planes
are controlled by the existing structures, so the P axes only
partially reflect the stress field. A similar pattern appears for
T axes along the East African rift (Fig. 5.6-2). In general, stress
axes inferred from many fault plane solutions in an area seem
relatively coherent (Fig. 5.6-19). Thus we assume that the crust
contains preexisting faults of all orientations, so the average
stress orientation inferred from the focal mechanisms is not
seriously biased.
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We assume that one principal stress, σ1 or σ3, is the vertical
stress due to the lithostatic pressure as a function of depth (z),

σV = −ρgz. (23)

The other principal stress, which must be horizontal, is denoted
σH. The pore pressure Pf(z) is unknown. One common assump-
tion is that the rock is dry, so Pf(z) = 0. Another is that the pore
pressure is hydrostatic, which is equivalent to assuming that
pores are connected up to the surface, so

Pf (z) = −ρf gz, (24)

Fig. 5.7-10 Shear stress versus normal
stress for frictional sliding, compiled for
various rock types. Compressive stress is
positive. (Byerlee, 1978. Pure Appl.
Geophys., 116, 615–26, reproduced with
the permission of Birkhauser.)

Fig. 5.7-11 Mohr’s circle and sliding line for |O | < 200 MPa. If the
lithosphere contains fractures in all directions, the stresses cannot
exceed those at the point where Mohr’s circle is tangent to the sliding
line, because sliding would occur.

where ρf is the density of the fluid, which is usually water, with
ρf = 1 g/cm3. Alternatively, the pore pressure can be assumed to
be a fixed fraction of the lithostatic pressure (Section 2.3.6).

We now can find the strength of the crust, defined by the
maximum difference between the horizontal and vertical
stresses that the rock can support. At shallow depths where
|O | < 200 MPa, Eqn 21 shows that O1 = 5O3. There are two
possibilities, depending on whether the vertical stress is the
most (O1) or least (O3) compressive. If the vertical stress is the
most compressive,

σV = σ1, O1 = σV − Pf  = −ρgz − Pf (z)

σH = σ3, O3 =  O1/5 = −(ρgz + Pf (z))/5. (25)

Alternatively, if the vertical stress is the least compressive,

σV = σ3, O3 = σV − Pf  = −ρgz − Pf (z)

σH = σ1, O1 = 5O3 = −5(ρgz + Pf (z)). (26)

In the first case,

σH − σV = σ3 − σ1 = 0.8(ρgz + Pf (z)), (27)

corresponds to an extensional (positive) stress. In the second,

σH − σV = σ1 − σ3 = −4(ρgz + Pf (z)) (28)

corresponds to a compressive (negative) stress that is much
greater in absolute value. Thus, at any depth, the crust can
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where η is the viscosity, and eF is the fluid portion of the strain.
This equation defines the viscosity, the property that measures
a fluid’s resistance to shear.3

We often think of an elastic material as a spring, which
exerts a force proportional to distance. Thus stress and
strain are proportional at any instant, and there are no time-
dependent effects. By contrast, the viscous material is though of
as a dashpot, a fluid damper that exerts a force proportional to
velocity. Hence the stress and strain rate are proportional, and
the material’s response varies with time. These effects are com-
bined in a viscoelastic material, which can be thought of as a
spring and dashpot in series (Fig. 5.7-13). The combined elastic
and viscous response comes from the combined strain rate

  

de

dt

de

dt

de

dt E

d

dt
E F         .= + = +

1

2

σ σ
η

(31)

This differential equation, the rheological law for a Maxwell
substance, shows how the stress in the material evolves after
a strain eo is applied at time t = 0 and then remains constant. At
t = 0 the derivative terms dominate, so the material behaves
elastically, and has an initial stress

σo = Eeo. (32)

For t > 0, de/dt = 0, so

  

d

dt

Eσ
η

σ  ,= −
2

(33)

whose integral is

σ(t) = σo exp [−(Et/2η)]. (34)

Thus stress relaxes from its initial value as a function of time
(Fig. 5.7-13). A useful parameter is the Maxwell relaxation
time,4

  
τ η η

µM E
= ≈   ,

2
(35)

required for the stress to decay to e−1 of its initial value. For
times less than τM the material can be considered an elastic
solid, whereas for longer times it can be considered a viscous
fluid.

For example, if the mantle is approximately a Poisson solid
with µ ≈ 1012 dyn/cm2 and η ≈ 1022 poise, its Maxwell time is
about 1010 s or 300 years. Although the viscosity is not that
well known, so estimates of the Maxwell time vary, it is clear
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3 In familiar terms, viscosity measures how “gooey” a fluid is. Maple syrup is some-
what more viscous than water, and the earth’s mantle is about 1024 times more viscous.
4 Definitions of the Maxwell time vary, but always involve the ratio of the viscosity
to an elastic constant.

Fig. 5.7-12 Horizontal stresses measured in southern Africa. Dots are
for horizontal stresses being the least compressive (σ3), and triangles are
for horizontal stresses being the most compressive (σ1). The lithostatic
stress gradient (26.5 MPa/km) is shown, along with Byerlee’s law (BY)
for zero pore pressure (DRY). The stronger line is for compression,
and the weaker one is for extension. The observed stresses are within the
maximum and minimum BY-DRY lines. (Brace and Kohlstedt, 1980.
J. Geophys. Res., 85, 6248–52, copyright by the American Geophysical
Union.)

support greater compressive deviatoric stress than extensional
deviatoric stress (Fig. 5.7-12).

5.7.3 Ductile flow

When rocks behave brittlely, their behavior is not time-
dependent; they either strain elastically or fail. By contrast, the
deformation of ductile rock depends on time. A common model
for the time-dependent behavior is a Maxwell viscoelastic
material, which behaves like an elastic solid on short time
scales and like a viscous fluid on long time scales. This model
can describe the mantle because seismic waves propagate as
though the mantle were solid, whereas postglacial rebound and
mantle convection occur as though the mantle were fluid.

To see this difference, consider two types of deformation
in one dimension. For an elastic solid subjected to elastic strain
eE = e11,

σ = EeE, (29)

where E is Young’s modulus, and σ is σ11. The simplest viscous
fluid obeys

  
σ η  ,= 2

de

dt
F (30)
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that we can treat the mantle as a solid for seismological
purposes and as a fluid in tectonic modeling. If we model the
mantle as viscoelastic, then a load applied on the surface has an
effect that varies with time. Figure 5.7-13c shows the effect of a
150 km-wide sediment load, as might be expected on a passive
continental margin. Initially, the earth responds elastically,
causing large flexural bending stresses. With time, the mantle
flows, so the deflection beneath the load deepens and the
stresses relax. In the time limit, the stress goes to zero, and the
deflection approaches the isostatic solution, because isostasy
amounts to assuming that the lithosphere has no strength.
Stress relaxation may explain why large earthqukes are rare
at continental margins, except where glacial loads have been
recently removed (Fig. 5.6-20). Although the large sediment
loads should produce stresses much greater than other sources
of intraplate stress, including the smaller and less dense ice
loads, the stresses produced by sediment loading early in the
margin’s history may have relaxed.

Laboratory experiments indicate that the rheology of
minerals in ductile flow can be described by

de

dt
 = G = f(σ) A exp [−(E* + PV*)/RT ], (36)

where T is temperature, R is the gas constant, and P is pressure.
f(σ) is a function of the stress difference |σ1 − σ3 |, and A is
a constant. The effects of pressure and temperature are de-
scribed by the activation energy E* and the activation volume
V*. Observed values of f(σ) are often fit well by assuming

f(σ) = |σ1 − σ3 |n

G = |σ1 − σ3 |n A exp [−(E* + PV*)/RT ]. (37)

The rheology of such fluids is characterized by a power
law. If n = 1, the material is called Newtonian, whereas a
non-Newtonian fluid with n = 3 is often used to represent the
mantle. From Eqn 30 we see that for a Newtonian fluid the
viscosity depends on both temperature and pressure:

η = (1/2A) exp [(E* + PV*)/RT ]. (38)

Thus the viscosity decreases exponentially with temperature.
This decrease is assumed to give rise to a strong lithosphere
overlying a weaker asthenosphere, and the restriction of earth-
quakes to shallow depths.5 For a non-Newtonian fluid, Eqn 30
gives the effective viscosity, the equivalent viscosity if the fluid
were Newtonian.

We think of equations like Eqn 37 as showing the strength,
or maximum stress difference |σ1 − σ3 |, that the viscous
material can support. This stress difference depends on
temperature, pressure, strain rate, and rock type. The material

5 Temperature-dependent viscosity is an effect familiar to automobile drivers in cold
temperatures, when the engine and the transmission became noticeably sluggish.

Fig. 5.7-13 (a) Model of a viscoelastic material as an elastic spring and
viscous dashpot in series. (b) Stress response of a viscoelastic material to
an applied strain. The Maxwell relaxation time, τM, is the time the stress
takes to decay to e−1 of its initial value. (c) Evolution of the deflection and
bending stress produced by a sediment load on a viscoelastic earth. At first
the earth responds elastically, as shown by the long-dashed line, but with
time it flows, so the deflection beneath the load deepens and the stresses
relax. (Stein et al., 1989, with kind permission from Kluwer Academic
Publishers.)



D
ep

th
 (k

m
)

0

10

20

30

40

50

−1500

Olivine

Quartz

−1000−5000500

BY-HYD    = 0.42

λ

DRY    = 0
λ

   = 0.7
λ

   = 1λ   
= 

0.
7

λBY
-H

YD
   

 =
 0

.4
2

λ

DRY
   

 = 
0

λ

 H −   V (MPa)σ σ

Extension Compression

is stronger at higher strain rates, and weakens exponentially
with high temperatures. At shallow depths, the small pressure
effect is often neglected, so the activation volume V* is treated
as zero. For example, a commonly used flow law for dry olivine
is6

G = 7 × 104 |σ1 − σ3 |3
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for | σ1 − σ3 | > 200 MPa, (39)

where G is in s−1. Similarly, for quartz,

G = 5 × 106 |σ1 − σ3 |3

    
exp 

.−⎛

⎝⎜
⎞

⎠⎟
0 19 MJ/mol

RT

for | σ1 − σ3 | < 1000 MPa. (40)

At a given strain rate, quartz is much weaker (can sustain a
smaller stress difference) than olivine. Thus the quartz-rich
continental crust should be weaker that the olivine-rich oceanic
crust, an effect whose tectonic consequences are discussed
next.

5.7.4 Strength of the lithosphere

The strength of the lithosphere as a function of depth depends
upon the deformation mechanism. At shallow depths, rocks
fail by either brittle fracture or frictional sliding on preexisting
faults. Both processes depend in a similar way on the normal
stress, with rock strength increasing with depth. However, at
greater depths the ductile flow strength of rocks is less than the
brittle or frictional strength, so the strength is given by the flow
laws and decreases with depth as the temperatures increase.
This temperature-dependent strength is the reason why the
cold lithosphere forms the planet’s strong outer layer.

To calculate the strength, a strain rate and a geotherm giving
temperature as a function of depth are assumed. At shallow
depths the strength, the maximum stress difference before
frictional sliding occurs, is computed using Eqns 27 and 28. At
some depth, the frictional strength exceeds the ductile strength
allowed by the flow law, so for deeper depths the maximum
strength is given by the flow law. Figure 5.7-14 shows a
strength plot, known as a strength envelope, for a strain rate
of 10−15 s−1 and a temperature gradient appropriate for old
oceanic lithosphere or stable continental interior. In the
frictional region, curves are shown for various values of λ,
the ratio of pore pressure to lithostatic pressure. The higher

6 Brace and Kohlstedt (1980).

Fig. 5.7-14 Strength envelopes as a function of depth for various values of
λ , the ratio of pore pressure to lithostatic pressure. BY-HYD lines are for
Byerlee’s law with hydrostatic pore pressure. At shallow depths, strength
is controlled by brittle fracture; at greater depths ductile flow laws predict
rapid weakening. In the ductile flow regime, quartz is weaker than olivine.
In the brittle regime, the lithosphere is stronger in compression (right side)
than in extension (left side). (Brace and Kohlstedt, 1980. J. Geophys. Res.,
85, 6248–52, copyright by the American Geophysical Union.)

pore pressures result in lower strengths. Ductile flow laws are
shown for quartz and olivine, minerals often used as models for
continental and oceanic rheologies. Strength increases with
depth in the brittle region, due to the increasing normal stress,
and then decreases with depth in the ductile region, due to
increasing temperature. Hence strength is highest at the brittle–
ductile transition. Strength decreases rapidly below this trans-
ition, so the lithosphere should have little strength at depths
greater than about 25 km in the continents and 50 km in the
oceans. The strength envelopes show that the lithosphere is
stronger for compression than for tension in the brittle regime,
but the two are symmetric in the ductile regime. Strength
envelopes are often plotted using the rock mechanics conven-
tion of compression positive.

The actual distribution of strength with depth is probably
more complicated, because the brittle–ductile transition occurs
over a region of semi-brittle behavior that includes both brittle
and plastic processes (Fig. 5.7-3). However, this simple model
gives insight into various observations. In particular, we have
seen that the depths of earthquakes in several tectonic environ-
ments seem to be limited by temperature. This makes sense,
because for a given strain rate and rheology the exponential
dependence on temperature would make a limiting strength for
seismicity approximate a limiting temperature.

To see this, consider Fig. 5.7-15, which shows that as
oceanic lithosphere ages and cools, the predicted strong region
deepens. This result seems plausible because earthquake depths,
seismic velocities, and effective elastic thicknesses imply that
the strong upper part of the lithosphere thickens with age
(Fig. 5.3-9). The strength envelopes are thus consistent with the
observation that the maximum depth of earthquakes within

5.7 Faulting and deformation in the earth 357
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Fig. 5.7-15 Strength envelopes showing maximum stress difference
(strength) as a function of depth for an olivine rheology, for geotherms
(right) corresponding to cooling oceanic lithosphere of different ages.
Strength in the brittle regime is reduced by higher pore pressure; strength
in the ductile regime is reduced by lower strain rate. The depth range in
which the material is strong enough for faulting increases with age.
(Wiens and Stein, 1983. J. Geophys. Res., 88, 6455–68, copyright by
the American Geophysical Union.)

the oceanic lithosphere is approximately bounded by the 750°C
isotherm (Fig. 5.7-16). These envelopes are drawn for strain
rates of 10−15 and 10−18 s−1, appropriate for slow deforma-
tion within plates. By contrast, a seismic wave with a period
of 1 s, a wavelength of 10 km, and a displacement of 10−6 m
corresponds to a strain rate of 10−10 s−1. The successively
greater effective elastic thicknesses, depth of the deepest earth-
quakes, and depth of the low-velocity zone are thus consistent
with strength increasing with strain rate.

The strength envelopes give insight into differences between
continental and oceanic lithospheres (Fig. 5.7-17). First, quartz
is weaker than olivine at a given temperature (Fig. 5.7-14),

Fig. 5.7-16 Plots of strength and seismicity versus temperature. The
strength envelopes explain the observation that intraplate oceanic
seismicity occurs only above the 750°C isotherm. (Wiens and Stein, 1985.
Tectonophysics, 116, 143–62, with permission from Elsevier Science.)

consistent with the fact that the limiting temperature for
continental seismicity is lower than for oceanic earthquakes
(Fig. 5.7-18). Second, the strength profiles differ. The strength
of oceanic lithosphere increases with depth and then decreases.
However, in continental lithosphere we expect such a profile in

Fig. 5.7-17 Schematic strength envelope for continents. Below the ductile
lower crust may be a stronger zone in the olivine-rich mantle. (Chen and
Molnar, 1983. J. Geophys. Res., 88, 4183–4214, copyright by the
American Geophysical Union.)



Fig. 5.7-18 Limiting temperatures for continental seismicity. These
temperatures are much lower than those for oceanic lithosphere, since the
quartz rheology in continents is much weaker than olivine. (Courtesy of
J. Strehlau and R. Meissner.)
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the quartz-rich crust, but also a second, deeper zone of strength
below the Moho, due to the olivine rheology. This “jelly sand-
wich” profile including a weak zone may be part of the reason
why continents deform differently than oceanic lithosphere.
For example, some continental mountain building (Fig. 5.6-6)
may involve crustal thickening in which slices of upper crust,
which are too buoyant to subduct, are instead thrust atop one
another. The weaker lower crust may also contribute in other
ways to the general phenomenon that continental plate
boundaries are broader and more complex than their oceanic
counterparts (Fig. 5.2-4).

5.7.5 Earthquakes and rock friction

It is natural to assume that earthquakes occur when tectonic
stress exceeds the rock strength, so a new fault forms or an
existing one slips. Thus steady motion across a plate boundary
seems likely to give rise to a cycle of successive earthquakes
at regular intervals, with the same slip and stress drop (Fig. 5.7-
19). However, we have seen that the earthquake process
is more complicated. The time between earthquakes on plate
boundaries varies (Fig. 1.2-15), although the plate motion
causing the earthquakes is steady. Earthquakes sometimes
rupture along the same segments of a boundary as in earlier
earthquakes, and other times along a different set (Fig. 5.4-27).
Moreover, many large earthquakes show a complicated rup-
ture pattern, with some parts of the fault releasing more seismic
energy than others (Fig. 4.5-10). Attempts to understand these

Fig. 5.7-19 Stress and slip history for an idealized earthquake cycle on a
plate boundary, in which all earthquakes have the same stress drop and
coseismic slip. (Shimazaki and Nakata, 1980. Geophys. Res. Lett., 7,
279–82, copyright by the American Geophysical Union.)
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complexities often combine two basic themes. Some of the
complexity may be due to intrinsic randomness of the failure
process, such that some small ruptures cascade into large earth-
quakes, whereas others do not (Section 1.2.6). Other aspects of
the complexity may be due to features of rock friction.

Interesting insight emerges from considering an experiment
in which stress is applied until a rock breaks. When the fault
forms, some of the stress is released, and then motion stops. If
stress is reapplied, another stress drop and motion occur once
the stress reaches a certain level. So long as stress is reapplied,
this pattern of jerky sliding and stress release continues
(Fig. 5.7-20).

This pattern, called stick-slip, looks like a laboratory version
of what happens in a sequence of earthquakes on a fault. By
this analogy, the stress drop in an earthquake relieves only part
of the total tectonic stress, and as the fault continues to be
loaded by tectonic stress, occasional earthquakes occur. The
analogy is strengthened by the fact that at higher temperatures
(about 300° for granite), stick-slip does not occur (Fig. 5.7-20).
Instead, stable sliding occurs on the fault, much as earthquakes
do not occur at depths where the temperature exceeds a certain
value. Thus, understanding stick-slip in the laboratory seems
likely to give insight into the earthquake process.

Stick-slip results from a familiar phenomenon: it is harder to
start an object sliding against friction than to keep it going
once it is sliding. This is because the static friction stopping the
object from sliding exceeds the dynamic friction that opposes
motion once sliding starts.7 To understand how this difference

7 This effect is the basis of cross-country skiing, where loading one ski makes it grip
the snow, while unloading the other lets it glide.
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Fig. 5.7-20 Force versus slip history for a rock sample. At low
temperature, so long as stress is reapplied, a stick-slip pattern of jerky
sliding and stress release continues. By contrast, stable sliding occurs
at high temperature. (Brace and Byerlee, 1970. Science, 168, 1573–5,
copyright 1970 American Association for the Advancement of Science.)

8 We suggest trying this experiment.

However, the block starts sliding only once the spring force
exceeds the frictional force, so just before sliding starts at t = 0,

0 = kζ + µsσ, (43)

where µs is the static friction coefficient. For simplicity, assume
that at the instant sliding starts, the friction drops to its
dynamic value µd, and

  
m

d u

dt

2

2
 = k(ζ − u) + µdσ. (44)

Subtracting Eqn 43 from Eqn 44 gives

  
m

d u

dt

2

2
 = −ku + (µd − µs)σ = −ku + ∆µσ, (45)

which we can use as the equation of motion for the block’s slip
history u(t) if the loading rate v is slow enough to ignore during
the slip event.

A solution to Eqn 45, with initial conditions u(0) = 0 and

  

du

dt

( )0
 = 0, is

causes stick-slip, and get insight into stick-slip as a model for
earthquakes, consider the experiment in Fig. 5.7-21. It turns
out that if an object is pulled across a table with a rubber band,
jerky stick-slip motion occurs.8 Thus a steady load, combined
with the difference in static and dynamic friction, causes an
instability and a sequence of discrete slip events.

We analyze this situation assuming that a block (sometimes
called a slider) is loaded by a spring that applies a force f propor-
tional to the spring constant (stiffness) k and the spring exten-
sion. If the loading results from the spring’s far end moving at a
velocity v, the spring force is

f = k(ζ + vt − u), (41)

where u is the distance the block slipped, and ζ is the spring
extension when sliding starts at t = 0. This motion is opposed
by a frictional force | τ | = −µσ equal to the product of σ, the
compressive (negative) normal stress due to the block’s weight,
and the friction coefficient, µ. By Newton’s second law that
force equals mass times acceleration,

  
m

d u

dt

2

2
 = f − τ = k(ζ + vt − u) + µσ. (42)

Fig. 5.7-21 A simple spring and slider block analog for stick-slip as a
model for earthquakes. The slider is loaded by force f due to the spring
end moving at velocity v. Before sliding, the block is retarded by a static
friction force τ = −µsσ, but once sliding starts, the friction force decreases
to −µdσ. A series of slip events occur, each with slip ∆u and force change
(stress drop) ∆f.
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∆µσ
 (1 − cos ωt) (slip),
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( )
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∆µσ
 cos ωt (acceleration), (46)

where ω   / .= k m  As shown, the block starts slipping because
the spring force exceeds the friction force. During the slip
event, the spring force decreases as the spring shortens, until it
becomes less than the friction force and the block slows and
eventually stops. The block stops once the shaded area above
the spring force line equals that below the line, or when the
work done accelerating the block equals that which decelerated
it. If the spring end continues to move, loading continues until
the spring force again equals the static friction force and
another slip event occurs.

It is interesting to think of analogies between this model of
slip events and earthquakes. The slip event’s duration tD,
analogous to an earthquake rise time (Section 4.3.2), satisfies

du t

dt
t m kD

D
( )

  ,    / .= = =0
π
ω

π (47)

The total slip during the event is

∆u = u(tD) = 2∆µσ /k, (48)

and the drop in the spring force, which is analogous to an
earthquake stress drop (Section 4.6.3), is

∆f = 2∆µσ. (49)

Thus the rise time depends on the spring constant, but not on
the difference between static and dynamic friction. However,
the total slip and stress drop depend upon the friction differ-
ence. None of these depend upon the loading rate, which is
analogous to the rate of plate motion causing earthquakes
on a plate boundary. But the loading rate determines the time
between successive slip events. Thus, in the plate boundary
analogy, the time between large earthquakes depends on the
plate motion rate, but their slip and stress drop depend on the
frictional properties of the fault and the normal stress. Hence
faster-slipping boundaries would have more frequent large
earthquakes, but the slip and stress drop in them would not
be greater than on a slower boundary with similar frictional
properties and normal stress.

Laboratory experiments show that the difference between
static and dynamic friction is more complicated than the con-
stant values assumed in this simple model. We can think of the
lower dynamic friction as showing either velocity weakening,
decreasing as the object moves faster, or slip weakening,
decreasing as the object moves further. Frictional models called

Fig. 5.7-22 Evolution of friction in a simple rate- and state-dependent
model. If the slip rate increases by a factor of e, friction increases by a,
and then decreases as slip progresses to a steady-state value a − b. (After
Scholz, 1990. Reprinted with the permission of Cambridge University
Press.)

rate- and state-dependent friction with a variable coefficient of
sliding friction, µ, are used to describe these effects. In a simple
model of this sort,

µ = [µ0 + bψ + a ln (v/v*)], (50)

where µ0 is the coefficient of static friction. The friction de-
pends on the slip rate v, normalized by a rate v*, and a state
variable ψ that represents the slip history

d

dt

ψ
 = −(v/L)[ψ + ln (v/v*)], (51)

where L is an experimentally determined characteristic dis-
tance. The friction also depends on a and b, which characterize
the material.

Figure 5.7-22 illustrates how friction evolves. If the slip rate
increases by a factor of e, the friction increases by a, and then
decreases as slip progresses, reaching a new steady-state value.
With time, ψ reaches a steady-state value given by Eqn 51,

0 = −(v/L)[ψss + ln (v/v*)], ψss = −ln (v/v*). (52)

The steady state friction (Eqn 50) is

µss = [µ0 + bψ + a ln (v/v*)] = [µ0 + (a − b) ln (v/v*)], (53)

and varies with slip rate as

  

d

d v
ssµ

ln
 = (a − b), (54)

so after the slip velocity change, the net friction change is (a −
b). If (a − b) is negative, the material shows velocity weakening,
which permits earthquakes to occur by stick-slip. However, for
(a − b) positive, the material shows velocity strengthening, and
stable sliding is expected. Laboratory results (Fig. 5.7-20) show
that a − b for granite changes sign at about 300°, which should
be the limiting temperature for earthquakes. Thus the frictional
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model predicts a maximum depth for continental earthquakes
similar to that predicted by the rock strength arguments.

These results can be used to simulate the earthquake
cycle, using fault models analogous to the simple slider model
(Fig. 5.7-21). Figure 5.7-23 shows the slip history as a function
of depth and time for a model in which a strike-slip fault is
loaded by plate motion. The fault is described by rate- and
state-dependent frictional properties as a function of depth,
such that stick-slip occurs above 11 km. Initially from time A
to B, stable sliding occurs at depth, and a little precursory
slip occurs near the surface. The earthquake causes 2.5 m of
sudden slip at shallow depths, as shown by the curves for times
B and B′. As a result, the faulted shallow depths “get ahead”
of the material below, loading that material and causing
postseismic slip from times B′ to F. Once this is finished, the
93-year cycle starts again with steady stable sliding at depth.

Such models replicate many aspects of the earthquake cycle.
An interesting difference, however, is that the models predict
earthquakes at regular intervals, whereas earthquake histories
are quite variable. Some of the variability may be due to the
effects of earthquakes on other faults, or other segments of
the same fault. Figure 5.7-24 shows this idea schematically
for the slider model in Fig. 5.7-21. Assume that after an earth-
quake cycle, the compressive normal stress σ on the slider is re-
duced. This “unclamping” reduces the frictional force resisting
sliding, so it takes less time for the spring force to rise again to
the level needed for the next slip event. Conversely, increased
compression “clamps” the slider more, and so increases the
time until the next slip event. In addition, by Eqn 49, the stress
drop in the slip event changes when σ changes.

Stress
“unclamping”

µ σd−

µ σs−

µ σd− ′

µ σs− ′

Slip

Spring
force

Fig. 5.7-24 Modification of a slider block model (Fig. 5.7-21) to include
the effects of changes in normal stress. Reduced normal stress ( | σ | < | σ ′ |)
reduces the frictional force, and so “unclamps” the fault and decreases the
time until the next slip event.

For earthquakes, the analogy implies that earthquake occur-
rence on a segment of a fault may reflect changes in the stress on
the fault resulting from earthquakes elsewhere. This concept is
quantified using the Coulomb–Mohr criterion (Eqn 5) that
sliding can occur when the shear stress exceeds that on the slid-
ing line (Fig. 5.7-9), or τ > µσ. We can thus define the Coulomb
failure stress

σf  = τ + µσ (55)

such that failure occurs when σf is greater than zero. Whether a
nearby earthquake brings a fault closer to or further from fail-
ure is shown by the change in Coulomb failure stress due to the
earthquake,



Fig. 5.7-25 Predicted changes in Coulomb failure stress due to the
1971 San Fernando earthquake. The Whittier Narrows and Northridge
earthquakes subsequently occurred in regions where the 1971 earthquake
increased the failure stress. (Stein et al., 1994. Science, 265, 1432–5,
copyright 1994 American Association for the Advancement of Science.)
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stress changes should only trigger an earthquake if the tectonic
stress is already close to failure. However, as in the slider model
(Fig. 5.7-24), stress changes can affect the time until the tec-
tonic stress is large enough to produce earthquakes. It has been
argued that the 1906 San Francisco earthquake reduced the
failure stress on other faults in the area, causing a “stress
shadow” and increasing the expected time until the next earth-
quake on these faults. This is consistent with the observation
that during the 75 years before the 1906 earthquake, the
area had 14 earthquakes with Mw above 6, whereas only one
occurred in the subsequent 75 years. Such analyses may help
improve estimates of the probability that an earthquake of a
certain size will occur on a given fault during some time period.
To date, such estimates have large uncertainties (Section 4.7.3),
in part because of the large variation in the time intervals
between earthquakes. Stress loading models, some of which
incorporate rate- and state-dependent friction because simple
Coulomb friction does not predict large enough changes in
recurrence time, may explain some of the variations and thus
reduce these uncertainties.

This discussion brings out the importance of understanding
the state of stress on faults. On this issue, the friction models
give some insight, but major questions remain. Earthquake
stress drops estimated from seismological observations are
typically less than a few hundred bars (tens of MPa). Yet, the
expected strength of the lithosphere (e.g., Fig. 5.7-14–16)
is much higher, in the kilobar (hundreds of MPa) range. The
laboratory results (Fig. 5.7-20) and frictional models (Fig.
5.7-21) suggest an explanation for this difference, because in
both the stress drop during a slip event is only a fraction of the
total stress.

However, the frictional models do not explain an intriguing
problem called the “San Andreas” or “fault strength” paradox.
As noted in Section 5.4.1, a fault under shear stress τ slipping at
rate v should generate fractional heat at a rate equal to τv.
Thus, if the shear stresses on faults are as high (kbar or hund-
reds of MPa) as expected from the strength envelopes, signi-
ficant heat should be produced. But little if any heat flow
anomaly is found across the San Andreas fault (Fig. 5.7-26),
suggesting that the fault is much weaker than expected. A sim-
ilar conclusion emerges from consideration of stress orientation
data. Although the Coulomb–Mohr model predicts that the
maximum principal stress directions inferred from focal mech-
anisms, geological data, and boreholes should be about 23°
from the San Andreas fault (Fig. 5.7-8), the observed directions
are essentially perpendicular to the fault (Fig. 5.6-19), implying
that the fault acts almost like a free surface. To date, there is no
generally accepted explanation for these observations. The
most obvious one is that the effective stress on the fault is re-
duced by high pore pressure, but there is discussion about
whether pressures much higher than hydrostatic pressure could
be maintained in the fault zone. An alternative explanation,
that the fault zone is filled by low-strength clay-rich fault
gouge, faces the difficulty that experiments on such material
find that it has normal strength unless pore pressures are high.
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∆σf  = ∆τ + µ∆σ. (56)

Failure is favored by positive ∆σf , which can occur either from
increased shear stress τ or a reduced normal stress (compres-
sion is negative, so ∆σ > 0 favors sliding).

Some earthquake observations provide support for this
idea. Figure 5.7-25 shows the predicted Coulomb failure stress
changes in the Los Angeles region due to the 1971 (Ms 6.6)
San Fernando earthquake. The stress change pattern reflects
the earthquake’s focal mechanism, thrust faulting on a NW–
SE-striking fault (Fig. 5.2-3). Two moderate earthquakes, the
1987 Whittier Narrows (ML 5.9) and 1994 Northridge (Mw
6.7) earthquakes subsequently occurred in regions where the
1971 earthquake increased the failure stress, suggesting that
the stress change may have had a role in triggering the earth-
quakes. A similar pattern has been found after other earth-
quakes, and some studies have found that aftershocks are
concentrated in regions where the mainshock increased the
failure stress. Stress triggering may explain why successive earth-
quakes on a fault sometimes seem to have a coherent pattern.
For example, the 1999 Ms 7.4 Izmit earthquake on the North
Anatolian fault (Fig. 5.6-8) appears to be part of a sequence
of major (Ms 7) earthquakes over the past 60 years, which
occurred successively further to the west, and hence closer to
the metropolis of Istanbul.

An intriguing feature of such models is that the predicted
stress changes are of the order of 1 bar, or only 1–10% of the
typical stress drops in earthquakes (Section 4.6.3). Such small
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SW NE 5.7.6 Earthquakes and regional deformation

The large, rapid deformation in earthquakes is often part of a
slow deformation process occurring over a broader region. As
discussed in Section 5.6.2, there often appear to be differences
between the seismic, aseismic, transient, and permanent
deformations sampled by different techniques on different time
scales. Experimental and theoretical ideas about rheology and
lithospheric dynamics are being used to investigate the relation
between earthquakes and the regional deformations that pro-
duce them.

We have seen that earthquakes often reflect deformation dis-
tributed over a broad plate boundary zone. In this case, we can
think of the lithosphere as a viscous fluid and use earthquakes
as indicators of its deformation. This idea is like the physical
model (Fig. 5.6-7) that used deformable plasticine as an ana-
logy for the deformation of Asia resulting from the Himalayan
collision. Figure 5.7-27 shows such an analysis for part of the
Pacific–North America plate boundary zone in the western
United States. The deformation is assumed to result from a
combination of forces due to the transform plate boundary and
forces due to the potential energy of elevated topography,
which tends to spread under its own weight. To test this idea, a
continuous velocity field has been interpolated from space-
geodetic, fault slip, and plate motion data (Figs 5.2-3 and 5.6-
3). The velocity field is treated as being due to the motion of a
viscous fluid, and is converted to a strain rate tensor field. This
is then compared to the magnitude of the stress tensor inferred

Fig. 5.7-27 Left: Estimated velocity field for part of the Pacific–North America plate boundary zone in the western USA. Right: Effective viscosity
determined by dividing the magnitude of the deviatoric stress tensor by the magnitude of the strain rate tensor. (Flesch et al., 2000. Science, 287, 834–6,
copyright 2000 American Association for the Advancement of Science.)

In summary, ideas based on rock friction are providing
important insights into earthquake mechanics. Although many
issues remain unresolved, and some attractive notions remain
to be fully demonstrated, rock friction seems likely to play a
growing role in addressing earthquake issues.



from topography and plate boundary forces. The ratio of stress
to strain rate at any point, which is the vertically averaged
effective viscosity, varies significantly. Low values along the
San Andreas fault and western Great Basin show that the strain
rates are relatively high for the predicted stress, consistent with
a weak lower crust. The Great Valley–Sierra Nevada block has
little internal deformation, and thus acts relatively rigidly and
appears as a high-viscosity region. Summing seismic moment
tensors (Section 5.6.2) yields a seismic strain rate averaging
about 60% of the inferred total strain. As discussed earlier, this
discrepancy may indicate some aseismic deformation or that
the 150 years of historical seismicity is too short for a reliable
estimate.

Viscous fluid models can be used to study how the litho-
sphere deforms on different time scales. For example, as noted
in Section 5.6.2, GPS data across the entire Nazca–South
America plate boundary zone show faster motion than is
inferred from structural geology or topographic modeling.
The difference probably occurs because the GPS data record
instantaneous velocities that include both permanent deforma-
tion and elastic deformation that will be recovered during
future earthquakes, whereas the lower geological rates reflect
only the permanent deformation. This can be modeled by rep-
resenting the overriding South American plate using a simple
one-dimensional system of a spring, a dashpot, and a pair of
frictional plates (Fig. 5.7-28). This system approximates the
behavior of the crust: the spring gives the elastic response over
short periods, the dashpot gives the viscous response over geo-
logical time scales, and the frictional plates simulate the thrust
faulting earthquake cycle at the trench. As plate convergence
compresses the system, the stress σ(t) increases with time
until it reaches a yield strength σy, when an earthquake occurs,
stress drops to σb, and the process repeats. Displacement
accumulates at a rate v0 except during earthquakes, when the
displacement drops by an amount ∆u. The topography and
geologic data record the averaged long-term shortening rate vc
shown by the envelope of the sawtooth curve, whereas GPS
data record the higher instantaneous velocity v0. The instanta-
neous velocity thus results from the portion of the plate motion
locked at the trench that deforms the overriding plate elastic-
ally (Fig. 4.5-14) and is released as seismic slip in interplate
earthquakes. By contrast, the aseismic slip component at the
trench has no effect because it does not contribute to locking on
the interface and deformation of the overriding plate. Similar
models are being explored for other regions where deformation
appears to vary on different time scales.

Viscous fluid models are also used to analyze other aspects
of the earthquake cycle. For example, Fig. 5.7-29 shows the
strain rate near portions of the San Andreas fault compared to
the time since the last great earthquake on that portion of the
fault. Postseismic motion seems to continue for a period of
years after an earthquake and then slowly decays, presum-
ably due to the steady interseismic motion. A similar picture
emerges from GPS and other geodetic results following large
trench thrust faulting earthquakes. For a number of years, sites
near the trench on the overriding plate move seaward, showing
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Fig. 5.7-28 a: Model for a viscoelastic–plastic crust to describe the
response of the overriding South American plate to the subduction of
the Nazca plate. The dashpot represents a viscous body modeling the
permanent deformation, the spring represents an elastic body modeling
the transient deformation, and the frictional plates represent the
earthquake cycle at the trench. b: Stress evolution for the model.
c: Displacement history for the model. Displacement accumulates at the
instantaneous rate v0 except during earthquakes, when slip ∆u occurs.
GPS data record a gradient starting at v0 from the trench, whereas the
envelope of the displacement curve vc is the long-term shortening rate
reflected in geological records and topography. (Liu et al., 2000. Geophys.
Res. Lett., 18, 3005–8, copyright by the American Geophysical Union.)
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postseismic motion consistent with the earthquake focal
mechanism (Fig. 4.5-15). Eventually, however, the sites resume
the landward interseismic motion usually seen at trenches
(Fig. 5.6-10). Such observations are challenging to interpret,
because postseismic afterslip on or near a fault can have effects
at the surface similar to viscoelastic flow of the asthenosphere
(Fig. 5.7-29), but offer the prospect of improving our under-
standing of both earthquake processes and the rheology of the
lithosphere and the asthenosphere. A tantalizing possibility is
that the viscous asthenosphere permits stress waves generated
by large earthquakes to travel slowly for large distances and
contribute to earthquake triggering.
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plate motion models are discussed by Chase (1978), Minster and Jordan
(1978), and DeMets et al. (1990).

Thermal and mechanical aspects of plate tectonics are discussed by
Turcotte and Schubert (1982) and Sleep and Fujita (1997). Mid-ocean
ridge tectonics and structure are discussed by Solomon and Toomey (1992)
and Nicolas (1995). The thermal evolution of oceanic lithosphere is
discussed by Parsons and Sclater (1977) and Stein and Stein (1992);
McKenzie (1969) presents the subduction zone thermal model we follow.
Papers in Bebout et al. (1996) cover many aspects of subduction, and
Kanamori (1986) reviews subduction zone thrust earthquakes. Lay (1994)
treats the nature and fate of subducting slabs, and deep earthquakes are
reviewed by Frohlich (1989), Green and Houston (1995), and Kirby et al.
(1996b). For a derivation of the ridge push force see Parsons and Richter
(1980); Wiens and Stein (1985) discuss its application to oceanic intraplate
stresses. Yeats et al. (1997) cover a wide variety of topics about the relation
of earthquakes to regional geology. Rosendahl (1987) reviews continental
rifting. Papers in Gregersen and Basham (1989) treat aspects of passive
margin and continental interior earthquakes with emphasis on postglacial
effects.

Concepts in continental deformation are treated by Molnar (1988) and
England and Jackson (1989); Gordon (1998) gives an overview of plate
rigidity and diffuse plate boundaries. Applications of space geodesy to
tectonics are reviewed by papers in Smith and Turcotte (1993) and
by Dixon (1991), Gordon and Stein (1992), and Segall and Davis
(1997). Many GPS data and results, including an overview brochure, can
be found on the University NAVSTAR Consortium WWW site http://
www.unavco.org. Stress maps and their interpretations are discussed by
Zoback (1992) and other papers in the same journal issue; stress maps
are available at the World Stress Map project WWW site http://www-
wsm.physik.uni-karlsruhe.de.

Mantle plumes in general are reviewed by Sleep (1992); Nataf (2000)
and Foulger et al. (2001) discuss seismic imaging of plumes; Smith and
Braile (1994) discuss the Yellowstone hot spot; and Stein and Stein (1993)
discuss oceanic hot spot swells. Papers in Peltier (1989) treat many aspects
of mantle convection; Silver et al. (1988) explore the relationship between
subduction, convection, and mantle structure; and Christensen (1995)
reviews the effects of phase transitions on mantle convection. The heat
engine perspective on global tectonics is discussed by Stacey (1992), and
Ward and Brownlee (2000) summarize the arguments advocating a crucial
role for plate tectonics in the origin and survival of life on Earth.

Topics involving rock mechanics, flow, and their tectonic applications
are discussed by Jaeger (1970), Weertman and Weertman (1975), Jaeger
and Cook (1976), Turcotte and Schubert (1982), Kirby (1983), Kirby and
Kronenberg (1987), and Ranalli (1987). Scholz (1990) and Marone (1998)
cover topics dealing with the relation of rock mechanics to earthquakes,
with special emphasis on rock friction. Our treatment of the slider
model for faulting follows Scholz (1990). Related topics, including issues
of continental deformation and fault strength, are also treated by papers
in Evans and Wong (1992). Stein (1999) summarizes the concept of stress
triggering of earthquakes.

Further reading

Given the comparatively recent discovery of plate tectonics, its importance
for most aspects of geology, and its crucial role in the earthquake process,
many excellent sources, a few of which are listed here, offer more informa-
tion about this chapter’s topics.

The dramatic development of plate tectonics is discussed from the view
of participants by Menard (1986) and in Cox’s (1973) collection of classic
papers. Basic ideas in plate tectonics are treated in most introductory and
structural geology texts. More detailed treatments include Uyeda (1978),
Fowler (1990), Kearey and Vine (1990), and Moores and Twiss (1995).
Cox and Hart (1986) present the basic kinematic concepts, and global



Problems

8. A way to get insight into the physics of subduction is to use a
classic result from fluid mechanics, called Stokes’ problem, which
describes the terminal velocity v at which a sphere of radius a and
density ρ sinks due to gravity in a fluid with viscosity η and lower
density ρ′. The result is v = 2ga2(ρ − ρ′)/9η. Estimate the subduction
velocity of a slab assuming the slab is a sphere with radius equal to
half its thickness. To do this, estimate the density contrast from the
thermal model (Eqn 5.4.14) and a coefficient of thermal expansion
α = 3 × 10−5 °C −1. Use a mantle viscosity from Section 5.5.3.
Because this is a back-of-the-envelope calculation, there is no cor-
rect answer, but you should be able to come up with something
reasonable (within an order of magnitude or two of reality).

9. The result that a subducting slab that reaches the core should still
be thermally distinct (Fig. 5.4-5) may seem surprising. For another
estimate, use the one-dimensional cooling equation in Section
5.3.2 to estimate how long a slab should need to warm up to 90%
of the ambient lowermost mantle temperatures, assuming that
it were immediately transported to the base of the mantle and that
κ  = 10−6 m2s−1.

10. Using the definition of the slab pull force (Eqn 5.4.15):
(a) Write the force in terms of the age of the subducting plate.
(b) Explain whether this force would be greater or smaller, and

why, for increased values of subducting plate age, coefficient
of thermal expansion, and thermal diffusivity.

11. Assume that in a subducted slab the depth of the spinel–perovskite
phase transition deepens from its usual 660 km outside the slab
to 700 km, and that the core of the slab is 800° colder than the
surrounding mantle. What is the Clapeyron slope of the phase
change?

12. The surface of Venus is much hotter (450°C) than that of Earth. If
Venus had plate tectonics and the rocks were similar, so that the
temperature gradient in old lithosphere there were the same as on
Earth, how would the thickness of the “oceanic” lithosphere
differ? How would the slab pull and ridge push forces differ? What
other differences might you expect?

13. Express the ratio of the slab pull (Eqn 5.4.15) and ridge push
(Eqn 5.5.6) forces. Explain why this ratio depends on thermal
diffusivity. Estimate this ratio near a trench where old oceanic
lithosphere is subducting, assuming that κ = 10−6 m2s−1.

14. To see if momentum can be responsible for the Indian plate’s
northward motion long after its collision with Asia began, estimate
the momentum of the Indian plate and that of an ocean liner, and
compare the two.

15. Use Mohr’s circle to show why
(a) Rocks at depth do not fracture under lithostatic pressure

alone.
(b) The deviatoric stress needed for fracture increases at greater

depth.
16. Suppose that a rock is stressed close to its brittle limit. Show

graphically which will make the rock fracture sooner: (a) increas-
ing σ1 or (b) decreasing σ2 by the same amount (assume a two-
dimensional case where σ1 and σ2 are both negative, and internal
friction exists).

17. Suppose that the fracture line for a particular rock is τ = 80 − 0.5σ,
where stresses are in MPa. What angle would the normal to a frac-
ture plane make with σ1? If σ1 is 400 MPa at failure, what is σ2?

18. For the slider block earthquake model in Section 5.7.5:
(a) Derive an expression for the time between successive slip

events.

1. Assume that Pacific–North America plate motion along the San
Andreas fault occurs at 35 mm/yr.

(a) If all this motion occurs seismically in earthquakes about
22 years apart, which is a typical recurrence interval for the
Parkfield fault segment, how much slip would you expect in
the earthquakes? From Fig. 4.6-7, estimate likely fault
lengths and magnitudes for such earthquakes.

(b) Give similar estimates if the earthquakes occur about
132 years apart, as at Pallett Creek.

2. Assume that all the earthquakes in the Pallett Creek sequence (Fig.
1.2-15) involved 4 m of seismic slip. Using the time interval from
the present to the 1857 earthquake, calculate the seismic slip rate
on this portion of the San Andreas fault. Next, do so by averag-
ing the recurrence intervals for the past two earthquakes (1857
and 1812), the past three, and so on for the entire earthquake
history. What are the implications of this simple experiment for
seismic slip estimates? What other sources of uncertainty should
also be considered, and how might they affect this estimate?

3. (a) Use Table 5.2-1 to find the rate that the Juan de Fuca plate
subducts beneath North America at 46°N, 125°W.

(b) If all this motion occurs in large earthquakes, how often would
you expect an earthquake if the slip in each were 5 m? How
would this estimate change if the slip were 10 or 20 m?

(c) How would the answers to (b) change if only 25% or 50% of
the plate motion occurred by seismic slip?

(d) Paleoseismic observations and historic records of a tsunami
imply that this subduction zone has had very large earthquakes
approximately 500 years apart. Suggest some possibilities in
view of parts (a)–(c). How might you attempt to distinguish
between them?

(e) The crust subducting at this trench is about 10 million years
old. Given the convergence rate and the observations from
other trenches in Fig. 5.4-30, what might you infer about the
moment magnitude of the largest earthquake expected here?
Find the corresponding seismic moment and suggest a plaus-
ible fault geometry and amount of slip that would also be con-
sistent with the paleoseismic and plate motion observations.

4. For rigid plates, Eqn 5.2.10 shows that we can find the angular
velocity vector of one plate from the sum of two others. Show that
at a point we can also do this for the linear velocity vectors.

5. The news media sometimes ask “How large would the largest
possible earthquake be?” Estimate the seismic moment and
moment magnitude by assuming that all the trenches in the world
(48,000 km) slip at the same time, that 10 m of slip occurs, and the
fault width is 250 km.

6. Estimate the thermal Reynolds number R defined in Eqns 5.3.19
and 5.4.3, assuming that κ = 10−6 m2s−1. What does this estimate
imply about the processes of plate cooling and subduction?

7. Assume that oceanic lithosphere has a thermal conductivity of
3.1 Wm−1°C−1.

(a) Find the heat flow for old oceanic lithosphere, assuming a
linear temperature gradient (Fig. 5.3-8), a basal temperature
of 1450°C, and a plate thickness of 95 km.

(b) How would this value change for a basal temperature of
1350°C and plate thickness 125 km?

(c) If the lithosphere under a midplate region were thinned to
50 km while the basal temperature remained 1350°, what
would the heat flow be, assuming a linear temperature
gradient?

Problems 367
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(b) Sketch the force–slip diagram for two different spring con-
stants, and use the sketch to explain how the slip and force
drop in a slip event change and why.

(c) For the slider block model, formulate a quantity analogous
to an earthquake’s seismic moment, and explain why it
depends on each term. What is the major difference between
this quantity and the seismic moment?

(d) Recall the observation (Fig. 4.6-11) that earthquake stress
drops are similar for a wide range of earthquakes. If the
slider block model is relevant, what does this imply?

(e) What conditions might correspond to aseismic slip, which
could be viewed as the limit of a continuous series of very
small slip events?

Computer problems
C-1. (a) Write a subroutine to compute the rate and azimuth of plate

motion at a point, given the location and an Euler vector in
the form (pole latitude, longitude, magnitude).

(b) Use the Euler vector in Table 5.2-1 to test your program on
the San Andreas and Aleutian site examples in Section 5.2.1.

C-2. (a) Find the rate and azimuth of Cocos–North America plate
motion at 18.3°N, 102.5°W.

(b) This location is the epicenter of a large 1985 Mexican earth-
quake, whose mechanism had nodal planes whose strike and
dip are (127°, 81°) and (288°, 9°). Infer from the tectonics of

the Middle American trench which plane was the fault plane.
Using the methods of Section 4.2, determine the azimuth of
slip during the earthquake. How does this compare to your
predicted azimuth?

C-3. (a) Write a subroutine to add and subtract two Euler vectors
given in the form (pole latitude, longitude, magnitude). The
output should be a Euler vector in the same form.

(b) Use your program to determine the absolute Euler vector for
the Pacific plate using Table 5.2-1.

(c) Determine the rate and azimuth of absolute plate motion at
Hawaii (Fig. 5.2-7). Compare the direction to the Hawaiian–
Emperor seamount chain.

C-4. Write a program to plot the temperature distribution in the
oceanic lithosphere as a function of age using the cooling half-
space thermal model (Eqn 5.3.4). Compute erf(s) (Eqn 5.3.3)
using either available software or numerical integration as
discussed in problem 4C-6.

C-5. (a) Write a program to plot the temperature distribution in a
subducting slab using the analytic thermal model (Eqn 5.4.3).
Compute it for a plate subducting at 80 mm/yr at an angle of
45°. Make assumptions that seem reasonable and justify them.

(b) Change the program to make the age of the subducting plate a
parameter and generate temperature fields for different slabs,
as in Fig. 5.4-6.

(c) Using the results of (b) and Fig. 5.4-4, estimate a temperature
above which deep earthquakes are not observed.



Seismograms as Signals

We shall introduce the concepts of signal and noise. We define the signal as the desired part of the data and the noise as the unwanted
part. Our definition of signal and noise is subjective in the sense that a given part of the data is “signal” for those who know how to
analyze and interpret the data, but it is “noise” for those who do not. For example, for many years the times of the first arrivals of
P- and S-waves were the only signals conveyed by an earthquake, and the rest of the seismogram, such as surface waves and coda
waves, had to be considered as useless until appropriate methods of interpretations were found.

Thus, through the application of a new technique to old data, an analyst can experience a moment of discovery as joyful as a data
gatherer does using a new observational device.

Aki and Richards, Quantitative Seismology, 1980

6.1 Introduction

Seismology uses various techniques to study the displacement
field as a function of position and time associated with elastic
waves in the earth, and to draw inferences from it about the
nature of seismic sources and the earth. Although some tech-
niques depend on specific aspects of seismic waves in the earth,
others rely on general properties of functions of space and time.

We thus often use a class of techniques known as signal
processing or time series analysis. Signal processing considers
functions of time or space, also called series or signals, in gen-
eral terms without regard to the specific physics involved. As a
result, many wave propagation subjects, including seismology,
radar, sonar, and optics, can be treated in similar ways. The
signals can have different forms. For example, in seismology,
we can treat either a continuous (analog) record of ground
motion or the digital data that result from representing the
ground motion as being sampled at discrete intervals, provid-
ing numbers that can be manipulated using a computer.

In general terms, we can think of filtering a signal, or apply-
ing some operation that modifies the signal. We have already
discussed several examples. A seismometer is a filter, in that it
yields a record of ground motion that differs from the actual
ground motion. Similarly, processes in the earth such as dis-
persion or attenuation have effects that can be described as a
filter acting on the wave field. We can also consciously apply
filters to enhance parts of a seismogram or seismic wave field
and suppress others. In this chapter we extend these ideas by
considering mathematical approaches that are common to
such applications and then seeing how these approaches give

additional insight into the physical processes. We discuss some
basic concepts and provide references at the end of the chapter
for more extensive treatments.

6.2 Fourier analysis

6.2.1 Fourier series

In many applications, we use an approach based on the idea
that any time series can be decomposed into the sum or integral
of harmonic waves of different frequencies, using methods
known as Fourier analysis. We derived the properties of seismic
waves using a harmonic wave, a sinusoid of a single frequency,
and noted that any wave could be treated as the sum of
harmonic waves. Thus we showed that waves on a string could
be viewed as the sum of the string’s normal modes, or standing
waves (Section 2.2.5), and that waves in a spherical earth can
be written as the sum of the earth’s normal modes (Section 2.9).
This concept is especially useful when the components with
various frequencies behave differently. For example, surface
waves of different frequencies have different apparent velo-
cities (Section 2.8) and seismic wave attenuation varies with
frequency (Section 3.7). Similarly, we will see shortly that
seismometers respond differently to ground motion of different
frequencies. Fourier analysis lets us decompose the signal
into harmonic waves, consider each harmonic wave separately,
and then recombine the harmonic waves. Thus we use this
approach to analyze situations where the effect of the earth or a
seismometer can be described by a filter. We also use Fourier

6
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Fig. 6.2-1 Successive terms of a Fourier series. Solid lines are sin (2nπt/T );
dashed lines are cos (2nπt /T ).

1 The proofs of Eqns 2–4 are left for the problems.

analysis to filter a signal when the part that interests us overlaps
with a part that does not in the time or space domains, but the
two can be separated in the frequency or wavenumber domains.

We first consider the decomposition of a signal with a finite
duration into a Fourier series, or sum of harmonic components
with different frequencies. We will see later that as the duration
of the signal becomes infinite, the Fourier series becomes the
Fourier transform integral.

The Fourier series for an arbitrary function of time f (t)
defined over the interval −T/2 < t < T/2 is
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This series decomposes f(t) into a sum of Fourier terms that are
sine and cosine functions with different periods, because
sin (2nπt/T) and cos (2nπt /T ) are periodic with period T/n, or
frequency n/T (Fig. 6.2-1). Larger values of n correspond to
shorter periods, or higher frequencies. For n = 0, the cosine
term equals 1 for all values of t, and there is no sine term,
because it would be zero.

The sine and cosine Fourier terms are a set of orthogonal
functions, which means that the integral of the product of two
different ones over the interval from −T/2 to T/2 is always zero:
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where the Kronecker delta, δmn, equals 1 for m = n and 0 other-
wise (Eqn A.3.37). For the special case m = n = 0, the integral in
Eqn 2 is zero, and the integral in Eqn 3 is twice the value for any
other m = n.1

To express the Fourier series for a given function, we solve
for the coefficients an and bn by multiplying both sides of Eqn 1
by the appropriate sine or cosine term and integrating from
−T/2 to T/2. For example, to find the coefficient ak, where k
is some particular integer, we multiply by cos (2kπt/T) and
integrate to get
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By the orthogonality relations (Eqns 2–4), the only term in the
sums on the right-hand side whose contribution to the integral
is nonzero is cos (2πkt/T), so the equation simplifies to
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which shows that the coefficient ak is
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Similarly, the operation of finding the coefficients using the
integrals in Eqns 7–9 corresponds to finding each component
of a vector by taking the scalar product with the appropriate
unit basis vector (Eqn A.3.27).

Figure 6.2-2 illustrates this idea for a ramp function f(t) =
t/T. Performing the integrations in Eqns 7–9 gives ak = 0 and
bk = (−1)k+1/kπ. The cosine terms are zero, because the function
is odd ( f (t) = −f(−t)), whereas cosine is an even function ( f (t) =
f(−t)). Conversely, if the function were even, the Fourier series
would include only cosine terms. Adding up the first ten sine
terms reproduces the ramp reasonably well. If more terms were
used, the ramp would be reproduced even better. The terms
with small k are longer-period functions, and so describe the
long-period features of the time series, whereas those with
larger k reproduce the shorter-period features.

We used the Fourier series to express waves on a string as the
sum of the string’s normal modes (Section 2.2.5). Each normal
mode has a spatial eigenfunction, which is a Fourier term,
and an eigenfrequency. The amplitude of each Fourier term
depends on the source that generated the waves, so different
waves are represented by differently weighted sums of the
Fourier terms. For the string the Fourier series described the
variation of a function in space along a finite string, whereas
here we use it to describe the variation of a function of time
over a finite period. Because waves are functions of both time
and space, Fourier analysis can be used for either variable
or both. Fourier series are also used in other geophysical ap-
plications to represent functions that vary in space or time
over finite domains. For example, we used Fourier series to
describe the temperature fields in cooling oceanic lithosphere
(Eqn 5.3.19) and in subducting plates (Eqn 5.4.3).

6.2.2 Complex Fourier series

The Fourier series (Eqn 1) can be written in a simpler form.
First, we use the angular frequencies ωn = 2nπ /T, expand the
sine and cosine functions into complex exponentials, and
regroup terms as
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Then we use the definitions of the coefficients in Eqns 7–9,
again expanding the sine and cosine functions into complex
exponentials:
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Fig. 6.2-2 The first ten terms of the Fourier series for a ramp function.
The terms are weighted by their coefficients and then summed. The first
ten terms give a reasonably good representation of the time function,
but more terms would do better.

The a0 term is simply
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which corresponds to the average value of the function. The
coefficients of the sine terms are found similarly by
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Mathematically, what we have done is to consider the
function f(t) as being in a vector space whose basis vectors
(Section A.3.6) are the sine and cosine Fourier terms. The
coefficients ak and bk are the components that describe the par-
ticular vector f(t). Thus, multiplying each basis function by the
appropriate coefficient and then summing yields the function.
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∆ω = (2π /T )∆n (18)

so that

∆n = (T∆ω)/(2π) (19)

and
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Next, we let the period T over which f(t) is defined go to infin-
ity, so that the angular frequencies ωn become close enough
that the discrete ωn can be replaced by the continuous variable
ω. As a result, ∆ω becomes dω, and the sum becomes an
integral. We assert (note the difference between seismology and
mathematics texts) that this can be done such that the product
TFn remains finite and can be replaced by the continuous
function of angular frequency F(ω). The Fourier series (Eqn 20)
becomes the integral
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and the expression for the coefficients (Eqn 16) becomes
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Equation 22 is called the Fourier transform, and Eqn 21 is the
inverse Fourier transform. These can be defined in alternate
ways by interchanging the signs on the exponentials and pla-
cing the 1/2π before either integral.

It may seem strange that by starting with a real function of
time f(t) we obtain the transform F(ω), which is a complex
function of angular frequency. The idea of negative angular
frequencies may also seem disturbing. In a sense the two offset
each other a we obtain a real time function by integrating
a complex transform over both positive and negative angular
frequencies.

An important feature of the transform and inverse transform
is that their dimensions are different. For example, if f(t) is
a seismogram that has the dimensions of displacement, its
transform F(ω) has the dimensions of displacement multiplied
by time (from the dt term). Thus, if f(t) gives ground motion
in centimeters, F(ω) gives the transform of ground motion in
centimeter-seconds.

The Fourier transform, a complex-valued function of angu-
lar frequency, can be written in terms of two real-valued func-
tions of angular frequency:

F(ω) = | F(ω) | eiφ(ω), (23)
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Next, we define

Fn = (an − ibn)/2, F0 = a0, and F−n = (an + ibn)/2, (12)

so that the Fourier series becomes
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Because −ωn = −2nπ /T = ω−n and F−n is the complex conjugate
of Fn, (F−n = F*n), the negative exponentials can be written

n
n

i t

n
n

i tF e F en n

=

∞

−
−

= −

−∞

∑ ∑=
1 1

ω ω  . (14)

Making these substitutions in Eqn 10 yields the Fourier series
in complex number form:
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6.2.3 Fourier transforms

The complex Fourier series, which represents a function of time
in terms of a sum over discrete angular frequencies ωn, can
be extended into the Fourier transform that represents the
function as an integral over a continuous range of angular fre-
quencies. Thus, although we used the Fourier series to describe
the discrete normal modes of a finite string and the earth, we
use the Fourier transform in most seismological applications,
because we regard the waves as continuous functions of angu-
lar frequency.

To do this, we write Eqn 15 as
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(because ∆n = 1), and define the difference between the success-
ive angular frequencies
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Fig. 6.2-3 Vertical-component seismogram for a moderate-sized (Ms = 6.5) earthquake recorded in the South Pacific. The amplitude spectra of the surface
waves and a portion of the body waves, obtained by transforming different portions of the seismogram into the frequency domain, show that the surface
waves contain longer-period energy than the body waves.

2 The notations Re and Im indicate the real and imaginary portions of a complex
number (Section A.2).

where

| F(ω) | = [F(ω)F*(ω)]1/2 = [Re2 (F(ω)) + Im2 (F(ω))]1/2 (24)

is called the amplitude spectrum, and

φ(ω) = tan−1 (Im (F(ω))/Re (F(ω))) (25)

is the phase spectrum.2

Both the amplitude and the phase spectra are needed to
fully represent the transform, which is also called the complex
spectrum. In many applications only the amplitude spectrum is
shown, because it indicates how the energy (the square of the
amplitude) in the time series depends on frequency. Figure 6.2-
3 shows a seismogram for a moderate-size earthquake, together
with amplitude spectra for the body and surface wave portions

of the seismogram. Looking at the seismogram, we see that the
surface waves contain longer-period energy than the body
waves. The spectra demonstrate this: the body wave is domin-
ated by energy with frequencies between 0.1 and 0.08 Hz
(periods of 10–12 s), whereas the surface wave is dominated
by energy with frequencies between 0.07 and 0.05 Hz (periods
of 14–20 s). For comparison, Fig. 6.2-4 shows data for a
much larger earthquake. The seismogram, from an instrument
designed to record at long periods, covers seven days after the
earthquake. The large oscillations with periods of about
90,000 s are tides within the solid earth. Superimposed on
these is the signal due to the earthquake. The portion of the
amplitude spectrum shown indicates the presence of energy
at long periods (0.002 Hz corresponds to 500 s period). The
energy is concentrated at discrete peaks, corresponding to the
earth’s normal modes.

The Fourier transform F(ω) is another way of representing
the time series f(t). We speak of f(t) as being in the “time
domain,” and F(ω) as being in the “frequency domain.” The

6.2 Fourier analysis 373
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signal as the sum of several signals, knowing that the transform
will be the sum of their transforms.

(2) The Fourier transform of a purely real time function has
the symmetry

F(−ω) = F*(ω). (26)

Thus for seismograms (which are real because the motion of
the ground is purely real), the values of the transform for the
negative frequencies can be found from those for positive
frequencies. Hence, in filtering seismograms, we can operate on
only the positive frequencies and compute the value of the
transform at the negative frequencies by taking the conjugate,
thus saving computer time and storage space.

(3) The Fourier transform of a time series shifted in time is
found by changing the phase of the transform: if the transform
of f(t) is F(ω), the transform of f(t − a) is e−iωaF(ω). In analyzing
seismograms it is arbitrary what time we choose as the origin;
the amplitude spectrum stays the same, and the phase changes
in a simple way. This makes sense, because in the absence of
attenuation a wave keeps its shape but changes in phase as
it propagates. Similarly, shifting a Fourier transform in fre-
quency causes a phase change in the corresponding time series:
the inverse transform of F(ω  − a) is e iat f(t). These relations are
sometimes called shift theorems.

(4) The Fourier transform of the derivative of a time func-
tion is found by multiplication: (iω)F(ω) is the transform of

Fig. 6.2-4 Vertical-component seismogram and amplitude spectrum for the great (Mw = 8.3) 1994 Bolivian deep earthquake recorded in Arizona. The
time series extends for days after the earthquake, showing the solid earth tide and the signal due to the earthquake. The earth’s normal modes appear as
peaks in the amplitude spectrum.

two representations are equivalent, because we can easily con-
vert data from one domain to the other without losing any
information. We will see that some methods of analyzing seis-
mograms are more easily conducted in the frequency domain,
and that there is a relation between time and frequency domain
operations.

The Fourier transform and inverse transform relate a func-
tion of time f(t) and its transform F(ω), a function of angular
frequency. Similar relations apply between other pairs of vari-
ables. In seismology, the other commonly used pair is distance
and wavenumber. Because the wavenumber is the spatial fre-
quency (Section 2.2.2), it is related to distance in the same
way that angular frequency is related to time. Hence, there are
applications in which a double Fourier transform is taken to
convert a set of seismograms, which describe displacement as
a function of space and time, into a function of wavenumber
and frequency (Section 3.3.5). A triple Fourier transform can
similarly be taken for data in two space dimensions and time.

6.2.4 Properties of Fourier transforms

The Fourier transform has a number of interesting properties
that we often use, whose proofs are left for the problems.

(1) The Fourier transform is linear: if F(ω) and G(ω) are
the transforms of f(t) and g(t), then (aF(ω) + bG(ω)) is the
transform of (af(t) + bg(t)). This property makes the Fourier
transform useful in filtering, because it permits us to treat a



df(t)/dt. Similarly, (iω)nF(ω) is the transform of d nf(t)/dt n.
This makes differentiation easy on a computer, and is an easy
way to change a displacement record into velocity, or veloc-
ity into acceleration. This property also makes it easy to solve
differential equations (e.g., Eqn 3.7.8) using the Fourier trans-
form, an approach that is often posed as using a sinusoidal
trial solution. Hence we sometimes write and operate on the
wave equation using the Fourier transform of the wave field
(Eqns 2.2.34, 3.3.74).

(5) The total energy in a Fourier transform is the same as that
in the time series:
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ω ω (27)

a relation known as Parseval’s theorem. This relation arises
because the time series and its Fourier transform are equivalent
representations.

6.2.5 Delta functions

In using Fourier transforms, we often need to describe a signal
that is concentrated at a single time or frequency. This is done
using the Dirac delta function, an entity that is not truly a func-
tion, but rather a generalized function that is the limit of a
sequence of continuous functions. The delta function can be
defined in several ways, each of which offers a different insight
into its nature.

A delta function at t = t0, written δ(t − t0), is defined as the
limit of a Gaussian function that keeps the area constant (= 1)
as the width (σ ) narrows and the height,   1 2/σ π , increases
(Fig. 6.2-5):
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Thus the Dirac delta function is a continuous function ana-
logous to the Kronecker delta symbol, δij (Eqn A.3.37) which is
a function of two discrete variables, i and j. An alternative defi-
nition comes from defining the delta function by how it behaves
when integrated, a property called “sifting.” This is defined as

f(t0) =

  
�

−∞

∞

f(t)δ(t − t0) dt. (29)

Thus the delta function at t = t0 “sifts out” the value of a func-
tion at time t0 if it is multiplied by the function and integrated
over all time.

A third definition comes from considering a step, or
Heaviside, function H(t − t0) that is 0 for time before t = t0 and
equal to 1 afterwards (Fig. 6.2-5). The delta function δ(t − t0) is

A
m
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itu

de

t0 + 2σt0t0 − 2σ

t0 − 3σ t0 − σ t0 + σ t0 + 3σ

Time

Step function H(t − t0)

t0

1

t

Fig. 6.2-5 Definitions of a delta function at t = t0. Top: δ(t − t0) is the limit
of a Gaussian function with width σ. The area stays equal to 1 as the width
narrows and the height increases. Bottom: δ(t − t0) is the derivative of a
step function H(t − t0) at time t = t0, which is zero at all times except near
t0, when it goes to infinity.

the derivative of the step, because it is zero except at t0, when
it goes to infinity. Because the delta function is located where
its argument is zero, δ(t0 − t) is at time t0, whereas δ(t + t0) is at
time −t0.

To find the Fourier transform of the delta function, we use
the definition of the transform (Eqn 22) with f(t) = δ(t − t0),

F(ω) =

 
�

−∞

∞

δ(t − t0)e−iωtdt = e−iωt0, (30)

and evaluate the integral by the sifting property (Eqn 29). If the
delta function is at time zero,

F(ω) = �
−∞

∞

δ(t)e−iωtdt = 1. (31)

Similarly, for a delta function at t = t0, the amplitude spectrum
(Eqn 24) is also

| F(ω) | = (e− iω t0eiωt0)1/2 = 1, (32)

but the phase spectrum (Eqn 25) is
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Amplitude

δ-function spectrum

Phase

ω

−   t0ω

| F(  ) | = 1

ω

ω

φ(ω) = −ωt0 , (33)

as shown in Fig. 6.2-6. This example illustrates one of the
Fourier transform properties noted in Section 6.2.4, that shift-
ing a function by a time t0 changes its transform by e−iω t0.

The delta function’s amplitude spectrum has unit amplitude
at all frequencies. Another way to see this is to write the inverse
transform, using Eqn 21,
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which shows that the delta function is an integral or sum of
sinusoids of all frequencies. These are in phase only at time t0,
giving a large amplitude, and are out of phase at all other times,
giving a zero amplitude (Fig. 6.2-7).

Although so far we have discussed delta functions only in
the time domain, they are also useful in the frequency domain.
The properties of the frequency domain delta functions are
analogous to those in the time domain. A delta function at
angular frequency ω0, δ(ω − ω0), has an inverse transform of
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Thus we can express the delta function in terms of its Fourier
transform,
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showing that it is the integral, or sum, of sinusoids that are in
phase only at frequency ω0.

Delta functions in angular frequency give the spectra of
sinusoids with a single frequency. For example, a cosine with
frequency ω0, given by

f(t) = cos ω0t = (eiω0t + e−iω0t)/2, (37)

has a Fourier transform of
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By Eqn 36, this is the sum of two delta functions in the fre-
quency domain,

F(ω) = π[δ(ω − ω0) + δ(ω + ω0)]. (39)

Thus the amplitude spectrum of the cosine time function in
Eqn 37 consists of two delta functions, one at ω0 and one at

Fig. 6.2-6 The Fourier transform of a delta
function, δ(t − t0), is e−iωt0. Its amplitude
spectrum has unit amplitude at all
frequencies, and its phase spectrum
has a slope of −t0.
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Fig. 6.2-7 Because the Fourier transform of a delta function has unit
amplitude at all frequencies, it corresponds to the sum of sinusoids of all
frequencies. These are in phase only at time t0, giving a large amplitude,
and are out of phase at all other times, giving zero amplitude. In this
example, five sinusoids (dashed lines a–e) with unit amplitude (cos [(2n +
1)(t − t0)]) are summed (solid line), giving a peak of amplitude 5 at t0.
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−ω0. If the time function were a sine rather than a cosine, the
amplitude spectrum would be the same, but the phase spectrum
would be different. Given the relation between the transforms
of functions shifted in time discussed in the previous section,
this makes sense, because a sine function is a time-shifted
cosine, and vice versa.

This example illustrates one of the reasons for using Fourier
transforms. The frequency domain description of the function
is simpler, because a large number of points are needed to
accurately describe the cosine as a function of time, but only
two complex numbers, the values of the transforms at ±ω0, are
needed to describe it as a function of frequency. Time series
more complicated than a pure cosine are often more easily
described in the frequency domain, and processes that act on
the time series are also often more easily represented in the
frequency domain. In such cases, it is common to work in the
frequency domain and then use the inverse transform to
generate the final time series.

6.3 Linear systems

Among the uses of Fourier analysis in seismology is modeling
different factors affecting a seismogram. First, a seismogram
is a record of ground motion that includes the effect of the
seismometer. Furthermore, the ground motion combines the
effects of the seismic source and the elastic and anelastic earth
structure along the propagation path (Section 4.3). To charac-
terize the combined effects of these different factors, we use the
idea of a linear system, a general representation of any device
or process that takes an input signal and modifies it. This repre-
sentation treats these processes as mathematical operators
transforming an input signal into an output signal.

6.3.1 Basic model

A linear system is one in which if input signals x1(t) and x2(t)
produce output signals y1(t) and y2(t), the combined input
(Ax1(t) + Bx2(t)) yields (Ay1(t) + By2(t)) (Fig. 6.3-1). We have
previously referred to this feature as the principle of super-
position. Fortunately, the earth generally behaves this way in
transmitting seismic waves. As a result, linear system models
are used in a wide variety of seismological applications. Fourier
analysis is a natural tool for studying linear systems because the
Fourier transform has these same linear properties (Section 6.2.4).

We characterize a linear system by its response to an impul-
sive delta function in time (Fig. 6.3-2). This impulse response
f(t) can be used to find the response of the system to an
arbitrary input signal. Viewed in the frequency domain, the
impulse, whose spectral amplitude is equal to 1 at all frequen-
cies, gives rise to an output F(ω), which is the transform of
the impulse response, sometimes called the transfer function.
Thus, if the input signal is an arbitrary signal x(t), with
transform X(ω), the resulting output spectrum is just the input
spectrum times the spectrum of the impulse response,

Linear
system

Ax1(t)

Bx2(t)

Ay1(t)

By2(t)
= Ay1(t) + By2(t)

Fig. 6.3-1 Definition of a linear system.

Y(ω) = X(ω)F(ω). (1)

Because the transforms are generally complex numbers, the
phase as well as the amplitude of the input signal is usually
modified.

The output in the time domain y(t) can be found by inverting
the transform,

y(t) = 

    

1

2π �
−∞

∞

X(ω)F(ω)eiωtdω. (2)

To see that this works, note that for the impulse x(t) = δ(t),
X(ω) = 1, and y(t) = f(t). This equation gives another way to
think of the impulse response. For a harmonic input signal of
unit amplitude eiω0t, whose transform is the delta function in
frequency

X(ω) = 2πδ(ω − ω0), (3)

the output is

y(t) = 

    

1

2π �
−∞

∞

2πδ(ω − ω0)F(ω)eiωtdω = F(ω0)eiω0t, (4)

a harmonic signal of the same frequency with the amplitude of
the transfer function at that frequency.

It is interesting to consider the relation between the input
time function, the impulse response, and the output time
function. To do this, we expand Eqn 2 by writing out the
transforms of X(ω) and F(ω),
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Fig. 6.3-2 Characterization of a linear system by its impulse response f(t)
and transfer function F(ω).
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and regrouping terms,
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Using the inverse transform of the delta function (Eqn 6.2.34),
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we eliminate the frequency integral and obtain
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Finally, carrying out the inner integration using the sifting
property of the delta function (Eqn 6.2.29) yields

y(t) =

  
�

−∞

∞

x(τ)f(t − τ)dτ. (9)

This integral operation, known as the convolution of the
functions x(t) and f(t), is often written as

y(t) = x(t) * f(t). (10)

The output of a linear system is thus the convolution of the input
signal and the impulse response. Comparison of Eqns 10 and
1 shows the relation between operations in the two domains:
convolution in the time domain corresponds to multiplication

in the frequency domain. The reverse is also true: frequency
domain convolution corresponds to time domain multiplication.

We thus have two different ways of implementing any opera-
tion that can be characterized by a linear system. The effect
that the system has on an input signal is specified either by the
impulse response in the time domain or by its transform, the
transfer function in the frequency domain. For example, to
filter a seismogram so that only a certain range of frequencies
remains, we can filter in either the frequency or time domains.
To do this in the frequency domain, we can define a simple
bandpass filter, a function which is 1 in the frequency range
of interest and 0 for all other frequencies. Figure 6.3-3 (top)
shows the amplitude spectrum of the filter, whose phase spec-
trum is defined as zero for all frequencies. To perform the
filtering, we multiply this function by the Fourier transform
of the seismogram, point by point for all frequencies, and
take the inverse transform of the result. The resulting filtered
seismogram has only the desired frequencies. Alternatively,
however, we could find the impulse response of the bandpass
filter by taking the inverse Fourier transform of the amplitude
spectrum in the top of Fig. 6.3-3, and filter the data by con-
volving this impulse response (Fig. 6.3-3, bottom) with the
seismogram in the time domain.

A few points about this simple filter are worth noting. First,
although it is typical to plot the transfer function only for
the positive frequencies, the filter is also defined for negative
frequencies, to ensure that the resulting signal is real (Sec-
tion 6.2.4). Second, the peculiar appearance of the impulse
response makes sense when we recall that the impulse response
describes what comes out of the filter when a delta function
comes in (Fig. 6.3-2). The delta function’s amplitude spectrum
is constant for all frequencies, but only some of these frequen-
cies are transmitted through the filter. The lack of high frequen-
cies is particularly noticeable, and results in the noncausal
impulse response beginning before time zero. We noted a simi-
lar phenomenon in Section 3.7.8, where anelasticity acted as a

0.4

1

0
–0.4 –0.2 0 0.2

Frequency (Hz)

400–400 –200 0 200

Time (s)

Impulse response

Bandpass filter transfer function

Fig. 6.3-3 A simple bandpass filter specified in the
frequency (top) and time (bottom) domains.
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Fig. 6.3-4 When a signal goes through two linear systems in succession,
the net output is the convolution of the impulse responses in the time
domain, or the product of the transfer functions in the frequency domain.

Fig. 6.3-5 A seismogram can be modeled as the convolution of the source
signal with operators representing the effects of earth structure and
the seismometer. This can be done in the time domain as a set of
convolutions, u(t) = x(t) * g(t) * i(t), or in the frequency domain as a set
of multiplications, U(ω) = X(ω)G(ω)I(ω). (After Chung and Kanamori,
1980. Phys. Earth Planet. Inter., 23, 134–59, with permission from
Elsevier Science.)
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path of the seismic waves, and i(t) is the impulse response of the
seismometer.

Figure 6.3-5 shows a simple example: a seismogram result-
ing from the convolution of a trapezoidal source function
representing the signal emitted by an earthquake with oper-
ators giving the effects of earth structure and the seismometer.
Each operator can be specified in either domain. For example,
the time domain impulse response of a seismometer reflects the
fact that its transfer function depends on frequency (Fig. 6.3-6).
Once the different effects are characterized by their response
in the time or frequency domain, the seismogram due to their
combined effects can be obtained.

Convolution can be used to describe the response of a system
in space as well as time. For example, probabilistic earthquake
hazard maps like Fig. 1.2-3 can be viewed as two-dimensional
convolutions in space of an assumed distribution of earthquake
sources with an impulse response like Fig. 1.2-5 giving the
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Fig. 6.3-6 Transfer functions for various seismometers, some of which are
discussed in Section 6.6. SRO is the Seismic Research Observatory, IDA
is International Deployment of Accelerometers, VLP is Very Long Period,
and BRB is Broadband. Transfer functions are the frequency domain
equivalents of the time domain instrument response shown in Fig. 6.3-5
as i(t).

filter, removing high frequencies and thus making the wave-
forms noncausal unless the effects of physical dispersion were
included. Third, this filter has sharp “corners” at the edges of
the passband, although in real applications the corners are
smoothed for reasons we discuss shortly.

Because the same effect can be achieved by either time do-
main or frequency domain filtering, the choice of domain can
be made for convenience. Surprisingly, the operations of taking
transforms and inverse transforms are sufficiently fast in com-
putation that it generally makes sense to filter in the frequency
domain. An attraction of this method is that filters are usually
easier to specify in the frequency domain, because it is clear
which are the desired and undesired parts of the signal. For ex-
ample, in Fig. 6.3-3 (bottom), the corresponding time domain
filter is difficult to visualize intuitively. Similarly, the transfer
function, or instrument response, of a seismometer is more
easily specified in the frequency domain, as we will discuss in
Section 6.6.

6.3.2 Convolution and deconvolution modeling

Linear system ideas are so pervasive in seismology that we
discussed them in applications such as reflection seismology
(Section 3.3.6) and earthquake source studies (Section 4.3)
before we justified them mathematically. One reason why these
models are so useful is that they are easily generalized to mul-
tiple linear systems, so quite complicated physical effects can be
described. Specifically, if a signal x(t) goes through two linear
systems in succession (Fig. 6.3-4), with impulse responses f(t)
and g(t), the net output is either a convolution in the time domain,

y(t) = x(t) * f(t) * g(t), (11)

or the product of the transfer functions in the frequency
domain

Y(ω) = X(ω)F(ω)G(ω). (12)

We can extend this to an arbitrary number of linear systems.
A common application is to think of a seismogram as the

output resulting from sending a source signal through a set of
linear systems. In the simplest case, the seismogram u(t) can be
written in terms of three basic effects,

u(t) = x(t) * g(t) * i(t), (13)

where x(t) is the source signal, g(t) is the response of an
operator representing the effects of earth structure along the
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expected ground motion as a function of earthquake magni-
tude and distance.

Often the impulse response is defined in both space and time.
This is the basic approach used to find the response of the earth
to a seismic source (Chapter 4). The displacement at a point x
and time t is

u(x, t) = ��G(x − x ′; t − t ′) f(x ′, t ′)dt ′dV ′, (14)

where G(x − x′; t − t ′) is the Green’s function,1 the impulse
response to a source at position x ′ and time t ′, and f(x′, t ′) is
the distribution of seismic sources. Thus the integral gives the
total response due to the distribution of sources. In most cases
the source is limited in space and time, so the integral is done
over the source region. Often the source is at a point in space or
time, so f(x ′, t ′) contains delta functions and is easily integ-
rated using the sifting property. A nice feature of this formula-
tion is that the principle of reciprocity, which says that the
source and the receiver can be interchanged, emerges directly.
The Green’s function in Eqn 14 is for a laterally homogene-
ous medium, so the response depends only on the distance
between the source and the receiver. In a general medium
Eqn 14 becomes

u(x, t) = ��G(x, t; x′, t ′) f(x′, t ′) dt ′dV ′. (15)

When a system is described by a convolution, we can exam-
ine the effects of the different contributing factors using
deconvolution. We start with the output and one of the time
series that were convolved to form it, and then find the other.
For example, in Section 3.3.6 we discussed using seismic reflec-
tion data to obtain the sharpest resolution of reflectors in the
earth. We assumed that a seismogram s(t) results from con-
volution of a source pulse, or wavelet, w(t), and an earth struc-
ture operator, r(t). r(t), known as a reflector series, is presumed
to be a set of delta functions with positions corresponding to
the travel time for a reflection from an interface and amplitudes
corresponding to the amplitude of the reflected arrival. Thus

s(t) = w(t) * r(t) and S(ω) = W(ω )R(ω). (16)

If the travel time differences between the arrivals corres-
ponding to individual reflectors are shorter than the duration
of the wavelet, interference can occur, giving a complicated
signal. Hence it would be desirable to have a delta function
source wavelet whose Fourier transform is simply 1, so that
the seismogram would equal the reflector series. Although a
physical source wavelet is not a delta function, we simulate

such a wavelet by creating an inverse filter2 w−1(t), which, when
convolved with the wavelet, yields a delta function:

w−1(t) * w(t) = δ(t). (17)

As we saw in Section 3.3.6, the Fourier transform of the inverse
filter is just 1/W(ω), so deconvolution can be done by dividing
the Fourier transforms

S(ω)/W(ω) = R(ω). (18)

This sometimes works well, but can be problematic at frequen-
cies where the source wavelet spectrum W(ω) is small (causing
R(ω) to go to infinity), so a minimum amplitude threshold can
be set.

As an alternative, inverse filters can be designed in the time
domain to compress the source wavelet into a function as close
to a delta function as possible. This approach is a special case of
the general problem of finding a shaping filter that converts a
given input into a given output. We will shortly discuss another
approach, which relies not on the convolution, but on the
related cross-correlation operator.

Deconvolution is also used in other applications. A con-
ceptually similar one is modeling seismograms from a distant
earthquake as a sum of secondary arrivals generated when the
upcoming wave encounters interfaces below the receiver
(Fig. 6.3-7). The vertical component is assumed to represent
the direct arrival, and is used as a Green’s function that is
deconvolved from a horizontal component to find a receiver
function characterizing the structure. The receiver function
corresponds to the reflector series in this geometry. Another
application of deconvolution is to take seismograms and de-
convolve the effects of the seismometer to find the true ground
motion, or deconvolve a seismogram to try to find the source
pulse due to an earthquake (Section 4.3.3).

6.3.3 Finite length signals

We have seen that the Fourier transform describes a signal as
the sum of harmonic signals with different frequencies. One
important limitation is that the Fourier transform requires inte-
gration over all time. In reality, we only have data over a finite
interval of time.

To see how this affects our results, consider a window func-
tion b(t) which selects part of the data. Its effect on the data f(t)
is represented by multiplying f(t) by b(t). We then ask how the
Fourier transform of the function, including the effect of the
window

G(ω) =

  
�

−∞

∞

b(t) f(t)e−iωtdt, (19)

is related to the transform of the original function, F(ω).1 The same entity is commonly termed a Green’s function in physical problems and
an impulse response in time series analysis. In seismology the terms are used essen-
tially interchangeably. 2 The notation w−1(t) does not mean 1/w(t).
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and using the sifting property (Eqn 6.2.29) to obtain

G(ω) =
1

2π �
−∞

∞

B(ω ′)F(ω − ω′)dω′ = 
  

1

2π
B(ω) * F(ω). (22)

Thus the effect of multiplying a time series by a window func-
tion is that the spectrum of the time series is convolved with the
spectrum of the window function. This is an example of the
fact that just as convolution in the time domain corresponds
to multiplication in the frequency domain, so multiplication in
the time domain corresponds to convolution in the frequency
domain.

To see the effect of windowing on the spectrum, consider the
simplest window function, a “boxcar” which describes taking
only the data in a certain time interval (Fig. 6.3-8),

b(t) = 1 for −T < t < T,

= 0 otherwise. (23)

Its Fourier transform is
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whose amplitude spectrum |B(ω) | has a characteristic shape
with a central lobe and smaller side lobes, and equals zero
where x = ωT = 2nπ. The width of the central lobe is 2π /T.
This | (sin x)/x | curve, sometimes called a sinc function, is
convolved with, and thus modifies, the spectrum |F(ω) |.

For example, if f(t) is a sine wave (Fig. 6.3-9a) whose ampli-
tude spectrum is described by two delta functions, convolution
with B(ω) yields the spectrum of a finite length sine wave, two
sinc functions. Thus, taking a finite length of record “smears”
the delta functions of the infinite length record’s spectrum into
broader peaks with side lobes (Figs 6.3-9b). Taking longer
records (increasing T ) yields sharper spectra (more like the
delta function), because the width of the central lobe of the sinc
function is proportional to 1/T.

This effect has an important consequence for analyzing
signals containing different frequencies, as shown in Fig. 6.3-9c
for a time series with two frequencies. For shorter record
lengths (Figs 6.3-9d and e), the spectral peaks broaden until
they start to overlap and cannot be resolved separately. Once
the width in frequency of the central lobe of the sinc func-
tion exceeds the separation between the two spectral peaks
(Figs 6.3-9e), they cannot be resolved. Thus the frequency
resolution, the minimum separation in frequency for which

Fig. 6.3-7 Schematic diagram of the receiver function approach. The
receiver function, derived by deconvolving the vertical component from a
horizontal component, should have arrivals corresponding to the times
of seismic wave phases generated when the upcoming wave encounters
interfaces below the receiver and amplitudes reflecting the amplitudes
of these waves. The receiver function can be used to study the depths
of the interfaces and the velocity contrast there. Because a horizontal
component is used, the phases predicted involve P-to-S conversions and
their reverberations, as described by the nomenclature used to identify
phases (e.g., PpPms). Owens et al., 1987. © Seismological Society of
America. All rights reserved.)
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This question can be answered by writing b(t) and f(t) using
their inverse transforms,
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recognizing that the inner integral is the Fourier transform of a
delta function in frequency (Eqn 6.2.36),
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Amplitude spectrum
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(e)

Time series

Data length and frequency resolution two peaks can be resolved, is proportional to the reciprocal of
the record length.

This relation between signals in the time and frequency
domains demonstrates a fundamental principle. By taking a
finite length portion of a time function, we broaden and distort
its spectrum in a predictable way. The reverse occurs in the fre-
quency domain; taking a finite portion of the spectrum distorts
the time function, as we discussed in considering Fig. 6.3-3.
For example, because a seismometer only responds to ground
motion in a certain frequency range, the resulting seismogram
is a somewhat distorted record of the ground motion. Sim-
ilarly, physical processes like anelasticity (Section 3.7.8) and
diffraction (Section 2.5.10) that remove high frequencies dis-
tort the resulting waveforms.

Thus we have an “uncertainty principle” that the product of
the “widths” in the two domains is constant; for a time domain
record with duration T, the resolution in the frequency domain
is proportional to 1/T. Perfect resolution in frequency requires
infinite record length in time, and infinite bandwidth in fre-
quency is needed to represent a time function exactly. These
properties are general features of Fourier transform pairs, so
also apply to distance and wavenumber.3

The sinc or | sin x /x | function, which we used to represent
taking a finite portion of a time series, appears in other similar
applications. We saw that diffraction through a slit, in which
only part of a wave front is transmitted, is described by a sinc
function (Fig. 2.5-18). The sinc function also describes the
spectrum of waves radiated from a finite fault (Section 4.6.2).

In real cases, we do not have infinite lengths of data. More-
over, it is not always desirable to take more data. For example,
the signal of interest on a seismogram eventually decays into
the noise due to attenuation, or is interferred with by a different
signal. We seek the best resolution of the spectrum of the signal
of interest, but as the record length increases, the noise has a
greater effect and increasingly contaminates the spectrum. We
thus select a compromise record length and try to obtain the
best spectrum. This issue arises in estimating seismic attenua-
tion, which broadens spectral peaks (Section 3.7.7) in a way

Amplitude spectrum: B(ω)Time series: b(t)

−6π
T

−4π
T

−2π
T

2π
T

4π
T

6π
T

0

Time (t)
Frequency (ω)

−T T0

ω

ω

Fig. 6.3-8 Time and frequency domain
representations of the simplest window
function, a “boxcar” that selects only the
data in a certain time interval (left). The
amplitude spectrum (right) has a central
peak and smaller side lobes.

3 The uncertainty principle also appears in quantum physics, where the position and
momentum of a particle form a Fourier transform pair. Thus, the better we know a
particle’s position, the less we know about its momentum, and vice versa.

Fig. 6.3-9 Effects of finite data length on the spectrum. The spectrum
of the sine wave in (a) is “smeared” by taking a short data window (b).
For a time series with two frequencies (c), shorter record lengths cause
the spectral peaks to broaden (d) until they start to overlap and cannot be
resolved separately (e).



similar to that of finite record length. Longer records broaden
the peaks less, and so give better estimates of attenuation up to
the point where the effects of noise degrade the estimates.

Though we can never get around the problem of finite record
length, it can be ameliorated by using a different window func-
tion than a boxcar. A window function whose “corners” are
less “sharp,” known as a taper, reduces the size of the side lobes
and thus the distortion. One simple such function, a cosine
taper, is a boxcar with smoother ends:
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The parameter T1 is the tapered fraction of the half-length T.
Figure 6.3-10 illustrates the effect of tapering data, by compar-
ing the spectra of two windows of the same length. The side
lobes for the tapered window are reduced.

Such a taper is often applied in the time domain to data, with
T1/T ≈ 0.1, before taking spectra. Similarly, bandpass filters
are often tapered in the frequency domain. In the frequency
domain, a pure bandpass filter is two boxcar functions for the
positive and negative frequencies in the passband (Fig. 6.3-3).
The corresponding inverse transform thus looks like a sinc
function, and causes “ringing,” analogous to the side lobes, in
the time domain. The ringing can be reduced by tapering the
response at the edges of the passbands. For the same reason,
the spectrum of a theoretical (synthetic) seismogram computed
in the frequency domain is tapered before the inverse Fourier
transform is used to produce a synthetic seismogram in the time
domain.

This example brings out the general point that, in filtering
data, we make certain choices depending on our goals and
accept the consequences. There are no absolute criteria for
what is best. For example, tapering a filter in the frequency
domain reduces the ringing that can produce spurious non-
causal arrivals, at the price of distorting the spectrum and
waveform. We will see in Section 6.6.5 that this issue appears
in designing digital seismometers.

6.3.4 Correlation

Often we want to measure how similar two signals are. A com-
mon application is identifying a reflected arrival by finding the
portion of a seismogram that most resembles a direct arrival or
a function that we believe represents the source. To do this,
we define the part of the signal we seek to identify as f(t), the
remaining portion of the seismogram as x(t), and form the
integral
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C(L), the cross-correlation of x(t) and f(t), measures the sim-
ilarity between f(t) and later portions of x(t) by shifting f(t) by
different lag times, L, and evaluating the integral of the product
as a function of L. The lag for which C(L) is maximum is the
time shift that makes the two functions most similar. Although
T formally goes to infinity, we set T to an appropriate value,
because the data exist only in a finite time range. Thus the 1/T
factor is a normalization, which is often neglected. Cross-
correlation and convolution are similar operations, the major
difference being the sign of the time shift.

Figure 6.3-11 shows an example of applying cross-correlation
to determine the travel time difference between direct S and
SS phases. The SS phase should be similar to S, once S is cor-
rected to include the effects of the additional attenuation on
the longer ray path and the π /2 phase shift due to the surface
reflection (Section 3.5.1). Direct S is selected on the seismo-
gram, corrected, and then cross-correlated with the rest of
the seismogram. The peak in the cross-correlation gives the lag
that measures the arrival time difference between the two
phases. Another application of cross-correlation is in explora-
tion seismology, where an assumed Vibroseis source signal is
cross-correlated with seismograms, giving peaks at times when
reflections occur (Section 3.3.6). In these applications, the
cross-correlation is being used to identify reflections, much as
could be done by deconvolution, because the cross-correlation
is similar to the convolution.

A special case of the cross-correlation is the auto-correlation,
the cross-correlation of a time series with itself
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Boxcar
function

|32 s |

|32 s |

Tapered
boxcar
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Time series Amplitude spectrum

Fig. 6.3-10 Comparison of the spectra of two windows of the same
length. The side lobes for the tapered window are reduced, but the central
peak is less sharp.
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Fig. 6.3-12 Illustration, for a boxcar function, that the auto-correlation is
maximum at zero lag and is an even function of the lag.

The auto-correlation is significant in the theory of filtering
because it is related to the amplitude spectrum. To see this,
consider a function f(t) that is zero except between −T/2 and
T/2. The auto-correlation
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can be expanded using the inverse Fourier transform and using
the time shift theorem (Section 6.2.4),
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where the last step uses the fact that F (−ω) = F*(ω). Thus, if
we define the power spectrum, a normalized version of the
amplitude spectrum,

P(ω) = 
    
lim
T T→∞

1
| F(ω) |2, (30)

we see that the auto-correlation is the inverse Fourier transform
of the power spectrum:
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Not surprisingly, the auto-correlation is maximum at zero lag
and is an even function of the lag (Figs 6.3-12 and 3.3-30).
When the cross-correlation is used to identify reflections
(Figs 6.3-11 and 3.3-31), it makes the seismogram look like the
auto-correlation of the signal near the reflection.

(a)

(b)

(d)

(c)

S
May 14, 1976
Station KBS
∆ = 73.2°

SS

ScS

50 s

Fig. 6.3-11 Application of the cross-correlation to determine the travel
time difference between direct S and reflected SS phases on a seismogram
(a). The direct S phase (dashed line in (b)) is corrected for attenuation
(solid line in (b)), phase-shifted (c), and then cross-correlated with the rest
of the seismogram (d). The peak in the cross-correlation gives the lag that
measures the arrival time difference between the two phases. (Kuo et al.,
1987. J. Geophys. Res., 92, 6421–36, copyright by the American
Geophysical Union.)



Fig. 6.3-13 Illustration showing that a function has the same
auto-correlation if it is reversed in time.

Fig. 6.4-1 Sampling a signal at intervals ∆t (top) is described by
multiplying the signal by a series of delta functions that are spaced ∆t
apart in time (center), called a Dirac comb. The transform of a Dirac
comb spaced at ∆t in time is a comb spaced 2π/∆t in angular frequency
(bottom).

f(t) R(L)

−T T

−T T

t

T

R(L)

t

f(t)

T
L

L

As a result, the auto-correlation of a function contains informa-
tion only about its amplitude spectrum, but not about its phase.
Functions with the same amplitude spectrum but different
phase spectra have the same auto-correlation. For example, a
function has the same auto-correlation if it is reversed in time
(Fig. 6.3-13).

6.4 Discrete time series and transforms

The analysis of seismic data using Fourier transforms requires
computers. Thus the ground motion, a continuous function of
time, is represented by a signal consisting of the ground motion
measured, or sampled, at discrete points in time. Early seismo-
meters, which recorded on paper wrapped around a rotating
drum, yielded continuous analog seismograms which were
digitized to create a discretized seismogram. Modern seismo-
meters typically record the ground motion as a set of amplitude
values measured repeatedly over a constant interval, such as
40 times per second (40 sps, “samples per second”). To work
with digitized seismograms, the transforms and other math-
ematical operations that we formulated in Section 6.3 as con-
tinuous functions of time are replaced by discretized versions.
Working with the discretized data is the subject of digital signal
processing, whose basic ideas we discuss next.

6.4.1 Sampling of continuous data

The operation of sampling a signal at intervals ∆t can be repre-
sented by multiplying the signal by a series of delta functions
(Section 6.2.5) in time spaced ∆t apart, called a Dirac comb or
Shah function (Fig. 6.4-1):

∇(t; ∆t) ≡ 
n=−∞

∞

∑ δ(t − n∆t). (1)

To see what this does to the spectrum of the signal being
sampled, consider the Fourier transform of the Dirac comb,
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which was evaluated using the sifting property of the delta
function (Eqn 6.2.29). It turns out that although the Fourier
transform of a single delta function is a complex exponential,
the transform of a Dirac comb is another Dirac comb. To see
this, note that because ∇(t; ∆t) is periodic with period ∆t, it can
be expanded in a complex Fourier series (Section 6.2.2),
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Spectrum of unsampled
data (band limited) with
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Aliasing in the frequency domain
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Spectrum of sampled
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Fig. 6.4-2 Effect of sampling on the frequency amplitude spectrum.
The spectrum of the unsampled signal (a) is convolved with a Dirac comb,
making the spectrum of the sampled signal periodic in angular frequency
with period (2π/∆t). If the spectrum of the unsampled signal is zero outside
the principal angular frequency band −π/∆t < ω < π/∆t, the range between
the first delta functions on either side of the origin, the spectrum of the
sampled signal is the same as that of the original signal in this frequency
range (b). Otherwise the spectra overlap after convolution (c), a
phenomenon called aliasing that makes the sampled spectrum inaccurate.

Because in the interval (−∆t /2, ∆t/2) only one delta function,
δ(t − 0), occurs, the Fourier coefficients are
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so the Fourier series for the Dirac comb is

∇(t; ∆t) = 
  

1

∆t m=−∞

∞

∑ ei2mπt/∆t. (6)

Now, consider a Dirac comb in the frequency domain, ∇(ω;
2π /∆t), which consists of delta functions spaced 2π /∆t apart
in angular frequency,

∇(ω; 2π /∆t) ≡ 
n=−∞

∞

∑ δ(ω − n2π/∆t). (7)

Its inverse transform can be evaluated using the sifting property
to yield
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which is just ∆t/2π times the Fourier series for ∇(t; ∆t) (Eqn 6).
Thus the transform of a Dirac comb spaced at ∆t in time is
(2π /∆t)∇(ω ; 2π/∆t), a comb spaced 2π /∆t in angular frequency
with an amplitude of 2π/∆t (Fig. 6.4-1).

The effects of sampling the signal x(t) at times ∆t can be
found by writing the sampled signal x(t) as the product of the
signal and the Dirac comb in time,

x(t) = x(t)∇(t ; ∆t). (9)

Because multiplication in the time domain corresponds to con-
volution in the frequency domain, the transform of the sampled
signal, X(ω), can be written as

X(ω) = X(ω) * (2π /∆t) ∇(ω ; 2π /∆t). (10)

Hence X(ω) is convolved with the Dirac comb, causing the
spectrum of the sampled signal X(ω) to be periodic in angular
frequency with period (2π /∆t).

To see what this does, suppose that the signal x(t) is band
limited such that its spectrum X(ω) is zero outside the principal
angular frequency band −π/∆t < ω < π/∆t, the range between
the first delta functions on either side of the origin (Fig. 6.4-
2a). Thus, after sampling, the adjacent X(ω) do not overlap
(Fig. 6.4-2b), and the spectrum of the sampled time series is

the same as that of the original time series in the principal
frequency range.

On the other hand, if X(ω) is not limited to this range, the
spectra overlap after sampling, so that two adjacent spectra
both contribute at these frequencies (Fig. 6.4-2c). The effect
of the periodicity is that for angular frequencies | ω | > π /∆t, or
frequencies | f | > 1/(2∆t), the spectrum is inaccurate, because
the overlap area is folded into the principal frequency range.
This phenomenon, called aliasing, can be avoided by sampling
the signal sufficiently densely that the spectra do not overlap.
This requires that the sampling interval ∆t be such that the
corresponding frequency, known as the Nyquist frequency,

fN = 1/(2∆t) or ωN = π /∆t, (11)

is higher than the highest-frequency component of the signal,
so that the spectrum is correctly resolved. The shorter the
sampling interval, the higher the Nyquist frequency, the larger
the interval over which the spectrum is periodic, and thus the
higher the frequency below which the spectrum is correctly re-
solved. In practice, it is desirable to sample even more densely,
perhaps four or more times, than the Nyquist criterion. As
we sample more densely, the sampled signal becomes a better
representation of the signal, and its spectrum becomes a better
representation of the true spectrum.



Actual signal Aliased signal

Fig. 6.4-3 In the time domain, aliasing can be viewed by noting that at least two samples per wavelength are needed to reconstruct a sinusoid accurately.
Any higher frequencies are aliased into lower ones. In this case, sampling a sine wave at a sampling interval of four-fifths of the period of the wave results
in an aliased signal with a period that is four times greater.

Another way to see these ideas is to note that at least two
samples per wavelength are needed to reconstruct a sinusoid
accurately. Any higher frequencies are aliased into lower ones
(Fig. 6.4-3).1 Aliasing occurs when the data are sampled, and
once this occurs, the data cannot be “unaliased.” As a result,
seismic data are filtered with an analog anti-aliasing filter to
remove frequencies above the Nyquist frequency before sam-
pling to produce a digital seismogram.

6.4.2 The discrete Fourier transform

We now consider the Fourier transform of a sampled time
series. If the function f(t) is sampled at N time points that are
∆t apart, the function can be represented as

f(t) = f(n∆t) for n = 0, 1, . . . , N − 1. (12)

To make subsequent derivations easier, we require N to be an
even number. The Fourier transform integral,

F(ω) =
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f(t)e− iω tdt, (13)

can be written as a summation:

F(ω) = ∆t
n

N

=
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f(n∆t)e−iωn∆t. (14)

This transform is a continuous function of ω that we
approximate using its values at discrete frequency points.
Because sampling produces a spectrum that is periodic in angu-
lar frequency with period 2π/∆t, or twice the Nyquist angular
frequency ωN, we divide this interval into N points as

F(ω) = F(k∆ω) for k = 0, 1, . . . , N − 1, (15)

1 An illustration of sampling issues is that in Western films, wagon wheels some-
times appear to rotate backwards, stop, or rotate only slowly forward. These effects
result from differences between the wheels’ rotation rate and the movie cameras’
sampling rate, typically 24 frames per second.
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with

∆ω = 2ωN/N = 2π /N∆t = 2π /T, (16)

where T = N∆t is the total length of the data in time, sometimes
called the record length. This sampled Fourier transform of a
sampled time series is called the Discrete Fourier Transform
(DFT):
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The DFT gives values at angular frequencies

0, ∆ω, 2∆ω, . . . (N/2)∆ω, . . . (N − 1)∆ω. (18)

The second half of the values represent angular frequen-
cies greater than (N/2)∆ω, which equals the Nyquist angular
frequency. These points correspond to the negative angular
frequencies, wrapped around to follow the positive angular fre-
quencies. For example, the first point after the Nyquist angular
frequency occurs for angular frequency

(N/2 + 1)∆ω  = (N/2)∆ω + ∆ω  = ω N + ∆ω

= −ω N + ∆ω = − −
⎛

⎝⎜
⎞

⎠⎟
N

2
1  ∆ω, (19)

where we use the fact that the spectrum is periodic with period
2ωN. Each successive point corresponds to an increment of
−∆ω. Thus, we can consider the DFT to give values at angular
frequencies

0, ∆ω , 2∆ω, . . .
    

N

2
1  −

⎛

⎝⎜
⎞

⎠⎟
∆ω, ωN, − −

⎛

⎝⎜
⎞

⎠⎟
N

2
1  ∆ω, . . . ,

−2∆ω, −∆ω. (20)

Graphically, we can think of folding the second half of the DFT
about zero frequency to give the values of the spectrum at the
negative frequencies (Fig. 6.4-4).
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Continuous frequency amplitude spectrum

Fig. 6.4-4 Due to the periodicity of the
discrete Fourier transform, the second half
of the values of the frequency amplitude
spectrum, at angular frequencies greater
than the Nyquist angular frequency
(N/2)∆ω, represents the negative angular
frequencies.

The fact that the DFT is the sampled spectrum of a sampled
time series has two interesting consequences. The highest
angular frequency that can be resolved is the Nyquist, which
depends inversely on the sampling rate in time, because ω N =
π /(∆t). On the other hand, the resolution in frequency, given
by the spacing between successive angular frequency points,
∆ω = 2π /(N∆t), depends inversely on T = N∆t, the total record
length.

For example, to resolve the singlets making up the normal
mode multiplet 0S2 (Fig. 2.9-16), we would like a frequency
resolution of at least 0.0001 cycles/minute, or 1.7 × 10−6 s−1.
This requires data extending for 1/1.7 × 10−6 s, or more than
160 hours, after the earthquake. However, because the mode’s
period is 54 minutes, a seismogram sampled every few minutes
would be adequate and give a manageable number of data
points. We need, however, to prevent aliasing due to surface
and body waves that have periods of tens to hundreds of
seconds. An easy way to do this would be to start the analysis
a day or so after the earthquake, when the shorter-period
waves have decayed due to attenuation. This approach uses the
earth’s anelasticity as a natural anti-aliasing filter. By contrast,
reflection seismology requires high temporal resolution to
resolve closely spaced interfaces, so reflection data are sampled
at high rates such as 250 times per second after an anti-aliasing
filter is applied.

By analogy to the DFT, we write the inverse DFT (IDFT) by
approximating the inverse Fourier transform integral

f(t) = 

    

1

2π �
−∞

∞

F(ω)eiωtdω (21)

in the same way, which gives

f(n∆t) =
 

1

2π
    k

N

=

−

∑
0

1

F(k∆ω)ei(k∆ω)(n∆t)∆ω

=
 

∆ω
π2

    k

N

=

−

∑
0

1

F(k∆ω)eikn2π/N

= 
    

1

N t∆
    k

N

=

−

∑
0

1

F(k∆ω)eikn2π/N. (22)

An interesting feature of the IDFT comes from the fact that it
samples the spectrum at discrete frequencies ∆ω. Sampling the
time series at ∆t causes the phenomenon of aliasing, because the
spectrum is periodic in angular frequency with period 2π /(∆t).
By analogy, sampling the frequency spectrum at ∆ω makes the
time series periodic with a period of



the transform of αa(n) + βb(n). Thus we can use the discrete
transforms to model linear systems.

(2) The DFT of a real time series (i.e., one for which f(n) =
f*(n)) has the symmetry

F(−k) = F(N − k) = F*(k). (30)

Thus, as with the continuous transform, the values for the
negative frequencies are the conjugates of those for the positive
frequencies.

(3) Shifting a time series in time simply changes the phase of
the DFT: if the transform of f(n) is F(k), the DFT of f(n − j) is
W kjF(k). Similarly, shifting a Fourier transform in frequency
changes the phase of the IDFT: the inverse transform of
F(k − m) is W −mnf(n).

6.4.4 The fast Fourier transform (FFT)

For these concepts to be useful, the transforms and inverse
transforms must be evaluated on a computer. Moreover, it only
makes sense to carry out filtering using Fourier transforms if
the transform and inverse transform operations are relatively
quick. It turns out that an elegant algorithm known as the Fast
Fourier Transform (FFT) provides a fast way of carrying out
the DFT and IDFT.

The time a computer needs to carry out an algorithm
depends on how many arithmetic operations are needed. We
would expect that evaluating all N points in the DFT, each
of which is the sum of the N terms in the series, would require
approximately N2 operations. The FFT algorithm, however,
requires a much smaller number of operations, approxim-
ately N log2 N. The difference is substantial; for N = 4096,
N2 = 16,777,216, but N log2 N = 49,152 a about 340 times
fewer! As a consequence, the introduction of the FFT made
digital signal processing common in seismology and many
other disciplines.

Entire books have been written about the FFT, so we only
briefly sketch the approach here. The underlying idea is that a
simple method can be used to compute the transform of a series
of points by splitting it in half. We take a series with N points,

f(n) for n = 0, 1, . . . , N − 1 (31)

and form two subseries, one with the odd-numbered points and
one with the even-numbered points:

a(n) = (f(0), f (2), f (4), . . . ) = f (2n)

for n = 0, 1, . . . , N/2 − 1,

b(n) = ( f (1), f(3), f (5), . . . ) = f(2n +1). (32)

The DFTs of the two subseries are

A(k) = 
n

N

=

−

∑
0

2 1/

a(n)e−4πikn /N and

  

2 2

2

π
ω

π
π∆ ∆

  
/( )

=
N t

 = (N∆t) = T, (23)

which is equal to the original record length.2 This wraparound
phenomenon can be important, as we shall see when discussing
the use of DFTs to carry out convolutions.

6.4.3 Properties of DFTs

For simplicity, we write the DFT and the inverse DFT implicitly
assuming a unit sampling interval, ∆t = 1, and define

F(k) ≡ F(k∆ω) = 
    n

N

=

−

∑
0

1

f (n)e−2πikn/N

for k and n = 0, 1, . . . , N − 1 (24)

f(n) ≡ f(n∆t) = 
1

0

1

N k

N

=

−

∑ F(k)e2π ikn/N

for k and n = 0, 1, . . . , N − 1. (25)

The two equations are very similar in form and are easy to
evaluate a the forward and inverse transforms differ only
in the sign of the exponential and the 1/N normalization.
This is especially clear if we define the complex exponential as
W = e−2π i/N, so the definitions of the DFT and IDFT become

F(k) = 
    n

N

=

−

∑
0

1

f(n)W kn and f(n) = 
1

0

1

N k

N

=

−

∑ F(k)W−kn. (26)

The terms with the complex exponential are periodic in N,

Wkn = W (N+k)n = Wk(N+n), (27)

so the DFT and IDFT can be defined for all integers k, n, j as

f(n) = f(jN + n), F(k) = F(jN + k). (28)

A formal statement of the relation between the negative and
positive frequencies can also be given as

f(−n) = f(N − n), F(−k) = F(N − k). (29)

We used this relation when we explained how the second half
of the DFT corresponds to negative frequencies (Fig. 6.4-4).

Using these definitions, we can show that the discrete trans-
forms have properties that we discussed for the continuous
transforms in Section 6.2.4:3

(1) The DFT and IDFT are linear: if A(k) and B(k) are the
transforms of time series a(n) and b(n), then αA(k) + βB(k) is

6.4 Discrete time series and transforms 389

2 Because of this periodicity, the record length is considered to be N∆t rather than
(N − 1) ∆t.
3 As for the continuous transforms, the proofs are left for the problems.
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Commonly, the same computer program is used for both for-
ward and inverse FFTs, except that the sign of the exponential
must be changed and the 1/N normalization remembered (the
last being a traditional bane of students).

In using the FFT to transform data as part of a filtering
operation, the factor of 1/N may be included at any step in the
process. Often, however, we use the FFT to obtain the Fourier
transform of a time series, and compare this to a result derived
in the frequency domain, such as an analytic expression for a
synthetic seismogram as a function of ω. In this case, we have to
consider the units of both the forward and the inverse DFT.
The forward DFT is an approximate way of evaluating the
Fourier transform integral (Eqn 13), in which the differential
dt is replaced by the difference ∆t. Thus, the FFT results are
multiplied by ∆t. Similarly, the IDFT approximates the inverse
transform integral (Eqn 21), with the differential dω replaced
by the difference ∆ω. Hence the results from inverting the FFT
are multiplied by ∆ω /(2π). The product of these two factors is
∆ω∆t/2π = 1/N, as expected.

This discussion assumes that the series length N is a power of
2. If this is not the case, a number of zeroes necessary to obtain
a power of 2 can be added to the end of the time series. Such
zero padding has the effect of sampling the spectrum more
densely, because the sample interval is unchanged, but the
frequency interval ∆ω = 2π/(N∆t) decreases. Despite the denser
sampling, the real resolution in frequency is not increased
beyond that resulting from the real (nonzero) data length.
Instead, smooth interpolation is done within the range of ac-
tual resolution ∆ωreal = 2π /Tnonzero.

Finally, it is worth distinguishing between the DFT and the
FFT. The DFT is the discrete approximation to the Fourier
transform which has the periodic properties we have discussed.
The FFT is a clever method for computing the DFT with many
fewer operations.

6.4.5 Digital convolution

As discussed in Section 6.3.2, the convolution is used in many
seismological applications. This operation has some special
features when carried out with discretized time series and their
transforms.

Given two discrete time series with unit sample period,
x(m) with M points x(0), x(1), . . . , x(M − 1) and f(n) with
N points f(0), f(1), . . . , f(N − 1), the convolution in the
time domain is written, by analogy to the integral definition, as

y(t) = x(t) * f(t) =
    m

M

=

−

∑
0

1

x(m)f(t − m). (40)

We evaluate the summation for each value of t that yields a
nonzero value. Because f(n) is zero for n outside the range (0,
N − 1) and x(m) is zero for m outside the range (0, M − 1), there
are N + M − 1 terms in the convolution, and y(t) is defined for
t = 0, 1, . . . , N + M − 2. For example, if N = 3 and M = 4, the
3 + 4 − 1 = 6 terms are

B(k) = 
n

N

=

−

∑
0

2 1/

b(n)e−4πikn/N, (33)

where k goes from 0 to N/2 − 1, and the factor of 4 comes from
the fact that the subseries lengths are N/2.

The DFT of the original series can be written in terms of the
DFTs of the subseries,

F(k) = 
n

N

=

−

∑
0

1

f(n)e−2π ikn /N

=
n

N

=

−

∑
0

2 1/

[a(n)e−2πik(2n)/N + b(n)e−2πik(2n+1)/N ]

= A(k) + e−2πik/NB(k) for k = 0, 1, . . . , N/2 − 1, (34)

giving the first N/2 points of F(k). The second N/2 points come
from replacing k by k + N/2,

F(k + N/2) = A(k + N/2) + e−2πi(k+N/2)/N B(k + N/2), (35)

and noting that, because the DFTs of the subseries are periodic
with a period equal to their length, N/2,

A(k + N/2) = A(k) and B(k + N/2) = B(k). (36)

Because the exponential can be written as

e−2π i(k+N/2)/N = e−πi e−2π ik/N = −e−2πik/N, (37)

the second half of the transform can be found from the first,
using

F(k + N/2) = A(k) − e−2πik/NB(k). (38)

In terms of W = e−2πi/N, the expressions for the two parts of the
transform (Eqns 34 and 38) have the simple form of

F(k) = A(k) + W kB(k) and F(k + N/2) = A(k) − WkB(k).
(39)

This method is called doubling a finding the transform of
an N-point series from the transforms of its two N/2-point
subseries. Doubling can be applied recursively, because we
can find the transform of each N/2-point series from that of two
N/4-point series, etc. Ultimately, a series of length N = 2n can be
evaluated via n = log2 N such stages. In the final stage, the trans-
form of each 2-point series is found from two 1-point series,
but the transform of a 1-point series is itself. Various methods
can be used to further speed up operations.

Thus, to obtain the FFT of a time series, we treat the data
points as N 1-point series, use doubling to form (N/2) 2-point
series, and so on until the final N-point transform. The same
FFT algorithm can also be used to take the inverse transform.



Because x(m) and f(n) have different lengths, the points in
the two transforms would correspond to different angular
frequencies. To avoid this, the two time series are extended
with zeroes at their ends, so that their lengths equal the same
power of 2.

A further point to bear in mind is that the time series corres-
ponding to the convolution is longer than either of the two
series that are convolved. If the number of points in the DFT
is less than this length, a wraparound phenomenon similar
to aliasing occurs when we invert the transform, due to the
periodicity resulting from the sampled transform. The two time
series thus need to be extended to a length at least that of their
convolution before their DFTs are taken.

6.5 Stacking

Seismology uses data to estimate quantities that describe the
earth and seismic sources. Ideally these estimates are both
accurate and precise. Accuracy measures the deviation of the
estimate from its true value, whereas precision measures
the repeatability of individual estimates. Hence the accuracy
depends on systematic errors that bias groups of estimates,
whereas the precision depends on random errors that affect
individual estimates. Estimates can be precise but inaccurate,
or accurate but imprecise. For example, an estimate of an
earthquake’s location depends on the quality of the travel time
data used and the accuracy of the velocity model. High-quality
travel time data, together with an incorrect velocity model, can
yield a location that is precise in that the data are well fit and
so imply small uncertainty, but inaccurate in that the resulting
location is not where the earthquake occurred. In such a case
the true uncertainty exceeds the formal uncertainty inferred
from how well the model fits the data. Conversely, an accurate
velocity model and poor travel time data can give a location
that is accurate in that it is close to where the earthquake
occurred, but imprecise in that the location has a large uncer-
tainty and there are large misfits to the data.

Approaches to improving the accuracy and precision of
estimates are often couched in terms of measuring a quantity
like the length of a table. Accuracy is improved by using dif-
ferent measuring tools, ideally calibrated against each other.
Precision is improved by making multiple measurements,
ideally by different people. We follow such approaches for the
earth when possible, but face additional complexities. For
example, an earthquake is a nonrepeatable experiment, so we
cannot make additional measurements. We can use different
techniques, but still face difficulties. A case in point is that
estimates of an earthquake’s depth from travel times and
waveform modeling are only partially independent. Both can
be biased similarly by incorrect assumptions about the near-
source velocity, but the travel times are independent of the
assumed source mechanism, and the waveform modeling
(which depends on relative arrival times) would not be biased
by an error in the absolute timing of individual seismograms.

y(2) = x(0)f(2) + x(1)f(1) + x(2)f(0)
x(3) x(2) x(1) x(0)

f(0) f(1) f(2)

y(1) = x(0)f(1) + x(1)f(0)
x(3) x(2) x(1) x(0)

f(0) f(1) f(2)

y(0) = x(0)f(0)
x(3) x(2) x(1) x(0)

f(0) f(1) f(2)

y(3) = x(1)f(2) + x(2)f(1) + x(3)f(0)
x(3) x(2) x(1) x(0)

y(4) = x(2)f(2) + x(3)f(1)

y(5) = x(3)f(2)

f(0) f(1) f(2)

f(0) f(1) f(2)

x(3) x(2) x(1) x(0)

f(0) f(1) f(2)

x(3) x(2) x(1) x(0)

Reverse

Slide

Fig. 6.4-5 Schematic diagram of a time domain convolution of two
sampled time series as a reverse, multiply, and slide operation.

y(0) = x(0)f(0)

y(1) = x(0)f(1) + x(1)f(0)

y(2) = x(0)f(2) + x(1)f(1) + x(2)f(0)

y(3) = x(1)f(2) + x(2)f(1) + x(3)f(0)

y(4) = x(2)f(2) + x(3)f(1)

y(5) = x(3)f(2). (41)

We can think of this operation as reversing the order of x(m)
and sliding it past f(n), while conducting all nonzero multiplica-
tions (Fig. 6.4-5).

These formulations show that the convolution has more
terms than either of the time series being convolved. This has
some interesting consequences if we do the convolution in the
frequency domain. Because the data are sampled at discrete
intervals, convolution in the frequency domain requires taking
two discrete Fourier transforms, multiplying them, and then
taking the inverse discrete Fourier transform. If Y(k), X(k), and
F(k) are the DFTs of y(t), x(m), and f(k), then

Y(k) = X(k)F(k) (42)

gives the complex spectrum at each angular frequency. This
brings out an important point; all the DFTs must be defined
at the same frequencies. For a time series of length N with
unit sample period (∆t = 1), the angular frequencies in the DFT
are

k∆ω = k2π /N for k = 0, 1, . . . , N − 1. (43)

6.5 Stacking 391
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A further complexity is that different methods can measure
related but not identical entities: the earthquake depth ranges
inferred from travel times, waveform modeling, aftershock
locations, and geodesy differ somewhat, because each meas-
ures related but not identical quantities.

Most discussions of these issues focus on random errors
because they are easy to estimate from the scatter of measure-
ments. However, it is worth bearing in mind that systematic
errors not included in these error estimates can be more
significant, as discussed in Section 1.1.2. Systematic errors can
come about in surprising ways and have subtle and crucial
effects. For example, we have noted that velocity hetero-
geneities can perturb ray paths and thus bias earthquake focal
mechanisms (Section 3.7.3); attenuation variations can bias
estimates of the yields of nuclear explosions (Section 1.2.8);
errors in the paleomagnetic time scale can bias estimates of
plate motions (Section 5.2.2); and effects including an unde-
tected earthquake can change estimates of earthquake recur-
rence from paleoseismology (Section 1.2.5). Systematic biases
are difficult to detect, but sometimes are identified from dis-
crepancies between different approaches. For example, the
discrepancy between earth models derived from body waves
and those from normal modes suggests physical dispersion due
to anelasticity (Section 3.7.8), and the discrepancy between
oceanic Love and Rayleigh wave velocities points toward
anisotropy (Section 3.6.5). Hence, when data are discordant,
as in the differences in earthquake frequency–magnitude
relations derived from seismological and paleoseismic data
(Section 4.7.1), systematic bias is one possible cause.

In this section, we develop some general ideas about errors
and consider some examples. Our focus is one of the most
useful methods for improving estimates from seismological
data: stacking, or taking multiple measurements and averaging
them. We do this either by averaging measurements such as
travel times from different seismograms, or by adding many
seismograms and then estimating parameters. This process has
two effects. First, it improves precision by reducing the effects
of random noise in the data. Second, if the data are averaged
in specific ways, the precision, and perhaps accuracy, can be
improved by suppressing some features of the data and thus
enhancing desired features.

6.5.1 Random errors

We seek to estimate a quantity x from multiple measurements,
each of which gives a value xi due to noise and the limitations
of the measurements. With enough measurements, a pattern
generally emerges in which the values xi are distributed about a
value x ′. If we neglect systematic errors of measurement, we
can estimate the value of x from the measured values xi and say
something about how this estimate is related to the unknown
true value of x.

For this purpose we view the measured values xi as random
samples from a parent distribution described by the probability
density function p(x) that gives the probability of observing

a certain value. For example, in Section 4.7.3 we treated the
occurrence of earthquakes as samples from a parent distribu-
tion of recurrence times. That example illustrated that in most
applications it is not clear what the most suitable parent distribu-
tion is. It is common to assume that the parent distribution is a
Gaussian distribution, also called the “normal distribution,”
because it often describes the frequencies at which very differ-
ent phenomena occur. A famous result called the central limit
theorem shows that this is because a sum of random numbers
approaches a Gaussian distribution even if the random
numbers are derived from other probability distributions.

For a Gaussian distribution, the probability that the i th

measurement would yield a value in the interval xi ± dx, in the
limit as dx → 0, is
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The distribution is thus characterized by two parameters: the
mean, µ, and the standard deviation, σ. The most probable
measurement is the mean value, and values on either side of it
are less likely the further from the mean they are. The distribu-
tion is often written as a function of the normalized variable
z = (x − µ)/σ,

p(z) = 
  

1

2π
exp [−z 2/2]dz. (2)

Figure 6.5-1 shows the familiar “bell curve” that results.
A common application is to estimate how likely a measure-

ment is to be within a range z from the mean. To do this, we
integrate the probability density function to find the cumulative
probability

A(z) = 

    
�

−z

z

p(y)dy =

      

1

2π
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−z

z

exp [−y2/2]dy. (3)
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Fig. 6.5-1 Probability density function for a Gaussian distribution with
mean µ and standard deviation σ. Ranges within one and two standard
deviations of the mean are shown by vertical lines.



For z = 1, we get A(z) = 0.68, indicating that there is a 68%
probability that a measurement will be within one standard
deviation of the mean. Similarly, A(2) = 0.95 and A(3) = 0.997,
indicating a 95% probability that a measurement will be
within two standard deviations of the mean, and a greater
than 99% probability that it will be within three standard
deviations. We used such ideas in estimating earthquake prob-
abilities (Section 4.7.3).

We expect that if we made an infinite number of measure-
ments (samples) without any systematic biases, a histogram
of the measurements would look like the parent distribution.
The mean of the observed values will be the mean of the
distribution
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and the spread of the measurements is the variance (standard
deviation squared) of the distribution,
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Thus, if the assumptions we have made are valid, the mean of
a large number of measurements, µ, would be the value that
we seek.

The difficulty in reality is that only a limited number of meas-
urements are available to estimate µ. As a result, the actual
mean µ′ is not necessarily equal to µ. We thus ask what method
of deriving µ′ from the measurements gives the maximum like-
lihood that µ′ is actually the mean of the parent distribution.

To find this, we assume that the parent distribution had
mean µ′ and standard deviation σ, so the probability that the
i th measurement would yield a value in the interval xi ± dx in
the limit as dx → 0 is

pi(µ′) = 
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For N observations, the probability of observing a particular
set of values xi is the product of the probabilities that each
individual measurement would have that particular value,
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The most probable value of µ′ is the one that maximizes p(µ′),
the probability of obtaining the set of measurements actually
found. To find this value, we set the derivative of the argument
of the exponential equal to zero,
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which occurs for

    i

N

=
∑

1

[xi − µ′] = 0, (9)

or

µ′ = 
1

1N i

N

=
∑ xi . (10)

This is not surprising a the average value of xi is the best
estimate of the mean. An interesting question is what is the
standard deviation σN of this estimate of µ′? Specifically, how
does the uncertainty associated with this estimate compare to
the uncertainty of each individual measurement?

To answer this, we use the propagation of errors, a general
method for finding the relation between the uncertainty in a
function and the uncertainty in the variables that it depends on.
If z is a function of multiple variables, then

z = f(u, v, . . . ), (11)

and we have N measurements of (u, v, . . . ). The mean value of
the function is its value for the mean of the arguments,

K = f(I, J, . . . ), (12)

and its variance is

σ 2
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If we expand z in a Taylor series about its mean value,
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To simplify this expression, we use the variances of each vari-
able about its mean

σ 2
u = lim

N i

N

N→∞ =
∑1

1

(ui − I)2 and σ 2
v = lim

N i

N

N→∞ =
∑1

1

(vi − J)2 (16)

and the covariances that describe how fluctuations between
variables are correlated:

σ 2
uv = lim

N i

N

N→∞ =
∑1

1

(ui − I)(vi − J). (17)

Substituting Eqns 16 and 17 into Eqn 15 gives
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This relation, called the propagation of errors equation, illus-
trates that the extent to which the uncertainty in each variable
contributes to the uncertainty in a function depends on the
partial derivative of the function with respect to that variable.
We often assume that the variations in the different variables
are uncorrelated (which is not always the case), so we set the
covariances equal to zero, and simplify the variance of z to
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This result is a general one that we have already mentioned
in the context of estimating the uncertainty of geodetic rates
(Eqn 4.5.8) and earthquake source parameters (Eqn 4.6.23).

In the specific application here, we consider the mean to be a
function of the observations,

z = µ′ = 
1

1N i

N

=
∑ xi , (20)

so the error propagation equation can be used with (u, v, . . . )
= xi . Assuming that the variables are independent, so their
errors are uncorrelated, we get
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If all the observations have equal uncertainties (σ 2
xi

 = σ 2), then

σ 2
µ′ = σ 2/N. (22)

Thus the variance of the mean is 1/N times the variance of
the individual measurements. Hence making N measurements
reduces the standard deviation of the mean by   1/ N. This is the
basic idea behind stacking; averaging multiple measurements

Fig. 6.5-2 Results of drawing N samples from a Gaussian parent
distribution with mean zero and a unit standard deviation. For small
numbers of samples, the observed distribution can look quite different
from the parent distribution, and the sample mean µ′ differs from that of
the parent distribution. As the number of samples increases, the observed
distribution looks increasingly like the parent distribution.

of some quantity yields an estimate that has a smaller uncer-
tainty than the individual measurements.

Figure 6.5-2 illustrates this idea. We assume that measure-
ments of some quantity are described by a Gaussian parent
distribution with a mean of zero, and we try to estimate this
quantity with different numbers of samples. As the number of
samples increases, the distribution of samples looks increas-
ingly like the parent distribution, and the sample mean ap-
proaches the mean of the parent distribution. However, for a
small number of samples, the observed distribution can look
quite different from the parent distribution. This issue arises in
studying earthquake recurrence, where the few samples avail-
able make it difficult to assess whether apparent differences in
earthquake history (Section 4.7.1) are significant and what
parent distributions and parameters should be used to estimate
earthquake probabilities (Section 4.7.3).
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This simple Gaussian model is widely used in analyzing data.
We assume that each measurement includes the quantity of
interest and some noise, defined as the portion of the signal that
is not of interest. The noise thus reflects both true errors
of measurement and processes not under consideration, all of
which are assumed to be uncorrelated between measurements.
To the extent that these assumptions are valid, stacking data
will improve the signal. The random, uncorrelated noise idea
often seems to be a good approximation. However, if noise is
correlated between measurements, as can occur if the measure-
ment equipment is biased or an “error” source is otherwise
common to the measurements, the desired noise reduction
will be less. For instance, the structure under a seismometer is
studied by means of receiver functions that are derived using
the radial and vertical components (Fig. 6.3-7), assuming that
the noise on each is uncorrelated. However, noise due to
microseismic activity (Section 6.6.3) will be correlated between
components and hence can yield spurious layering.

6.5.2 Stacking examples

A simple stacking approach is to add seismograms at nearby
stations, assuming that they contain a common signal of interest
plus “noise” that differs between stations. The noise includes
differences in the response of the seismometers and differences
in the seismograms generated by the interaction between the
upcoming waves and the crustal structure under each seismo-
meter. If the seismometers and crustal structure are similar
enough, stacking seismograms should reduce the noise and
yield a better representation of the signal of interest than the
individual seismograms.

An extension of this idea is used for seismograms at different
places or times. If we know theoretically how the signal of
interest varies as a function of position or time, we can correct
the data to a common position or time and stack them. For
example, in CMP stacking of reflection seismic data, traces
with a common midpoint are shifted by a time corresponding
to the travel time curve of a reflection and then stacked (Section
3.3.4). The reflected arrivals are in phase and thus enhanced,
whereas other arrivals with different travel time curves are out
of phase and thus suppressed. Although the undesired arrivals
are not random noise, they are reduced relative to the reflected
arrivals. Random noise in the data is also reduced.

This approach is also useful in observing deeper earth struc-
tures, such as mantle discontinuities (Section 3.5.3). Figure 6.5-
3 shows an example of stacking large numbers of long-period
transverse-component seismograms to enhance precursors to
the SS arrivals. The precursors, S410S, S520S, and S660S, are
underside reflections from the discontinuities at 410, 520,
and 660 km depths. However, these phases are weak and
are not easily observed above the noise on individual seismo-
grams. Stacking many records enhances these arrivals, allow-
ing the depths of the discontinuities to be studied. Moreover,
after removal of the theoretical signals of S410S and S660S
(Fig. 6.5-3, middle), the stacked record shows the S520S arrival

Fig. 6.5-3 Stacking long-period seismograms to identify the depth of
mantle discontinuities by enhancing precursors to SS. The initial stack
(top) shows the S410S and S660S underside reflections off the 410 km and
660 km discontinuities, magnified by a factor of 10. A theoretical signal
generated from the SS wave (center) is subtracted from the observed stack
to reveal the reflection from the 520 km discontinuity (bottom). (Shearer,
1996. J. Geophys. Res., 101, 3053–66, copyright by the American
Geophysical Union.)
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concentrations of seismic energy for
particular arrivals. (Vidale and Benz, 1992.
Reproduced with permission from Nature.)

(Fig. 6.5-3, bottom), which is weak due to the gradual velocity
change at the 520 km discontinuity, and so rarely observed
otherwise.

Mantle structures can also be observed with slant stacks
(Section 3.3.5). The seismograms are stacked as functions of
both time and slowness, so instead of getting a single seismo-
gram, as in Fig. 6.5-3, we get a plot of seismic energy as a func-
tion of time and slowness. As shown in Fig. 6.5-4, arrivals
occur as high-amplitude bull’s-eyes. The P and pP arrivals have
a slightly different slowness due to the small (about 1°) dif-
ference in incidence angles. The large arrivals create smeared
features that are artifacts of the slant stacking.

Stacking is also used to enhance specific normal modes of the
earth. The amplitudes of normal modes vary between stations,
because they depend on spherical harmonics that are func-
tions of latitude and longitude, which differ between individual
modes (Section 2.9.3). Although simply stacking seismograms
from different sites does not make spectral peaks stand out
better, correcting for the theoretical variation in amplitude and
phase for a given mode and then stacking enhances the mode of
interest and suppresses others (Fig. 6.5-5).

Stacking can be applied to very large volumes of data. Fig-
ure 6.5-6 shows record sections generated with thousands
of digitally recorded seismograms from different earthquakes
and seismometers. The seismograms were rotated into vertical,
radial, and transverse components, grouped by source–receiver
distance, and then those within half-degree intervals were
normalized to a common amplitude and stacked. The strong
arrivals in the stacked record sections correspond to the major
phases shown in the travel time curves. It is interesting to com-
pare this analysis of global seismic data spanning large distance
ranges with reflection seismic data analysis (Section 3.3.4).
For reflection data, CMP stacking involves forming common

Fig. 6.5-5 Stacking long-period seismograms to enhance specific normal
modes of the earth. Although a given mode multiplet is not enhanced by
simply stacking seismograms from different sites (top), stacking using its
predicted variation between sites enhances the multiplet and suppresses
others (lower panels). (Mendiguren, 1973. Science, 179, 179–80,
copyright 1973 American Association for the Advancement of Science.)
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Fig. 6.5-6 Stacking of global seismograms
to produce record sections. The three
stacks, each for a different component,
show distinct arrivals that can be
compared to those predicted by the travel
time curve for an earth model. (Astiz et al.,
1996. © Seismological Society of America.
All rights reserved.)

In these or other stacking operations, one possible source of
systematic error is incorrect transformation of the data between
different times or positions. Interestingly, in the very different
cases just discussed, a common difficulty is lateral variation in
structure. In the reflection example, structures may dip rather
than be flat-lying, causing traces with common midpoints not to
sample the same point on a reflector (Fig. 3.3-19). In the global
travel time analysis, seismograms for the same source–receiver
distance differ when the structure between the source and the
receiver differs. An analogous effect occurs for normal modes
due to deviations of the structure from spherical symmetry.
Nevertheless, because in most cases structure varies primarily
with depth, these stacking operations generally work well.

midpoint gathers and stacking them over all source–receiver
distances (offsets) (Fig. 3.3-18), to produce synthetic zero-
offset traces on which reflected arrivals are enhanced. These
traces are then shown together to produce a common mid-
point section, a function of midpoint and time. By contrast,
the global data are gathered by common offset, stacked for
that offset, and then displayed as a function of offset and
time. This operation only reduces noise, rather than enhanc-
ing specific arrivals, and so shows various arrivals (direct
waves, reflections, surface waves, etc.). Another example was
shown in Fig. 2.7.4, where many long-period seismograms
were stacked to demonstrate the group and phase velocities of
surface waves.
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6.6 Seismometers and seismological networks

6.6.1 Introduction

Given what we have discussed about signal processing, we now
introduce some ideas about seismometry, the design and devel-
opment of seismic instrumentation. Although we informally
call such systems seismometers, the seismometer is actually the
sensor recording ground motion, and thus a key component of
the entire seismograph system, which also contains amplifying,
timing, and recording components. The product, a record of
ground motion as a function of time, is a seismogram.

Following linear system theory, we note that a seismogram is
not an exact representation of the ground motion. Seismograms
depend upon the seismometer and the rest of the seismograph
system, because the sensitivities of seismometers vary with the
frequency of the motion recorded. Moreover, seismometers
record ground motion as displacement, velocity, acceleration,
or various combinations of these.1

Once recorded, distributing seismic data is crucial, because
the data are of no use until they are available for study. Hence
seismology has long been a leader among the sciences in
developing public data distribution. This tradition began a
century ago out of necessity. Unlike a geological field observa-
tion or a geochemical experiment, observations at many sites
are needed to locate and study earthquakes, with the more data
the better. Soon after seismometers became sensitive enough to
teleseismically record earthquakes, arrival times were shared.
The first major attempt to gather and publish seismically
recorded arrival times was the bulletin of the Bureau Central
International de Séismologie (BCIS), which began in 1904. The
International Seismological Summary (ISS) began publication
in 1913,2 and eventually became the Bulletin of the Inter-
national Seismological Centre (ISC), now an authoritative
source of earthquake locations. Not only arrival times but also
polarities and amplitudes were disseminated, enabling the
study of magnitudes and focal mechanisms.

This sharing of data has been crucial to seismology’s growth.
In the modern era, the World Wide Standardized Seismograph
Network (WWSSN), which started in 1962, was the first means
of globally sharing full seismic waveform data. Today, high-
quality digital global seismic data are available through the
Federation of Digital Broad-Band Seismographic Networks
(FDSN), of which the stations of the US-sponsored Incorpor-
ated Research Institutions for Seismology (IRIS) are a part.
Data and results such as earthquake locations are also provided
by national and regional data centers. Seismologists anywhere
in the world need only a computer and access to the Internet
to freely and conveniently obtain terabytes3 of digital seismic

Fig. 6.6-1 Pendulum seismograph consisting of a mass, a spring, and a
dashpot.

Dashpot
(damping)

Mass

u(t)
(ground
motion)

(t )ξ

0
ξ

1 This is analogous to the way animals see differently; the electromagnetic radiation
is the same, but human eyes respond slightly differently than those of bears (which are
very nearsighted), and entirely differently from the hexagonally tiled eyes of flies.
2 Its original name was the Monthly Bulletin of the Seismological Committee of the
British Association for the Advancement of Science.
3 One terabyte (Tbyte) equals 1012 bytes.

data, software to look at it, and a great deal of other earth-
quake information. As much as any development in theory or
seismometry, this free access to data and software is respons-
ible for the remarkable growth of the field within the past
century. Not only can scientists work more efficiently, but this
openness has encouraged the sharing of data and models, and
allowed comparison and testing of results.

6.6.2 The damped harmonic oscillator

The basic problem of seismometry is how to measure the
motion of the ground using an instrument that is also on the
ground. The traditional solution is to use an inertial, known as
a pendulum, system, so that the motion of the pendulum is out
of phase with the ground motion. Three orthogonal seismo-
meters (vertical, north–south, east–west) can give a three-
dimensional record of ground motion. A schematic vertical
seismometer is shown in Fig. 6.6-1. The key elements of the
system are the mass, the spring, and a dashpot, or damping
device. We consider such a system in general, without concern
for the mechanics of how it is actually implemented.

This mechanical seismometer system is a damped simple har-
monic oscillator. If the spring equilibrium length in the absence
of ground motion is ξ0, the spring exerts a force proportional to
its extension from equilibrium as a function of time, ξ(t) − ξ0,
times a spring constant k. The dashpot, with damping constant
d, exerts a force proportional to the velocity between the mass
(m) and the earth. So, for a ground motion u(t),

    
m

d

dt
t u t d

d t

dt
k t
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If we define ξ(t) − ξ0 as ξ(t), the displacement relative to the
equilibrium position, Eqn 1 becomes

mQ + dP + kξ = −mü, (2)

or

Q + 2εP + ω 2
0ξ = −ü, (3)

where the single and double dots denote the first and second
time derivatives, ω0 =   k m/  is the natural frequency of the
undamped system, and the damping is described by ε = d/(2m).
This is a linear differential equation with constant coefficients
that we encountered when we used a damped harmonic oscilla-
tor as a model for anelasticity (Section 3.7.5). Thus Eqn 3 is the
inhomogeneous (forcing term) version of Eqn 3.7.8, where the
damping term ε appeared as ω0/2Q. To solve it, we assume that

u(t) = e−iωt and ξ(t) = X(ω)e−iωt (4)

and substitute Eqn 4 into Eqn 3 to yield

X(ω)(−ω 2 − 2εiω + ω2
0)e−iωt = ω 2e−iωt, (5)

or

X(ω) = −ω 2/(ω 2 − ω 2
0 + 2εiω), (6)

which is the instrument response produced by a ground motion
e iωt.

X(ω) is complex and can be written in terms of the amplitude
and phase responses

X(ω) = | X(ω) |eiφ(ω), (7)

where

| X(ω) | = ω 2/[(ω2 − ω 2
0)2 + 4ε2ω2]1/2, (8)

φ(ω) = −tan−1 2
2

0
2

εω
ω ω  −

 + π. (9)

As shown in Fig. 6.6-2, these functions have several interesting
features. First, as the angular frequency of the ground motion,
ω, approaches the natural frequency of the pendulum, ω0, the
amplitude response is large. This effect, called resonance, is like
“pumping” a playground swing at its natural period. Thus the
seismometer responds best to ground motion near its natural
period.

For frequencies much greater than the natural frequency,
ω >> ω0, | X(ω) | → 1, and φ(ω) → π, so the seismometer records
the ground motion, but with the sign reversed.4 To see why this

Fig. 6.6-2 Amplitude response | X(ω ) | and phase delay φ(ω) for a
pendulum seismometer such as that shown in Fig. 6.6-1.

4 To see this, quickly jiggle an object hanging by a rubber band and note that its
motion is out of phase with your hand.
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occurs, consider Eqn 3. For ω >> ω0, the Q term is the largest
term on the left-hand side, so Q approximately equals ü. Thus
the seismometer responds to the ground displacement. On the
other hand, for frequencies much less than the natural fre-
quency, ω << ω0, | X(ω) | → ω2/ω 2

0, and φ(ω) → 0. Hence, in this
case the seismometer responds to acceleration, as can be seen
from Eqn 3, because the ω 2

0ξ term is dominant, so ξ is pro-
portional to ü. The shape of the instrument response depends
on the damping factor h = ε /ω0. For h = 0, the system is
undamped, and the amplitude response is peaked around the
resonant frequency, ω = ω0. The seismometer amplifies ground
motion with periods near its natural period. As damping is
increased, the curve is smeared out. Thus the natural period
and damping are used to design a seismometer to record
ground motion in a particular period range.

Figure 6.6-2 bears a strong resemblance to Fig. 3.7-13, which
showed the frequency response for a damped harmonic oscil-
lator as a function of Q. The plots are slightly different, in
that Fig. 3.7-13 is plotted as a function of ω, and Fig. 6.6-2 is
plotted as ω0/ω. In addition, Fig. 6.6-2 is normalized to the
value at ω0/ω = 0. However, the curves convey the same infor-
mation because h and Q are related as h = 1/2Q. The Q values
in Fig. 3.7-13 of 5, 15, and 100 correspond to h values of 0.1,
0.03, and 0.005, all of which would plot close to the curve for
h = 0 in Fig. 6.6-2.
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6.6.3 Earth noise

An important consideration in designing seismometers is earth
noise. A challenge of seismometry is to create sensors sensitive
enough to record small teleseismic signals, given that noise sets
a limit to the level of detection. Moreover, studies using seismic
data in many applications must consider the signal-to-noise
ratio.

Many factors contribute to seismic noise, including solar and
lunar tides within the solid earth, fluctuations in temperature
and atmospheric pressure, storms, human activities, and ocean
waves. These factors are constantly at work, so the crust is
continually reverberating. Most of the noise occurs at periods
between 1 and 10 seconds. Such waves, called microseisms, are
shown in Fig. 6.6-3 (top). Even before the first waves arrive
from the earthquake shown, the seismogram shows a roughly
constant level of seismic energy (center). The spectrum shows
that most of this noise is in the frequency range of 0.1–0.2 Hz
(periods of 5–10 s) (bottom). The primary source for these
microseisms is thought to be ocean waves. Seismometers are
noisier the closer they are to coastlines, so ocean island
stations are among the noisiest.

How a seismometer is deployed has a great effect upon the
noise that it records. Most sources of noise decrease away from
the surface, so permanent seismometer installations are often
in boreholes. For portable seismometers, burying them even
half a meter beneath the surface greatly reduces noise from
daily temperature fluctuations. Rain generates high frequency
noise, and wind, coupled to the ground through the roots of
swaying trees, can generate severe long-period noise. Human
activity (trucks, trains, machinery, etc.) causes significant
ground noise, so seismologists deploying temporary stations
face a trade-off between the convenience (continuous power,
security, constant temperature, no flooding) of building base-
ments and the lower noise of remote sites.

6.6.4 Seismometers and seismographs

Seismometers record ground motions ranging from large
high-frequency accelerations near an earthquake to small
ultra-long-period normal mode signals. Because no single
seismograph can do this, different instruments have evolved
to handle the different dynamic ranges and frequency ranges of
seismic waves.

Dynamic range is measured in decibels (dB), which increase
by 20 for each order of magnitude increase in amplitude. Thus,
if signal A1 is five orders of magnitude larger than signal A2,
A1/A2 = 105, and the dynamic range is 100 dB. The displace-
ments associated with a magnitude 2 earthquake may be as
low as 10−10 m, whereas teleseismic displacements from a
magnitude 8 earthquake may be on the order of 10−1 m, and
displacements near a large earthquake can be much greater.
Thus the dynamic range of seismometry is at least 180 dB.
Similarly, the frequency range of seismometers spans seven
orders of magnitude from Earth tides (0.000023 Hz) to ultra-

high frequencies of greater than 200 Hz for very shallow struc-
ture investigations.

The earliest attempts to record the motions of earthquakes
used seismoscopes, which differ from seismographs in that
they record ground motion without time information. The first
known seismoscope, built by the Chinese astronomer Chang

Fig. 6.6-3 Demonstration of seismic noise on a broadband seismogram
in Hudson, New York, from an April 7, 1995, Tonga earthquake.
Top: Seismic noise appears before the first arrival, which is Pdiff .
Center: Visual examination of the noise shows waves with a dominant
period of about 5–6 s, called microseisms. Bottom: The spectrum
of the noise has largest amplitude in the 5–10 s period range.
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Fig. 6.6-4 Two examples of seismoscope
recordings, which show the amplitudes
of motions without a record of time.
Left: Seismogram of the great 1906 San
Francisco earthquake, recorded by the
Ewing duplex pendulum seismoscope in
Carson City, Nevada. (Kanamori, 1988.
Importance of historical seismograms
for geophysical research, in Historical
Seismograms and Earthquakes of the world,
ed. W.H.K. Lee, H. Myers and K. Shimizaki,
copyright 1988 by Academic Press,
reproduced by permission of the publisher.)
Right: Seismogram of a mb = 4.3 earthquake
in Hawaii, recorded as a telescope image
at the Hawaii Telescope Observatory.
The dark images are stars, and the lines
emanating from the large star at the upper
center of the image result from tilting of the
telescope during the earthquake. (Courtesy
of L. Meech.)

Heng in about AD 132, consisted of a pendulum inside a 6 ft-
diameter jar. Eight dragons’ heads with metal balls in their
mouths were placed around the rim of the jar, so the balls
would drop in the direction from which seismic waves arrived.
Later seismoscopes included a pendulum etching a path on a
bed of sand (A. Bina, 1751), a collection system for a bowl
filled to the brim with mercury (A. Cavalli, 1784), and optical
reflection off a basin of mercury (R. Mallet, 1851). Two very
different seismoscope recordings are shown in Fig. 6.6-4.

Early seismometers, incorporating a record of the time-
dependence of the ground motion, were purely mechanical
instruments like that outlined in Section 6.6.2. Seismometry
began with the designs of F. Cecchi around 1875, and devel-
oped rapidly through the work of seismologists like J. Milne, J.
Ewing, and T. Gray. The first teleseismic recording was by a
seismograph in Potsdam of a Japanese earthquake in 1889.
By the start of the twentieth century a global network of more
than 40 seismographs was in operation. Such instruments often
produced excellent data but responded best to very large earth-
quakes because their magnifications were low, only about 100
times the actual ground motion.

Higher magnifications are achieved by using electromagnetic
instruments, based on a design introduced by Galitzin in 1914
that is now common. The motion of the pendulum relative to
the frame is measured by moving a coil attached to the mass
through the magnetic field produced by a magnet fixed to the
seismometer frame. The voltage produced in the coil is pro-
portional to the time rate of change of the magnetic field, and
thus to the velocity of the mass relative to the frame (Fig.
6.6-5). The sensitivity can be increased by feeding the output
from this sensor into a galvanometer, a wire suspended by a
thin fiber such that it is deflected by the current produced by the
sensor (Fig. 6.6-6). A mirror is attached so that ground motion
deflects the mirror and thus changes the position of a beam

Fig. 6.6-5 Schematic illustration of an electromagnetic seismograph, in
which the mass is coupled to an electromagnetic transducer. Motions of
the mass move the coil through the magnetic field, generating an electric
current. The voltage across the coil is proportional to the relative velocity
between the mass and the magnet.
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of light hitting a piece of photographic paper. The paper is
mounted on a helical drum which turns once per hour.

Thus the response of an electromagnetic analog seismo-
meter system is a combination of the pendulum, transducer
(electromagnetic velocity sensor), and galvanometer responses.
These are shown as log–log plots in Fig. 6.6-7. The pendulum
response (Fig. 6.6-7a, b) is proportional to ω2 for ω < ωs, the
pendulum frequency. The transducer response (Fig. 6.6-7c, d)
is proportional to ω because it responds to the velocity,
the derivative of displacement. The galvanometer response
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Fig. 6.6-6 Coupling of the transducer of an
electromagnetic seismograph to a galvanometer, which
deflects a mirror and thus a light beam, causing a time
history of the voltage and thus the mass movements to be
recorded on photographic paper. Timing pulses deflect
the mirror to make minute and hour marks.

Fig. 6.6-7 Response of the components of an electromagnetic
seismograph system. Left panels show the amplitude responses, and right
panels show the phase responses. ωs and ωg are the pendulum and
galvanometer frequencies.

(Fig. 6.6-7e, f) falls off as ω−2 for ω > ωg, the galvanometer fre-
quency. The combined effect is shown in Fig. 6.6-7g, h. Thus,
the response of an electromagnetic seismometer can be “shaped”
by choosing the pendulum and galvanometer periods.

Two classic electromagnetic instruments used heavily for
years were the World Wide Standardized Seismograph Network
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Fig. 6.6-8 Frequency domain instrument responses for several types of
seismometers. The SRO and DWSSN sensors have responses peaked at
long periods and so do not record high-frequency signals. The STS-1,
STS-2, and Guralp-3T sensors are broadband seismometers with a flat
response over a wide range of frequencies.

(WWSSN) long- and short-period instruments. The long-
period (LP) instrument had a pendulum period of 15 s (30 s
in some early versions) and a galvanometer period of 100 s.
The short-period instrument had a 1 s pendulum and a 0.75 s
galvanometer. Each WWSSN station had three LP and three SP
instruments oriented to record ground motion in the vertical,
east–west, and north-south directions. The resulting response
curve of the LP instrument (labeled “DWWSSN” from when
some of the WWSSN seismometers were converted to record
digitally) is shown in Fig. 6.6-8. Instruments ran at several pos-
sible magnifications (gains). The two different instruments
were designed to reduce the effects of seismic noise. The LP
sensors had peak sensitivity in the 10–40 s range, making them
ideal for long-period teleseismic studies. The SP sensors were
peaked at around 1 s, a good period with which to pick the
travel times of P waves.

A sample of the data is shown in Fig. 6.6-9. The record,
covering 24 hours, has calibration pulses at the begin-
ning, which can be used to check the amplitude and phase



Lock-in
amplifier

5 k Hz drive
amplifier

Output
Open-
loop

output

Rack Vault

Data
preamp

Center plate

Sensor and
forcing plates Splitter-

linearizer

Inverting amp

Integrator

Closed-loop output
(feedback voltage)

Forcing
bias

Ref

Minute marks

mb = 5.6 Ms = 5.2

Hour mark Calibration pulse

Aftershocks

Fig. 6.6-9 Sample WWSSN seismogram, showing the long-period vertical component from an earthquake in the Indian Ocean, recorded 36° away in
Pakistan.

Fig. 6.6-10 Block diagram of the sensing and feedback electronics of
an IDA gravimeter recording system. (Agnew et al., 1976. Eos Trans.
Am. Geophys. Un., 57, 180–8, copyright by the American Geophysical
Union.)

calibration. Timing marks, generated by crystal clocks accur-
ate to 1 part in 107 are placed at each minute (short mark) and
each hour (longer mark). Every sixth hour has no hour mark.
This timing allowed arrival times to be read accurately, and the
calibration allowed studies using true amplitudes. The seismo-
grams were microfilmed and made available to the seismolog-
ical community.

Although many results discussed in this text were derived
from such data, using WWSSN data was cumbersome. Micro-
fiche records had be acquired, examined in a microfiche reader,
copied, and refiled. The traces were then digitized by taping
them to a special table that contained a grid of electromagnetic
wires and then tracing the seismogram with a cursor. After
digitization, the seismogram was interpolated to a desired sam-
pling rate. The hand digitization added a source of error, as it
was not always easy to follow the trace of interest, especially
for large earthquakes where the surface waves could wrap
around the seismic record for several hours. Because of the
effort involved, entire Ph.D. dissertations might involve the
analysis of only tens or hundreds of seismograms, a task that is
now done in minutes to days.

The replacement of analog seismographs by digital broad-
band instruments has important advantages. The newer
seismometers provide better data over a broader frequency
band, and the digital data are available via magnetic tape,
compact disk, or the Internet, making computer analysis much
easier. Routine processing, such as rotating into radial and
transverse components and making record sections, has be-
come nearly trivial. Large volumes of data are available and
can be processed easily. For example, as of 2000 the IRIS Data
Management Center had over 7 Tbytes of digital data available
over the Internet either immediately or with only the short
delay needed for it to be read from mass storage systems.

Some of the technology involved in more recent seismograph
systems is illustrated by one of the first digital seismological

systems, the instrument used by the International Deployment
of Accelerometers (IDA) shown schematically in Fig. 6.6-10.
The sensor is a force-feedback gravimeter that detects vertical
ground motion by the resulting change in gravity. The gravi-
meter mass is connected to the center plate of a capacitor whose
outer two plates are fixed. As the mass moves, the voltage
between the center plate and the outer plates is proportional to
the displacement. A 5 kilohertz alternating voltage applied to
the outer plates is amplitude-modulated (Section 2.8.1) by the
lower-frequency seismic signal. The modulated signal is fed
to an amplifier that generates a voltage proportional to the
displacement of the mass. This signal then goes to an integrator
circuit whose output is proportional to the acceleration of the
mass. This is the seismic system’s output, which is sampled

6.6 Seismometers and seismological networks 403
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once every ten seconds. The voltage is also fed back to the outer
capacitor plates to stabilize the system and increase linearity.
This force-feedback, an important feature of modern seismo-
meters, provides a greater dynamic range because the mass
does not move as far to record large amplitudes. Because
this instrument can record a static displacement, it has a flat
response out to frequencies approaching ω = 0. Such long-
period response is valuable for studying normal modes and
large earthquakes.

The most versatile of the current digital seismometers are
broadband systems that record over a very broad frequency
range. At present, the primary broadband seismometers are the
Streckheisen STS-1 and STS-2 and Guralp-3T, which use force-
feedback technology to allow large dynamic and frequency
ranges (Fig. 6.6-8). The advantages of such a broad frequency
response are illustrated in Fig. 6.6-11. As shown, the seismo-
gram can be filtered to isolate and give excellent records of two
very different overlapping signals. These seismometers are very
compact (the three-component STS-2 is the size of a bowling
ball and weighs 20 lb)5 but record with a flat response at over
three orders of magnitude in frequency. The STS-1 is designed
for permanent installation, whereas the STS-2 and Guralp-3T
are robust enough to be used as portable instruments.

A variety of specialized seismic instruments are also used.
Strainmeters are used to measure gradual displacements, especi-
ally near faults and volcanoes. Such instruments are technically
challenging to build, and have taken unusual forms. For
instance, an early strainmeter made by H. Benioff consisted of
a quartz rod 24 m long, attached to the ground at one end,
and extending through a capacitance transducer at the other.
Strain rates as small as 10−15 s−1 could be recorded. A recent
strainmeter with a hydraulic sensor achieves a strain sensitivity
of 10−12 with a dynamic range of about 130 dB. Over longer
distances, horizontal strains are observed using laser measure-
ments between sites (often across faults) and space-geodetic
techniques (Section 4.5), including the GPS satellite system and
very long baseline radio interferometry.

At the other end of the spectrum of seismic instrumentation
are strong-motion sensors that record strong shaking near
an earthquake. Whereas strainmeters record minute dis-
placements, strong-motion sensors, also called accelerometers,
record accelerations up to 2 g without breaking or going off
scale. For example, horizontal accelerations of 1.25 g were
recorded 3 km from the 1971 San Fernando Valley earthquake,
and vertical accelerations of 1.74 g were recorded 1 km from
the 1979 Imperial Valley earthquake. Thus the seismometer
pendulum frequency ω0 is chosen to exceed the highest fre-
quency of interest (about 20 Hz). These instruments are stable
because the small pendulums make the accelerometers less
susceptible to tilt and drift than longer-period instruments. A
damping parameter (often 0.7 of the critical value) is chosen to

5 Before such technology, some mechanical seismometers built in the first half of
the twentieth century weighed more than 20 tons because the large mass gave higher
long-period magnification, as shown by Eqn 6.

Fig. 6.6-11 STS-2 broadband seismogram recorded in Slippery Rock, PA,
from a July 3, 1995, Tonga earthquake. Because the seismometer records
a wide range of frequencies, the same seismogram can be used to study
both local and teleseismic events. (a): The original broadband record.
(b): The same record, low-pass filtered at a frequency of 0.03 Hz, showing
the long-period teleseismic signals from the Tonga event. (c): The record
high-pass filtered at 0.5 Hz, showing the high-frequency signals from a
local event. (d): A zoom-in of the high-pass filtered record shows the full
waveform of the local event. The S a P time suggests that the event was
20 km away from the station, probably a local quarry blast.
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Fig. 6.6-12 Diagram showing the analog-to-digital
(ADC) process. The analog part of the system consists of
the generation of a seismic signal by the seismometer, its
amplification, and analog anti-aliasing (AAA) filtering.
The digital part of the system consists of sampling the
AAA-filtered signal, filtering the signal further with a
digital anti-aliasing (DAA) filter, and then decimating
the signal to achieve the desired sampling rate.
(Scherbaum, 1996, with kind permission from Kluwer
Academic Publishers.)

give a response curve that is flat and directly proportional to
ground acceleration from periods of zero to the natural period
of the seismometer.

A major advance in seismometry has been in timing, which
has long been a difficulty. In the early days of seismology,
timing errors played a large part in the mislocation of earth-
quakes. However, seismometers now receive time signals from
GPS satellites, whose atomic clocks are accurate to a billionth
of a second. Similarly, although ocean bottom seismometers
cannot receive GPS signals, accurate clocks for them are now
available.

6.6.5 Digital recording

Although digital seismic data are easier to use than analog data,
the conversion of continuous ground motion into a digital
seismogram is not a trivial matter. Figure 6.6-12 shows how
this is done. Ground motion, represented by the waveform at
the left, is detected by the seismometer through the motion
of the mass. This motion is converted into an analog electrical
signal and then amplified. To avoid a spurious signal due to
aliasing (Fig. 6.4-3), a combination of anti-aliasing filters is
used. Many seismometers use an initial frequency domain low-
pass filter as an analog anti-aliasing (AAA) filter. The filtered
signal is then oversampled at a rate that is at least twice the
frequency of the AAA filter in order to avoid aliasing. This
signal is then convolved with a digital anti-aliasing (DAA)
filter, often called a finite impulse response (FIR) filter, and
finally resampled at twice the desired Nyquist frequency.

An example of a FIR filter is shown in Fig. 6.6-13a, with the
resulting signal shown in Fig. 6.6-13c. The FIR filter maintains
the shape of the pre-filtered signal, but introduces spurious
noncausal arrivals that might be mistaken for early stages of
earthquake rupture. These precursory signals result because
the FIR filter’s impulse response is an emergent signal. This
effect can be removed by correcting the phase of the FIR filter
to make it causal (Fig. 6.6-13b). This filter does not cause pre-
cursory signals (Fig. 6.6-13d), but the shapes of the waveforms
are changed. We noted a similar phenomenon in Section 3.7.8,
where anelasticity acted as a filter, removing high frequencies
and making the waveforms noncausal unless the phase was
changed. As discussed in Section 6.3.3, there is no perfect way

6.6 Seismometers and seismological networks 405

Fig. 6.6-13 Example of a FIR filter, a type of DAA filter, and its effects.
When the FIR filter (a) is used for the digital anti-aliasing, the resulting
signal (c) retains the wave shape of the original signal, but is preceded by
high-frequency artifacts. When a phase-corrected FIR filter (b) is applied
instead, the precursory effects vanish (d), but the seismic signal is phase-
shifted from the original. (After Scherbaum, 1996, with kind permission
from Kluwer Academic Publishers.)
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to filter a seismic signal, so we decide what we seek and what
we will accept as a consequence.

Because the seismogram depends on the instrument response
that is convolved with the ground motion, obtaining the
ground motion requires specifying the frequency response of
the seismometer. This can be done by giving the amplitude
and phase response as a list of the values at each frequency. A
more compact representation gives the frequency response as a
complex fraction like
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The fraction is described by a set of L complex zeros zj at
which the numerator is zero, N complex poles pk at which the
denominator is zero, and the constants β and α. Because the
frequency terms iω are always imaginary and the poles always
contain a real part, the denominator never becomes zero,
avoiding any singular values.

The instrument responses in Fig. 6.6-8 were calculated
from the poles and zeroes of the seismometer responses. For
example, the STS-1 response has three zeroes, all equal to
(0, 0), and four poles, which come as complex conjugates:
(−0.0123, 0.0123), (−0.0123, −0.0123), (−39.1800, 49.1200),

(−39.1800, −49.1200). These poles provide the corner frequen-
cies and determine the sharpness of the corners. Similarly, the
DWWSSN response has five zeroes and 11 poles.

Seismometers record combinations of ground displacement,
velocity, or acceleration, depending upon the application. In a
strong-motion seismometer, the displacements may be greater
than the size of the instrument itself, so accelerations are
measured to keep signals on scale. This makes sense because
accelerations are primarily responsible for damage to struc-
tures and so are considered in strong-motion studies. At the
other end of the frequency spectrum, strainmeters are used to
study slow tectonic displacements. In fact, if they measured
accelerations, the signals would be so small as to be unusable.
Most other branches of earthquake seismology fall in between,
using the waves from distant earthquakes, and so use seismo-
meters that record ground velocity.

Although different instruments record displacement, velo-
city, or acceleration, it is simple to convert between them. For
instance, given a velocity record, the acceleration is found by
taking the derivative of the seismogram, and the displacement
record is found by integrating. This is easily done in the
frequency domain, because if F(ω) is the Fourier transform of
f(t), then iωF(ω) is the transform of df(t)/dt, and −ω2F(ω) is
the transform of d2f(t)/dt2 (Section 6.2.4). Thus, a velocity
seismogram can be converted to acceleration by multiplying the
complex value of its transform at each frequency by iω, or to
displacement by dividing by iω. Of the three, the displacement

Fig. 6.6-14 Demonstration in the time domain of the relation between displacement, velocity, and acceleration. (a): A synthetic example, consisting
of delta function-like acceleration pulses. The velocity and displacement signals are obtained through successive integrations of the accelerogram.
(b): A real example, with an accelerogram recorded on the first floor of a building in Los Angeles during the 1971 San Fernando earthquake. The velocity
and displacement records were obtained through successive integrations of the accelerogram. (Krinitzsky et al., 1993. Fundamentals of Earthquake
Resistant Construction. Copyright © 1993. Reprinted by permission of John Wiley & Sons, Inc.)



6.6 Seismometers and seismological networks 407

seismogram has the greatest power at low frequencies, and
the acceleration seismogram has the greatest power at high
frequencies. In general, displacements have lower frequencies
than velocities, and velocities have lower frequencies than
accelerations, because integration “smoothes” a signal, whereas
differentiation makes it “rougher.”6

Figure 6.6-14a illustrates this relation with three different
versions of the same seismogram. If an accelerogram consists of
high-frequency spikes (top), then smoother lower-frequency
velocity (center) and displacement (bottom) traces result from
integrating once and twice. Figure 6.6-14b shows this effect for
a strong-motion seismogram of the 1971 San Fernando earth-
quake, where the velocity and acceleration records have higher
frequencies than the displacement. It is common in earthquake
engineering to show the response of a structure to ground
motions using a plot that shows the displacement, velocity, and
acceleration. Figure 6.6-15 shows this formulation for the data
in Fig. 6.6-14b. This representation uses the relation between
the Fourier transforms expressed above, so the velocity scale is
vertical, whereas the acceleration and displacement scales have
opposite slopes as a function of frequency.

6.6.6 Types of networks

Most seismic experiments require multiple seismometers that
are deployed in networks or arrays. Different applications,
such as studying regional and global earth structure, resource
exploration, seismicity monitoring, or identifying nuclear tests,
lead to different deployment geometries. In some cases a
unique network of stations is used for a particular application,
but often an existing network has a geometry that is a com-
promise for different objectives.

Although the division is somewhat artificial, deployments of
seismometers are often divided into global networks, regional
networks, and arrays. Global networks are used to study global
patterns of seismicity, plate tectonics, mantle convection, and
earth structure. For these purposes seismometers should ideally
be spread evenly around the world. This means, however, that
the station spacing is too sparse to resolve the entire wave
field.7 Instead, individual measurements at separate stations
are combined for applications including locating earthquakes,
3-D tomography, and waveform analyses.

The antithesis of a global network is a local array, where a
set of seismometers is deployed with a geometry chosen for a
particular goal. Array data are often analyzed as a single entity,
as in refraction and reflection studies (Sections 3.2 and 3.3).
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Fig. 6.6-15 Demonstration in the frequency domain of the relation
between displacement, velocity, and acceleration. In this example, taken
from the accelerogram in Fig. 6.6-14b, a site response spectrum of the
building housing the strong-motion seismometer is given as displacement,
velocity, and acceleration. The multiple curves show the amplitude of the
building response at various levels of damping, with the undamped curve
at the top, and successive levels of damping at 2%, 5%, 10%, and 20% of
critical damping. (Krinitzsky et al., 1993. Fundamentals of Earthquake
Resistant Construction. Copyright © 1993. Reprinted by permission of
John Wiley & Sons, Inc.)

6 An analogy might be to compare displacement and velocity to the topography and
gradient of a mountain. A kilometer of topography over a horizontal wavelength of a
meter would be very unusual, but a kilometer of topography over a longer wavelength
of 5–10 km would be a normal mountain. Similarly, large vertical gradients are rare at
the scale of mountains (El Capitan in Yosemite and the Jungfrau in Switzerland are
exceptions), but common at the higher spatial frequency scale of meters, as where a
path goes over a boulder.
7 By analogy to time series, such undersampling is termed spatial aliasing.

Other examples are arrays used to locate distant nuclear tests.
Data from the array stations are stacked to track the propaga-
tion of the wave field across the array, so the wave vector shows
the direction the waves came from and the distance they have
traveled. One of several exceptions to this division between
global networks and arrays is normal mode seismology, where
all the stations of a global network are sometimes used as a
single array.

Between global networks and arrays are regional networks,
which usually focus on the seismicity or structure of a par-
ticular region. The data are sometimes analyzed with array
techniques, but are more often combined as individual meas-
urements (such as arrival times or amplitudes) in the same way
as global network data.

6.6.7 Global networks

The global network of seismometers has a rich history. At the
start of the twentieth century there were already seismometers
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IRIS GSN France Japan Italy Germany China Australia USA Canada Other

Fig. 6.6-16 Station map of the Federation of Digital Broad-Band Seismographic Networks (FDSN) as of 1999. (Courtesy of the Incorporated Research
Institutions for Seismology.)

in locations around the world, operated by groups including
many Jesuit institutions. Devastating earthquakes such as the
1906 San Francisco and 1923 Tokyo events spurred the instal-
lation of seismometers and the interchange of data. Bulletins
of earthquake locations were published by several agencies,
the most notable being the ISS/ISC bulletin (Section 6.6.1). By
mid-century, the ISS received arrival times from several hun-
dred stations for very large earthquakes. However, there were
problems due to a lack of standardization. Different types of
seismometers were used, with a wide range in the quality of the
response, timing, and station operation practices. As a result,
earthquake locations were often poor, and focal mechanisms,
which require accurate information about polarities, were
rarely derived.

These problems were largely solved with the creation of the
World Wide Standardized Seismographic Network. WWSSN
seismometers were standardized and had known responses.
The network was installed, starting in 1961, to monitor nu-
clear testing within Eurasia, and had a high density of stations
around the borders of the Soviet Union, China, and Eastern
Europe. The WWSSN, which reached its peak of about 120
stations in the late 1960s, gave a great boost to geophysics.
Several great earthquakes in the 1960s, such as the 1964 Alaska
earthquake, provided excellent sources for seismic investiga-

tions. WWSSN data were crucial for advances in plate tectonics,
earthquake source studies, and global velocity structure.

The first digital stations began to be deployed in the 1970s.
Over the next two decades, the number of permanent digital
seismometers increased gradually. Following the phase-out of
the WWSSN, these became part of the Global Digital Seismic
Network, the primary means of global broadband data collec-
tion between 1977 and 1986. The GDSN was enhanced by
the network of IDA gravimeters, beginning in 1977, and by the
French GEOSCOPE network, which has deployed broadband
seismometers since 1982.

In 1986, the GDSN gave way to the IRIS Global Seismo-
graphic Network (GSN) program, which incorporates many
borehole seismometers with an aim toward global coverage,
with 128 stations spaced about 2000 km apart. These are
extremely quiet, permanent broadband seismic stations of the
highest quality. The GSN is part of a larger Federation of
Digital Broad-Band Seismographic Networks (FDSN) that also
includes the US National Seismographic Network (NSN) and
networks from other countries including Canada (CNSN),
China (CDSN), France (GEOSCOPE), Germany (GEOFON),
Italy (MEDNET), Japan (Pacific 21), and Taiwan (BATS).
FDSN station locations are shown in Fig. 6.6-16. Some
FDSN stations are also part of the International Monitoring
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System (IMS) network used to monitor nuclear testing (Section
1.2.8).

Although the present global network of broadband seismo-
meters relies on land sites, it is hoped that the global network
will soon include permanent ocean bottom seismometers
(OBS), especially in the Southern Hemisphere, where there
is much less land, and coverage is currently very uneven.
Although OBS instruments are currently used mostly for tem-
porary deployments, the technology is evolving to the point
where permanent sites are practical.

An important aspect of the different networks of high-quality
broadband seismometers is considerable standardization in
data processing and formatting. All 7 terabytes of seismic data
archived by the IRIS DMC8 as of 2000 are available in a format
called SEED (Standard for the Exchange of Earthquake Data),
which is the standard for the FDSN. SEED data can be con-
verted into whatever format an investigator requires.

It was not until the mid-1990s, more than 30 years after the
start of the WWSSN, that the global number of permanent
digital broadband seismometers surpassed the number of
WWSSN stations at its heyday. However, digital data from all
parts of the FDSN can be retrieved as if it were a single array,
making it more powerful than the WWSSN for seismic ana-
lyses. Many stations now report in real time through satellite
telemetry, so seismic signals arrive at data centers a fraction
of a second after they occur, allowing better quality control.
Efforts are being made to eventually have all GSN stations
report in real time, which will be important for applications
like tsunami warning. Software has been developed to take
real-time data from different networks and display it on
the Internet as if it were from a single array. Hence, anyone
with a computer and access to the Internet will soon be able
to examine global seismic data within seconds of them being
recorded.

6.6.8 Arrays

For global networks, the precise configuration of individual
stations is less important than the total coverage. However,
the geometries of seismic arrays are optimized for certain
investigations. Arrays can be linear, two-dimensional, and
even three-dimensional, incorporating borehole seismometers
(Fig. 7.3-8).

There is always a trade-off between the benefits of linear
versus two-dimensional arrays. The same number of stations,
and therefore cost and time for installation, provides greater
resolution if deployed in a linear manner, but the resulting
two-dimensional “slice” into the earth does not image the third
dimension. Linear arrays have long been the mainstay of active
source reflection and refraction experiments.9 A marine linear

array is easily deployed by towing hydrophones behind a ship,
and similar linear deployments are used for land-based studies.
These data are analyzed using techniques discussed in Sections
3.2 and 3.3.

Linear arrays are most useful if the structure being invest-
igated varies most in one direction, as is often the case at plate
boundaries. For instance, Fig. 5.3-10 (bottom) showed the
seismic structure of the East Pacific rise obtained from an array
of OBSs. Because the structure of the lithosphere changes much
more significantly perpendicular to the ridge than parallel to
it, most of the OBSs were deployed in a line crossing the
ridge. Most of the remaining seismometers were placed in a
second line, parallel to the first. Both lines were aligned along
a great circle path to the seismogenic zones of Tonga and
South America, so as to maximize the chance of obtaining good
signals from distant earthquakes. Similarly, at subduction
zones and transform faults structure varies more significantly
across the plate boundary than along it, so refraction lines are
often placed perpendicular to the boundary. For example, Fig.
3.2-17 showed a cross-section of the western US lithosphere
perpendicular to the San Andreas fault that was derived from
refraction surveys.

Two-dimensional arrays can create a three-dimensional
image of a small region. As a result, two-dimensional arrays
have been deployed around hot spots, rifts, plateaus, transform
faults, and subduction zones to study their structure and tec-
tonics. Reflection data are also now commonly gathered by
two-dimensional surface deployments. An important contribu-
tor to this development has been advances in computers and
graphics software that make it possible to analyze and model
such data and display the resulting earth structure in a compre-
hensible fashion. Such three-dimensional images are of great
importance in exploring for oil and gas and managing existing
oil and gas fields.

Special two-dimensional arrays, often consisting of short-
period vertical seismometers, have been used to monitor the
locations and magnitudes of underground nuclear tests. The
most ambitious such array was the circular Large Aperture
Seismic Array (LASA), which operated in Montana from the
mid-1960s until 1978. LASA was an array of arrays totaling
525 high-frequency vertical seismometers. Twenty-one clus-
ters of 25 seismometers, each covering 7 km2, were deployed
with a total array diameter of 200 km (Fig. 6.6-17). A similar
array is the Norwegian Seismic Array (NORSAR), built in
1971, with 22 sub-arrays spanning an area of 100 km2. Part
of NORSAR, the NORESS array, has 24 seismometers dis-
tributed within a 3 km-diameter circle. It has counterparts in
northern Norway, Finland, and Germany. As with the WWSSN,
arrays designed for nuclear monitoring have also been import-
ant for studies of earth structure. Array data can be stacked
(Section 6.5), allowing small seismic signals to be extracted
from noise. The characteristics of the inner core boundary were
first quantified using stacked array data for PKiKP waves, which
reflect at the boundary but are rarely identified on individual
seismograms due to their small amplitudes.

8 Because all data are duplicated in a sort order, and also stored off site, the com-
puter storage needed is four times greater, or 28 Tbytes.
9 Active experiments include their own seismic sources, as opposed to passive
experiments using earthquake sources.
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6.6.9 Regional networks

Regional networks, intermediate between global networks and
arrays, are usually constructed to monitor local seismicity or
volcanism. Including Alaska, Hawaii, and Puerto Rico, over
3200 seismic stations are part of more than 40 separate US
networks (Fig. 6.6-18). Some have only a few stations, and
some have hundreds. Many use short-period vertical sensors,
but some use accelerometers. For example, the California
Strong-Motion Instrumentation Program operates more than
400 accelerometers to provide data for earthquake engineers.
Strong-motion data also provide excellent information on
source properties because much of the seismic signal is severely
attenuated at teleseismic distances. Some networks also incor-
porate broadband seismometers. For instance, as of 2000, the
Southern California Seismographic Network operated 79 broad-
band stations in addition to its 163 short-period instruments.
Regional network stations can also be valuable for earth struc-
ture studies, as shown in Fig. 6.6-19.

Many countries have regional networks. For instance, as
of 1999, Japan had about 560 stations in operation. These
stations have provided valuable data about the subduction
process there, including the double seismic zones (Fig. 5.4-20)
and ScS-to-P conversions at the slab top (Fig. 2.6-15).

Regional networks, like global networks, are continually
being upgraded. In the USA there are efforts under way, as part

of the Advanced National Seismic System (ANSS), to install
more broadband and short-period seismometers, and to add
about 6000 strong-motion sensors in urban areas at risk from
damaging earthquakes. A very ambitious network planned is
the USArray, which would have three different components
operating simultaneously. First, the number of permanent
broadband stations would be increased (Fig. 6.6-20, left).
Second, 400 portable broadband seismometers would travel
around the country. Over eight years, this “bigfoot” array
would visit about 2000 sites in the continental USA, with
an average station spacing of about 70 km, before going to
Alaska and Hawaii (Fig. 6.6-20, right). Third, about 2400
seismometers (a mix of broadband, short-period, and high-
frequency sensors) would be used as flexible arrays to accom-
pany the moving array. As planned, USArray will be an array at
the scale of a regional network. Data from the moving array
will be available in near-real time, and can be processed using
migration techniques to attain high-resolution imaging deep
into the mantle.

Interestingly, because there is an increasing trend toward
real-time telemetry for transmitting data from the sensors,
seismology is moving toward a situation where data from
global networks, regional networks, and many local arrays
can be easily combined, largely eliminating the distinctions
between networks. This development offers great scientific
opportunities.

Fig. 6.6-17 Seismometer geometry of the
Large Aperture Seismic Array (LASA).
(Capon, 1969. J. Geophys. Res., 74, 3182–
94, copyright by the American Geophysical
Union.)
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Problems

Fig. 6.6-20 Seismometer locations for the proposed USArray. Left: Solid triangles would be new permanent seismometers to augment the existing US
National Seismic Network (open triangles). Right: Possible locations of 2000 sites that the moving array of 400 broadband seismometers would
eventually cover. (Courtesy of P. Shearer.)

Further reading

Because of its widespread use, an excellent literature is available both
for signal processing in general and for geophysical applications. These in-
clude introductory texts by Rabiner and Rader (1972), Claerbout (1976),
Bracewell (1978), Robinson and Treitel (1980), Kanasewich (1981), and
Hatton et al. (1986). Brigham (1974) discusses the FFT in detail.

Error analysis in the physical sciences is the subject of many books,
including Bevington and Robinson (1992). Seismological texts, especially
Aki and Richards (1980) and Lay and Wallace (1995), discuss seismolog-
ical instrumentation. Scherbaum (1996) addresses seismometry, especially
digital, from a signal processing viewpoint.

6. If F(ω) is the Fourier transform of f(t), show that the following are
also transform pairs:

(a) f(t − a) and e−iωaF(ω),
(b) F(ω − a) and eiatf(t),
(c) df/dt and iωF(ω).

7. For f(t) = sin ω0t,
(a) Find the Fourier transform.
(b) Compare it to the Fourier transform of f(t) = cos ω0t.
(c) Explain what operation (filter) in the frequency domain

could be used to convert the Fourier transform of sin ω0t to
that of cos ω0t.

(d) Explain how the relation between the Fourier transforms of
sin ω0t and cos ω0t could be derived using the fact that one
function is a time-shifted version of the other.

8. Show that if f(t) and F(ω) are a transform pair, the inverse trans-
form of F(ω) yields f(t).

9. Use the propagation of errors relation (Eqn 6.5.18) to show how
the uncertainty in the following functions of several variables
depends on the variances and covariances of the variables u and v,
where a and b are constants:

(a) z = au + bv,
(b) z = auv,
(c) z = au/v,
(d) z = aub.

10. For the discrete Fourier transform and inverse discrete Fourier
transform, show that:

(a) The DFT and IDFT are linear: if A(k) and B(k) are the trans-
forms of time series a(n) and b(n), then αA(k) + βB(k) is the
transform of αa(n) + βb(n).

1. Find the coefficients analytically of the Fourier series for the
functions

(a) A step:
f(t) = 1 0 < t < 1/2

−1 −1/2 < t < 0.

(b) A ramp: f(t) = t for  −1/2 < t < 1/2.
2. Use the formulae for the product of sine and cosine functions

(Section A.2) to prove the orthogonality relations for the sine and
cosine functions (Eqns 6.2.2–4).

3. Express the following complex numbers in a + ib form:
(a) eiπ

(b) 4eiπ /2

(c) e−iπ /2

(d) 3eiπ /3

4. In the Fourier series (Eqn 6.2.1), no b0 term is given. Why?
5. Show that

(a) The Fourier transform is linear: if F(ω) and G(ω) are the
transforms of f(t) and g(t), then (aF(ω) + bG(ω)) is the trans-
form of (af(t) + bg(t)).

(b) The Fourier transform of a purely real-time function has the
symmetry F(−ω) = F*(ω).

(c) The total energy in a Fourier transform is the same as that in
the corresponding time series (Parseval’s theorem):

�
−∞

∞

| f(t) |2dt = 
1

2π �
−∞

∞

| F(ω) |2dω.

USNSN
+ 30 stations

2000 “Bigfoot”
station sites



(b) The DFT of a real-time series has the symmetry F(−k) =
F (N−k) = F*(k).

(c) If the DFT of f(n) is F(k), the DFT of f(n − j) is W kjF(k),
and the IDFT of F(k − m) is W −mnf(n), where W = e−2πi/N.

11. As derived in Eqn 4.3.10, the depth h of an earthquake can be
estimated from the difference in arrival times δt between the direct
P wave and pP, the P wave reflected from the surface, using
δt = (2h cos i)/v where i and v are the incidence angle and velocity.

(a) Express the depth as a function of the parameters δt, v, i.
(b) Find the depth for a measured time difference of 2.7 s and

assumed velocity of 6.8 km/s and incidence angle of 24°.
(c) Use the propagation of errors relation to show how the

uncertainty in depth depends on the uncertainties of the
three parameters.

(d) Use the results of (c) to find the uncertainty in depth cor-
responding to uncertainties (one standard deviation) of 0.5 s
in time difference, 0.5 km/s in velocity, and 3° in incidence
angle. (Remember to convert to radians.)

Computer problems
C-1. Using the Fourier series coefficients for the step function, derived

in problem 1a, plot the first ten terms of the series and their sum.
Also plot the sum of the first 20 and 30 terms.

C-2. Write a subroutine to prepare a time series for taking the fast
Fourier transform and take it. The subroutine should call a set
of separate subroutines that extend the time series to a power of 2
as required, allow for a taper of a length which you input, take
the FFT using the subroutine (COOLB) provided (Box 6C-2)
or another, and plot the amplitude spectrum. The subroutine
should have the option to list the real and imaginary parts of
the spectrum, and the amplitude and phase spectra, at each
frequency.

C-3. (a) Write a subroutine to generate values of the function sin
2πt

T
from t = 0 to t = Tmax, where the time step ∆t, the period T,
and the total data length Tmax are inputs.

(b) Plot this function for ∆t = 0.25, T = 5, Tmax = 20.
(c) Use the results of C-2 to find the amplitude spectrum, with no

tapering and with 10% and 20% tapering.
(d) Do parts (b) and (c) for ∆t = 0.25, T = 8, Tmax = 50.
(e) Do parts (b) and (c) for the function

    
sin   ( . ) sin ,

2

5
0 5

2

8

π πt t
+

with ∆t = 0.25, Tmax = 256.
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4 J=J-M

M=M/2

IF(M-2)5,3,3

5 J=J+M

MMAX=2

6 IF(MMAX-N)7,10,10

7 ISTEP=2*MMAX

THETA=SIGNI*6.2831831/FLOAT(MMAX)

SINTH=SIN(THETA/2.)

WSTPR=-2.0 *SINTH*SINTH

WSTPI=SIN(THETA)

WR=1.

WI=0.

DO 9 M=1,MMAX,2

DO 8 I=M,N,ISTEP

J=I+MMAX

TEMPR=WR*DATAI(J)-WI*DATAI(J+1)

TEMPI=WR*DATAI(J+1)+WI*DATAI(J)

DATAI(J)=DATAI(I)-TEMPR

DATAI(J+1)=DATAI(I+1)-TEMPI

DATAI(I)=DATAI(I)+TEMPR

8 DATAI(I+1)=DATAI(I+1)+TEMPI

TEMPR=WR

WR=WR*WSTPR-WI*WSTPI+WR

9 WI=WI*WSTPR+TEMPR*WSTPI+WI

MMAX=ISTEP

GO TO 6

10 RETURN

END

Box 6C-2 COOLB subroutine.1

SUBROUTINE COOLB(NN,DATAI, SIGNI)

C CLASSIC - BUT USABLE - FFT PROGRAM

C DATAI IS DATA ARRAY, 2*NP REAL NUMBERS REPRESENTING

C NP COMPLEX POINTS, SO EACH PAIR OF POINTS ARE THE

C (REAL, IMAGINARY) PARTS OF A COMPLEX NUMBER.

C NN IS POWER OF TWO, CAN BE FOUND BY

C NN=(ALOG10(FLOAT(NP))/ALOG10(2.))+.99

C TRANSFORM DIRECTION CONTROLLED BY REAL VARIABLE

C SIGNI (SIGN OF EXPONENTIAL):-1. FORWARD, 1. TO

C INVERT.

C DIMENSIONS: IF TIME SERIES HAS TIME INCREMENT DT,

C TRANSFORM HAS DELTA FREQ=1/(2**NN*DT)

C NOTE: AFTER TAKING INVERSE FFT DIVIDE OUTPUT BY 2**NN

INTEGER NN

REAL SIGNI

DIMENSION DATAI(1)

N=2**(NN+1)

J=1

DO 5 I=1,N,2

IF(I-J)1,2,2

1 TEMPR=DATAI(J)

TEMPI=DATAI(J+1)

DATAI(J)=DATAI(I)

DATAI(J+1)=DATAI(I+1)

DATAI(I)=TEMPR

DATAI(I+1)=TEMPI

2 M=N/2

3 IF(J-M)5,5,4

1 COOLB, written in 1960s vintage Fortran (note the arithmetic IF statements), has been left in original form to illustrate both the persistence of programs that
work and the advantages of subsequent developments in programming practice and documentation (Section A.8.2).
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C-5. (a) Write a subroutine, using the results of C-2 and C-4, to use
the fast Fourier transform to convolve two time series.

(b) Use it on two boxcar functions of unit amplitude, one 6 s long
and one 3 s long.

C-6. (a) Write a subroutine to do time domain convolution of two
functions of different lengths, both sampled at a time step ∆t.

(b) Use it on two boxcar functions of unit amplitude, one 6 s long
and one 3 s long. Compare the results to those of C-5b.

C-4. (a) Write a subroutine, using the results of C-2, to use the fast
Fourier transform to take a time series, filter it in the fre-
quency domain over a specified passband, and invert the FFT,
yielding a filtered time series. The subroutine should have the
capability to taper in the frequency domain. This subroutine
is best written as a set of subroutines.

(b) Use this routine to filter the time series in C-3e to isolate the
two different frequency components.
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Most people, if you describe a train of events to them, will tell you what the result would be. There are few people, however, who,
if you told them a result, would be able to evolve from their own inner consciousness what the steps were which led up to that result.
This power is what I mean when I talk of reasoning backwards.

Sherlock Holmes, in A Study in Scarlet by Arthur Conan Doyle

7.1 Introduction

Throughout this book we have noted that seismology is largely
directed at solving inverse problems dealing with earthquake
sources and earth structure. We start with the end result,
seismograms, and work backwards to characterize the earth-
quakes that generated the seismic waves and the medium
through which the waves passed. To do this, we first addressed
the forward problems of how features of seismic waves that are
observable from seismograms, such as travel times, amplitudes,
waveforms, eigenfrequencies, dispersion, and attenuation,
depend on the seismic source and the medium. We have also
discussed how the properties of the medium and the source,
such as velocity structure and earthquake mechanisms, reflect
tectonic processes within the earth. These are specific examples
of the fundamental question of what we can say about the earth
from seismological and other observations at its surface.

We now end our discussions by addressing some issues in
solving inverse problems. Inverse problems can be posed by
assuming that we understand the physics of a process which,
for a set of model parameters described by a vector m, gives rise
to a set of observed data described by the vector d. The data
can thus be considered the result of a function, or operator, A
acting on the model parameters,

d = A(m). (1)

The forward problem, predicting the data d that would result
from a given model described by m, is tractable if we under-
stand the process. The corresponding inverse problem, finding
what gave rise to a specific set of observed data, is more diffi-
cult. We assume that some physical model describes the pro-
cess, and then use the data to estimate a set of model parameters

that are consistent with the data. We solve the inverse problem
using either mathematical inverse techniques to find m directly
from d, or trial-and-error techniques that solve the forward
problem repeatedly and look for the best solution. Each
approach has advantages in some applications.

We have already mentioned solving inverse problems in
contexts including studying the cooling of oceanic lithosphere
using surface wave dispersion (Section 2.8.3), inverting travel
time and amplitude data to find earth structure (Chapter 3),
inverting polarity, waveform, and geodetic data to study
earthquake mechanisms (Chapter 4), and using earthquake
mechanisms to study plate motions and regional tectonics
(Chapter 5). We have noted (Section 1.1.2) that although for-
ward problems typically can be solved in a straightforward
way, giving a unique solution, inverse problems often have
no unique, exact, or “correct” solutions. Because the data are
generally somewhat inconsistent due to errors, and our models
simplify complex reality, no model exactly describes the data.
Similarly, a range of parameters can describe the data equally
well for a given model, and we have various models to choose
from based on various criteria and preconceptions. Moreover,
the data are often insufficient to resolve aspects of the model.
We can thus only recognize and accept these limitations on the
solutions.1

A consequence of these limitations is a trade-off between
the model’s resolution, how detailed it is, and its stability, or
robustness. For example, inverting travel times with simple
earthquake location algorithms using a laterally homogeneous
velocity model shows the Wadati–Benioff zones of dipping
seismicity. These results are stable, in that they do not depend

1 This situation is summarized by the title of a paper “Interpretation of inaccurate,
insufficient, and inconsistent data” (Jackson, 1972).
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the reference model does not improve significantly. When this
occurs, we are probably doing about as well as possible with
this type of model. For example, as discussed in Section 3.5,
laterally homogeneous global seismic velocity models have
become sufficiently accurate that more attention is now dir-
ected toward the lateral variations.

In this chapter, we discuss several inverse problems to intro-
duce some of the methods used. Because such inverse prob-
lems are crucial to seismology and the earth sciences, and also
appear in other sciences, considerable attention has been dir-
ected toward them. It turns out that physically quite different
problems are often described in mathematically similar ways.
Our goal is to identity some common themes and approaches,
rather than discuss the details. Some more sophisticated treat-
ments are listed in the suggested reading.

7.2 Earthquake location

We first consider the classic inverse problem of locating an
earthquake and finding its origin time using the arrival times of
seismic waves at various stations. The velocity structure, which
determines the ray paths and hence travel times, is crucial. We
first regard the velocity structure as known, and then explore
how it can also be estimated from the travel times.

7.2.1 Theory

Assume that an earthquake occurred at an unknown time t, at
an unknown position x = (x, y, z), known as the hypocenter,
or focus (Fig. 7.2-1). The point (x, y) on the surface above the
focus is called the epicenter. n seismic stations at locations
xi = (xi, yi, zi) detect the earthquake at arrival times di′, which
depend on the origin time t and the travel time between the
source and the station T(x, xi):

di′  = T(x, xi) + t. (1)

If the velocity structure is known, the forward problem can be
written using the formulation

Table 7.1-1 Some large-scale reference models.

Model for

Laterally homogeneous
earth structure

Relative plate motions

Thermal evolution of
oceanic lithosphere

Observables inverted and predicted

Travel times, eigenfrequencies

Rates and azimuths of plate motion

Variation with age in depth, heat
flow, and geoid

Parameters estimated

Average velocity and density
versus depth

Euler vectors

Plate thickness, asthenospheric
temperature, physical
properties (e.g., a, k, k)

Misfits (“anomalies”) indicate

Lateral velocity variation (subduction
zones, continental–ocean differences,
etc.)

Nonrigid plate behavior (plate
interiors and boundary zones)

Lateral thermomechanical variations
(swells, etc.)

significantly on the details of the location algorithm and velo-
city model, but have only limited resolution for where in the
slab the earthquakes occur. More detailed locations, which
are more useful for relating the earthquakes to the physics
of subduction, can be derived from sophisticated location
algorithms using a laterally variable velocity model that better
represents the slab. However, the improved resolution comes
at the price of stability, in that it depends on the specific velo-
city model used.

The results of inverse studies can be viewed in terms of
two end members. In one, we use an individual set of data to
characterize a specific phenomenon, such as the location of an
earthquake or the velocity structure in a specific area. In others,
we describe a set of data averaged over a region or the whole
earth with a simple physical model characterized by a relatively
small, or sparse, set of parameters. Such reference models a the
physical model with a specific set of parameters a are used
to characterize large sets of data in a simple way, predict data
where no observations exist, and thus identify misfits, or
“anomalies,” where the data deviate from the model predictions
and hence the global average. We then use reference models
to draw inferences about the processes that give rise to both the
average situation and deviations from it. For example, body
wave, surface wave, and normal mode data give average global
velocity structure. This structure is used to constrain models of
the average radial variations in composition and temperature,
and as a reference against which velocity perturbations due to
subducting slabs, continental roots, hot spots, ridges, etc. can
be identified and analyzed in terms of local processes that per-
turb the global model. As shown in Table 7.1-1, we can view
other reference models in a similar way. For example, the Euler
vectors describing a plate’s motion are a simple description
of its behavior, and places where earthquake mechanisms
differ from these predictions indicate deviations from rigid
plate behavior. Similarly, simple cooling models of the oceanic
lithosphere describe the average variations in depth, heat flow,
and the geoid, and so give a reference model for the temperat-
ure against which other effects can be identified and modeled.

As illustrated in Fig. 1.1-8, the models are refined over time
using new data and model parameterizations. Eventually,
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so the equation becomes

∆d = G∆m, or ∆di = G mij j
j

∆∑ . (8)

Often the ∆s are also suppressed, and the equation is written as
d = Gm. This makes the notation simpler, but can be confusing
at first. In this derivation, we retain the ∆s to explicitly indicate
changes.

Equation 8 is a vector–matrix equation representing a sys-
tem of simultaneous linear equations. To solve it, we seek a
change in the model ∆m that, when multiplied by the known
partial derivative matrix G, gives the required change in the
data ∆d. This is an inverse problem, in contrast to the forward
problem of finding the change in the data ∆d predicted by an
assumed change ∆m in the model. Many aspects of inverse
theory deal with solving such equations under various cir-
cumstances. The earthquake location problem considered here
is a simple case.

A common complexity is that we generally have arrival time
observations at many (often several hundred) seismic stations,
and are solving for only four model parameters. In the notation
of Eqn 8, j ranges from 1 to 4, and i ranges from 1 to n, where n
is much greater than 4. Because each arrival time corresponds
to one equation, and each model parameter provides one
unknown, G has a number of rows equal to the number of
arrival time observations, and a number of columns equal to
the number of model parameters. Because there are more (n)
equations than unknowns (4), G has more rows than columns,
so Eqn 8 looks like
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Such overdetermined problems can pose difficulties. One way to
see this is to recall that if n were equal to 4 the matrix G would
be square (have the same number of rows and columns), so
Eqn 8 could be solved by multiplication by the inverse matrix,

G−1∆d = G−1G∆m = ∆m, or

  

G d G G m mki
i

i ki
i

ij
j

j k
− −∑ ∑ ∑=

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟ =1 1∆ ∆ ∆   . (10)

If the number of arrival time observations exceeds four,
this method cannot be used, because G is not square and thus

Fig. 7.2-1 Geometry for earthquake location in a homogeneous (uniform
velocity) halfspace.

d = A(m), or di = A(mj), (2)

showing how the data vector, containing the arrival times at
the stations, can be computed from an assumed model vector
composed of the source location and origin time,

m = (x, y, z, t). (3)

The model vector consists of physically different quantities:
three space coordinates and an origin time. Because the data
and model are vectors, relations between them can be written
in terms of either vectors (d = A(m)) or their components
(di = A(mj)).

The inverse problem can be stated as: given the observed
arrival times, find a model that fits them. To do this, we begin
with a starting model m°, which is an estimate of (or guess at)
a model that we hope is close to the solution we seek. The
starting model predicts that we would have observed data
di° = A(m j°). Unless we are lucky, these predicted data are not
what were actually observed. Hence we seek changes ∆mj in the
starting model

mj = mj° + ∆mj (4)

that will make the predicted data closer to those observed. In
general, the data do not depend linearly on the model para-
meters, so we linearize the problem by expanding the data in a
Taylor series about the starting model m° and keeping only the
linear term,

di ≈ d i° + 

      

∂
∂

d

m
mi

jj
j∑

°m

∆ . (5)

This equation can be written in terms of the difference between
the observed data and those predicted,

∆d i° ≡ di′  − d i° ≈ 

      

∂
∂

d

m
mi

jj
j∑

°m

°∆ . (6)

Such relations are common in inverse problems. For simpli-
city, we omit the superscripts and define the partial derivative
matrix as

7.2 Earthquake location 417
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does not have an inverse.1 Our first instinct might be to use only
arrival times at four stations, which would give an exact solu-
tion, and assume that the arrival times at the other stations
give only extra, redundant information. In an ideal world this
would be the case. In reality, the arrival times contain errors
due to a variety of possible effects, including reading errors,
inaccuracies in the clocks at the stations, and misidentification
of the first arrivals. In addition to these errors of measurement,
there are systematic errors due to the fact that the velocity
structure is not perfectly known and is laterally variable. As a
result, the equations are inconsistent: no one model can solve
them exactly. Moreover, choosing four arrival times might
mean selecting data poorer than those discarded. The approach
taken instead is to seek the origin time and source location that
“best” solve the overdetermined, inconsistent equations.

To do this, we regard the observations d ′i as having errors
described by their standard deviations σi and find the model
that minimizes the misfit,
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2
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ii
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j
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which is the prediction error, the normalized sum of the
squares of the difference between the observed arrival times
and those predicted by the model. x2, the fitting function to be
minimized, weights the data by the reciprocal of their variances
so that the most uncertain have the least effect. To find the best
fit, we set partial derivatives of the misfit with respect to the
change in model parameters ∆mk equal to zero, and use the
fact that the model elements are independent, so the partial
derivative of the change in one with respect to those in the
others is zero,
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The partial derivatives of the misfit are
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If the variances of the data are equal (σ i
2 = σ 2), that term can be

factored out, and
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or, in matrix notation,

GT∆d = GTG∆m. (16)

To see that ∑
i

∆diGik = GT∆d, whereas ∑
j
Gij ∆mj = G∆m, con-

sider the dimensions.
The advantage of this form is that although the matrix G

cannot be inverted, the matrix GTG is square and can be
inverted. Equation 16 thus gives ∆m, the standard least squares
solution to a set of equations that cannot be solved exactly,
because

∆m = (GTG)−1GT∆d = G−g∆d, or ∆mj = G dji
g

i
i

−∑ ∆ . (17)

The operator (GTG)−1GT, which acts on the data to yield the
model, is called the generalized inverse of G, and is written
as G−g. It provides the “best” solution in a least squares sense,
because it gives the smallest squared misfit. The generalized
inverse is the analog of the inverse, but for a matrix that is not
square, and hence does not have a conventional inverse. If G is
square and has an inverse, then G−1 = G−g. If the data errors are
not equal, the least squares solution is weighted by the errors,
as shown in problem 5 at the end of this chapter.

To use this method, we begin with a starting model (source
location and origin time) m° and predict the values expected
for the data, d° = A(m°). We then form the residual vector giv-
ing the misfit to the data, ∆d° ≡ d′ − d°, evaluate the matrix of
partial derivatives about the starting model,

   

G
d

mij
i

j

=
°

 ,
∂
∂

m

(18)

and use the generalized inverse (Eqn 17) to find ∆m°, the
change in the starting model that gives a better fit to the data.
Thus the new model

m1 = m° + ∆m° (19)

predicts values of the data

d1 = A(m1) (20)

that should be closer to the observations than the predictions
of the starting model. This can be tested by computing the dif-
ference between the observations and the predicted data for the
new model ∆d1 ≡ d′ − d1, and examining the total squared misfit
∑(∆d i

1)2 = ∑(di′ − d i
1)2. This should be less than the correspond-

ing misfit for the starting model ∑(∆d i°)2. The total squared
misfit is more useful than the total misfit ∑∆di, because the
latter could be small for large misfits of opposite signs.

We can often do even better. Remember that the G matrix of
partial derivatives was found by expanding the function that
predicts the data (travel times) about the starting model in a
Taylor series, and taking the linear terms. This expansion

1 The definition of the inverse (Section A.4.3) requires that both pre- and post-
multiplication yield the identify; i.e., A−1A = AA−1 = I.
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Fig. 7.2-2 Schematic illustration of the effect of linearizing about a
starting model in an inverse problem. The new model is found from the
difference between the observed data and that predicted for the starting
model. The worse the linear approximation is, the more iterations will be
needed to reach the true model.

Fig. 7.2-3 Schematic illustration of the variation in misfit to the data as a
function of iteration number for an inverse problem.
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occurred at time t at location x = (x, y, z) are recorded by seis-
mic stations at positions xi = (xi, yi, zi) with arrival times

di = T(x, xi) + t = 
    

1

v
[(x − xi)

2 + (y − yi)
2 + (z − zi)

2]1/2 + t. (23)

Although the earthquake can occur below the surface, the
stations are at the surface zi = 0. The travel times depend only
on the distance between source and receiver, | x − xi |.

To solve the inverse problem, we form the matrix Gij. Its ele-
ments, the partial derivatives of the elements of the data vector
di (the arrival times at each station) with respect to the model
parameters mj (the location coordinates and origin time of the
earthquake) are easily found. Differentiation of the i th element
of the data vector is done with respect to the first element of the
model vector, which is the x coordinate of the location

G
d

m

d

x

T

xi
i i i

1
1

= = =     
( , )∂

∂
∂
∂

∂
∂
x x

    
=

−
 
(   )x x

v
i [(x − xi)

2 + (y − yi)
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Similar expressions give the partial derivatives with respect to
the other two space coordinates of the location. Note that these
partial derivatives are functions of the spatial model para-
meters (x, y, z). The final partial derivative, with respect to
origin time, is just
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(25)

Given the G matrix, the earthquake is located by choosing a
starting model, forming the difference ∆d between the model
predictions and the observations, and solving for the change in
the model ∆m using the procedure in the last section.

Table 7.2-1 (top) illustrates a hypothetical example of locat-
ing an earthquake with ten stations located within a 100 km
square. The earthquake is assumed to have occurred at time 0
seconds at the point (0, 0, 10) km. We then try to locate the

works well if the starting model is “close” to the actual model.
If this is not the case, the linear approximation may not be a
good one. Figure 7.2-2 illustrates this idea schematically. The
actual situation is hard to draw, because each model vector is
an element in a four-dimensional (three space and one time)
vector space.

As a result, the method can be iterated. Once the model has
been changed, a new partial derivative matrix

G
d

mij
i

j

= 
∂
∂

m1

(21)

is found by expanding the function that predicts the data about
the new model. The generalized inverse method is then used to
solve

∆d1 = G∆m1 (22)

for a further change in the model ∆m1 that reduces the remain-
ing misfit. This process is repeated until successive iterations
produce only small changes in the model, and hence in the total
misfit to the data (Fig. 7.2-3).

7.2.2 Earthquake location for a homogeneous medium

To make these ideas less abstract, we consider the simple case
of locating an earthquake in a medium of uniform velocity v. In
this case the ray paths connecting an earthquake and seismic
stations are straight lines. This geometry approximates a situ-
ation where the receivers are close enough to a source that the
first arrivals are direct waves in a medium whose velocity does
not vary significantly. Seismic waves from an earthquake that
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To reduce the misfit, we form the partial derivative matrix
Gij evaluated at the starting model, and use the generalized
inverse (Eqn 17) to solve for ∆m°, the change in the starting
model that would best fit the residuals. This change gives a
source location of (−0.5, −0.6, 10.1) km and an origin time of
0.2 s. This new estimate is close to the true values. Because for a
real case the true model would not be known, the new model
is tested by calculating the expected arrival times, forming the
residuals, and examining the total squared misfit, which is
reduced to 0.6 s2. To reduce this further, we form the partial
derivative matrix evaluated at the new model and iterate again.
The resulting change in the model yields the true model exactly,
which fits the data perfectly.

This success is hardly surprising, because the data had no
errors. We could thus have used any four data to find the
model, and avoided the generalized inverse. Before turning to
discuss the errors, note that the same procedure could be
used to find the velocity. To do so, we regard the velocity as a
fifth model parameter, and invert the data for a model vector
m = (x, y, z, t, v). The additional partial derivatives are
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d
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d

v v
i i
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    = = − [(x − xi)

2 + (y − yi)
2 + z2]1/2. (26)

We thus assume a velocity as part of the starting model, find the
partial derivative matrix (which now has five columns), and
use the generalized inverse to find the changes in the starting
model. Table 7.2-1 (bottom) illustrates this process for the
same example as before, except that we also invert for velocity.

7.2.3 Errors

Because earthquakes are located using arrival time data that
have errors, the resulting locations and origin times have uncer-
tainties. To assess these uncertainties, we examine how errors
in the data affect the generalized inverse solution.

We characterize the errors in the data at the i th station, di, by
viewing the specific values measured as samples from a parent
distribution that includes all possible d i

(k), k = 1, . . . ∞, such
that an infinite number of measurements would yield the par-
ent distribution. In this notation, d i

(k) is the kth sample of di, the
arrival time at station i. Because in real applications the parent
distribution for di is unknown, it is common to assume a
Gaussian distribution with mean Ri and standard deviation σi,
as discussed in Section 6.5. For a large number of measure-
ments (samples) from this distribution, the mean is the average
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and the “spread” of the measurements is the variance
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Table 7.2-1 Earthquake location example with error-free data.

Invert for location and origin time

model evolution

parameter actual value model for iteration number
0 1 2

x 0.0 3.0 −0.5 0.0
y 0.0 4.0 −0.6 0.0
z 10.0 20.0 10.1 10.0

origin time 0.0 2.0 0.2 0.0

station location residual for iteration number
0 1 2

35.0 9.0 −2.1 −0.4 0.0
−44.0 10.0 −3.0 −0.2 0.0
−11.0 −25.0 −3.8 −0.1 0.0
23.0 −39.0 −3.0 −0.2 0.0
42.0 −27.0 −2.6 −0.3 0.0

−12.0 50.0 −2.0 −0.3 0.0
−45.0 16.0 −2.9 −0.2 0.0

5.0 −19.0 −3.7 −0.2 0.0
−1.0 −11.0 −4.1 −0.2 0.0
20.0 11.0 −2.4 −0.4 0.0

error 92.4 0.6 0.0

Invert for location, origin time, and velocity

model evolution

parameter actual value model for iteration number
0 1 2

x 0.0 3.0 0.2 0.0
y 0.0 4.0 0.3 0.0
z 10.0 20.0 10.2 10.0

origin time 0.0 2.0 0.7 0.0
velocity 5.0 4.0 4.9 5.0

station location residual for iteration number
0 1 2

35.0 9.0 −4.0 −0.9 0.0
−44.0 10.0 −5.6 −1.0 0.0
−11.0 −25.0 −5.7 −0.9 0.0
23.0 −39.0 −5.6 −1.0 0.0
42.0 −27.0 −5.2 −1.0 0.0

−12.0 50.0 −4.6 −0.9 0.0
−45.0 16.0 −5.6 −1.0 0.0

5.0 −19.0 −5.2 −0.9 0.0
−1.0 −11.0 −5.3 −0.9 0.0
20.0 11.0 −3.8 −0.8 0.0

error 261.3 8.3 0.0

earthquake using the computed arrival times at the ten stations
as “data.” For a starting model, we assume the earthquake
occurred at time 2 seconds at (3, 4, 20) km. As discussed in the
previous section, we compute the arrival times expected at each
station for a source located at the initial estimated position and
time, and then form the residual, the difference between the
“data” and this prediction (Eqn 6). For the starting model, the
total squared misfit is 92.4 s2.



If the Gaussian parent distribution is an appropriate choice,
there is a 68% probability that any sample will fall in the range
Ri ± σi, and a 95% probability that any sample will fall in the
range Ri ± 2σi (Fig. 6.5-1).

The errors at different stations are described by the variance–
covariance matrix of the data

σ 2
d = σ 2

dij
 = lim

K k

K

K→∞ =
∑1

1

(d i
(k) − Ri)(d j

(k) − Rj). (29)

The diagonal (i = j) terms are the variances for data at
individual stations. The off-diagonal terms (i ≠ j) are the
covariances that describe the relation between errors at pairs
of stations. If the errors are uncorrelated between two stations
a for example, those due to a station clock a then how a
measurement at one station differs from the mean there is
unrelated to what occurs at another station, so their covariance
is ideally zero. Given a finite number of real data, we expect the
covariance to be small. By contrast, if the errors are correlated
(for example, if one person were reading seismograms from
different stations with a consistent bias), then similar devi-
ations from the mean occur between these stations, and their
covariances would be larger. Errors can also be anti-correlated,
such that deviations at a station tend to occur in one direction,
whereas those at another station tend the other way, yielding
negative covariances. Although errors of measurement are likely
to be uncorrelated, systematic errors are often correlated. For
example, variations in velocity can cause systematic biases that
are either correlated or anti-correlated between different stations.

The data are inverted using the generalized inverse solution

mj = 
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−∑ (30)

(here the ∆s are not written). As a result, the uncertainty in
a model parameter can reflect errors in all of the data. Thus,
even if the errors in the data are uncorrelated, the resulting
uncertainties in model parameters can be correlated. To see
this, we write the covariances of the model parameters in terms
of those for the data
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This relation can be written in matrix form in terms of σ d
2 and

σ m
2 , the variance–covariance matrices for the data and model:

σ 2
m = G−gσ d

2(G−g)T. (32)

We often assume that the data errors are uncorrelated and
equal, so that the data variance–covariance matrix is a con-
stant times the identity matrix,

σ d
2 = σ 2δij, (33)

and the model variance–covariance matrix is

σ m
2  = σ 2(GTG)−1, (34)

as proved in problem 4.
Table 7.2-2 illustrates these ideas for the location example in

the previous section. In this case, Gaussian errors with mean
zero and standard deviation 0.1 s were added to the arrival
times. As a result, the data are inconsistent and cannot be fit
exactly by any model. The inversion thus changes the model
until a good, but not perfect, fit to the data is achieved. This
final model, which is no longer changing much after three

Table 7.2-2 Earthquake location example with errors.

Invert for location and origin time

model evolution

parameter actual value model for iteration number
0 1 2 3

x 0.0 3.0 −0.2 0.2 0.2
y 0.0 4.0 −0.9 −0.4 −0.4
z 10.0 20.0 12.2 12.2 12.2

origin time 0.0 2.0 0.0 −0.2 −0.2

station location residual for iteration number
0 1 2 3

35.0 9.0 −2.0 −0.1 0.1 0.1
−44.0 10.0 −3.0 −0.1 0.0 0.0
−11.0 −25.0 −3.8 0.0 0.1 0.1
23.0 −39.0 −3.2 −0.1 0.0 0.0
42.0 −27.0 −2.8 −0.2 −0.1 −0.1

−12.0 50.0 −2.1 −0.3 −0.1 −0.1
−45.0 16.0 −2.9 −0.1 0.0 0.0

5.0 −19.0 −3.7 −0.1 0.0 0.0
−1.0 −11.0 −4.0 −0.1 0.0 0.0
20.0 11.0 −2.5 −0.3 0.0 0.0

error 93.74 0.33 0.04 0.04

data standard deviation 0.10

model variance–covariance matrix
0.06 0.01 0.01 0.00
0.01 0.08 −0.13 0.01
0.01 −0.13 1.16 −0.08
0.00 0.01 −0.08 0.01

model standard deviation
x y z origin time

0.25 0.28 1.08 0.10
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iterations, is close to, but not exactly, the model used to gener-
ate the data. This simple example thus has some features of real
situations.

The uncertainties in the final model are shown by the model
variance–covariance matrix
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σ σ σ σ
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(35)

To see that the results seem reasonable, we compare the final
inversion model, taking into account its uncertainty, to the true
model. The standard deviations of each parameter are given by
the square roots of the diagonal terms of the model variance–
covariance matrix, so the final model (x = 0.2 ± 0.25 km,
y = −0.4 ± 0.28 km, z = 12.2 ± 1.08 km, t = −0.2 ± 0.10 s) is an
acceptable representation of the true model.

The model variance–covariance matrix shows some interest-
ing features. The variance of the depth estimate, σ 2

zz is larger
than the corresponding terms σ 2

xx and σ 2
yy, indicating that the

depth is less well constrained than the epicenter. This situation
is common, and arises because all the seismometers are at the
surface.2 In some cases when the depth is poorly constrained,
it is regarded as fixed, and only the epicenter and the origin are
inverted for. The results of multiple inversions, each with the
depth fixed at a different value, are compared to see which best
fits the data. It is also possible to determine the depth from
other criteria, such as the times of surface reflections (Section
4.3), and then invert with the depth fixed.

The uncertainties in the model parameter estimates are
correlated, because the off-diagonal elements of the model
variance–covariance matrix are nonzero. σ 2

zt, the covariance of
the depth and origin time uncertainties, is negative, indicating
a trade-off between the focal depth and the origin time. At any
station, similar arrival times result if the earthquake occurred
earlier (t smaller) but deeper (z larger). Similarly, σ 2

xy, the
covariance of the x and y location uncertainties, is nonzero,
so the uncertainties in these two parameters are correlated.
A method often used to illustrate this is to extract the 2 × 2
submatrix

  

σ σ
σ σ

xx xy

yx yy

2 2
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⎟⎟

(36)

and diagonalize it by finding the eigenvalues λ(1) and λ(2), and
the associated eigenvectors (x1

(1), x 2
(1)) and (x1

(2), x2
(2)). The uncer-

tainty in the epicenter can then be thought of as an ellipse with
semi-major and semi-minor axes λ(1)1/2 and λ(2)1/2, oriented in a
direction given by tan−1 (x1

(1)/x2
(1)). In this case, the semi-major

and semi-minor axes have lengths of 0.29 and 0.24 km, and the
semi-major axis trends N22°E. An interesting feature of the
error ellipse is that its shape and orientation depend on the
(GTG)−1 matrix, whereas the variance of the data, σ d

2, con-
trols the size of the ellipse. Because the shape of the error ellipse
depends on the geometry of the receivers, it can be examined
without reference to specific data. As written, the ellipse is for a
confidence level of 1σ (68%), but ellipses are sometimes also
given for 2σ (95%), or 3σ (99%).

We have shown that the model variance–covariance matrix
depends on the variance–covariance matrix of the data. In the
example, we knew the standard deviation of the data and that
the errors were uncorrelated. This information would not be
available for a real experiment. However, we could estimate
the standard deviation of the data from the misfit between the
data and the best-fitting model, given by the sample variance s2,

σ 2 ≈ s2 =
− =

∑ 
  

1

1n k i

n

(di′ − di)
2. (37)

Here, di′ are the observations, di are the values of the data pre-
dicted by the best-fitting model, and k is the number of model
parameters determined from the data. Division by n − k, the
number of degrees of freedom, rather than by n, the number
of data, compensates for the improvement in fit resulting from
the use of model parameters determined from the data. Thus,
for our example, the final squared misfit is 0.4 s2, and four
parameters were determined from the data, so the sample
standard deviation is s = (0.4/(10 − 4))1/2 = 0.08 s, a value close
to the true σ, 0.1 s.

7.2.4 Earthquake location for more complex geometries

This formulation is not restricted to locating earthquakes in
a homogeneous halfspace. Velocity variations can be incor-
porated in the function relating the arrival time at the i th station
to the origin time t and travel time T(x, xi),

di′ = T(x, xi) + t. (1)

For example, a model for locating local earthquakes could have
a series of layers. As a result, even for a source at the surface,
the travel time curve is a more complicated function of distance
(Section 3.2). At close distances, the first arrival is the direct
wave. At greater distances, the first arrival becomes a head
wave from an interface at depth, with the relevant interface
being deeper as the distance increases. The situation is similar,
but more complicated, for a source at depth, because at zero
distance the travel time is nonzero.

The travel time curve can be found either analytically or by
tracing rays. If the receivers are on the surface at (xi, yi), the
travel time curve T(r, z) depends on the horizontal distance
between source and receiver,

ri = [(x − xi)
2 + (y − yi)

2]1/2, (38)
2 Similarly, vertical positions determined using the GPS (Section 4.5.1) by a process
analogous to earthquake location are less precise than the horizontal positions.



The location of earthquakes for a spherical earth is similar.
As before, we assume that velocity varies only with depth. In
this case, for an earthquake at colatitude θ, longitude φ, focal
depth z, and origin time t, we seek to estimate the model vector
m = (θ, φ, z, t) from the data.

The travel time to receivers on the surface at colatitudes θi
and longitude φi depends on the focal depth and the angular
distance from the epicenter (Eqn A.7.7),

cos ∆i = cos θ cos θi + sin θ sin θi cos (φi − φ). (44)

For a travel time curve T(∆, z) the arrival times are

di = T(∆i , z) + t. (45)

Several average global travel time curves are available, as in
Fig. 3.5-4. In addition, a travel time curve for a specific velocity
model can be found numerically by tracing rays.

In this case, the θ derivatives are found using
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To find the last term, note that
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= cos ζi , (48)

where ζ i is the azimuth of the i th station with respect to the
earthquake (Eqn. A.7.10). Thus the partial derivatives with
respect to source colatitude are
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Similarly, because by the same method
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= −sin θ sin ζi , (50)
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Fig. 7.2-4 Map view of the relation between an earthquake epicenter and
a seismic station in Cartesian coordinates.

and the source depth z, so the arrival times are

di′ = T(ri , z) + t. (39)

In this case, the x derivatives are found by
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and similarly for the y derivatives. If ζ is the azimuth from the
source to the receiver (Fig. 7.2-4),

(x − xi)/ri = −sin ζi and (y − yi)/ri = −cos ζi. (41)

If the travel time curve is found numerically, then T(ri, z) is a
set of values for various points (r, z) rather than an explicit
function. The procedure for location is still the same, except
that the x, y, and z partial derivatives are computed numeric-
ally. For example, if we begin by assuming that the source is at
(x°, y°, z°), then the partial derivative with respect to r about

ri° = [(x° − xi)
2 + (y° − yi)

2]1/2 (42)

is found using the tabulated travel times for points (ri° + δ /2, z°)
and (ri° − δ/2, z°). Thus the x derivatives are found by approx-
imating the derivative by a difference
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and the y derivatives are found similarly. The z derivatives
are found numerically by forming the difference between two
depths. The inversion is then done as before.
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locate a group of nearby earthquakes using a travel time correc-
tion at each station derived from the residual at each station for
the master event. This procedure attempts to locate the other
events more accurately with respect to the master event. Joint
hypocenter determination methods use data from a number of
nearby earthquakes, and locate them simultaneously to best fit
the travel times. Figure 7.2-5 illustrates applying this technique
to a group of earthquakes: the locations from a joint epicenter
determination study are more closely grouped and are shifted
somewhat from the epicenters for the same events found by the
standard location program.

When considering earthquake location, the travel time
residuals remaining once the “best” location is found are a
nuisance. Following the dictum that “one person’s signal is
another’s noise” brings us naturally to our next topic, the use
of these travel time residuals to study deviations from a later-
ally homogeneous earth model.

7.3 Travel time tomography

In the last section we noted that travel time observations con-
tain information about both the location and the origin time
of the seismic source and the velocity structure in the region
between the source and receivers. Thus, for the simple halfspace
example shown, we also inverted the travel time residuals to
find the best velocity. This is analogous to the way in Chapter 3
that we discussed techniques to develop layered models in
which velocity varied only with depth. However, we have seen
that many of the earth’s most interesting processes, such as
subduction, cause deviations from a laterally homogeneous
velocity model. Methods have thus been developed to use seis-
mological data to investigate laterally heterogeneous structure.
For example, we have discussed using lateral variations in
surface wave velocities to investigate the cooling of oceanic
lithosphere (Section 2.8.3) and migration of seismic reflection
data to image variable structure at depth (Section 3.3.7). In this
section we introduce the concepts of travel time tomography,
some of whose results we have seen in Sections 3.7 and 5.4.
This discussion illustrates both some further general aspects of
inverse problems and some specific features of inverting for
earth structure.

7.3.1 Theory

Consider the path s of a seismic ray through a medium whose
velocity v varies with position. The travel time, T, is

T v s ds u s ds  / ( )   ( ) ,= =� �1 (1)

the integral of 1/velocity, the slowness, along the ray path. The
ray path, in turn, is determined by the velocity distribution.
Suppose now that the slowness at various points along the path
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Fig. 7.2-5 Comparison of epicenters for earthquakes in central Idaho
derived by a standard location program (PDE, open triangles) and from a
joint epicenter determination study (JED, closed symbols). Error ellipses
are shown for JED locations. The JED epicenters suggest a narrower
source region than the PDE epicenters. (Dewey, 1987. © Seismological
Society of America. All rights reserved.)

the partial derivatives with respect to source longitude are
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The two derivatives required from the travel time table, ∂T(∆i,
z)/∂∆ and ∂T(∆i, z)/∂z, can be approximated by forming differ-
ences between tabulated values. This approach is used to locate
earthquakes all over the world using teleseismic data, often
from hundreds of stations.

We can also locate earthquakes in a laterally varying struc-
ture using a numerical representation of the travel time curve.
In this case, the travel times, and hence partial derivatives, de-
pend on the actual positions of the source and the receiver, not
just on the distance between them. The techniques discussed so
far will work, with the modification that the travel times, and
hence partial derivatives, must be computed, by tracing rays or
otherwise, for each source–receiver pair. The computational
effort involved is large enough that laterally homogeneous
models are used whenever possible.

A number of methods are sometimes applied to improve
locations derived using a laterally homogeneous model. Some
treat residuals at individual stations as station corrections to be
removed. Master event methods consider a particular (often
the largest) earthquake in a group as the best located, and then



is perturbed by an amount δu(s) small enough that the ray path
is essentially unchanged, but the travel time changes by

δT = �δu(s)ds. (2)

We can then use the changes in travel time to study the velocity
changes that caused them.

Because the travel time perturbation reflects the slowness
perturbation integrated along the ray path, a single observation
does not indicate how the perturbation is distributed along
the path. A large localized perturbation and a smaller, but more
widely distributed, one could give the same effect. To improve
resolution, data from ray paths that sample the medium differ-
ently can be combined (Fig. 7.3-1). The simplest spatial dis-
tribution of the slowness perturbation divides the medium into
a number of homogeneous subregions termed blocks, or cells.
Thus the integral (Eqn 2) giving the travel time perturbation
along the i th ray path is written in discrete form

∆Ti = 
    

G uij j
j

∆ ,
=
∑

1

(3)

where Gij is the distance the i th ray travels in the j th block, and
∆uj is the slowness perturbation in the block.

Our goal is to use the observed travel times along a number
of paths through the medium to recover the slowness perturba-
tion. Problems of this type, in which observations of properties
integrated along a number of paths through the medium are
used to infer the two- or three-dimensional distribution of the
physical property within a medium, occur in many branches
of science and are known collectively as tomography.1 The

two- or three-dimensional perturbation can be thought of as
an image, which we seek to reconstruct from observations.
The observations, one-dimensional integrals through the per-
turbation, are known as projections.

In travel time tomography, the inverse problem of estimating
the slowness perturbation from the observed travel time per-
turbation has the form discussed in the last section

d = Gm, or
    

d G mi ij j
j

= ∑ . (4)

As before, we do not explicitly write the ∆s, so the model vector
m is the perturbation in slowness from a starting model, and
the data vector d is the difference between the observed travel
times and those predicted by the starting model. The elements
of the partial derivative matrix

G
d

m

T
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i

j

i

j

    = =
∂
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∂

(5)

equal the distance the i th ray travels in the j th block, which is the
partial derivative of the ray’s travel time with respect to the
slowness in the block.

The matrix G is an operator that relates model vectors and
data vectors. As in the location problem, these vectors are
physically different quantities with different dimensions. The
model vectors have as many elements as there are blocks in the
model, whereas the data vectors have a number of elements
equal to the number of ray paths. Mathematically, this means
that if there are r blocks in the model, any model vector is a
vector in an r-dimensional model space. Similarly, if there are n
travel times and thus n ray paths, any data vector is a vector
in an n-dimensional data space. Because there are generally
many more equations (ray paths) than unknowns (model para-
meters), the system of equations is overdetermined. Because
the data contain noise, the system of equations is generally also
inconsistent.

The inverse problem is solved by a procedure like that dis-
cussed for the location problem. For the different ray paths,
the travel times and the distances traveled in each block are pre-
dicted using a starting or reference model. The starting model is
generally laterally homogeneous, so the travel times are easily
calculated. Travel time residuals are then computed for each
ray path by subtracting the times predicted by the starting
model from those observed. These travel time residuals form
the data vector that is inverted using the generalized inverse to
find slowness changes that predict the travel time residuals as
well as possible.

To illustrate these ideas, consider a schematic experiment in
which a region under a seismic array is divided into four square
blocks of unit length (Fig. 7.3-2). Travel time residuals from
six ray paths form the data. Four paths (1–4), which can be
thought of as due to distant (teleseismic) earthquakes, traverse
the model vertically. Two paths (5, 6), which can be thought of
as due to local earthquakes, traverse the model horizontally.1 This term is Greek for “slice picture.”

Block j

j = 2j = 1

Path i

Gij

Fig. 7.3-1 Geometry of a region being studied using travel time
tomography. The region is divided into blocks j, whose perturbations in
velocity are to be found from the travel time along ray paths i. The velocity
outside the blocks is assumed to be laterally homogeneous, so travel time
perturbations with respect to the reference model are used to find the
velocity perturbations within the blocks.
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6

Fig. 7.3-2 Ray path and block geometry for an idealized
tomographic experiment. Each block is sampled by three
different ray paths.

The reference slowness model is assumed to be appropriate
outside the blocks, so the entire travel time residual for each
path is attributed to slowness perturbations in the blocks. Thus
the problem looks like
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We encountered this problem, solving a vector–matrix equa-
tion where the matrix is not square, in the last section. As in
that case, we form

GTGm = GTd (7)

and invert the square matrix GTG to form the generalized
inverse solution

mg = (GTG)−1GTd = G−gd. (8)

We next ask how mg , the model found by the inversion,
compares to the actual slowness model that gave rise to
the travel time data. To compare the two, we substitute Gm
for d in Eqn 8, and find that in this case

mg = (GTG)−1GTGm = m, (9)

so the inversion correctly resolves the true model. Naturally,
if errors are present in the data, these errors propagate into the
results of the inversion, as discussed previously.

7.3.2 Generalized inverse

An interesting situation occurs in this example if only the four
teleseismic ray paths (1–4) are available. The inverse problem
becomes finding the four elements of m from
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After multiplying by GT, we attempt to solve this system as be-
fore, but find that the matrix GTG has a zero determinant, so it
cannot be inverted. Thus, although the system of equations (7)
has four equations for four unknowns, it does not have a
unique solution (Section A.4.4). It turns out that this is because
the rows of G are not linearly independent. Thus the ray
geometry is not adequate to fully resolve the slowness pertur-
bations in the four blocks.

Because this situation occurs frequently in solving inverse
problems, methods for dealing with it have been developed.
Although a full treatment is beyond our scope, we summarize
some key ideas without proof.

In the general case when G is an n × r matrix, GTG is an r × r
symmetric matrix that can be decomposed using its eigen-
vectors and eigenvalues (Section A.5.3)

GTG = VΛ2V T, (11)

where the columns of matrix V are the r eigenvectors of GTG
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and Λ2 is a diagonal matrix with eigenvalues on the diagonal
and zeroes elsewhere
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where the eigenvalues are written as squared because λ i are the
eigenvalues of G.

Because the eigenvectors are orthogonal,

VVT = VTV = I, so VT = V −1. (14)

If GTG has an inverse,

(GTG)−1 = (VΛ2VT)−1 = VΛ−2VT, (15)

where
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This expression shows that GTG is singular if at least one
eigenvalue is zero. In this case, the p nonzero eigenvalues are
used to form the p × p diagonal matrix
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and the associated eigenvectors are divided into two matrices:
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Vp is the r × p matrix of the eigenvectors with nonzero eigen-
values, and V0 is the r × (r − p) matrix of the eigenvectors with
zero eigenvalues.

Similarly, the n × n matrix GGT can be decomposed as

GGT = UΛ2UT, (19)

using its eigenvector matrix U. GGT has the same p nonzero
eigenvalues as GTG, so the U matrix can be divided into Up,
the n × p matrix of the eigenvectors with nonzero eigenvalues,
and U0, the n × (n − p) matrix of the eigenvectors with zero
eigenvalues. Although we do not prove it here, it is possible
to decompose the matrix GTG using only the eigenvectors with
nonzero eigenvalues:

GTG = UΛVT = UpΛpVT
p. (20)

This decomposition, known as the Lanczos decomposition, is
important, because a generalized inverse

G−p = Vp Λ p
−1UT

p (21)

that involves only the eigenvectors with nonzero eigenvalues
gives an optimal solution to the inverse problem. This solution
provides the best fit to the data while minimizing m, the change
from the starting model. This is a desirable feature: for ex-
ample, in the tomographic problem, we start with a laterally
homogeneous model, so the best solution is that with least
lateral velocity variation consistent with the data.

7.3.3 Properties of the generalized inverse solution

The relation between the solution to the inverse problem, the
model derived from the data using

mp = G−pd, (22)

and the “true” (although unknown) model m, can be found
because the data are related to the “true” model by the forward
problem (Eqn 4), so

mp = G−pGm = Vp Λ p
−1UT

pUp Λ pVT
pm = VpVT

pm. (23)

Thus the matrix G−pG = VpVT
p is known as the model resolution

matrix.
The derivation used the fact that UT

pUp = I, because the col-
umns of Up and hence the rows of UT

p are orthonormal
eigenvectors. Similarly, VT

pVp = I. By contrast, if there are
some zero eigenvalues, then p ≠ n, UpUT

p ≠ I and p ≠ r, VpVT
p ≠ I,

because the rows of Up and Vp are no longer orthonormal
eigenvectors (because the columns corresponding to the zero
eigenvalues have been removed to form the V0 and U0 matrices).

To illustrate these ideas, consider the example in Eqn 10. The
G matrix yields
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which has eigenvalues 0, 2, 4, 6, and hence is singular. The
eigenvector matrices are
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The model resulting from the inversion mp is then related to the
“true” (although unknown) model m by the model resolution
matrix

mp = VpVT
p m = 

    

0 75 0 25 0 25 0 25
0 25 0 75 0 25 0 25
0 25 0 25 0 75 0 25
0 25 0 25 0 25 0 75

. . . .
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m (26)
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V matrices their form, controls the resolution. Note that in the
first example, in which all six ray paths are used, Eqn 9 shows
that the model from the inversion was the true model. In this
case the resolution matrix is the identity matrix.

To see how the lack of resolution in the four-ray case arises,
consider what would occur if GTG had no zero eigenvalues and
could be inverted. Then, by Eqns 21 and 22, the model derived
from the data would be

mp = VΛ p
−1UT

p
 d, (27)

because Vp = V. The model is thus a linear combination of
the columns of V, or the eigenvectors of GTG. Because there
are r (in this case four) linearly independent eigenvectors, and
the model vector has r elements, the eigenvectors span the
r-dimensional model space. Thus any vector in the model space
is a possible model.

If instead, as in this case, some of the eigenvalues are zero,
the eigenvectors associated with them are excluded from the Vp
matrix. The model

mp = VpΛ p
−1UT

p
 d (28)

is then a linear combination of only the columns of Vp, the
eigenvectors associated with the nonzero eigenvalues. In this
case, there are r − p (here three) rather than r linearly independ-
ent eigenvectors. Hence not all possible vectors in the model
space can be constructed. The model resulting from the inver-
sion contains no linear combinations of the eigenvectors asso-
ciated with the zero eigenvalues.

To illustrate this idea, consider the four-ray case where the
eigenvector associated with the zero eigenvalue is (from Eqn 25)

v = (0.5, 0.5, −0.5, −0.5)T. (29)

This vector corresponds to equal slowness perturbations in
blocks 1 and 2 and equal perturbations of opposite sign in
blocks 3 and 4. Physically, this means changing the slowness
everywhere in the upper layer by some amount, and making the
opposite change in the lower layer. Because all four teleseismic
rays have equal path lengths in the upper and lower layers,
their travel times are unaffected, so travel time data cannot
resolve any such change.

Another way to see this is to consider Eqn 7 and note that if
v is an eigenvector whose eigenvalue is zero,

(GTG)v = 0, (30)

so that even if the model contains a linear combination of such
eigenvectors, they have no effect on the problem. The zero
eigenvectors thus limit the resolution of the model. Because any
linear combination of these eigenvectors has no effect, the
model resulting from the inversion is not unique. It is possible
to prove that the generalized inverse G−p finds a “best” model
with no contribution from these eigenvectors. Mathematically,
the resulting model is restricted to the Vp space and has no com-
ponents in the V0 space. As a result, this model is the minimum

Fig. 7.3-3 Illustration of the “blurring” resulting from the tomographic
experiment of Fig. 7.3-2, with incomplete ray coverage. When coverage is
adequate, the true slowness perturbation (top left) is recovered (top right).
When coverage is inadequate, the true slowness perturbation (lower left) is
blurred (lower right), although the resulting slowness perturbations yield
the correct travel time perturbation for each ray path.

The i th column of the model resolution matrix shows how a
unit perturbation in the i th element of the true model maps into
various elements of mp. The true model is thus “blurred” by the
inversion. For example (Fig. 7.3-3), inversion of travel time
data resulting from a 1% slowness perturbation in block 3
yields a model with 0.25% perturbations in blocks 1 and 2, a
0.75% perturbation in block 3, and a −0.25% perturbation in
block 4. These slowness perturbations yield the correct travel
time perturbations for the four paths, but because there are no
horizontal paths, the solution is not exactly correct. However,
most of the perturbation is correctly placed. Note that the
resolved structure has a smaller maximum slowness perturba-
tion than the true structure.

The relation between the resolution matrix and the model
covariance matrix (Eqn 7.2.32) is interesting. The blurring
illustrated by the resolution matrix results from the ray geo-
metry and would occur even if the data contained no errors.
In other words, the resolution matrix illustrates how well the
inverse problem could be solved for perfect data. Because the
data usually contain errors, the uncertainty in the model, given
by the model covariance matrix, reflects errors induced in the
model by both the ray geometry and the data errors.

Because the resolution matrix shows how a perturbation in
any block is resolved by the inversion, it can be used to find
how well the inversion can recover an arbitrary slowness
anomaly. Thus the ray geometry, which gives the G and hence



possible solution consistent with the data. In this application,
the minimum model gives the least lateral perturbation in
slowness consistent with the travel time data. Philosophically,
this is an attractive approach.

The six-ray case, by contrast, had no zero eigenvalues.
Because one ray traveled only in the upper layer and another
traveled only in the lower layer, a change in the slowness in
either layer would affect the travel times. This ray geometry
avoids the ambiguity of the four-ray case, so the model is fully
resolved. There is no V0 space, so V = Vp, GTG can be inverted,
and the solution is found using the generalized inverse G−g

(Eqn 8). To see how this is related to the generalized inverse
G−p, we use the Lanczos decomposition (Eqn 20) to expand G:

GTG = (VΛpUT
p)(UpΛpVT) = VΛ2

pVT, (31)

(GTG)−1 = VΛp
−2VT, (32)

where the matrix products Λ2
p = Λp Λp and Λ p

−2 = Λ p
−1Λ p

−1. Thus,
if GTG can be inverted, the generalized inverse

G−g = (GTG)−1GT = (VΛp
−2VT)(VΛpUT

p) = VΛp
−1UT

p = G−p. (33)

Hence G−p is the general form of the generalized inverse, and
G−g is the special form that applies if GTG can be inverted. The
later form, G−g, is easier to compute because it does not require
the eigenvector decomposition. Fortunately, it can often be
used in applications such as earthquake location.

The eigenvector decomposition also divides the data space
into two portions, Up and U0, reflecting the nonzero and zero
eigenvalues. Data vectors in the U0 space, linear combinations
of the eigenvectors whose eigenvalues are zero, cannot be gen-
erated by the operator G for any model. For example, in the
six-ray case there cannot be six linearly independent observa-
tions because the model has only four parameters. Thus two of
the six eigenvectors of the 6 × 6 matrix GGT must have zero
eigenvalues. These eigenvectors represent travel time observa-
tions that should be impossible, given the geometry of the
experiment. If the data contained some linear combinations
of these eigenvectors, perhaps due to noise in the data, the
inversion process could never generate a model capable of
matching them.

Figure 7.3-4 summarizes these ideas: the operator G and
its generalized inverse G−p relate the model and data spaces.
Portions of these spaces are not “illuminated.” Any part of the
model in the V0 portion of the model space has no effect on
the data, and thus cannot be detected. Thus, if V0 space exists,
the model found by solving the inverse problem is not unique.
This situation can only be improved by additional types of
data, such as a new set of ray paths in the tomographic example
(Fig. 7.3-3).2 Similarly, any part of the data in the U0

 portion
of the data space cannot be described by any possible model.
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2 As Sherlock Holmes says in The Copper Beeches, “I have devised seven separate
explanations, each of which would cover the facts so far as we know them. But which
of these is correct can only be determined by fresh information.”
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Fig. 7.3-4 Schematic illustration of the relation between the model and
data spaces for the inverse problem d = Gm. The observed data d form a
vector in the n-dimensional data space, the model m sought is a vector in
the r-dimensional model space, and the known partial derivative matrix G
has dimensions n × r. Matrix U, whose columns are the eigenvectors of the
matrix GGT, can be decomposed into Up, the matrix of the p eigenvectors
with nonzero eigenvalues λ1, λ2, . . . , λp, and U0, the matrix of the
eigenvectors with zero eigenvalues. Similarly, the matrix V, whose
columns are the eigenvectors of the matrix GTG, can be decomposed into
Vp, the matrix of the eigenvectors with nonzero eigenvalues, and V0, the
matrix of the eigenvectors with zero eigenvalues. (After Lanczos, 1961.)

Thus, if a U0 space exists, the model found by solving the
inverse problem is not an exact solution.

7.3.4 Variants of the solution

A number of variants of the least squares solution that we have
developed using earthquake location and tomography are also
used in these and other inverse problems.

One variant arises from the fact that although the eigen-
vector decomposition gives insights, it may not be the best
approach in some real applications. First, it involves significant
computations when the matrices are large. Second, it associates
difficulties with the eigenvalues that are zero, whereas in real
problems complications and noisy data are more likely to yield
small, but nonzero, eigenvalues. These small eigenvalues cause
the sort of difficulties that occur formally for zero eigenvalues.
To see this, note that in Eqn 27 the model is derived by
multiplying the data by the matrix Λ−1, which contains the
reciprocals of the eigenvalues. Thus the small eigenvalues, rep-
resenting the worst-constrained features of the data and model
spaces, can have large effects on the solution. For example,
we noted in Section 4.4.7 that using the generalized inverse
to estimate the moment tensor gives good estimates of
components on which seismograms depend strongly, but
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poorer ones for components on which the seismogram depends
weakly.

This issue can be addressed in several ways. One is to exclude
small eigenvalues from the inversion. Another, which avoids
the eigenvector decomposition, is to modify the function used
to measure the misfit between the data predicted by the model
and those observed (Eqn 7.2.11) to
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This function is the sum of the net misfit and the change in
length of the model vector, weighted by ε 2. Hence minimizing
it is a compromise between the best fit to the data and the least
change from the starting model. The resulting solution, written
with the ∆s suppressed,

m = (GTG + ε2I)−1GTd, (35)

is called the damped least squares solution. If ε is zero, we have
the best-fit solution (Eqn 7.2.17), whereas larger values of ε
reduce or damp the change in the starting model by accepting
a poorer fit to the data. The damping parameter ε is chosen
empirically to yield a solution that seems plausible, and thus of
necessity reflects our ideas about the solution sought, because
damping the poorly constrained and undesired changes in the
model also damps the better constrained and desired changes.

Another common situation is that we want some data to have
greater effect on the solution, usually because we consider them
to be better known. We thus incorporate a data-weighting
matrix Wd into the solution. The simplest is to weight by Wd =
(σ 2

d)−1, the inverse of the variance–covariance matrix of the
data, so the data with the smallest uncertainties have the great-
est effect. Problem 5 shows that this weighted least squares
solution is

m = (GTWdG)−1GTWd d. (36)

We may also want to have the model change smoothly,
such that each element varies only slightly with respect to its
neighbors. For instance, if the model were a continuous func-
tion of one variable, we measure the smoothness, or flatness,
f, of the changes by forming
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where F is the flatness matrix, which is a numerical approxima-
tion to the derivative at the edges of each element. The overall
flatness of the solution is then

fTf = mTFTFm = mTWmm, (38)

so the matrix Wm = FTF is a weighting matrix for the model. For
more complicated model geometries, F is changed appropriately.

We can combine the model and data weighting in a weighted
damped least squares inversion, which yields the solution

m = (GTWdG + ε2Wm)−1GTWdd. (39)

As noted earlier, the damping parameter ε is chosen empiric-
ally. If we do not weight the data and model, the weighting
matrices Wm and Wd are identity matrices, and Eqn 39 is just
the simple damped least squares solution (Eqn 35).

An example of such an inversion was shown for P-wave
velocities at the base of the mantle in Fig. 3.5-17. A grid of 660
nodes that were roughly equally spaced were used to represent
the base of the mantle. The damping factor, ε = 1.2, was a com-
promise between the best fit, which minimizes the prediction
error, and minimizing the undetermined part of the solution.
Because each node is surrounded by 5 or 6 nodes that are
roughly equidistant, the rows of the model flatness matrix F
were chosen with the diagonal term equal to −1 and the terms
of the nearest N neighbors equal to 1/N (with N = 5 or 6). The
data were weighted empirically so that the diagonal elements
of the Wd matrix ranked the quality of the observations from 9
(excellent) through 4 (good) to 1 (poor). These choices again
bear out that we have various ways of solving inverse prob-
lems, so the solution we develop depends on choices about
the data we use and the model we seek, based on our ideas
about what seems reasonable. Hence our solutions are in part
objective and in part subjective, and different approaches yield
different solutions.

7.3.5 Examples

Studies using travel time tomography yield interesting results
for various areas. For example, Fig. 7.3-5 (top) shows the model
geometry used in a study of the upper mantle in the region
including Central Europe, the Mediterranean, and the Middle
East. The model contains nine layers, each divided into 1040 1°
by 1° blocks. The layer thickness increases with depth from
33 km at the top to 130 km at a depth of 670 km. The data con-
sist of approximately half a million travel times from about
25,000 earthquakes, recorded at stations both within the
model region and at distances to 90°.

The data used are travel time anomalies relative to the
Jeffreys–Bullen values, which can result from earthquake
mislocations as well as variations in seismic velocities. The
location and origin time of the earthquakes were thus also
inverted for, so the number of unknowns reflects both the
number of blocks (9360) and four times the number of earth-
quakes used. To reduce these numbers, procedures were used
to combine data from nearby earthquakes and from stations
close to each other. The problem to be solved thus involves
approximately 300,000 equations for 20,000 unknowns.
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Fig. 7.3-5 Top: Block model for a travel time tomographic study of the
upper mantle in the region including Central Europe, the Mediterranean,
and the Middle East. The heavy line indicates the location of the cross-
section shown below. (Spakman and Nolet, 1988, with kind permission
from Kluwer Academic Publishers.) Bottom: Cross-section through the
block model across the Hellenic trench region, showing P-wave velocity
perturbations with respect to the JB model. (Spakman et al., 1988.
Geophys. Res. Lett., 15, 60–3, copyright by the American Geophysical
Union.)
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Fig. 7.3-6 Analysis of the tomographic image in Fig. 7.3-5 (bottom). Top:
Hit count plot, showing the number of times each block is sampled. Black
regions indicate the best-sampled blocks (hit counts in excess of 2000).
Bottom: Resolution test using synthetic velocity anomalies. Travel times
are generated for a model with 5% velocity perturbations, of alternating
sign, in each of the blocks marked by heavy lines. How well the
perturbations are recovered illustrates how much the image is blurred.
(Spakman and Nolet, 1988, with kind permission from Kluwer Academic
Publishers.)

region occurs, presumably due to flow behind the arc. Such
observations are valuable for modeling the subduction history
and dynamics.

Because tomographic images are solutions to an inverse
problem, they are neither unique nor exact. Hence it is import-
ant to assess which features in the image are likely to be geo-
logically real, and which are more likely to be artifacts of the
inversion. As we have seen, an important factor is how well
parts of the model are sampled by the ray paths. Figure 7.3-6
(top) shows a hit count plot for the section of Fig. 7.3-5
(bottom), showing the number of ray paths that sample each
block. The better-illuminated regions should be better resolved
than poorly sampled regions. Additional insight comes from
analyzing how a perturbation in one model block is blurred by
the inversion into nearby blocks. This information, given by
the resolution matrix (Eqn 23), can also be found by placing a
perturbation in one block, computing the forward problem,
and inverting the result. Because this would be time consuming
for such a large model, perturbations were placed in various
blocks, and the combined resolution was estimated by com-
puting synthetic travel time data and inverting it. Figure 7.3-6
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Solving matrix equations of this size poses major difficulties.
The matrices are so large (in this case 6 × 109 elements) that
they are difficult to store in a computer and operate on. As a
result, numerical methods are used, some of which allow only
a single row of the matrix to be manipulated at any time. The
properties of these algorithms and methods of improving the
resulting image form an active research area.

The resulting three-dimensional velocity model can be shown
as either cross-sections or map views at various depths. Fig-
ure 7.3-5 (bottom) shows a cross-section across the Hellenic
trench region, where the African plate subducts beneath Crete
and the Aegean basin (Fig. 5.6-8). The tomographic image
shows velocity anomalies in percent of the velocity predicted
for that depth by the JB model. A planar high-velocity (posit-
ive) anomaly, presumably the cold downgoing slab, dips NW
from the trench and extends to depths well below the deepest
earthquakes (dots). Above the slab, a low-velocity (negative)
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variations. However, because these variations are with respect
to a starting model, which is usually laterally homogeneous,
the resulting images depend on the starting model. Figure 7.3-7
shows an example for the Lesser Antilles. The ray paths pre-
dicted by the global JB and PREM reference models differ
somewhat from those predicted by a model VCAR developed
for this region. As a result, tomographic images relative to the
JB and VCAR models differ. Although both show the high-
velocity North American plate subducting westward beneath
the Caribbean, the JB image implies that the slab flattens at the
660 km discontinuity, whereas this suggestion is much less in
the VCAR image. The flattening in the JB image results from
the fact that the inversion yields “streaks” of velocities relative
to JB that are lower than those observed above 660 km, and
higher than those observed below 660 km. This effect arises
because, compared to VCAR, the JB model predicts higher
velocity above 660 km, and lower velocity below. Thus a bias
in the reference model can produce spurious lateral heterogene-
ity. Similar reference model artifacts, in which a common state
seems abnormal due to the standard used, appear in various
inverse problems and other situations.3 However, the choice
of reference model is subjective, so making a choice requires
recognizing its consequences. For example, a global velocity
reference model that excluded subducting slabs would be
slower than the actual global average, whereas one including
slabs would predict slow anomalies elsewhere.
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(bottom) illustrates this method for a 5% velocity contrast
whose sign alternates between columns. If resolution were per-
fect, the image would be reconstructed exactly: each anomaly
would be confined to the original block (heavy line). Due to the
ray geometry, the anomalies “blur”, but are still concentrated
in the correct locations. Comparison with the hit counts shows
that better-sampled regions, such as the second column from
the left, are better resolved than poorly sampled regions like
the lower left column. The reconstructed image is further de-
graded when the effects of noise in the data are simulated. Even
in this case, the inversion results locate the perturbed blocks
reasonably well and retrieve the sign of the perturbation.
These tests suggest strongly that the high-velocity slab in the
image is real.

Typically, the major features of tomographic inversions seem
likely to be real, but assessing how much of the detailed struc-
ture is real is more difficult. For example, Fig. 5.4-7 showed
the results of a numerical experiment to see how well a tomo-
graphic study would reconstruct the image of a theoretical
subducting slab. It turned out that the general shape of the slab
was resolved, but was blurred by artifacts implying velocity
anomalies that are not present in the original model. In this
case these artifacts, generally of low amplitude, caused the slab
to appear to broaden, shallow in dip, or flatten out. The extent
to which these artifacts appear depends on ray geometry, so
the image could be improved by using upgoing as well as
downgoing rays.

Another important factor in tomographic images is the refer-
ence model with respect to which the velocity anomalies are
shown. In examining images, it is natural to focus on the lateral

3 90% of motorists are said to consider themselves above-average drivers, and “all
children are above average” in the mythical town of Lake Wobegon in the radio show
Prairie Home Companion.

Fig. 7.3-7 Illustration of the effects of the
reference model in travel time tomography.
Velocity structure (a) and ray paths (b) for
global reference models JB and PREM
and a local reference model VCAR. The
differences (c, d) between the tomographic
images reflect differences between the
reference models near 600 km depth.
(van der Hilst and Spakman, 1989. Geophs.
Res. Lett., 16, 1093–6, copyright by the
American Geophysical Union.)



age range, and then infer the variation in the medium velocity
with depth from the dispersion curve giving the variation in
apparent velocity as a function of frequency. Hence this is
tomography in the lateral direction, and dispersion analysis
vertically. We will see in the next section that dispersion ana-
lysis is an example of methods that infer earth structure using
functions that sample the structure at depth in different ways.

Tomographic methods can be used for waveforms as well as
travel times. As noted earlier a for example, in Fig. 3.7-7 a
waveforms sample earth structure over broader regions than
travel times, which, in the limit, correspond to sampling along
narrow geometric rays. Figure 7.3-9 shows some results
from global tomography in which velocity perturbations were
inferred by fitting both waveforms from 27,000 long-period
seismograms and 14,000 travel times. The seismograms include
body wave records (from the P or PKP arrival to the start of the
surface waves) and “mantle wave” records, which are low-pass
filtered seismograms about 4.5 hours in length. The travel time
data include both absolute shear wave arrival times and dif-
ferential (SS–S and ScS–S) times. Rather than inverting for the
velocity perturbations in blocks, the velocity perturbation was
described by a series of orthogonal functions, and the inversion
was for the coefficients of the functions. The lateral structure
was described by spherical harmonics (Section 2.9.3), and the
vertical structure was modeled using Chebyshev polynomials.

In addition, we saw in Section 3.7 that amplitude tomo-
graphy can infer attenuation variations along the ray paths.
Amplitude tomography is similar to medical tomography,4

in which the image indicates the degree to which X-rays are
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Fig. 7.3-8 An example of cross-borehole tomography in Manitoba, Canada. Left: Travel times are recorded from a source at different depths in one
borehole to receivers in the other. The experiment is then reversed, yielding dense ray path coverage. Center: Straight ray paths computed for the laterally
homogeneous starting model. Right: Ray paths for the laterally varying model found from the inversion. (Wong et al., 1987.)

In addition to ray geometry and reference model artifacts, it
is worth noting that tomographic images can also be affected
by something as simple as the contouring scheme used. Some-
times when features are not robust aspects of the image, their
tectonic interpretation depends in part on preconceptions,
much like the ink-blot tests used by psychologists. Thus, despite
the power and value of tomographic images, it is important to
bear their limitations in mind.

Tomography is also used in other seismological applications.
One important use, providing detailed near-surface images,
is illustrated by Fig. 7.3-8 showing tomography between two
boreholes. The source and receivers were moved to generate
dense coverage with many crossing ray paths. The travel time
observations were then inverted for velocity structure. In this
experiment, the ray paths were recomputed for the perturbed
model and used to compute travel times for later iterations.
The differences between the initial and perturbed ray paths
show the advantages of recomputing the ray paths for each
successive model, a process called nonlinear tomography. This
updating ensures that the ray paths, and hence predicted travel
time anomalies, are consistent with the velocity structure being
found. However, for practical reasons it is common to conduct
linearized tomography using ray paths from the starting model
even as the model is perturbed, and to assume that the resulting
errors are small.

It is interesting to compare travel time tomography to the
surface wave tomography discussed in Section 2.8.3, where the
average surface wave velocity along multiple paths through
oceanic lithosphere of various ages is used to infer the velocity
structure for each age range. The approach is to find the phase
or group wave velocity as a function of frequency for each 4 The medical term “CAT scan” is for computed axial tomography.
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+1.5%−1.5%

Fig. 7.3-9 Tomographic image of shear wave velocities along a great circle
slice through the Equator, obtained by inversion of both waveforms and
travel times. (Su et al., 1994. J. Geophys. Res., 99, 6945–80, copyright by
the American Geophysical Union.)

absorbed in different portions of the subject. Medical tomo-
graphy has the advantages that the subject can be uniformly
illuminated from all sides, and that the internal structure is
both well understood and subject to later, direct observation.

7.4 Stratified earth structure

Quantities that can be determined using seismological data are
often the integrals of a physical property of the earth. For
example, the travel time is the integral of slowness along a ray
path. As discussed in the last section, although a single travel
time gives only the average slowness along the ray path, travel
times for different ray paths can be combined to find the spatial
distribution of slowness.

A common such problem is finding earth structure for later-
ally homogeneous or stratified earth models, in which physical
properties are assumed to vary only with depth. Frequently, an
observable quantity di can be expressed as the integral over the
radius of a physical property m(r),

   

d G r m r dri

a

i= ( ) ( ) ,�
0

(1)

ωiω
ω

1
Qi

Fig. 7.4-1 Schematic amplitude spectrum of a seismogram, showing the
observations used to invert normal mode data for eath structure. Each
mode peak is described by a width proportional to Qi

−1, which describes
its attenuation, and an eigenfrequency ωi.

where Gi(r) is a known function of depth called a kernel. Given
a set of di with different kernels, each of which samples the
distribution of m(r) differently, the inverse problem is to infer
m(r). Although the relation between the observed quantity and
earth structure is sometimes less intuitive than for travel time
and slowness, the problems can be formulated in a similar way.

We encountered this idea in discussing Love wave dispersion
in Section 2.7.4. The apparent phase velocity along the free
surface varies as a function of period, because waves of differ-
ent period sample the velocity at depth differently. Hence this
variation can be used to study the velocity at depth.

7.4.1 Earth structure from normal modes

The concepts of inverting observations for the structure of
a stratified medium can be illustrated using normal modes
(Sections 2.9 and 3.7). The displacement field of the ith mode
excited by an earthquake can be written

ui(t) = Ci(t) exp (−ω it /2Qi). (2)

The mode’s eigenfrequency ωi and quality factor Qi, which
describes the attenuation, and thus the width of the peak,
can be found from the Fourier transform of the seismogram
(Fig. 7.4-1). Because ωi and Qi depend on the variation with
depth of the seismic velocities, density, and attenuation, these
observations can be used to study earth structure.

To do this, we begin with an earth model described by α(r),
β(r), and ρ(r) and find the eigenfrequencies of the different
modes, ωi. This calculation also gives the partial derivative
functions
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showing how a mode’s eigenfrequency changes if the velocity
or density at a given depth is perturbed. The total change in the
eigenfrequency is the integral over the radius of the perturba-
tions in the earth model:
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Fig. 7.4-2 Observed attenuation for fundamental spheroidal modes

0S2–0S191. The variation in Q−1 with period reflects the depth variation of
q−1(r). (Stein et al., 1981. Anelasticity in the Earth, 39–53, copyright by
the American Geophysical Union.)

attenuation within the earth is described by the function q(r),
the quality factor for the ith mode is

   

Qi

a

− =1

0

  �Gi (r)q−1(r)dr, (5)

where the kernels Gi(r) are derived from the partial derivatives
(Eqn 4), using the formulation of the quality factor as an imagin-
ary part of the frequency that is related to an imaginary part of
the velocity (Section 3.7.6). Although the symbol Q is com-
monly used for both the modes’ quality factor and the attenu-
ation as a function of depth, using q(r) for the latter emphasizes
the distinction. The problem is written using the reciprocals
q−1(r) and Qi

−1, so higher attenuation (larger loss of seismic
energy) corresponds to larger values.

Figure 7.4-2 shows measured values of the attenuation of
fundamental spheroidal modes, which for periods less than a
few hundred seconds correspond to fundamental mode Rayleigh
waves. The attenuation is low for the longest-period modes,
rises to its highest values at periods slightly above 100 seconds,
and then decreases again for the shortest periods (about 50 sec-
onds) shown. This variation occurs because the kernels differ
between modes (Fig. 7.4-3). Because Q−1 for a mode is the
integral of the attenuation weighted by the kernel, the shape of
the kernel with depth illustrates a mode’s sensitivity to attenu-
ation at various depths. Long-period modes are most sensitive
in the lower mantle, periods near 100 seconds sample the low-
velocity zone heavily, and periods near 50 seconds are most
sensitive to structure in the “lid” region above the low-velocity
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Thus the difference between a measured eigenfrequency and
that predicted by an earth model can be inverted to find the
perturbation in the model required to fit the data. Although a
single mode observation gives only the average over depth of
the required perturbation, a set of modes gives more informa-
tion, because the partial derivatives vary between modes.

We illustrate the method using the corresponding inverse
problem for attenuation, which has a simple linear form. If
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Fig. 7.4-3 Attenuation kernels for various
modes, illustrating the different depth
sampling. Attenuation values are for the
third model in Fig. 7.4-5. (Stein et al., 1981.
Anelasticity in the Earth, 39–53, copyright
by the American Geophysical Union.)
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before, the generalized inverse gives the “best” solution in a
least squares sense. The concepts developed previously are use-
ful for assessing the solution. Columns of the resolution
matrix, called resolving kernels, indicate how well the value in
the corresponding layer could be determined independently of
those in the other layers if the data had no errors. This uncer-
tainty results from the inverse problem itself, and reflects the
best resolution possible, given the available kernels, analogous
to the resolution matrix (Eqn 7.3.23) in the tomographic exam-
ple. It is also useful to consider the model covariance matrix,
which indicates the uncertainty in the model due to both the
nature of the inverse problem and the errors in the observa-
tions. Often a weighted average over a number of layers is the
best resolution obtainable, analogous to the blurring in travel
time tomography.

Parameter space inversion has a few unattractive features.
First, the layers in which attenuation is treated as constant must
be chosen in advance. This choice might not be a meaningful
one. Second, parametrizing the model as constant in these
layers yields a model with “steps” at layer boundaries. These
steps may be quite unphysical; in many cases our intuition
(admittedly sometimes a poor guide) suggests that physical
properties should vary smoothly with depth.

In an alternative formulation, data space inversion, the
unknown model describing attenuation as a function of depth
is expanded not into constant layers, but as a weighted sum of
the kernels themselves (Fig. 7.4-4, right),

q−1(r) = 
    

νj j
j

G r( ).∑ (9)

The inverse problem is then
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where the matrix elements are
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Gi(r)Gj(r)dr. (11)

The model is found by inverting for the expansion coefficients
νj.

Data space inversion is less intuitive than parameter space
inversion, but has the attractive features that the resulting
model is a smooth function of depth, and need not be para-
metrized in depth in advance. Moreover, it is in some sense
“natural” to use the kernels as basis functions for the model,
because the observations sample the model along these kernels.
However, these solutions often seem too smooth for our in-
stincts, just as the parameter space solutions often seem too
jagged. We often both expect changes in properties near certain

Fig. 7.4-4 Schematic illustration of the model parameterizations for two
types of inversion methods. In parameter space inversions, the model is
divided into layers; in data space inversions the model is treated as a
weighted sum of the kernels.

zone. Q−1 is a smooth function of the period, because the
kernels of fundamental modes with similar periods are similar.

The inverse problem is to use the observed mode attenuation
Qi

−1 and the known kernels Gi(r) to infer the function q−1(r)
describing the variation of attenuation with depth in the earth
that best fits the data. This problem can be approached in
several ways, two of which we discuss briefly.

7.4.2 Parameter and data space inversions

The most direct approach, parameter space inversion, is to
regard the unknown model q−1(r) as constant in a set of layers
(Fig. 7.4-4, left), such that in the j th layer

q−1(r) = qj
−1, rj ≤ r ≤ rj+1. (6)

The inverse problem is then converted from an integral to a
matrix equation

   

Q G r q dr A qi

a

i j ij j
jj

− − −= = ∑∑1

0

1 1 ( )   ,� (7)

where the matrix elements are
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The observations are inverted for the value of the parameter
q j

−1 in each layer.
By choosing a smaller number of layers than mode observa-

tions, we obtain an overdetermined system of equations. As



ation zone at the base of the mantle in model SL8 is permissible,
and thus survives if included in the starting model, but is not
required by the data. This ambiguity results from the fact that
the data have little resolution for structure at this depth, as
shown by the kernels in Fig. 7.4-3.

7.4.3 Features of the solutions

The inverse problem for attenuation (Eqn 5) has a simple form,
because each mode’s quality factor depends linearly on q−1(r),
so the observations can be inverted directly for the attenuation
structure. If this is not the case, we linearize about a starting
model (Section 7.2.1), so the change in a datum depends lin-
early on the change in model parameters

   

∆di

a
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Gi(r)∆m(r)dr. (12)
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Fig. 7.4-5 Comparison of various attenuation models. Despite the differences, all reproduce the general features of the data in Fig. 7.4-2, as shown in the
right hand panels. (Stein et al., 1981. Anelasticity in the Earth, 39–53, copyright by the American Geophysical Union.)

depths and are reluctant to force them into the solution. This
dilemma is an example of the general issue of deciding how
much we want the inversion solution to reflect our preconcep-
tions, some of which may be correct, especially when derived
from other data, and some of which may be incorrect. We can
choose to focus on what the data require, what the data permit,
or a combination of the two.

These issues are illustrated in Fig. 7.4-5, which shows several
models for attenuation as a function of depth, all generally con-
sistent with the data in Fig. 7.4-2. Model SL8 was derived by
parameter space inversion, whereas the others were derived
from data space inversion. The lower two models were derived
by inverting the data in Fig. 7.4-2 with different misfit func-
tions, whereas the upper two were derived from different data.
Although the models differ, all have low attenuation in the
lower mantle, high attenuation in the upper mantle associated
with the low-velocity zone, and moderate attenuation in the
“lid” above the low-velocity zone. The models illustrate the
range of acceptable solutions. For example, the high attenu-
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Figure 7.4-6 illustrates a parameter space inversion for vertical
shear velocity structure from Rayleigh waves. Using the partial
derivatives
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which show how the phase and group velocities at a particular
period change in response to a shear velocity perturbation at
each depth, the starting model is modified to fit the observed
dispersion. The resolving kernels that illustrate the vertical
“smearing” are largest at the depth for which they are com-
puted, but have nonzero amplitudes at other depths. The best

resolution occurs when the kernel is sharply peaked at the
desired depth.

As we noted earlier, the generalized inverse solution yields
the minimum change in the model that best produces a desired
change in the data. Hence the final model is as close to the start-
ing model as possible. Features of a model derived by linearized
inversion can thus depend on the starting model. For example,
in a parameter space inversion, a layer whose value in the start-
ing model is assumed to differ significantly from adjacent layers
will often retain this feature in the solution. One way to avoid
this is to start off with a model whose properties are uniform
with depth. In other cases, data not included in the inversion
can be used to find a starting model more appropriate than

Fig. 7.4-6 Inversion of Rayleigh wave phase
and group velocity measurements for shear
wave velocity structure beneath the Pacific.
(a): Phase and group velocity partial
derivatives at 40 and 100 s periods. (b):
Starting (dotted line) model and final model
derived by parameter space inversion.
Horizontal lines indicate the model standard
deviation in each layer. (c): Resolving kernels
for various depths. The number and
horizontal line indicate the depth for each
kernel. (Yu and Mitchell, 1979.)



a uniform one. Another approach is to do inversions with dif-
ferent starting models and compare the resulting solutions. If
the solutions differ, they are likely local minima of the misfit
function (Eqn 7.2.11) that the inversion minimized, whereas
if the different starting models yield the same solution, it is
more likely to be the global minimum that we seek. Yet another
approach is to search numerically for the minimum in the
model space by varying the model parameters. Such “brute
force” approaches, in which we solve the inverse problem by
solving the forward problem many times, are attractive when
the number of model parameters is small, because they avoid
the issue of linearizing about the starting model and show the
trade-offs between various parameters. For example, Fig. 5.3-8
showed the trade-off between plate thickness and basal tem-
perature in inverting oceanic depth and heat flow data for
thermal structure.

Parameter space and data space inversions can be carried out
using more sophisticated variations. For example, parameter
space inversion can be smoothed to reduce the jumps at layer
boundaries. Data space inversion can be formulated in terms
of a set of orthogonal kernels, rather than the actual kernels,
which are often quite similar to each other. This approach
expands the model in the simplest possible way with the
minimum number of parameters. In addition, the model can be
constrained to fit the data only within the error bars, rather
than attempt to fit the mean value of each datum.

Due to the structure of inverse problems and the range of
possible techniques available, various solutions can generally
be derived for a set of seismological observations. As a result,
inverse problems remain an important research area. The
choices, ambiguities, and trade-offs in the solutions of these
problems are sometimes key features of the solution. Attempts
to explain these issues can be frustrating to nonseismologists,
as illustrated by the joke that in response to the question
“How much is 2 + 2,” an engineer replies “3.9999,” a geologist
replies, “Somewhere in the mid-single digits,” and a geo-
physicist replies, “How much do you want it to be?”

7.5 Inverting for plate motions

We end our discussion of inverse problems with the issue of
determining the Euler vectors that describe relative plate
motions. As we have noted, these Euler vectors are derived in
part from earthquake focal mechanisms, and are then used as
a reference model to predict the directions and rates of plate
motions for applications including estimating earthquake re-
currence, slip partitioning, and the fractions of seismic and
aseismic slip at plate boundaries.

7.5.1 Method

The forward problem (Section 5.2.1) is that at any point r
along their boundary, the linear velocity of plate j with respect
to plate i is

vji = ω ji × r, (1)

where ω ji is the relative angular velocity, or Euler vector. Hence
the rate and direction of plate motion are given by the north–
south and east–west components of v,

rate = | v | =     ( )  ( ) ,v vNS EW2 2+

azimuth = 90° − tan−1 [(vNS)/(vEW)]. (2)

The corresponding inverse problem is to find a model, or
set of Euler vectors, that best predicts the observed motions.
Because Euler vectors can be added, assuming that the plates
are rigid, m plates are specified by m − 1 Euler vectors, and thus
their 3(m − 1) components. Hence we use a data vector d com-
posed of rates and azimuths to estimate the model vector m
composed of the Euler vector components. Both the model
and data vectors consist of physically different quantities: the
model vector is made up of Euler pole latitudes, longitudes, and
rotation rates

m = (θ1, θ2, . . . θm−1, φ1, φ2, . . . φm−1, | ω1 |, |ω2 |, . . . |ωm−1 |),
(3)

whereas the data vector contains rates and azimuths

d = (r1, r2, . . . rk, az1, az2, . . . azn−k). (4)

As written, the inverse problem is not linear because the data
are complicated functions of the model parameters. Thus, as in
the previous examples, we linearize about a starting model by
forming the partial derivative matrix
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showing how a change in the j th model parameter affects the
prediction of the i th datum. The derivatives are found by differ-
entiating the expressions for vNS and vEW (Eqn 5.2.7). We then
have the usual equation

∆d = G∆m, or ∆di = 
  j
∑Gij∆mj, (6)

relating the changes in the data and the model. The system
is usually overdetermined, because we generally have data at
many sites and solve for only a few plate model parameters. For
example, the NUVEL-1 model has 12 plates whose motions
were estimated from 1122 data (Fig. 1.1-9). We thus use the
weighted least squares solution

∆m = (GTWdG)−1GTWd ∆d, (7)

where the variance–covariance matrix of the data, Wd =
    ( )σ d

2 1− ,
contains our estimates of the uncertainty in rates from
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magnetic anomalies and the uncertainties in directions
associated with estimating transform azimuths and deter-
mining earthquake slip vectors. The weighted solution is
needed because the uncertainties have different dimensions and
vary between data points.

Thus uncertainties in the estimated Euler vectors are given by
the model variance–covariance matrix

σ 2
m = (GTWdG)−1. (8)

Uncertainties associated with the Euler poles are often shown
by error ellipses analogous to those for earthquake locations,
whereas those for the rates are quoted separately. Alternat-
ively, we can view the pole and rate uncertainties as forming
a three-dimensional ellipsoid. Hence two Euler vectors are
distinct if their error ellipsoids do not overlap. As we have seen,
conventional global plate motion studies using magnetic
anomalies, transforms, and earthquake slip vectors yield solu-
tions similar to those obtained by using the same formulation
to invert the rates and azimuths of plate motions determined by
space-based geodesy (Section 5.2.3). This agreement is gratify-
ing, given that the conventional solutions combine data from
magnetic anomalies averaged over millions of years, the azi-
muths of transform faults that formed over long times, and the
slip vectors of earthquakes, whereas the space-geodetic solu-
tions based on data spanning only a few years have different
uncertainties.

7.5.2 Testing the results with χ2 and F-ratio tests

Given a model derived by inversion, the natural question is,
how good is it? This issue is a specific case of the general one
of testing how well a model fits data, which is discussed in
statistics texts. For our purposes we focus on two issues and
note some results without proof.

One common way to test how well a model fits data uses the
misfit function χ2 that we minimized to derive the least squares
solution (Eqn 7.2.11). We write it as

χ
σ

2
2

2
=

−∑ (  )
,

d di i
m

ii
(9)

where d i
m are the data predicted by the model, di are the data

observed, and σi are their uncertainties. Lower values of χ2 cor-
respond to better fits. However, because a model derived from
these data is bound to fit better than one derived without them,
we examine the reduced chi square

χ 2
ν = χ2/ν (10)

where the parameter ν, known as the number of degrees of
freedom, equals n − p where n is the number of data and p is the
number of model parameters estimated in the inversion.

If the model is a good fit to the data and our estimates of the
uncertainties are reasonable, then we expect χ 2

ν to be around 1.

Fig. 7.5-1 Cumulative probability distribution P(χ2
ν , ν), giving the

probability of observing χ2
ν above a certain value, plotted for 10 and 100

degrees of freedom. The more the degrees of freedom, the more likely χ2
ν is

to be near 1, and the less likely much higher or lower values are.

Statistically, this means that there is a reasonable possibility
that the observed data are samples from a parent distribution
described by the model, given the random uncertainties of meas-
urement. However, if χ 2

ν is much larger than 1, it is unlikely
that the data are samples from this distribution. This issue
is addressed using the cumulative probability distribution
P(χ 2

ν , ν) given by statistical tables or mathematical software
that gives the probability of observing χ 2

ν above a certain value
(Fig. 7.5-1). In other words, this test asks what the probability
is that such a high value would be observed purely by chance
due to the uncertainties of measurement. The more the degrees
of freedom, the less likely a high value is. For example, the
chance of observing χ 2

ν  greater than 1.5 is about 13% for ν = 10,
but less than 1% for ν = 100. Thus, the more data we have, the
more the degrees of freedom, and closer to 1 we expect χ2 to be.
This test does not tell specifically whether the data observed
are samples from the distribution predicted by the model, but
gives instead some insight into the probability. If χ 2

ν is too large,
there is likely to be something wrong.

One possibility is that the model does not include some
crucial factors. For example, a plate motion model may not
include an important plate boundary, and so does not describe
the data well. In this case, the misfit is greater than expected
from considering only random uncertainties of measurement,
because systematic errors are also present. Similarly, the misfit
to travel time in an earthquake location includes both errors of
measurement and the effects of velocity structure like lateral
heterogeneity. We sometimes rescale the uncertainties to make
χ 2

ν = 1, which lets us assign confidence limits using χ 2
ν. This

rescaling does not address the causes of the misfit, but impli-
citly lumps the systematic errors in with the errors of measure-
ment. To do better requires improving the model.

Conversely, if χ 2
ν is too small, Fig. 7.5-1 indicates that some-

thing is also likely to be wrong. For example, for ν = 10, there is
only about a 2% chance of observing χ 2

ν less than 0.3, and the
probability is less for more degrees of freedom. This is because
the data are unlikely to be fit that well, given errors of measure-
ment. About one-third (100 − 68%) of the data should be misfit



by at least 1σ, and about 5% should be outside the 2σ range.
Hence a low χ 2

ν value, which we might view as showing an
excellent fit, is more likely to imply that the uncertainties in the
data have been overestimated, and have thus made χ 2

ν appear
too small. For example, χ 2

ν for the NUVEL-1 model is 0.24,
whereas it is expected to lie with 95% probability between 0.93
and 1.07. This effect is also seen for other plate motion models,
suggesting that the assigned data uncertainties are more like
95% (2σ) confidence limits than one standard deviation. If so,
the uncertainties in the model are correspondingly less than
implied by the model variance–covariance matrix. Thus the χ2

test formalizes the adage that if something seems too good to be
true, it probably is.1

A second issue is whether the number of model parameters is
appropriate. As discussed in Chapter 5, there are often several
possible plate boundary geometries for an area. Naturally,
more plates can describe plate motions in an area better
because the model has more parameters. Thus we ask whether
the improved fit shown by a lower value of χ 2

ν is more than
expected purely by chance due to the additional parameters.
For example, a set of data in the x–y plane are always better
fit by a higher-order polynomial, such as a quadratic versus a
straight line.

This issue can be addressed using the F-ratio test, which gives
insight into whether a set of data are significantly better fit by a
model with more parameters. The idea is that if a set of n data
are fit by two models, one with r parameters (n − r degrees
of freedom) and a second with p parameters (n − p degrees of
freedom) with p greater than r, the second model should fit the
data better, and χ2(p) should be less than χ2(r). To test if the re-
duction in χ2 is greater than would be expected simply because
additional model parameters are added, we form the statistic

  
F

r p p r

p n p
  

[ ( )  ( )]/(   )

( )/(   )
.=

− −
−

χ χ
χ

2 2

2
(11)

Statistical tables or mathematical software give the probability
PF (F, ν1, ν2) of observing an F value greater than that observed
for a random sample with ν1 = (p − r) and ν2 = (n − p). Thus,
for example, if PF is 0.01, there is only a 1% chance that
the improved fit of the model with more parameters is due
purely to chance. Because this test depends on the ratio of χ2,
it is not affected if the uncertainties are consistently over- or
under-estimated.

We can use F to test whether the fit to n relative motion data
of a model with p + 1 plates is significantly better than that of
one with p plates. The p plate model has 3(p − 1) parameters
(n − 3p + 3 degrees of freedom), whereas the p + 1 plate model
has 3p parameters (n − 3p degrees of freedom). Thus

1 This approach has been used to argue that Mendel’s famous results in 1865 that
established the science of genetics are so good a the probability of observing them is
0.004% a that they are suspect. Similarly, instructors have used χ2 tests to show that
students’ results reported in laboratory classes are so good that they are unlikely to
have actually been obtained.

F
p p

p n p
  

[ (  )  (    )]/

(    )/(   )
=

− +
+ −

χ χ
χ

2 2

2

1 3

1 3

plates plates

plates
(12)

is tested using PF(F, ν1, ν2) with ν1 = 3 and ν2 = (n − 3p). If the
risk that the improved fit would occur by chance is small, per-
haps less than 1%, then we treat the additional plate as distinct.
Conversely, if the improved fit is likely to result simply from
the additional parameters, the data do not strongly indicate
the presence of an additional plate. For example, such tests
show that although the boundary between them is indistinct,
North and South America should be treated as separate plates.
This approach is used to investigate complicated regions where
the plate geometry is unclear, such as near Japan and in the
Indian Ocean. Similarly, we can investigate regions of intraplate
deformation to see whether there is resolvable motion.

In many applications these or other statistical tests can be
used to examine how well a model fits the data and to gain in-
sight into whether the model is too simple (underparametrized)
to explain the data or more complicated (overparametrized)
than is required by the data. For example, we can examine
cases when adding more layers to a velocity model significantly
improves the fit to travel time data, when a more complex
earthquake source model fits seismograms significantly better,
or when a more complex model of earthquake recurrence de-
scribes an earthquake history better. In these applications the
statistical tests address only the data used, so a more complex
model may be justified based on other data, even if it is not
required by the data tested. Moreover, we often suspect that
the earth is more complicated than we would like when using
simple statistical models. In particular, we often have little a
priori knowledge of how to estimate the random and system-
atic errors. Even so, it is worth subjecting models to tests and
seeing how well the data support our beliefs. This testing is a
key part of the cycle (Fig. 1.1-8) by which models are refined
using new data and model parameterizations.

Further reading

Many discussions of inverse theory, including ours, are based on Lanczos
(1961). Applications in the earth sciences, especially seismology, are dis-
cussed in texts and reviews including Parker (1977), Aki and Richards
(1980), and Menke (1984). Treatments of tomographic methods in seis-
mology are given by Nolet (1987), Thurber and Aki (1987), Spakman and
Nolet (1988), Humphreys and Clayton (1988), and Romanowicz (1991).
Inversion for the properties of stratified media is reviewed by Wiggins
(1972).

Tests for goodness of fit are discussed in statistical texts such as
Bevington and Robinson (1992) and Freedman et al. (1991); the latter
treats the issue of Mendel’s results. Chase (1972) and Minster et al. (1974)
present the inverse problem for plate motions; the latter gives the partial
derivatives. Stein and Gordon (1984) and DeMets et al. (1990) discuss ap-
plications of the F-ratio test to plate motions and intraplate deformation.

7.5 Further reading 441
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Problems

1. Show the following matrix identities:
(a) For an arbitrary (not square) matrix A, the matrices ATA and

AAT are symmetric.
(b) For an arbitrary (not square) matrix B and a symmetric

matrix A, (BT AB)T = BTAB.
(c) For square matrices A and B such that (AB)−1 exists, (AB)−1 =

B−1A−1.
2. Show that if a square matrix G has an inverse, the inverse and gener-

alized inverse are identical.
3. Show that if the variance–covariance matrix of the data is diagonal,

σ 2
d = σ 2

ijδij (with no summation implied), its inverse is another dia-
gonal matrix Wd = δij /σ 2

ij. (Also with no summation implied.)
4. Show that the model variance–covariance matrix (Eqn 7.2.32) σ 2

m =
G−gσ 2

d(G−g)T reduces to σ 2
m = σ 2(GTG)−1 when the data errors are

uncorrelated and equal, so the data variance–covariance matrix is a
constant times the identity matrix, σ 2

d = σ 2δij.
5. Show that if the data errors are uncorrelated but not equal, such that

the data variance–covariance matrix of the data is the diagonal
matrix σ 2

d = σ 2
ijδij with inverse Wd (problem 3):

(a) The least squares criterion (Eqn 7.2.14) for the inverse prob-
lem gives rise to the weighted least squares solution ∆m =
(GTWdG)−1GTWd ∆d.

(b) The model variance–covariance matrix is σ 2
m = (GTWdG)−1.

6. For a halfspace with uniform (and known) velocities α and β:
(a) Show how the location problem can be formulated to use

both P-wave and S-wave first arrival times as data. Write the
data vector, model vector, and partial derivatives. How do
these differ from the case for P waves alone?

(b) Show how the location problem can be formulated to use only
the difference between P-wave and S-wave first arrival times
as data. Write the data vector, model vector, and partial
derivatives. How do these differ from the case for P waves
alone? How might you apply this method if only the P velocity
were known? Under what conditions might this method be
useful?

7. For the idealized tomographic experiment in Figure 7.3-2:
(a) Show how one row of the G matrix in Eqn 7.3.10 can be

derived from the others, such that the four teleseismic ray
paths are not linearly independent. Give a physical inter-
pretation of this result.

(b) Find four rows of the G matrix in Eqn 7.3.6 that are linearly
independent, and give a physical interpretation of this result.

Computer problems
C-1. Write a subroutine to find the generalized inverse G−g =

(GTG)−1GT of an (n × r) matrix G, using a matrix inversion
subroutine. As a test, check that the solution satisfies the criterion
that for a square matrix G that has an inverse, the inverse and
generalized inverse are identical.

C-2. For a homogeneous halfspace with P-wave velocity α:
(a) Write a subroutine to compute the distance and travel time

between two points (x, y, z) and (xi, yi, zi). Test this for
some simple cases.

(b) Use the result of (a) to write a program that reads an earth-
quake location, origin time, and medium velocity and the
locations of n seismic stations, and finds the first arrival
time at each station.

(c) Write a subroutine using the result of (a) to compute the
partial derivatives of the first arrival time at a station with
respect to changes in the model parameters (location,
origin time, and medium velocity).

(d) Modify the result of (b) to compute arrival times for a start-
ing model (assumed location, origin time, and medium
velocity), and then locate the earthquake by inverting these
synthetic data to find the best-fitting model. The result of
C-1 should be useful. Have the program iterate until the
model change between iterations is less than a parameter
you set. The program should have the option to invert for
velocity or hold velocity fixed at an assumed starting value.

C-3. Test the location program with a set of station locations, a “real”
origin time and location, and an incorrect starting model. The
program should retrieve the “real” model. Once this works for
error-free data, add some errors to the travel times, either by using
your computer’s random number function or by simply choosing
some numbers. Invert for the best-fitting model, and see how
the result of the inversion changes as the errors become a larger
fraction of the travel times. How do the results depend on
whether the velocity is held fixed or inverted for?

C-4. Compute and compare χ2 and χ2
ν for C-3 for cases in which

you inverted for velocity and in which the velocity is fixed at an
incorrect value. Using the F-ratio test, does the improved fit due to
inverting for velocity seem significant?



Appendix: Mathematical and
Computational Background

If you wish to learn about nature, to appreciate nature, it is necessary to understand the language she speaks in. She offers her informa-
tion only in one form; we are not so unhumble as to demand that she change before we pay attention.

Richard Feynman, The Character of Physical Law (1982)

A.1 Introduction

The study of seismology follows a pattern characteristic of
many scientific disciplines. We first identify phenomena that
we seek to understand, such as the propagation of seismic
waves through the solid earth. We then consider the physics of
the simplest relevant case, such as the propagation of a wave
of a single frequency through a uniform material, formulate
the problem mathematically, and derive a solution. From this
solution, we build up mathematical solutions to more complex
problems, each of which is ideally a better approximation to
the complexities of the real earth. Although the simpler pro-
blems can be solved analytically, eventually the complexities
require numerical techniques.

We thus rely on a set of mathematical techniques often used
in physical problems. Experience suggests that although many
readers are familiar with most of the mathematics required
in this book, a review is often helpful. This appendix briefly
summarizes a broad range of material. The first sections treat
a variety of mathematical topics. The final section reviews
some concepts relevant to the use of computers for scientific
calculations.

In using these mathematical techniques, it is worth bear-
ing in mind that we are invoking the special power of math-
ematics to deal with physical problems. This power is that if a
physical problem is posed correctly in mathematical terms, then
applying mathematical techniques to this formulation yields
quite different, and often apparently unrelated, statements
that also correctly describe the physical world. For example,
in Section 2.4 we used the equations of elasticity and applied
vector calculus to derive the properties of seismic waves that

we observe. Similarly, in Section 2.5 we derived an observed
physical relation, Snell’s law, starting from three different phys-
ical formulations. Conversely, we have seen that different phys-
ical phenomena can be described using similar mathematical
approaches and so have some deep similarities. Although in
hindsight such successes may not seem surprising, because
many of the mathematical methods we use were developed to
solve such physical problems, they illustrate the intimate con-
nection between sciences like seismology and mathematics.1

A.2 Complex numbers

In several of our applications, notably in describing propagat-
ing waves and their frequency content, complex numbers are
helpful. We thus briefly review some of their properties.

The complex number z = a + ib, where     i  = −1, has a real
part, a, and an imaginary part, b. These relations are sometimes
written a = Re (z) and b = Im (z). Complex numbers are typ-
ically plotted in the complex plane with their real parts on the
x1 axis and their imaginary parts on the x2 axis (Fig. A.2-1).
Alternatively, a complex number can be written in polar coor-
dinate form as

z = a + ib = reiθ = r(cos θ + i sin θ). (1)

1 Most seismologists are more conservative than Paul Dirac, a leader in the
development of quantum physics, who invented the delta function. Dirac regarded
mathematical beauty as a guiding principle, stating that “it is more important to have
beauty in one’s equations than to have them fit experiment.”
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Fig. A.2-1 A number in the complex plane can be represented in terms of
its real and imaginary parts, z = a + ib, or in polar form z = reiθ.

The polar coordinates, the magnitude r and the phase angle θ,
can be expressed in terms of the real and imaginary parts as

  r a b    ,= +2 2 θ = tan−1 (b/a). (2)

and, conversely,

a = r cos θ, b = r sin θ. (3)

To describe complex numbers in all four quadrants of the com-
plex plane, θ ranges from 0 to 2π. Because the inverse tangent is
periodic with period π, the signs of the real and imaginary parts
are used to obtain the correct phase.

Complex numbers are equal when they have the same real
and imaginary parts. Two complex numbers in (a + ib) form are
added by adding the real parts and the imaginary parts:

(a1 + ib1) + (a2 + ib2) = (a1 + a2) + i(b1 + b2). (4)

Complex numbers can be multiplied either in the (a + ib) form:

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2), (5)

or in the magnitude and phase form:

r1eiθ 1r2e iθ 2 = r1r2ei(θ 1+θ 2). (6)

The conjugate of a complex number z, z*, has the same real
part and an imaginary part of opposite sign. Because

z* = a − ib = r cos θ − ir sin θ

= r cos (−θ) + ir sin (−θ) = re− iθ, (7)

the conjugate has the same magnitude but the opposite phase.
Hence the square of the magnitude of a complex number can be
found by multiplication by the complex conjugate,

| z |2 = zz*= (a + ib)(a − ib) = (a2 + b2) = reiθre−iθ = r2. (8)

By combining

eiθ = cos θ + i sin θ and e−iθ = cos θ − i sin θ (9)

we obtain the definitions of the sine and cosine functions in
terms of complex exponentials

cos θ = (eiθ + e− iθ)/2 and sin θ = (eiθ − e−iθ)/2i. (10)

These relations yield formulae for the trigonometric functions
of the sum of the angles because

e i(θ1+θ2) = cos (θ1 + θ2) + i sin (θ1 + θ2) (11)

and, by Eqn 6,

ei(θ1+θ2) = eiθ1eiθ2 = (cos θ1 + i sin θ1)(cos θ2 + i sin θ2)

= (cos θ1 cos θ2 − sin θ1 sin θ2)

+ i(sin θ1 cos θ2 + cos θ1 sin θ2), (12)

so we can equate the real and imaginary parts and find

cos (θ1 + θ2) = cos θ1 cos θ2 − sin θ1 sin θ2 (13)

and

sin (θ1 + θ2) = sin θ1 cos θ2 + cos θ1 sin θ2. (14)

These expressions are symmetric in θ1 and θ2, as expected. The
corresponding relations for the trigonometric functions of the
difference of two angles are found by making θ2 negative. Set-
ting θ1 = θ2 gives expressions for cos (2θ) and sin (2θ).

The relations for the product of trigonometric functions of
two angles can also be found using complex exponentials

cos θ1 cos θ2 =
  

(   ) (   )e e e ei i i iθ θ θ θ1 1 2 2

2 2

+ +− −

=
  

1

4
[(ei(θ1+θ 2) + e−i(θ1+θ 2)) + (ei(θ1−θ 2) + e−i(θ 1−θ 2))]

=
  

1

2
[cos (θ1 + θ2) + cos (θ1 − θ2)] (15)

and, similarly,

sin θ1 sin θ2 =
    

(   ) (   )e e

i

e e

i

i i i iθ θ θ θ1 1 2 2

2 2

− −− −

=
  

1

4
[(ei(θ1−θ 2) + e−i(θ1−θ 2 )) − (e i(θ1+θ 2) + e− i(θ1+θ 2))]

= 
  

1

2
[cos (θ1 − θ2) − cos (θ1 + θ2)]. (16)
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Fig. A.3-1 A vector u is expressed by the Cartesian unit basis vectors and
its components: u = u1ê1 + u2ê2 + u3ê3.

notation has advantages. The x1, x2, x3 notation is more con-
venient for some derivations, and the x, y, z notation is some-
times clearer in physical problems. We use the x1, x2, and x3
notation in this appendix, and use whichever notation seems
more convenient in other discussions.

A point in this coordinate system is described by its x1, x2,
and x3 coordinates. Because a vector can be defined by a line
from the origin (0, 0, 0) to the point (u1, u2, u3), the three num-
bers u1, u2, and u3 are the components of the vector u. A vector
is denoted either by boldface type or by a set of its components

u = (u1, u2, u3) = (ux, uy, uz). (2)

A Cartesian coordinate system is described by three ortho-
gonal unit basis vectors, ê1, ê2, and ê3, along the x1, x2, and x3
coordinate axes:

ê1 = (1, 0, 0) ê2 = (0, 1, 0) ê3 = (0, 0, 1). (3)

The caret, or “hat” superscript, indicates a unit vector, whose
length is 1. The vector u is formed from its components and the
basis vectors

u = u1ê1 + u2ê2 + u3ê3 = (u1, u2, u3). (4)

Now, consider a second Cartesian coordinate system with
the same origin and different axes x1′, x2′, and x3′, along which
unit basis vectors ê1′, ê2′, and ê3′  are defined (Fig. A.3-2). In this
coordinate system the components of u are different,

u = u1′ê1′  + u2′ê2′  + u3′ê3′  = (u1′ , u2′ , u3′). (5)

Fig. A.3-2 A vector u is described in each of two orthogonal coordinate
systems by the Cartesian unit basis vectors of the coordinate system and
the components of the vector in the coordinate system: u = u1ê1 + u2ê2 +
u3ê3 = u ′1ê ′1 + u ′2ê′2 + u′3ê ′3. Although the components differ between
coordinate systems, the vector remains the same.A.3 Scalars and vectors

A.3.1 Definitions

In seismology, we deal with several types of physical quan-
tities. The simplest, scalars, are numbers describing a physical
property at a given point that is independent of the coordinate
system used to identify the point. Temperature, pressure, mass,
and density are familiar examples. Mathematically, if a point
is described in one coordinate system by (x1, x2, x3) and in a
second by (x1′, x2′, x3′), the value of a scalar function φ in the
first coordinate system equals that of the corresponding scalar
function in the second

φ(x1, x2, x3) = φ′(x1′, x2′ , x3′). (1)

The distance between two points is a scalar because although
the coordinates of the points depend on the coordinate system,
the distance does not.

Vectors are more complicated entities that have magnitude
and direction. In seismology, the most common vector is
the motion, or displacement, of a piece of material within the
earth due to the passage of a seismic wave. Vectors transform
between different coordinate systems in a specific way. Thus, if
the horizontal ground motion is recorded with seismometers
oriented northeast–southwest and northwest–southeast, the
north–south and east–west components of the displacement
can be found using the properties of vectors. We will see that
although the components depend on the coordinate system, the
magnitude and direction of the vector remain the same.

Consider the familiar Cartesian coordinate system (Fig. A.3-
1) with three mutually perpendicular (orthogonal) coordinate
axes. There are two standard notations for these coordinates
and axes: either the x1, x2, and x3, or the x, y, and z axes. Each
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mathematical convention of defining angles counterclockwise
from x1 differs from the geographical convention of defining
angles clockwise from North (x2), so conversions are often
needed.

A.3.2 Elementary vector operations

The simplest vector operation is multiplication of a vector by a
scalar

αu = (αu1, αu2, αu3). (11)

For example, in two dimensions,

αv = (αv1, α v2) (12)

yields a vector with magnitude

((αv1)2 + (αv2)2)1/2 = | α | (v1
2 + v2

2)1/2 = | α | | v | (13)

whose direction is given by

tan θ = αv2/αv1 = v2/v1. (14)

Multiplication by a positive scalar thus changes the magnitude
of a vector but preserves its direction. Similarly, multiplication
by a negative scalar changes the magnitude of a vector and re-
verses its direction. û, a unit vector in the direction of u is
formed by dividing u by its magnitude

û = u / | u |. (15)

The sum of two vectors is another vector whose components
are the sums of the corresponding components, so if

a = a1ê1 + a2ê2 + a3ê3 and b = b1ê1 + b2ê2 + b3ê3,

a + b = (a1 + b1)ê1 + (a2 + b2)ê2 + (a3 + b3)ê3 = b + a. (16)

Addition can be done graphically (Fig. A.3-4) by shifting one
vector, while preserving its orientation, so that its “tail” is at
the “head” of the other, and forming the vector sum. For ex-
ample, the total force vector acting on an object is the vector
sum of the individual force vectors. Equation 16 and Fig. A.3-4
show that vector addition is commutative; it does not matter in
which order the vectors are added.

A.3.3 Scalar products

There are two methods of multiplying vectors. The first, the
scalar product (also called the dot product or inner product),
yields a scalar:

a · b = a1b1 + a2b2 + a3b3 = | a | | b | cos θ, (17)

where θ is the angle between two vectors. To see that the two
definitions of the scalar product are equivalent, consider a two-

Fig. A.3-3 A vector in two dimensions making an angle θ with the x1 axis.

x2

v2

θ

v

v1

x1

Thus the same physical vector is represented in a different
coordinate system, described by a different set of basis vectors,
using different components. The essential idea is that the
vector remains the same, or invariant, regardless of the coordin-
ate system, although the numerical values of its components
change. Physical laws, like Newton’s law stating that the force
vector equals the product of the mass and the acceleration
vector (the second derivative with respect to time of the dis-
placement vector), are written in vector form because the phys-
ical phenomenon does not depend on the coordinate system
used to describe it.

The length or magnitude of a vector, | u |, is a scalar, and thus
the same in different coordinate systems. By the Pythagorean
theorem, the length is

| u | = (u1
2 + u2

2 + u3
2)1/2 = (u′1

2 + u′2
2 + u′3

2)1/ 2. (6)

The zero vector, 0, all of whose components are zero in any
coordinate system, has zero magnitude.

A vector is specified in either Cartesian coordinates by its
components or in polar coordinates by its magnitude and direc-
tion. For example, in a two-dimensional (x1, x2) coordinate
system (Fig. A.3-3), the vector v can be written in terms of its
components

v = (v1, v2) (7)

or its magnitude

| v | = (v1
2 + v2

2)1/2 (8)

and direction, given by the angle θ that v makes with the x1
direction

θ = tan−1 (v2/v1). (9)

Just as | v | and θ are given by the components, so the compon-
ents are given by | v | and θ

v1 = | v | cos θ and v2 = | v | sin θ. (10)

By analogy, a vector in three dimensions is specified by either
its three components or its magnitude and the angles it forms
with two of the coordinate axes. It is worth noting that the



Equation 17 shows several features of the scalar product:
• The scalar product commutes: a · b = b · a.
• The scalar product of two perpendicular vectors is zero,

because cos 90° = 0.
• The scalar product of a vector with itself is its magnitude

squared:

a · a = a1a1 + a2a2 + a3a3 = | a |2. (22)

The definition of the scalar product is generalized for vectors
with complex components. To see why, note that for a vector
a = (i, 1, 0), where i =  −1, Eqn 22 would give a squared mag-
nitude of zero. Because we would like only the zero vector, all
of whose elements are zero, to have zero magnitude, Eqn 17 is
generalized to

a · b = a1*b1 + a2*b2 + a3*b3 (23)

where * indicates the complex conjugate. Thus the definition of
the squared magnitude (Eqn 22) becomes

a · a = a1*a1 + a2*a2 + a3*a3 = | a |2. (24)

For example, the squared magnitude of | (i, 1, 0) |2 = (i)(−i) +
(1)(1) = 2. These complex definitions reduce to the familiar
cases, (Eqns 17 and 22), for vectors with real components.

The relations between the unit basis vectors for a Cartesian
coordinate system, ê1, ê2, and ê3, are easily stated using their
scalar products. Because each is perpendicular to the other two,
the scalar product of any two different ones is zero,

ê1 · ê2 = ê1 · ê3 = ê2 · ê3 = 0, (25)

and the scalar product of each with itself is its squared
magnitude

ê1 · ê1 = ê2 · ê2 = ê3 · ê3 = 1. (26)

The unit basis set of vectors is orthonormal; each is ortho-
gonal (perpendicular) to the others and normalized to unit
magnitude.

The projection, or component of a vector in a direction given
by a unit vector, is the scalar product of a vector with the unit
vector. Using this idea, a component of a vector can be found
from its projection on the unit basis vector along the corres-
ponding axis. Thus the x1 component of u is

u · ê1 = (u1ê1 + u2ê2 + u3ê3) · ê1 = u1, (27)

with the other components defined similarly.

A.3.4 Vector products

A second form of multiplication, the vector or cross product,
forms a third vector from two vectors by

Fig. A.3-4 Addition of vectors a and b. The addition can be done
analytically, by adding components, or graphically. Vector addition is
commutative, as the order of addition is irrelevant.
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Fig. A.3-5 Derivation of alternative definitions of the scalar product a · b
in two dimensions.

dimensional case (Fig. A.3-5) with a = (a1, a2) and b = (b1, b2). If
a and b make angles θ1 and θ2 with the ê1 axis, then

a · b = | a | | b | cos θ = | a | | b | cos (θ2 − θ1). (18)

Using a trigonometric identity (Eqn A.2.13) we expand

cos θ = cos (θ2 − θ1) = cos θ2 cos θ1 + sin θ2 sin θ1. (19)

Because

cos θ1 = a1/(a1
2 + a2

2)1/2 and sin θ1 = a2/(a1
2 + a2

2)1/2, (20)

and similar definitions hold for θ2 and b, substitutions for the
angles in Eqn 18 show that

| a | | b | cos θ = 
   

| | | |a b (   )

(   ) (   )/ /

a b a b

a a b b
1 1 2 2

1
2

2
2 1 2

1
2

2
2 1 2

+
+ +

= a1b1 + a2b2. (21)
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Fig. A.3-6 Illustration of the right-hand rule giving the orientation of the
vector product a × b.

b
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a × b
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v

ω

Fig. A.3-7 The vector product v = ωωωωω × r describes a rotation.

For example, the torque about the x3 axis is τ3 = (r1F2 − r2F1),
so each component of the force contributes a counterclockwise
torque equal to the component times its lever arm, the perpen-
dicular distance of the point from that axis (Fig. A.3-8).

Some useful identities, whose proofs are left as problems, are

a · (b + c)= a · b + a · c

a × (b + c)= a × b + a × c

a · (b × c)= b · (c × a) = c · (a × b)

a × (b × c)= b(a · c) − c(a · b). (33)

A.3.5 Index notation

Vector equations, such as the definition of the cross product,
can be cumbersome when written in terms of the components.
Simplification can be obtained using index notation, whereby

Fig. A.3-8 The x3 component of the vector product τ = r × F gives the
torque, r1F2 − r2F1 about the x3 axis. In this case r1F2 is greater than r2F1,
so counterclockwise rotation about the x3 axis occurs.

O

x3

x2

x1r1

r2

F2

F1

F

r

a × b = (a2b3 − a3b2)ê1 + (a3b1 − a1b3)ê2

+ (a1b2 − a2b1)ê3, (28)

which can be written as the determinant

a b
ê ê ê

    × =
1 2 3

1 2 3

1 2 3

a a a
b b b

. (29)

The vector product of two vectors is perpendicular to both
vectors. For example, if a and b are in the x1−x2 plane, a3 = b3
= 0, and by Eqn 28, the vector product has only an ê3 com-
ponent. This can be shown in general by evaluating a · (a × b) =
b · (a × b) = 0. Geometrically, the direction of the vector prod-
uct is found by a “right-hand rule” (Fig. A.3-6): if the fingers
of a right hand rotate from a to b, the thumb points in the
direction a × b. The magnitude of the cross product is

| a × b | = | a | | b | sin θ, (30)

where θ is the angle between the two vectors. The cross product
is zero for parallel vectors because sin 0° = 0, so the cross prod-
uct of a vector with itself is zero.

The vector product often appears in connection with rota-
tions, such as those used to describe the motion of lithospheric
plates (Section 5.2). For example, if an object located at a
position r undergoes a rotation, its linear velocity v is given by

v = ωωωωω × r, (31)

where ω is the rotation vector, which is oriented along the axis
of rotation, with a magnitude | ω | that is the angular velocity
(Fig. A.3-7). Similarly, the vector product is used to define the
torque, which gives the rate of change of angular momentum.
A force F, acting at a point r, gives a torque

τ = r × F. (32)



an index assuming all possible values replaces the subscripts
indicating coordinate axes. For example, the vector u = (u1, u2,
u3) is written ui, where i can be 1, 2, or 3. In this notation, the
scalar product is

a · b = a1b1 + a2b2 + a3b3 = 
    

a bi i
i=
∑

1

3

. (34)

Because the sum over all coordinates appears frequently, the
Einstein summation convention is often used, whereby an
index repeated twice implies a summation over that index, and
the summation sign is not explicitly written. Hence the scalar
product of two real vectors is written

a · b = aibi, (35)

using implied summation over the repeated index i. Similarly,
the square of the magnitude of a real vector is

| u |2 = ui ui. (36)

A repeated index is called a “dummy” index, like a dummy
variable of integration, because it is used only within the sum-
mation. The form of the expression indicates that uiui is a
scalar; because the repeated index is summed, no index remains
“free.” By contrast, ui is a vector, because there is a free index.

Index notation is further simplified by introducing two sym-
bols, δij and ε ijk. The Kronecker delta, δij, is defined

δij = 0 if i ≠ j,

= 1 if i = j. (37)

So, for example, δ11 = 1, but δ12 = 0. Using the Kronecker
delta symbol, the relations between the Cartesian basis vectors
(Eqns 25, 26) can be written compactly as

êi · êj = δij. (38)

The Kronecker delta, a function of two discrete variables i and
j, is analogous to the Dirac delta function which is a function of
a continuous variable (Section 6.2.5).

The permutation symbol, εijk, is defined as

ε ijk = 0 if any of the indices are the same,

= 1 if i, j, k are in order, i.e., (1, 2, 3), (2, 3, 1),
or (3, 1, 2)

= − 1 if i, j, k are out of order,
i.e., (2, 1, 3), (3, 2, 1), (1, 3, 2). (39)

Cases where the indices are in order are known as even, or
cyclic, permutations of the indices; those in which the indices
are out of order are known as odd permutations. Because of the
symmetries in the definition, εijk = ε jki = εkij. A useful relation,
whose proof is left for the problems, is

εijkεist = δjsδkt − δ jtδks . (40)

Using index notation, the definition of the vector product
(Eqn 28) becomes

(a × b)i = 
    j k= =
∑ ∑

1

3

1

3

εijkajbk = ε ijkajbk, (41)

where the last form uses the summation convention. The nota-
tion shows that the cross product yields a vector because only
one index, i, remains free after the repeated indices j and k are
summed. To see that the index notation gives the correct defini-
tion, we expand the i = 2 component as

(a × b)2 = ε211a1b1 + ε212a1b2 + ε213a1b3 + ε221a2b1 + ε222a2b2

+ ε223a2b3 + ε231a3b1 + ε232 a3b2 + ε233a3b3

= (a3b1 − a1b3), (42)

because the only nonzero ε ijk terms are ε213 = −1 and ε231 = 1.
Index notation points out an interesting feature of the vec-

tor product. Because aibi = bi ai, the scalar product commutes.
By contrast, the properties of the permutation symbol show
that

a × b = ε ijkajbk = −εijkbjak = −b × a, (43)

so the order matters for the vector product.
Although index notation seems unnatural at first, it does

more than simply shorten expressions. The notation explicitly
indicates what operations must be performed, and thus makes
them easier to evaluate. For example, suppose we seek to show
that the cross product of a vector with itself is zero. In contrast
to (a × a), the notation εijkaj ak shows how the cross product
should be evaluated. Because aj ak is symmetric in the indices
j and k, the permutation symbol makes the terms involving
any pair of j and k sum to zero. We will see that index notation
makes the complicated expressions that we encounter in study-
ing stress and strain easier to evaluate.

A.3.6 Vector spaces

These concepts for vectors can be generalized in several ways.
In three dimensions any vector is a weighted combination of
three basis vectors. The usual choice of basis vectors along
coordinate axes is for simplicity. We could choose any three
mutually orthogonal vectors, which need not be of unit length,
to be the basis vectors. To see this, remember that a physical
vector does not depend on the coordinate system.

Moreover, the idea of vectors in two- or three-dimensional
space can be generalized to spaces with a larger number of
dimensions. For example, given unit vectors

ê1 = (1, 0, 0, 0, 0), ê2 = (0, 1, 0, 0, 0), ê3 = (0, 0, 1, 0, 0),

ê4 = (0, 0, 0, 1, 0), ê5 = (0, 0, 0, 0, 1), (44)

A.3 Scalars and vectors 449
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a vector u can be formed from the basis vectors and components

u = u1ê1 + u2ê2 + u3ê3 + u4ê4 + u5ê5 = (u1, u2, u3, u4, u5). (45)

This vector is defined in a five-dimensional space, with five axes
each orthogonal to the others, because their scalar products are
zero. Although this is difficult to visualize (or draw), the math-
ematics carries through directly from the three-dimensional
case. N mutually orthogonal vectors thus provide a basis for an
N-dimensional space.

These ideas are formalized in terms of vectors in a general
linear vector space. For our purposes, a vector space is a collec-
tion of vectors x, y, z, satisfying several criteria:

• The sum of any two vectors in the space is also in the
space.

• Vector addition commutes: x + y = y + x.
• Vector addition is associative: (x + y) + z = x + (y + z).
• There exists a unique vector 0 such that for all x, x = x + 0.
• There exists a unique vector −x such that for all x, x + (−x)

= 0.
• Scalar multiplication is associative: α(βx) = (αβ)x.
• Scalar multiplication is distributive: α(x + y) = α x + αy

and (α + β)x = (αx + βx).
A point worth considering is the number of independent

vectors in a vector space. Given N vectors x1, x2, . . . , xN in a
linear vector space, a weighted sum ∑αix

i is called a linear
combination. The N vectors are linearly independent if

  i

N

=
∑

1

α i x
i = 0 only when all α i = 0, (46)

so that no vector can be expressed as a combination of the
others. Otherwise, the vectors are linearly dependent, and one
can be expressed as a linear combination of the others.

This idea corresponds to that of basis vectors. If N basis
vectors are mutually orthogonal, they are linearly independent.
Because any vector in an N-dimensional space is a linear com-
bination of N linearly independent basis vectors, the basis
vectors span the space. Thus the dimension of a vector space
is the number of linearly independent vectors within it. For
example, we cannot find four linearly independent vectors in
three dimensions.

Though vector spaces sound abstract, they are useful in
seismology. For example, in Chapter 2 we represent travelling
waves by normal modes, which are orthogonal basis vectors in
a vector space, so any wave is a weighted sum of them. The
modes of a string (Section 2.2.5) form a Fourier series (Chap-
ter 6), in which a function is expanded into sine and cosine
functions that are the basis vectors of a vector space. A sim-
ilar approach is also used for the modes of the spherical earth
(Section 2.9). Vector space ideas are also used in inverting
seismological observations to study earth structure (Chapter
7).

A.4 Matrix algebra

A.4.1 Definitions

Matrix algebra is a powerful tool often used to study systems of
equations. As a result, it appears in seismological applications,
including stresses and strains, locating earthquakes, and seismic
tomography. We thus review some basic ideas, often stating
results without proof and leaving proofs for the problems. Fur-
ther discussion of these topics can be found in linear algebra texts.

Given a matrix A with m rows and n columns, called an
m × n matrix,

  

A

a a a
a a a

a a a

n

n

m m mn

  

. . .

. . .
. . . . . .
. . . . . .

. . .

=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

11 12 1

21 22 2

1 2

(1)

and a second matrix B, also with m rows and n columns,
matrix addition is defined by

  

A B

a b a b a b
a b a b a b

a b a b a b

n n

n n

m m m m mn mn

    

    . . .   
    . . .   
. . . . . .
. . . . . .

    . . .   

+ =

+ + +
+ + +

+ + +

⎛

⎝

⎜
⎜
⎜
⎜

11 11 12 12 1 1

21 21 22 22 2 2

1 1 2 2
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

. (2)

The usual convention is to indicate matrices with capital letters
and their elements with lower-case ones.

Matrix multiplication is defined such that for a matrix A that
is m × n and a matrix B that is n × r, the ij th element of the m × r
product matrix C = AB is defined by

cij = 
    k

n

=
∑

1

aikbkj = aikbkj . (3)

The ij th element of C is the scalar product of the i th row of A
and the j th column of B. As a result, for matrix multiplication
the two matrices need not have the same number of rows
and columns, but must have the number of columns in the first
matrix equal to the number of rows in the second. Often the
numbers of rows and columns in the two matrices allow multi-
plication in only one order. Thus, in the example above, A
“premultiplies” B, or B “postmultiplies” A. A convenient way
to remember this is that the number of columns in the first
matrix must equal the number of rows in the second, but this
dimension does not appear in the product. In the case of AB =
C, written schematically, we have [m × n][n × r] = [m × r].
Hence, in the final form in Eqn 3, the summation convention
shows that k is summed out, leaving i and j as free indices, so cij
is a matrix element. Furthermore, even if both AB and BA are
allowed, the two products are generally not equal, so matrix
multiplication is not commutative.



The identity matrix, I, is a square matrix (one with the same
number of rows and columns) whose diagonal elements are
equal to 1 while all other elements are 0:

  

I  

. . .

. . .
. . . . . . .
. . . . . . .

. . .

. . .

 .=

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟

1 0 0 0
0 1 0 0

0 0 1 0
0 0 0 1

(4)

The identity matrix has the property that for any square matrix
A,

AI = IA = A. (5)

The transpose of a matrix A, AT, is derived by placing the
rows of A into the columns of AT, so for C = AT,

cij = aji. (6)

The transpose has the properties that for matrices A and B,

(A + B)T = AT + BT and (AB)T = BTAT. (7)

With these definitions, vector operations can be expressed
using matrix algebra, by treating vectors as matrices with one
column. For example, premultiplication of a vector by a matrix
yields another vector, y = Ax, such that

yi = 
  j
∑ aij xj or yi = aij xj, (8)

where the second form uses the summation convention. Each
component yi is the scalar product of the i th row of A with x.
Similarly, the scalar product of two vectors is given by the
matrix product

a · b = aT b = 
  i
∑ ai bi = aibi . (9)

Thus the scalar product of two vectors yields a scalar, because a
1 × m matrix times an m × 1 matrix is a 1 × 1 matrix, or single
value. The squared magnitude of a real vector can be written as

| u |2 = u · u = uTu = 
  i
∑ ui ui = ui ui . (10)

For vectors with complex components, the scalar product
(Eqn A.3.23) is

a · b = a*T b = 
  i
∑ ai*bi = ai*bi. (11)

This brings us to a minor point of notation. In linear algebra,
as in the last few equations, it is common to treat vectors as

column vectors represented by n × 1 matrices with n rows and
one column

   

u  .
.

 ,=

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

u
u

un

1

2
(12)

whose transposes are row vectors (one row, n columns) like

uT = (u1, u2, . . . un). (13)

Nonetheless, to save space, we sometimes write

u = (u1, u2, . . . un), (14)

while treating u as a column vector when required. Strictly
speaking, we should call the row vector uT.

We often encounter matrices that are symmetric, or equal
their transposes,

A = AT, aij = aji. (15)

For a matrix A with complex elements, the conjugate matrix
A* is formed by taking the conjugate of each element, and the
transpose is generalized to the adjoint matrix A+ = A*T, which
is the complex conjugate of AT. Note that if the elements of A
are real, A+ = AT. A matrix A is Hermitian if it equals its adjoint

A = A+, aij = aji*. (16)

If A is real, “Hermitian” and “symmetric” are equivalent.

A.4.2 Determinant

A useful entity is the determinant of a matrix, written det A, or
| A |. For an n × n matrix,

det A =   . . . 
j

n

j

n

j

n

n1 21 1 1= = =
∑ ∑ ∑ s( j1, j2, . . . jn)a1j1

a2j2
. . . anjn

. (17)

This complicated sum over n indices, j1, j2, . . . jn, uses a genera-
lized form of the permutation symbol

s( j1, j2, . . . jn) = sgn 
    

 (  ).j jq p
p q n

−
≤ < ≤
∏

1

(18)

The sgn function is one times the sign of its argument, so that it
equals 1 if its argument is positive, −1 if its argument is negat-
ive, and 0 if its argument is zero. For n = 3,

s( j1, j2, j3) = sgn [( j2 − j1)(j3 − j1)(j3 − j2)], (19)

so that, for example,
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s(1, 2, 3) = 1, s(2, 1, 3) = −1, s(1, 1, 3) = 0. (20)

Because s(j1, j2, j3) suppresses terms with two equal indices, and
assigns others a sign depending on the order of the indices, it is
the same as the permutation symbol, ε j1 j2 j3

 (Eqn A.3.39).
The definition of the determinant gives the familiar result for

n = 2:

| A | = det    
a a
a a j j

11 12

21 22 1

2

1

2

1 2

⎛

⎝⎜
⎞

⎠⎟
=

= =
∑ ∑ s(j1, j2)a1j1

a2j2

= s(1, 1)a11a21 + s(1, 2)a11a22 + s(2, 1)a12a21 + s(2, 2)a12a22

= a11a22 − a12a21, (21)

because s(1, 1) = s(2, 2) = 0, s(1, 2) = 1, and s(2, 1) = −1. For
a matrix with only one element, the determinant equals the
matrix element.

Among the properties of determinants that we will find
useful in solving systems of equations are:

• The determinant of a matrix equals that of its transpose,
| A | = | AT |.

• If two rows or columns of a matrix are interchanged, the
determinant has the same absolute value but changes
sign.

• If one row (or column) is multiplied by a constant, the
determinant is multiplied by that constant.

• If a multiple of one row (or column) is added to another
row (or column), the determinant is unchanged.

• If two rows or columns of a matrix are the same, the
determinant is zero.

Proving these properties is left for the problems.

A.4.3 Inverse

For an n × n square matrix A, the inverse matrix A−1 is defined
such that multiplication by the inverse gives the identity matrix

A−1A = AA−1 = I. (22)

A−1 can be written in terms of the cofactor matrix, C, whose
elements

cij = (−1)i+j | Aij | (23)

are formed from the determinants of Aij, an (n − 1) × (n − 1)
square matrix formed by deleting the i th row and j th column
from A. If | A | is not zero,

A−1 = CT/ | A |. (24)

For the familiar n = 2 case, see problem 7.
A matrix whose determinant is zero does not have an inverse,

and is called singular. Because the determinant of a matrix with
two equal rows or columns is zero, such a matrix is singular.

More generally, a matrix is singular if a row or column is a
linear combination of the others.

The inverse of the matrix product AB, if AB is nonsingular,
obeys

(AB)−1 = B−1A−1. (25)

A matrix A whose transpose equals its inverse,

A−1 = AT, (26)

is called orthogonal. By extension, a matrix A with complex
elements is unitary if its adjoint and inverse are equal

A−1 = A+. (27)

A.4.4 Systems of linear equations

A vector–matrix representation is often used for systems of
linear equations. In this formulation, a system of m equations
for n unknown variables xi ,

a11x1 + a12x2 . . . + a1n xn = b1

a21x1 + a22x2 . . . + a2n xn = b2

. . .

am1x1 + am2x2 . . . + amn xn = bm (28)

is written in the form

j

n

=
∑

1

aij xj = bi or Ax = b, (29)

by defining the matrix of coefficients and column vectors for
the unknowns and right-hand side,
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a a a
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⎟
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(30)

The coefficient matrix A is m × n, because there is one row for
each equation, and one column for each unknown.

The Ax = b form illustrates that whether a system of equa-
tions can be solved depends on the matrix A. A system of equa-
tions is called homogeneous in the special case that b = 0, and
inhomogeneous for all other cases in which b ≠ 0. We consider
here only systems where the number of unknowns and equations
are equal, so the coefficient matrix A is square. If A possesses an
inverse, both sides can be premultiplied by A−1, and

A−1Ax = A−1b = Ix = x (31)



yields a unique solution vector x. For inhomogeneous systems,
computing A−1 provides a straightforward manner of solving
for the unknown variables xi. For homogeneous systems of
equations, the equation shows that x = 0 if A−1 exists. Thus,
for a homogeneous system to have a nonzero or nontrivial
solution, A must be singular. This occurs if the determinant of
A is zero, implying that some of the rows (or columns) of A are
not linearly independent. If a nontrivial solution of the homo-
geneous system exists, any constant times that solution is also
a solution.

If the coefficient matrix is singular, the corresponding
inhomogeneous system of equations does not have unique
solutions, and may have none. The existence of A−1 and the
solvability of the equations thus depend on whether the rows
and columns of A are linearly independent. For example, if the
rows are linearly dependent, there are fewer independent equa-
tions than unknowns and difficulties result, as discussed in the
context of inverse problems (Chapter 7).

A.4.5 Solving systems of equations on a computer

Standard methods exist to solve linear equations on a com-
puter. Consider the basic problem

Ax = b (32)
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in which we solve for x, given A and b. If A were a triangular
matrix T, with zeroes below the diagonal, it would be easy to
solve the system

Tx = d (33)

  

t t t
t t
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by starting with the simplest (bottom) equation, solving for x3,
and solving the other equations in succession to find x2 and
then x1. In other words, the solution

x3 = d3/t33 (34)

can be substituted into the middle equation to find

x2 = (d2 − t23x3)/t22. (35)

Then, by substituting x3 and x2 into the first equation,

x1 = (d1 − t13x3 − t12x2)/t11. (36)

The importance of this idea is that an arbitrary matrix can
be triangularized. Consider that the solution of the system of
equations is not changed by any of the following elementary
row operations:

(i) Rearranging the equations, which corresponds to inter-
changing rows in the b vector and matrix, i.e.,
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    . (37)

The solution is unchanged because the order of the
equations is arbitrary.

(ii) Multiplying an equation by a constant c, which corre-
sponds to multiplying a row of A and the correspond-
ing element of b by a constant, i.e.,
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(iii) Adding two equations, which corresponds to adding a
multiple of one row to another, i.e.,

    

ca a ca a ca a
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(39)

Thus if the system Ax = b is transformed into Tx = d using
elementary row operations, the two systems of equations have
the same solutions x. This provides a fast method of solving the
system: combine A and b into a single augmented matrix

   

( , )  A
a a a b
a a a b
a a a b

b =
⎛

⎝

⎜
⎜
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⎞

⎠

⎟
⎟
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11 12 13 1

21 22 23 2

31 32 33 3

(40)

and triangularize the augmented matrix to obtain

   

( , )   ,T
t t t d

t t d
t d

d =
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⎜
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⎞

⎠

⎟
⎟
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11 12 13 1

22 23 2

33 3

0
0 0

(41)

which represents a set of equations easily solved for x by the
method in Eqns 34–6.

The matrix is triangularized using the following method
column by column:

• Find the element of maximum absolute value in the
column on or below the diagonal.

• If this “pivot” element is below the diagonal, interchange
rows to get it on the diagonal.

A.4 Matrix algebra 453
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• Subtract multiples of the pivot row from rows below it to
get zeroes below the diagonal.

The pivoting, though not absolutely necessary, avoids possible
numerical difficulties. Note that once a column is zeroed below
the diagonal, we do not have to think about it any more.

For an illustration of this method, called Gaussian elimi-
nation with partial pivoting, consider solving the system of
equations

x1 + x2 = 5,

4x1 + x2 + x3 = 4,

2x1 + 2x2 + 2x3 = 3. (42)

This can be expressed in matrix form as
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(43)

and solved by triangularizing the augmented matrix

 

1 1 0 5
4 1 1 4
2 2 2 3
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⎞
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⎟

 . (44)

To get zeroes below the diagonal in the first column, we first
move 4, the element with the largest absolute value in the first
column, to the diagonal by interchanging rows

 

4 1 1 4
1 1 0 5
2 2 2 3
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 . (45)

We then subtract 1/4 times the first row from second, and 1/2
times the first row from third, leaving

 

4 1 1 4
0 0 75 0 25 4
0 1 5 1 5 1

. .

. .
 .−
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(46)

Next, to zero the elements below the diagonal in the second col-
umn, we interchange rows to get the pivot for this column, 1.5,
on the diagonal:
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and subtract 0.75/1.5 = 0.5 times the second row from the third
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0 0 1 3 5
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(48)

to complete the triangularization. We then solve the equations
for x, beginning with the bottom one, as in Eqns 34–6.

A similar procedure can be used to invert a matrix. This
method uses the idea that two vector–matrix equations

Ax = b and Ay = c (49)

can be combined into one by forming an augmented matrix
from each pair of vectors,

X = (x, y), B = (b, c), (50)

and writing the matrix equation

AX = B. (51)

Because x, the solution to Ax = b, is not changed by elementary
row operations on the augmented matrix (A, b), the corres-
ponding solution to AX = B is unaffected by elementary row
operations on the augmented matrix (A, B).

To apply this to matrix inversion, consider a special case

AX = I, (52)

whose solution X = A−1 is the inverse of the n × n matrix A. X
is unaffected by elementary row operations that convert the
augmented matrix
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. . . . . . . .
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to one whose left side is the identity
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1 0
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11 1

1

(54)

so the corresponding equation

IX = B (55)

shows that the right side of the matrix gives B = X = A−1, the in-
verse of A. The sequence of operations used to diagonalize the
left (A) side of the augmented matrix (A, I) are similar to those
that triangularize a matrix.

A.5 Vector transformations

In seismology, we often apply two types of transformations
to vectors. In the first, the same vector is expressed in two



Given the components ui in the unprimed system, the com-
ponents u ′i in the primed system are found by taking the scalar
products of the vector with the basis vectors of the primed
system:

u ′1 = ê ′1 · u = (ê ′1 · ê1)u1 + (ê ′1 · ê2)u2 + (ê ′1 · ê3)u3

= a11u1 + a12u2 + a13u3,

u′2 = ê ′2 · u = a21u1 + a22u2 + a23u3,

u′3 = ê ′3 · u = a31u1 + a32u2 + a33u3. (3)

These can be written as a matrix equation

u′ = Au, or

    

u
u
u

a a a
a a a
a a a

u
u
u

1

2

3

11 12 13

21 22 23

31 32 33

1

2

3

′
′
′

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

    , (4)

where A is the matrix that transforms a vector from the
unprimed to the primed system. Note that this is not a relation
between two different vectors u and u′ — it is a relationship
between the components of the same vector in two coordinate
systems. It turns out that the matrix A uniquely describes the
transformation between these coordinate systems.

For example, a unit basis vector for the unprimed system

ê1 = 1ê1 + 0ê2 + 0ê3 = (1, 0, 0) (5)

has components in the primed system given by
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(6)

and so is written

a11ê ′1 + a21ê ′2 + a31ê ′3 = (a11, a21, a31) (7)

in the primed system. The last expression is just the first column
of A. Similarly, the components of ê2 and ê3 in the primed
system are the second and third columns of A, respectively.
Thus the columns of the transformation matrix A are the basis
vectors of the unprimed system written in terms of their com-
ponents in the primed system.

For example, consider rotating a Cartesian coordinate sys-
tem by θ counterclockwise about the ê3 axis, so that the only
rotation occurs in the ê1–ê2 plane. The ê3 axis is also the ê ′3 axis
(Fig. A.5-2). The elements of the transformation matrix are
found by evaluating the scalar products of the basis vectors
aij = ê ′i · êj, so

a11 = ê ′1 · ê1 = cos θ, a12 = ê ′1 · ê2 = cos (90° − θ) = sin θ,

a22 = ê ′2 · ê2 = cos θ, a21 = ê ′2 · ê1 = cos (90° + θ) = −sin θ,

a33 = ê ′3 · ê3 = 1, a13 = a23 = a31 = a32 = 0, (8)

Fig. A.5-1 The relation between two orthogonal coordinate systems with
the same origin is described by the angles αij between the two sets of axes.

α 32

α 12

x1

x ′1

x2

x ′2
α 22

x3

x ′3

u
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different coordinate systems. In the second, some operation
converts a vector to another vector expressed in the same co-
ordinate system. In this section we summarize these transforma-
tions and their differences.

A.5.1 Coordinate transformations

We have seen that vectors remain the same regardless of the co-
ordinate system in which they are defined, although their com-
ponents differ between coordinate systems. Thus vectors can
be defined in one coordinate system (for example, one oriented
along an earthquake fault plane) and reexpressed in another
(such as a geographic coordinate system). This property is very
useful for solving problems and gives valuable insight into the
nature of vectors.

To define the relation between vector components and co-
ordinate systems, consider two orthogonal Cartesian coordinate
systems (Fig. A.5-1). Because the origins are the same, one co-
ordinate system can be obtained by rotating the other through
three angles. The relation between the two sets of unit basis
vectors, ê1, ê2, ê3 and ê′1, ê ′2, ê ′3, is given by their scalar products,
called direction cosines,

ê ′i · ê j = cos αij = aij, (1)

where the angles α ij are the angles between the two sets of axes.
A vector can be expressed in terms of its components in the

two coordinate systems

u = u1ê1 + u2ê2 + u3ê3 = u ′1ê ′1 + u ′2ê ′2 + u′3ê ′3. (2)
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u2 = ê2 · u′ = a12u′1 + a22u ′2 + a32u ′3,

u3 = ê3 · u′ = a13u′1 + a23u ′2 + a33u ′3. (10)

Combining these to express the reverse transformation in
vector–matrix form,
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(11)

shows that the reverse transformation matrix is just the trans-
pose of the transformation matrix A

u = ATu′. (12)

Hence a unit basis vector in the primed system

ê ′1 = 1ê ′1 + 0ê ′2 + 0ê ′3 (13)

becomes, by the matrix transformation,

a11ê1 + a12ê2 + a13ê3 (14)

in the unprimed system. This is the first row of A, so the rows of
A are the primed basis vectors expressed in the unprimed coor-
dinates. This is natural because the transformations are related
by the matrix transpose.

Alternatively, the reverse transformation can be found
directly by starting with u′ = Au and multiplying both sides by
the inverse matrix

A−1u′ = A−1Au = Iu = u. (15)

Comparison with Eqn 12 shows that the inverse of the trans-
formation matrix equals its transpose, so the transformation
matrix is an orthogonal matrix. This seems reasonable because
the columns of A, which represent orthogonal basis vectors,
are orthogonal. Similarly, the rows of A are orthogonal. As a
result, such coordinate transformations are called orthogonal
transformations. An important feature of orthogonal trans-
formations, whose proof is left as a homework problem, is that
they preserve the length of vectors.

The transformation relations, Eqns 4 and 12, provide a
mathematical definition of a vector. Any vector must transform
between coordinate systems in this way. A set of three entities
defined at points in space (for example, temperature, pressure,
and density) that does not obey the transformation equations is
not a vector.

A.5.2 Eigenvalues and eigenvectors

The product of an arbitrary n × n matrix A and an arbitrary
n-component vector x

Fig. A.5-2 The relation between the axes of two orthogonal coordinate
systems differing by a rotation θ in the x1–x2 plane.
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and the components of a vector in the two systems are related
by
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  cos sin 

sin cos   .
 

 

 

θ θ
θ θ (9)

Thus the ê1 and ê ′1, and the ê2 and ê ′2 components differ,
whereas the ê3 and ê ′3 components are the same. To check this,
consider the case where θ = 90°. As expected, (1, 0, 0) in the
unprimed system becomes (0, −1, 0) in the primed system, and
(0, 1, 0) in the unprimed system becomes (1, 0, 0) in the primed
system, while (0, 0, 1) in the unprimed system remains (0, 0, 1)
in the primed system.

Seismologists often use such a geometry. Because the ground
motion is a vector, seismometers are generally oriented to
record its components in the east–west, north–south, and
up–down directions. This decomposition is less useful than
decomposing ground motion into its radial and transverse
components, those along and perpendicular to the great circle
connecting the earthquake and seismometer. The vertical com-
ponent is useful as is, so a rotation about the vertical by the angle
between East and the great circle connecting the earthquake
and seismometer converts the E–W and N–S components into
the new representation. The relevant angle, the back azimuth
to the source from the receiver, is discussed in Section A.7.2.

We can also reverse the transformation. By analogy to Eqn 3,
the components in the unprimed system can be found from
those in the primed system as

u1 = ê1 · u′ = (ê1 · ê ′1)u′1 + (ê1 · ê ′2)u′2 + (ê1 · ê ′3)u′3
= a11u′1 + a21u′2 + a31u ′3,



y = Ax (16)

is also a vector in n dimensions. This is not the same as co-
ordinate transformation; the vector x is transformed into
another distinct vector, with both vectors expressed in the same
coordinate system.

A physically important class of transformations convert a
vector into one parallel to the original vector, so that

Ax = λx, (17)

where A is a matrix, and λ is a scalar. The only effect of the
transformation is that the length of x changes by a factor of λ.
For a given A, it is useful to know which vectors x and scalars λ
satisfy this equation.

In three dimensions, the case most commonly encountered,
Eqn 17 can be written

(A − λI)x = 0
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This is a homogeneous system of linear equations, so nontrivial
solutions exist only if the matrix (A − λI) is singular. We thus
seek values of λ such that the determinant
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Evaluating the determinant gives the characteristic polynomial

λ3 − I1λ2 + I2λ − I3 = 0, (20)

which depends on three constants called the invariants of A:

I1 = a11 + a22 + a33,

I2 = det   det   det  ,
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I3 = det A. (21)

I1, the first invariant, or trace, of A, is the sum of the diagonal
elements of A. The invariants of a matrix have significance for
stresses, strains, and earthquake moment tensors, because they
are not changed by orthogonal transformations.

The characteristic polynomial is a cubic equation in λ
with three roots, or eigenvalues, λ m for which the determinant
| A − λI | is zero. For each eigenvalue there is an associated non-
trivial eigenvector, x(m), satisfying

Ax(m) = λmx(m). (22)

The components of the eigenvector, x 1
(m), x 2

(m), x 3
(m), are found

by solving
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Each eigenvalue and its associated eigenvector form a pair
satisfying Eqn 22. In general, an eigenvalue and the eigen-
vector associated with a different eigenvalue will not satisfy the
equation.

For example, the eigenvalues of
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are found by solving the characteristic polynomial

λ3 − 8λ2 + 19λ − 12 = 0, (25)

whose roots are λ1 = 4, λ2 = 3, λ3 = 1. Next, the equations
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are solved for each eigenvalue to yield the associated eigen-
vector. Thus for λ3 = 1,

2x 1
(3) − x 2

(3) = 0,

−x 1
(3) + x 2

(3) − x 3
(3) = 0,

−x 2
(3) + 2x 3

(3) = 0. (27)

All three unknowns cannot be found uniquely, because these
are homogeneous equations. We thus set x 1

(3) equal to 1 and
find the other two unknowns, x 2

(3) = 2, x 3
(3) = 1. Similarly, the

other eigenvectors are found by substituting λ2 and λ1 in
Eqn 26, so

x(3) = (1, 2, 1), x(2) = (1, 0, −1), x(1) = (1, −1, 1). (28)

Because the eigenvectors are solutions to a set of homo-
geneous equations, any multiple of an eigenvector is also an
eigenvector. The eigenvectors thus determine a direction in
space, but the magnitude of the vector is arbitrary. Often the
eigenvectors are normalized to unit magnitude. The set we have
found can be written as

x(1) = (1/ 3, −1/ 3, 1/ 3), x(2) = (1/ 2 , 0, −1/ 2 ),

x(3) = (1/ 6, 2/ 6, 1/ 6). (29)

A.5 Vector transformations 457
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Sometimes complications arise, as for the matrix

  

A  =
⎛
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⎞

⎠

⎟
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1 0 0
0 0 0
0 0 1

(30)

with eigenvalues 1, 1, and 0. Using the method given above to
find the eigenvector for λ3 = 0 by setting x 1

(3) = 1 yields no solu-
tion. Setting x 2

(3) = 1, however, yields a correct solution for the
eigenvector, (0, 1, 0). Because this has no ê1 component, we
could not have set x 1

(3) = 1 and found the other components.
This example illustrates a complication that arises for a de-

generate, or repeated, eigenvalue: e.g., λ1 = λ2 = 1. In this case,
the eigenvalue corresponds not to an eigenvector but to an
entire plane, and any vector contained within it is an eigenvector.
Two eigenvectors spanning this plane can be found by finding
the eigenvector of the nondegenerate eigenvalue, and then
choosing two independent vectors orthogonal to it. Because the
eigenvector for the nondegenerate eigenvalue is (0, 1, 0), two
possible orthogonal eigenvectors for the degenerate eigenvalue
are (1, 0, 0) and (0, 0, 1).

A.5.3 Symmetric matrix eigenvalues, eigenvectors,
diagonalization, and decomposition

The eigenvalues and eigenvectors of a symmetric matrix have
interesting properties. An n × n matrix H has a characteristic
polynomial of degree n, each of whose n roots is an eigenvalue.
Consider two eigenvalues and their associated eigenvectors

Hx(i) = λ ix
(i), Hx(j) = λ jx

(j). (31)

Multiplication of the first equation by x( j)T (the transpose of
x( j )) and the second equation by x(i)T yields

x( j)THx (i) = λ ix
( j)Tx ( i), x(i)THx( j) = λ jx

(i)Tx( j) . (32)

Transposing both sides of the second part of Eqn 32 and sub-
tracting it from the first gives

x( j)THx( i) − x( j)T HTx(i) = (λ i − λ j)x
( j)Tx( i). (33)

Because H is symmetric, it equals its transpose, H = HT, so the
left-hand side is zero

0 = (λ i − λ j)x( j)Tx( i). (34)

Thus, if i ≠ j and the two eigenvalues are different, their asso-
ciated eigenvectors must be orthogonal so that their scalar
product x( j)Tx (i) is zero. Thus, for a symmetric matrix, eigen-
vectors associated with distinct eigenvalues are orthogonal.

This result lets us diagonalize a symmetric matrix. To illus-
trate this for a 3 × 3 case, consider a matrix U whose columns
are the eigenvectors of the symmetric matrix H
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(35)

If the eigenvalues of H are distinct, the eigenvectors of H, and
hence the columns of the eigenvector matrix, are orthogonal,
so U is an orthogonal matrix satisfying U−1 = UT.

The entire set of eigenvalue–eigenvector pairs, each of which
satisfy Hx( i) = λ i x

( i), can be written as the matrix equation

HU = UΛ, (36)

where Λ is the diagonal matrix with eigenvalues on the diagonal
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Premultiplying both sides of Eqn 36 by the inverse of the
eigenvector matrix yields

U −1HU = UTHU = Λ, (38)

which shows how the eigenvector matrix can be used to
diagonalize a symmetric matrix. This result can also be stated
as

H = UΛUT, (39)

which illustrates how a symmetric matrix can be decomposed
into a diagonal eigenvalue matrix and the orthogonal eigen-
vector matrix. Similar results apply for complex Hermitian
matrices.

We will see that if a matrix contains the components of
vectors expressed in a coordinate system, the physical problem
under discussion can be simplified by diagonalizing the matrix.
This corresponds to rewriting the problem in its “natural” co-
ordinate system, whose basis set is the eigenvectors, an idea
used in discussing stresses in the earth (Section 2.3.4) and the
seismic moment tensor (Section 4.4.5).

A.6 Vector calculus

A.6.1 Scalar and vector fields

Many phenomena in seismology depend on how physical
quantities vary in space. Some, like density or temperature,
are scalar fields, scalar valued functions of the position vector x
denoted by expressions like φ(x) or φ(x1, x2, x3). Similarly,
a vector that varies in space is described by a vector field. For
example, seismic waves are described by the variation in the
displacement vector



u(x) = u(x1, x2, x3)

= u1(x1, x2, x3)ê1 + u2(x1, x2, x3)ê2 + u3(x1, x2, x3)ê3 (1)

as a function of position, and result in turn from forces derived
from spatial derivatives of the stress tensor.

Spatial variations of scalar, vector, or tensor fields are de-
scribed using the vector differential operator “del”, ∇∇∇∇∇,
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This operator has the form of a vector, but has meaning only
when applied to a scalar, vector, or tensor field. We first review
uses of the ∇∇∇∇∇ operator in Cartesian coordinates, and in the
next section discuss the more complicated forms for spherical
coordinates.

A.6.2 Gradient

The simplest application of the ∇∇∇∇∇ operator is the gradient,
a vector field formed from the spatial derivatives of a scalar
field. If φ(x) is a scalar function of position, the gradient is
defined by
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where ∂φ(x)/∂x1 is the partial derivative of φ(x1, x2, x3) with
respect to x1, for x2 and x3 held constant. The gradient is a
vector field whose components equal the partial derivative with
respect to the corresponding coordinate.

Expressions like Eqns 1 and 3 can be written more compactly
if the dependences on position are not written explicitly, i.e.,

   
∇∇φ φ φ φ

    .= + +
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3ê ê ê (4)

In this notation, it is implicit that φ, its derivatives, and hence
the gradient, vary with position.

For example, the elevation φ(x1, x2) is a scalar field de-
scribing the topography as a function of position in a two-
dimensional region. This is often plotted using topographic
contours (Fig. A.6-1), curves along which φ is constant. At any
point, ∂φ/∂x1 is the slope in the x1 direction, and ∂φ/∂x2 is the
slope in the x2 direction.

The gradient can be used to find the slope in any direction.
The projection of a vector in a given direction is the scalar
product of the vector and the unit normal vector in that direc-
tion, 4 = (n1, n2). Thus the scalar product of the gradient with
the normal vector,
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n
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2
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Fig. A.6-1 A scalar field demonstrating the concept of a gradient.
If φ(x1, x2) gives the elevation, the gradient can be used to find the slope
in the 4 direction at a point (x1, x2).

n̂(x) (x1, x2)φ

gives the directional derivative in the 4 direction. Because both
4 and ∇∇∇∇∇φ are functions of position, the directional derivative
varies in space. At any point, the maximum value of the scalar
product occurs for 4 parallel to the gradient, so the gradient
points in the direction of the steepest slope along which φ
changes most rapidly. The scalar product is zero when 4 is
perpendicular to the gradient, so the gradient is perpendicular
to curves of constant φ. These concepts are also used in three
dimensions.

In index notation, the gradient is written as

(∇∇∇∇∇φ)i =
 

∂
∂

φ
xi

= φ, i , (6)

where the last form uses a common (if sometimes confusing)
notation in which differentiation is indicated by a comma. The
notation, with one free index, shows that the gradient is a vec-
tor. By contrast, the directional derivative, written as

4 · ∇∇∇∇∇φ = ni
 

∂
∂

φ
xi

= ni φ, i , (7)

has an implied sum over i and is a scalar.
Often, the gradients of quantities are important physically

because an effect depends on spatial variations of a field. For
example, the flow of heat depends on the gradient of the tem-
perature field (Sections 5.3.2, 5.4.1), and the gradient of the
pressure field in the atmosphere is important for the weather.

A.6.3 Divergence

A related operation that describes the spatial variation of a vec-
tor field is the divergence. The divergence of a vector field u(x)
is given by the scalar product of the ∇∇∇∇∇ operator with u(x) as
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A.6 Vector calculus 459



460 Appendix

dS

Vector field
u(x)

n̂(x)

dv

flow into an adjacent cell, which cancels to zero. Only flow in
or out of the volume’s surface is not canceled out in this way.
Written in full, ∫dV is a triple integral over the volume, and ∫dS
is a double integral over the surface.

In index notation, using the summation convention, the
divergence is written

∇∇∇∇∇ · u = 
 

∂
∂

u

x
i

i

 = ui, i, (11)

which is a scalar because no free index remains. Gauss’s theo-
rem is written
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or, using the comma notation for derivatives,
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ui, idV. (13)

As before, it is implicit in the notation that the field u, its derivat-
ives, and the normal vector 4 vary with position.

A.6.4 Curl

The curl operator, the cross product of the ∇∇∇∇∇ operator with a
vector field, yields another vector field
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Fig. A.6-2 The divergence, formed from the differences between the flow
into one face of a volume and the flow out of the opposite face, gives the
net flow through a unit volume.

u1

u3

u2

u3 + ∂u3 /∂x3

u1 + ∂u1/∂x1

u2 + ∂u2/∂x2

x3

x1

x2

which yields a scalar field because the vector components and
their derivatives are functions of position.

The divergence frequently arises in conservation equations.
For example, if u(x) is the velocity as a function of position in a
fluid, ∇∇∇∇∇ · u(x) gives the net outflow of material per unit time
from a unit volume at position x (Fig. A.6-2). To see this, note
that, to first order, the net flow in the x2 direction is the differ-
ence between the flow out the far side, u2 + ∂u2/∂x2, and that
into the near side, u2, given as

  
u

u

x
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u
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2
2

2
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∂
∂

(9)

Adding similar terms for the net flow in the x1 and x3 directions
gives the divergence (Eqn 8). If the divergence is positive, there
is a net outward flow, whereas a negative divergence indicates a
net inflow.

This idea can be applied to any vector field u(x). Consider the
problem of finding the net outflow from a region with volume
V and surface S. If 4(x) is the unit normal vector pointing
outward at a point x on the surface (Fig. A.6-3), the scalar
product 4(x) · u(x) gives the outward flux per unit area at that
point. Integrating the flux over the surface then gives the total
flux. Another way to compute the total flux is to integrate the
divergence over the volume. These two methods give the same
flux, so

    

�
S

4 · udS = �
V

∇ · udV. (10)

This relation, Gauss’s theorem, or the divergence theorem,
says that what accumulates inside a volume is determined by
the integral over its surface of what goes out. If we think of the
volume as many adjacent cells, the flow out of one cell is the

Fig. A.6-3 Geometry for the divergence theorem: 4(x) is a unit vector
pointing outward at the point x from an element dS of the surface S that
encloses a volume dV.
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and therefore cancel. The segments of the line integrals cancel
between all the tiles except those on the outer border that have
no adjacent circulation to cancel them.

If the line integral is nonzero, the vector field has a net rota-
tion along the curve, so the integral of its curl over the surface is
nonzero. The curl of a vector field shows where rotations arise.
A common application is describing the velocity field of a mov-
ing fluid. The upper portion of Fig. A.6-5 shows streamlines,
lines parallel to the velocity vector at any point, for a viscous
fluid flowing past a circular object. The velocity is zero at the
object, and increases with distance away from it. The flow is
symmetric on the bottom of the object. The lower portion of
the figure shows contours of the curl of the velocity field with
larger values, indicating greater rotations, close to the object.

Two useful identities, whose proofs are left for the problems,
are that the curl of a gradient and the divergence of a curl are
zero:

∇∇∇∇∇ · (∇∇∇∇∇ × u) = 0 (18)

∇∇∇∇∇ × (∇∇∇∇∇φ) = 0. (19)

Equation 19 can be used with Stokes’ theorem to show that for
a vector field written as the gradient of a scalar, the curl, and
hence circulation around an arbitrary curve, are zero. This idea
is used in mechanics to prove that a conservative force (one that
can be written as the gradient of a potential) has a line integral
that is independent of path, because its circulation around any
path is zero. These relations give insight into seismic waves,
because P waves have no curl and S waves have no divergence
(Section 2.4.1).

A.6.5 Laplacian

The Laplacian operator is formed by taking the divergence of
the gradient of a scalar field, which yields a scalar field
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where the last form uses index notation and the summation
convention. By analogy, the Laplacian of a vector field is a vec-
tor field whose components in Cartesian coordinates are the
Laplacians of the original vector components,

∇∇∇∇∇2 u = (∇∇∇∇∇2u1, ∇∇∇∇∇ 2u2, ∇∇∇∇∇2u3). (21)

For example, the ê1 component of ∇∇∇∇∇2u is
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In Cartesian coordinates, the Laplacian of a vector satisfies

∇∇∇∇∇2 u = ∇∇∇∇∇(∇∇∇∇∇ · u) − ∇∇∇∇∇ × (∇∇∇∇∇ × u), (23)

Fig. A.6-4 Geometry for Stokes’ theorem: 4(x) is a unit vector pointing
outward at the point x from an element dS of the surface S. dC is an
element of the curve C bounding S, with tangent 6(x).

This can be written as a determinant

∇∇∇∇∇ × u = det
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or, using index notation, in a compact form as

∇∇∇∇∇ × u = ε ijk

∂
∂
u

x
k

j

 = ε ijkuk, j. (16)

Some physical insight into the curl comes from Stokes’
theorem, which relates the integral of the curl of a vector field
over a surface S to the line integral around a curve C bounding
S (Fig. A.6-4) as

    

�
C

u · 6dC =

    

�
S

(∇∇∇∇∇ × u) · 4dS. (17)

Here dS is an element of surface area with normal 4(x), and dC
is an element of the curve with tangent 6(x). Analogous to the
case of Gauss’s theorem applied to a volume, we can think of
the surface as composed of infinitesimal tiles, each with a line
integral of u · 6 around it. The border of each tile is shared with
another tile, but, because the line integral, or circulation, is
computed in a counterclockwise manner, the integrals along
this border are the same but of opposite sign for the two tiles,
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Fig. A.6-5 Top: streamlines showing
the velocity of fluid flow around an
object. Numbers on streamlines show the
magnitude of the velocity. Bottom: contours
of the curl for this velocity field. The curl is
greatest near the sphere, where the fluid flow
lines are the most curved. (After Batchelor,
1967. Reprinted with the permission of
Cambridge University Press.)

an obscure-looking relation that is useful in deriving the exist-
ence of P and S waves.

A.7 Spherical coordinates

The vector operations discussed so far were performed in
Cartesian coordinates, in which the unit basis vectors (ê1, ê2, ê3)
point in the same direction everywhere. There are, however,
situations in which non-Cartesian coordinate systems without
these nice properties are useful. In particular, spherical coordin-
ates often simplify the solution of problems with a high degree
of symmetry about a point.

A.7.1 The spherical coordinate system

In a spherical coordinate system, a point defined by a position
vector x is described by its radial distance from the origin, r =
| x |, and two angles. θ is the colatitude, or angle between x and
the x3 axis, and φ, the longitude, is measured in the x1–x2 plane.
Often the latitude, 90° − θ, is used instead of the colatitude.
Spherical coordinates are often used in seismology because
the earth is approximately spherically symmetric, varying with
depth much more than laterally. Thus properties like velocity
and density are often approximated as functions only of r, inde-
pendent of θ and φ.

Figure A.7-1 shows the relations between rectangular and
spherical coordinates. If the vector x is written as

x = x1ê1 + x2ê2 + x3ê3, (1)

then its components in rectangular coordinates (x1, x2, x3) are
described by spherical coordinates as

Fig. A.7-1 Relations between spherical (r, θ, φ) and Cartesian coordinates
(x1, x2, x3). (After Marion, 1970. From Classical Dynamics of Particles
and Systems, 2nd edn, copyright 1970 by Academic Press, reproduced by
permission of the publisher.)
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Conversely, the spherical coordinates r, θ, and φ can be written
as

r = (x2
1 + x2

2 + x2
3)1/2, θ = cos−1 (x3/r), φ = tan−1 (x2/x1). (3)

In the equatorial (x1–x2) plane, θ = 90°, cos θ = 0, sin θ = 1, so
x1 = r cos φ, x2 = r sin φ, and x3 = 0. This is the same as the polar
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longitudes correspond to values of φ less than 0° or greater than
180°. Thus a point at (10°S, 110°W) has θ = 90° + 10° = 100°,
and φ = −110° = 360° − 110° = 250°.

At any point, unit spherical basis vectors (êr, êθ, êφ) can be
defined in the direction of increasing r, θ, and φ. ê r points away
from the origin, and gives the upward vertical direction. êθ
points south, and êφ points east. These two are sometimes writ-
ten in terms of north- and east-pointing unit vectors, êNS = −êθ
and êEW = êφ.

An important feature of the unit spherical basis vectors is
that at different points they are oriented differently with re-
spect to the Cartesian axes. The Cartesian unit basis vectors
(ê1, ê2, ê3) point in the same direction everywhere. By contrast,
for example, êr points in the ê3 direction at the north pole, and
in the −ê3 direction at the south pole. This effect is described by
the Cartesian (ê1, ê2, ê3) components of the unit spherical basis
vectors, at a point with colatitude θ and longitude φ :
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The dependence on the colatitude and longitude describes how
the orientation with respect to the Cartesian axes changes.

At any point, the spherical basis vectors (ê r, êθ, êφ) form an
orthonormal set. For problems whose spatial extent is small
enough that the curvature of the earth can be ignored, these
basis vectors provide a useful local coordinate system.

A.7.2 Distance and azimuth

Spherical coordinates are especially useful in describing the
geographic relation between two points on the earth’s surface.
A common application is to find the distance between points
and the direction of the great circle arc joining them. A great
circle arc is the shortest path between points on a sphere, so if
seismic velocity varies only with depth, the fastest path along
the surface is the great circle arc, and the fastest paths through
the interior are in the plane of the great circle and the center
of the earth. Because velocities vary laterally by only a few
percent throughout most of the earth (and imperceptibly in
the liquid outer core), this is a good approximation for most
seismic applications. The source-to-receiver distance is often
given in terms of the angle ∆ subtended at the center of the earth
by the great circle arc between the two points (Fig. A.7-3). If
∆ is expressed in radians, then the length s (in km) of the arc
along the earth’s surface is R∆, where R is the earth’s radius
(≈ 6371 km). If ∆ is expressed in degrees, s = R∆π/180, so one
degree of arc equals 111.2 km.

Consider the great circle arc connecting an earthquake
whose epicenter is at (θE, φE) and a seismic station at (θS, φS).
Seismic waves that traveled along the great circle arc (or in the
plane of this arc and the center of the earth) left the earthquake
in a direction given by the azimuth angle ζ measured clockwise
from the local direction of north at the epicenter to the great

Fig. A.7-2 Geometry of the latitude and longitude system used to locate
points on the earth’s surface. A point P at 50°N, 60°W (θ = 40°, φ = −60°)
is shown. (After Strahler, 1969.)

coordinate system described in Section A.3.1. Along the x3 axis
we have θ = 0°, so x1 = x2 = 0, and x3 = r. Any of these expres-
sions written in terms of colatitude θ can be converted to
latitude λ = 90° − θ, using cos θ = sin λ and sin θ = cos λ.

This coordinate system is the familiar one (Fig. A.7-2) used
to locate points within the earth or on its surface, r = a. For this
purpose, the origin is placed at the center of the earth, and the
x3 axis is defined by a line from the center of the earth through
the north pole. The intersections of planes containing the x3
axis with the earth’s surface define meridians, lines of constant
longitude. The x1 axis intersects the equator at the prime
meridian, on which φ is defined as zero, which has been chosen
to run through Greenwich, England. The intersection of planes
perpendicular to the x3 axis with the earth’s surface define
parallels, lines of constant colatitude or latitude. Meridians are
a special case of great circles, lines on the surface defined by the
intersection of a plane through the origin with the surface of
the spherical earth. Parallels are a special case of small circles,
which are lines on the surface defined by the intersection of the
surface of the spherical earth with a plane normal to a radius
vector.

These conventions allow the colatitude θ (0° ≤ θ < 180°)
and longitude φ (0° ≤ φ < 360°) to define a unique point on the
earth’s surface. Often locations are described in terms of
latitudes north and south of the equator, and longitudes east
and west of Greenwich. North and south latitudes corres-
pond, respectively, to colatitudes less than or greater than 90°.
Because φ measures longitude east of the prime meridian, west
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Fig. A.7-3 Geometry of the great circle path
between an earthquake epicenter and seismic
station (left), showing the convention for
defining the azimuth, ζ (right).

circle arc. These waves arrive at the seismometer from a direc-
tion described by the back azimuth angle ζ ′ measured clock-
wise from the local direction of north at the seismometer to the
great circle arc. To find these quantities, the Cartesian compon-
ents of the position vectors for the earthquake and the station
are written, using Eqn 2:
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The distance ∆, the angle between xS and xE, is given by the
scalar product

xS · xE = R2 cos ∆, (6)

so

∆ = cos−1 [cos θE cos θS + sin θE sin θS cos (φS − φE)]. (7)

This formula defines ∆ uniquely between 0 and 180°. This
shorter portion of the great circle is called the minor arc con-
necting the two points; the longer portion, known as the major
arc, is (360° − ∆) degrees long.

To compute the azimuth from the earthquake to the station,
consider 1, a unit vector normal to the great circle in the local
horizontal plane at xE, which is written using the vector prod-
uct of the position vectors

xS × xE = 1R2 sin ∆. (8)

Evaluation of the vector product gives
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The azimuth angle ζ, measured clockwise from north, is then
given (Fig. A.7-3) by

cos ζ = 1 · êφ =
 

1

sin ∆
(cos θS sin θE −

 sin θS cos θE cos (φS − φE))

(10)

and

sin ζ = 1 · êθ =
 

1

sin ∆
sin θS sin (φS − φE). (11)

Use of both sin ζ and cos ζ makes the angle ζ unambiguous
(0° ≤ ζ < 360°). The azimuth from an earthquake to a receiver is
useful, because earthquakes radiate more energy in some direc-
tions than in others (Chapter 4), so measurements at different
azimuths yield information about the source.

The back azimuth ζ ′, obtained by reversing the indices E and
S in Eqns 10 and 11, shows the direction from which seismic
energy arrives at a seismometer. Seismometers typically record
the north–south and east–west components of horizontal
ground motion. Using the back azimuth, these observations
can be converted into radial (along the great circle path) and
transverse (perpendicular to the great circle path) components
by a vector transformation (Eqn A.5.9). This distinction is
made because waves appearing on these components propag-
ated differently (Section 2.4). The azimuth and back azimuth



A.7.3 Choice of axes

Spherical coordinates are also used with axes different from
the geographic ones. Because the physics of a problem does not
depend on the choice of coordinates, a set of coordinates that
simplifies the relevant expressions is used. For example, in
earthquake source studies, the x3 axis can be chosen to go from
the center of the earth to the location of the earthquake. The
prime meridian, and hence x1, axis can be selected so that
the fault is oriented in the direction φ = 0. These axes simplify
the description of the seismic waves radiated by an earthquake,
because the distance ∆ from the source is now the colatitude.
Moreover, the radiation pattern generally has a high degree of
symmetry about the fault, so simple functions of φ appear. By
contrast, the radiation pattern need have no symmetry about
the North pole and Greenwich meridian, so a description in
those coordinates would usually be more complicated.

Fortunately, a coordinate system referred to the earthquake
location does not make describing the propagation of waves
from the source any more difficult. Because earth structure
varies primarily with depth, the spherical symmetry about
the center of the earth is independent of the axis orientation
chosen. The geographical convention in which the earth rotates
about the x3 axis is helpful for navigation. In most seismolo-
gical applications, however, the north direction has no particular
significance because the propagation of seismic waves is essen-
tially unaffected by the earth’s rotation. The choice of a prime
meridian is arbitrary; in the early nineteenth century some
American maps had it through Washington DC, and some
French maps had it through Paris.

A.7.4 Vector operators in spherical coordinates

Because at a point on the sphere the unit spherical basis vectors
are oriented up, south, and east, the basis vectors at different
locations are generally not parallel. This makes the vector
differential operators more complicated, because these oper-
ators involve taking spatial derivatives of vectors. In Cartesian
coordinates the unit basis vectors are not affected by this
differentiation because they do not change orientation, so only
derivatives of the components need be taken. In spherical
coordinates, because a vector u is

u = urêr + uθêθ + uφêφ , (13)

differential operators acting on u must incorporate the derivat-
ives of the basis vectors. Thus, in spherical coordinates, for a
scalar field ψ and a vector field u:
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Fig. A.7-4 Geometry of the great circle path for an earthquake in the Peru
trench recorded at station VAL (Valentia, Ireland). The azimuth, ζ, and
back azimuth, ζ ′, are not simply related, due to the sphericity of the earth.

1 These distance–azimuth equations also have nonseismological applications
because ships and aircraft follow the shortest (great circle) paths between two points
when possible.

angles are measured clockwise from north, a geographic
convention which contrasts with the mathematical one of
measuring angles counterclockwise from the x1 direction.
Figure A.7-4 illustrates this geometry for an earthquake in
the Peru trench (θE = 102°, φE = −78°) recorded at station VAL
(Valentia, Ireland; θS = 38°, φS = −10.25°). The resulting dis-
tances and azimuths are ∆ = 86°, ζ = 35°, ζ ′ = 245°.1

This analysis assumes that the earth is perfectly spherical. In
fact, the earth is flattened by its rotation into a shape close to an
oblate ellipsoid, so the radius varies with colatitude approxim-
ately as

r(θ) = Re(1 − f cos2 θ), (12)

where Re is the equatorial radius, 6378 km. The flattening
factor f is approximately 3.35 × 10−3, or about 1/298, so the
polar radius Rp is 6357 km. An average radius can be defined
as the radius of a sphere with the same volume as the earth, if
it were a perfect ellipsoid. Because the volume of an ellipsoidal
earth would be (4/3)πR2

eRp, and a sphere of radius R has
volume (4/3)πR3, the average radius is 6371 km. For certain
applications the ellipticity is included in precise distance
calculations.

A.7 Spherical coordinates 465



466 Appendix

r
r sin   dθ φdθ

θ

φ

dφ
dr

r sinθ

Spherical coordinates:
dV = r2 sin   dr d   dφθθ

dS = r2 sin   d   dθ φθ
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r dθ

A.8 Scientific programming

Most seismological applications require computers, and these
requirements, especially in exploration applications with very
large data volumes, have spurred the development of computer
software and hardware. Some remarks about the use of com-
puters in seismology thus seem appropriate.

Computer usage in seismology includes several broad and
overlapping categories:

• Computers are often used in data acquisition and record-
ing systems.

• Data are initially displayed and manipulated using
computers.

• Subsequent analysis is frequently done using computers.
For example, seismograms can be filtered to enhance
certain frequencies or combined to better resolve certain
features.

• Theoretical, or synthetic, seismograms are often com-
puted for a range of the parameters under study and com-
pared to data to find the best fit.

• Computers are used to invert seismological data to deter-
mine the parameters of a model which best matches the
data.

• Computer modeling is often used to draw geological in-
ferences from seismological observations. For example,
seismic velocity data are compared to the predictions of
models for the velocity of rock as a function of composi-
tion, temperature, and pressure.

These applications often require scientific programming, a
programming style used for essentially mathematical applica-
tions. Some problems in this book also require scientific pro-
gramming. Although programming is a matter of personal
style, this section discusses several points that may be helpful.
The suggested reading provides some starting points for read-
ers interested in pursuing these topics further.

A.8.1 Example: synthetic seismogram calculation

Consider a program to compute a synthetic seismogram for
waves in a one-dimensional constant-velocity medium, a math-
ematically idealized string that illustrates features of wave
behavior. The program is based on u(x, t), the displacement as
a function of position x and time t. The displacement is zero at
the fixed ends of the string, x = 0 and x = L, between which
waves travel at speed v. As in Section 2.2.5, the displacement
can be written as the sum of the normal modes of the string,
each of which is a standing wave with n half wavelengths along
the string,

un(x, t) = sin (nπx/L) cos (ωnt), (1)

and vibrates at a characteristic frequency, or eigenfrequency,

ωn = nπv/L. (2)
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These expressions are used when we discuss spherical waves in
Section 2.4 and the earth’s normal modes in Section 2.9.

A final point worth noting is that the elements of volume
and surface used in integrals are different in spherical coor-
dinates from rectangular coordinates. In spherical coordinates
(Fig. A.7-5) there are several scale factors, so an element of
surface area is

dS = r2 sin θ dθdφ, (18)

and an element of volume is

dV = r2 sin θdr dθdφ. (19)

Fig. A.7-5 Definition of the element of volume in spherical coordinates.
Unlike the case of Cartesian coordinates, the volume element in spherical
coordinates in not a cube. (Marion, 1970. From Classical Dynamics of
Particles and Systems, 2nd edn, copyright 1970 by Academic Press,
reproduced by permission of the publisher.)



1 It is easy to use arbitrary values on a computer; we could also use 1 km or 1
furlong. Finding a physical 1 km string is another matter . . .
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Fig. A.8-1 Top: Synthetic seismogram for a string showing the direct wave
arrival (1) and reflections (2, 3) from both ends. Bottom: Geometry
showing source and receiver positions, and the times of the direct and
reflected arrivals.

Fortran, a language that is especially suitable for scientific pro-
gramming and is therefore commonly used in seismology (and
thus in this book). The program could be also written in other
languages, but the general points would still apply.

C SYNTHETIC SEISMOGRAM FOR HOMOGENEOUS STRING

C DISPLACEMENT U AS FUNCTION OF TIME T

C CALCULATED BY NORMAL MODE SUMMATION

DIMENSION U(200)

PI = 3.1415927

C

C PARAMETERS (NORMALLY WOULD COME FROM INPUT)

C STRING LENGTH (M)

ALNGTH = 1.0

C VELOCITY (M/S)

C = 1.0

C NUMBER OF MODES

NMODE = 200

C SOURCE POSITION (M)

XSRC = 0.2

C RECEIVER POSITION (M)

XRCVR = 0.7

C SEISMOGRAM TIME DURATION (S)

TDURAT = 1.25

C NUMBER TIME STEPS

NTSTEP = 50

C TIME STEP (S)

DT = TDURAT/NTSTEP

C SOURCE SHAPE TERM

TAU = .02

C

C LIST PARAMETERS

WRITE (6,3000)

3000 FORMAT(‘SYNTHETIC SEISMOGRAM FOR STRING’)

WRITE (6,3001) NMODE

3001 FORMAT(‘NUMBER OF MODES’, I6)

WRITE (6,3002) ALNGTH, C

3002 FORMAT (’LENGTH (M)’ F7.3, ‘VELOCITY,

     X (M/S)’, F7.3)

WRITE (6,3003) XSRC, XRCVR

3003 FORMAT (’POSITION (M): SOURCE’, F7.3,

     X ’RECEIVER’, F7.3)

WRITE (6,3004) TDURAT, NTSTEP

3004 FORMAT (’SEISMOGRAM DURATION (S)’, F7.3,

     X I6, ’TIME STEPS’)

WRITE (6,3005) TAU

3005 FORMAT (’SOURCE SHAPE TERM’, F7.3)

C

C INITIALIZE DISPLACEMENT

DO 5 I = 1, NTSTEP

U(I) = 0.0

5 CONTINUE

C

C OUTER LOOP OVER MODES

DO 10 N = 1, NMODE

ANPIAL = N*PI/ALNGTH

If a source at position xs generates a pulse at time zero with
duration τ, the propagating waves are described by a weighted
sum of the modes

u(x, t) =
n=

∞

∑
1

sin (nπx/L) sin (nπxs /L) cos (ωnt) exp [−(ωnτ)2/4].

 (3)

Given the displacement u(x, t) for any position and time,
a seismogram (“stringogram”) giving the displacement ver-
sus time at a receiver position xr is u(xr , t). Alternatively, a
“snapshot” of the displacement everywhere on the string at
time t0 is u(x, t0).

Consider a program to evaluate a synthetic seismogram
using this sum. For simplicity, we use a string of length 1 m1

with a wave speed 1 m/s, a source at xs = 0.2 m and a receiver at
xr = 0.7 m. To approximate the infinite sum, the program adds
up 200 modes. The seismogram (Fig. A.8-1, top) is calculated
at 50 time steps, covering 1.25 s. This program is written in
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C SPACE TERMS: SOURCE AND RECEIVER

SXS = SIN(ANPIAL*XSRC)

SXR = SIN(ANPIAL*XRCVR)

C MODE FREQUENCY

WN = N*PI*C/ALNGTH

C TIME INDEPENDENT TERMS

DMP = (TAU*WN)**2

SCALE = EXP(-DMP/4.)

SPACE = SXS*SXR*SCALE

C

C INNER LOOP OVER TIME STEPS

DO 15 J = 1, NTSTEP

T = DT*(J – 1)

CWT = COS(WN*T)

C COMPUTE DISPLACEMENT

U(J) = U(J) + CWT*SPACE

15 CONTINUE

10 CONTINUE

C

C OUTPUT SEISMOGRAM FOR LATER PLOTTING

WRITE (6, 3101)(U(J), J = 1, NTSTEP)

3101 FORMAT (7F10.4)

STOP

END

This example brings out several points:

• Is the answer correct? Two different types of error occur
in scientific programs. First, the program may be wrong. In
this case, the mathematical formulation correctly describes the
physical problem, but the program incorrectly implements
this formulation. This is the usual situation, in which “bugs”
are identified and corrected. Second, the formulation may be
wrong, so the program correctly implements an incorrect
mathematical model. This could occur because of a mathemat-
ical error, like an attempt to sum a divergent series, or a physical
error, such as an equation that does not correctly describe
waves on a string. An incorrect formulation is particularly dis-
turbing because it cannot be detected by checking the program.
For example, Fig. A.8-2 shows two computer simulations for
waves bending as they pass from one medium into another with
higher velocities. Figure A.8-2 (top) uses the correct formula-
tion of Snell’s law (Section 2.5), whereas Fig. A.8-2 (bottom)
looks equally convincing but is wrong because the equation
which the program illustrates is incorrect.

Programmers check for both types of errors by choosing
cases for which the results can be predicted analytically and
comparing the results to those of the program. Several tests
are easily done for the string. The wave following the shortest
(direct) path appears at the expected time, 0.5 s (Fig. A.8-1,
bottom), because the source and the receiver are 0.5 m apart.
The next two arrivals, reflections from the ends of the string,
also occur at the expected times. Moreover, these arrivals have
polarities opposite that of the initial pulse, as should occur
(Section 2.2.3) upon reflection at the string’s fixed ends. The
program can also be checked for different string lengths,
speeds, and source and receiver positions. Similarly, in addi-

Fig. A.8-2 Demonstration of the danger that a program accurately
computes an incorrect mathematical formulation. Top: A correct
simulation of wave refraction using Snell’s law, sin i1/v1 = sin i2/v2.
Bottom: The same simulation using a wrong formula for Snell’s law,
i1/v2 = i2/v2.
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tion to synthetic seismograms, displacements along the string
at fixed times could be computed. Such tests are important,
because if the mathematical model is not appropriate for the
physical situation, then time spent debugging, documenting,
and optimizing the program is wasted.

• The program is reasonably comprehensible. Several fea-
tures help clarify the program. The program’s purpose and
method are stated. Variable names somewhat resemble those in
the equation: “SXS” is sin xs, and so on. Comments identify the
functions of portions of the program.

• The program uses loops and arrays. The seismogram is
described by the array U(J), and its values at successive times
are calculated by looping. Using an array, rather than discrete
variables UT1, UT2, etc., makes the program clearer, closer
to the mathematical formulation, and simplifies output. The
loop structure also makes the program clearer and allows
the number of time steps to be changed simply by changing the
parameter NTSTEP. Similarly, the number of modes is easily
changed.

• The output is labeled. The seismogram was placed in an
output file for later plotting. The parameters used to compute
the seismogram are included, so examination of the output



• Document the program. Computer programs can be almost
useless without adequate documentation. Stonehenge has been
described as “the world’s largest undocumented computer
system.”3 Failure to document is often justified by the assump-
tion that the program will not be used again. This rationaliza-
tion is self-fulfilling, because even the author may find an
undocumented program difficult to reuse once the details are
forgotten.

Documentation should state the program’s goals and
method. The input and output variables, their units, and how
they are defined should be listed. Implicit assumptions and
restrictions are worth noting. Comments should identify major
portions of the program and describe their functions.

Documentation is best written when writing a program
because it can aid in debugging. Moreover, once a program is
fully written, it is harder to remember how it works. Documen-
tation included in the program is less prone to be lost than that
written separately.

Finally, documentation helps scientists exchange programs
and work in collaboration. This can be useful, except in the
apocryphal cases of programmers writing gigantic undocu-
mented programs to maximize their job security.

• Use modular programming. Large programs can generally
be divided into smaller subroutines or functions, which can
be used like the functions (e.g., sine, square root) supplied by
many computer languages. Each subroutine can be tested sep-
arately and then used in various programs. Subroutines can
handle applications that frequently recur, such as reading or
plotting data or carrying out a mathematical operation. This
approach saves the time needed to write and debug portions of
a program similar to one already available. Moreover, the
overall structure of a program containing a set of calls to sub-
routines is generally easier to understand, because many com-
plexities are isolated into subroutines.

• Make programs comprehensible. It is helpful to be able to
understand programs once written. Clear documentation and
modular programming help. In addition, it should be easy to
tell what portions will be executed under which circumstances.
For this purpose, portions of a program should be executed
sequentially, rather than jumping backwards and forwards
within a program.

Similarly, the statements themselves can be written clearly.
The use of mnemonic variable names and natural groupings of
variables can help. For example, it is somewhat unclear that

X = 0.23873*A / (Y*Y*Y)

gives the average density X of a planet with mass A and radius
Y, whereas

RHO = AMASS / ((4.0/3.0) * PI * (RADIUS**3))

Fig. A.8-3 Structure of the loops for the string synthetic seismogram
calculation.
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C OUTER LOOP OVER MODES

    DO 10 N = 1, NMODE

terms for each mode

that do not depend on time

C INNER LOOP OVER TIME STEPS

DO 15 J = 1, NTSTEP

terms that depend on time

C COMPUTE DISPLACEMENT

15 CONTINUE

10   CONTINUE

2 Kernighan and Plauger (1978).

shows how it was computed. This helps avoid the common
situation where, given a large collection of computer output,
cases are rerun because it is unclear what parameters were
used. Moreover, subsequent “improved” versions of the pro-
gram can be checked to see whether they give the same results.

• The program is somewhat efficient. Some thought is gener-
ally put into optimizing scientific programs to make them run
rapidly. The program could find the displacement by looping
over time and summing all the modes at each time step. How-
ever, consideration of the equation shows that three terms,
sin (nπx/l), sin (nπxs/l), and exp [−(ωnτ)2/4] are evaluated only
once for each mode, whereas only cos (ωnt) is evaluated for
each time step. It is thus more efficient to loop over the modes
and evaluate each at all times (Fig. A.8-3). Because the outer
(mode) loop is executed 200 times, whereas the inner (time)
loop is executed 200 × 50 = 10,000 times, the inner loop should
be as efficient as possible. The program would run more slowly
if the loops were reversed. The difference, though not signific-
ant for this calculation, might be significant for much larger
numbers of time steps and modes.

Further improvements could be made to fully optimize the
program. Optimization is not an end in itself, because the
programmer’s time and the intelligibility of the program are
also important. Programmers typically try to write reason-
ably optimized programs without making them impossible to
understand and debug. Once fully tested, a program that will
be used heavily may be worth further optimization if the com-
puter time savings justify the effort required. There is no point
in “getting the wrong answer as fast as possible.”2 Certain
computers, such as those using parallel processors, may require
specialized optimization.

A.8.2 Programming style

The style in which programs are written can make them easier
to develop, debug and use. A few suggestions, though not abso-
lute rules, may be useful.

3 Brooks (1975).
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is clearer. For clarity, the latter expression is more verbose
than required, has π previously defined, and is slightly less
efficient.

• Don’t be clever. Sometimes the shortest, “cleverest” way
of programming something can be the worst. In addition to
giving rise to lack of clarity, some shortcuts make it difficult
to transfer programs between computers. This is especially true
of programs that exploit specific properties of an individual
computer or compiler, such as local variants of a standard
programming language.

• Keep a perspective on precision. The program calculates
and manipulates numbers that, at least in theory, correspond to
physical entities. It is worth keeping track of the precision asso-
ciated with the data and other quantities, and of that required
to compute the desired results.

• Organize programs and data. Related programs and the
associated files can be grouped into directories which include
files listing and explaining the directory’s contents. Data files
can be organized similarly. Often seismograms, for example,
go through multiple processing stages carried out by different
programs. A common practice is to use specific types of file
names to indicate various intermediate stages. In addition, the
data files begin with headers, information identifying the data
and recording the operations applied to it. The headers and file
names should be updated by the programs themselves, rather
than “by hand” at each stage. The output, whether text or
graphic, should contain the parameters required to replicate
the result. This can be especially important for interactive data
processing because input files are not kept.

A.8.3 Representation of numbers

Several simple concepts about numerical calculations on a
computer are worth bearing in mind. One is the consequences
of the way in which numbers are represented and manipulated.
Because computers use binary (base 2) arithmetic, numbers
are written as sets of bits, single binary digits, grouped into
words. Some general ideas about these representations can be
illustrated without going into the schemes used by various
computers.

Integers are represented by their binary equivalent. Thus 46
(decimal) is 101110, because

46 = 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21 + 0 × 20.

Many computers represent integers by 16- or 32-bit words.
The word length governs the range of possible integers. For ex-
ample, using 16 bits, one of which indicates the sign, the largest
positive integer that can be represented is

111 1111 1111 1111 (binary) = 215 − 1 = 32,767.

Fig. A.8-4 Representation of a floating point number using 32 bits.
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Because a greater range is needed for scientific computation,
floating point numbers are used:

number = (mantissa) × 2exponent.

Floating point numbers can accommodate fractions, with digits
to the right of the binary point representing negative powers
of two, just as digits to the left of the point represent positive
powers of two. For example,

46.625 (decimal) = 1 × 25 + 0 × 24 + 1 × 23 + 1 × 22 + 1 × 21

+ 0 × 20 + 1 × 2−1 + 0 × 2−2 + 1 × 2−3

= 101,110.101 (binary) = 0.101110101 × 26.

To represent binary floating point numbers on a computer, a
certain number of bits are assigned to the mantissa and the
exponent. Figure A.8-4 shows one way in which a single pre-
cision floating point number might be represented by a 32-bit
word. One bit is reserved for the sign of the mantissa, 8 bits
are used for the exponent including its sign, and the remaining
23 bits contain the mantissa. The number of bits available for
the exponent determines the range of the floating point num-
bers. Because 28 = 256, the exponent can represent numbers
between approximately 2127 and 2−128 or approximately 1038

to 10−39. The number of bits in the mantissa determines the pre-
cision or number of significant digits. Because 2−23 is approxim-
ately 10−7, the maximum number of significant decimal digits is
about seven. Further precision can be obtained using double
precision numbers with additional bits for the mantissa. The
precise values of the range and the precision depend on details
of the implementation.

The range and precision in use are worth bearing in
mind because computers do not always issue “overflow” or
“underflow” warnings. The computer may assign a value, such
as the largest floating point number, and proceed. It can be
frustrating to find that the peculiar answers produced by a
program result from numbers outside the computer’s range.

A related malady is round-off error, the loss of computa-
tional precision due to the limited number of significant digits.
To illustrate the concept, suppose that a computer used six bits
for the mantissa. The decimal addition

0.65625 + 0.96875 = 1.625

would, in binary, be



0.10101 + 0.11111 = 1.10100,

which, because no precision was lost, equals the exact answer.
Now, consider the decimal addition

5.25 + 0.96875 = 6.21875,

which, in binary, becomes

0.101010 × 23 + 0.111110 × 20.

To carry out the binary addition, because the numbers have
different exponents, the mantissa of the smaller number is
shifted to produce a common exponent. If some of the bits rep-
resenting the smaller number are lost, inaccuracy may result.
For example, in this case,

0.101010 × 23 + 0.000111 × 23 = 0.110001 × 23

= 6.125 (decimal).

The precision available on a computer is generally adequate
to avoid significant round-off error. Nonetheless, it is a poten-
tial problem to keep in mind, especially in long calculations or
in those such as a series sum where the answer is the difference
between large numbers.

A.8.4 A few pitfalls

Difficulties often can be avoided by considering how various
statements in the program will be executed. This is especially
the case when using compilers that provide little error checking
and few helpful warning and error messages. The computer,
following its explicit rules, may yield results differing from
those expected. The foibles here are for Fortran, but similar
ones often appear in other computer languages.

• Statement execution. Problems often stem from the distinc-
tion between integers and floating point numbers. For example,
if I and J are integer variables,

J = 5

I = 1/J

yields zero, because integer division yields an integer. This
problem is not cured by setting the result equal to a floating
point variable, or performing a floating point operation on the
integer result:

X = 1/J

Z = 1.0*(1/J)

yield zero, because division is done as an integer operation, and
the result (0) is converted to floating point (0.0). On the other
hand, most compilers give 0.2 as the result of

X = 1.0/J,

although a conservative policy is to explicitly convert the integer
to floating point

X = 1.0/FLOAT(J).

A second class of problems can result from the order in
which operations are performed. For example, it may be
unclear whether

−1.0**2

should be interpreted as (−1.0)2 = 1.0 or −(1.0)2 = −1.0.
Although the computer language rules are explicit, it may be
wise to use parentheses, e.g.,

(−1.0)**2

to ensure that operations are carried out as desired. The
additional parentheses can also make the program more
comprehensible.

• Subroutines. Subroutines are heavily used in writing scient-
ific programs. As a result, problems can result while using
computer languages like Fortran in which what appear to be
arguments passed to a subroutine are actually the locations in
memory of these arguments.

A common error is exemplified by the following program
CALL SUB(1.0)

X = 1.0

WRITE (6,*) ’X = ’, X

STOP

END

SUBROUTINE SUB(Y)

Y = 5.0

RETURN

END

which, when executed, yields “X = 5.0.” Because Y, a para-
meter in the subroutine definition, was set equal to 5.0, the
value of the corresponding parameter in the subroutine call,
“1.0” has been redefined as 5.0. This situation, which some-
times underlies inexplicable behavior by programs, can be
avoided by not passing numerical values of an argument expli-
citly to a subroutine if the argument will be redefined. For
example, had the first statements been

Z = 1.0

CALL SUB(Z)

the variable Z would equal 5.0, but “1.0” would not be
affected.

Other errors occur when either the type or number of argu-
ments in a call to a subroutine do not match those in its defini-
tion. For example, calling a subroutine with an integer variable
may yield unexpected results if the definition is in terms of a
real variable.

A.8 Scientific programming 471
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• Arrays. Scientific computing often involves dealing with
arrays, groups of data addressed by their indices. For example,
a seismogram giving a single component (e.g., vertical) of
ground motion can be written as an array (U(1), U(2) . . .) of
displacement versus time. Similarly, a seismogram giving all
three (vertical, north–south, east–west) ground motion com-
ponents can be written as a two-dimensional array

U(1, 1), U(1, 2), U(1, 3), U(1, 4) . . .

U(2, 1), U(2, 2), U(2, 3), U(2, 4) . . .

U(3, 1), U(3, 2), U(3, 3), U(3, 4) . . .

whose first index gives the component, and second index indic-
ates the time.

Arrays are defined initially by statements giving their dimen-
sions, i.e.,

DIMENSION A(N, M)

or
REAL A(N, M).

Typically, the computer selects a memory location for the first
element in A and reserves N × M successive locations. Sim-
ilarly, N × M × R locations are reserved for a three-dimensional
array dimensioned (N, M, R). In Fortran, regardless of the
number of dimensions, an array is stored as one-dimensional
with the first index varying the most rapidly, then the second,
and so on. In other words, if A is dimensioned (2, 3), the stor-
age order is

A(1,1), A(2,1), A(1,2), A(2,2), A(1,3), A(2,3).

For two-dimensional arrays, this can be thought of as storing
the array by columns. An individual array element is found by
calculating its location relative to that of the first element.
Thus, for an array dimensioned (N, M), with element (1, 1) at
location 1, element (I, J) is found at location

1 + (I − 1) + (J − 1) × N.

Several computational difficulties can arise in dealing with
arrays. A common set of errors involve being “off by one,”
either by starting or ending on the wrong element. This is
especially easy because some computer languages (e.g., For-
tran) start with the first element in an array being “1,” whereas
others (e.g., “C”) start with the first array element as “0.” Thus
one needs to make sure that the array elements correspond
to the expected variable values, such as seismic record times.
Often, when an array index is computed by the program, an
error yields an index outside the bounds dimensioned for the
array. Because many compilers do not check for such errors
unless specifically requested, a statement like

A(9) = 4.0

will usually be executed even for an array dimensioned
DIMENSION A(5).

Typically, the computer places 4.0 in whatever is 8 locations in
memory beyond A(1). This location may contain some other
variable, or a portion of the program itself. Often the program
continues until it requires the contents of the overwritten loca-
tion, at which point several things may occur. At best, the pro-
gram “crashes”; at worst, it continues the calculation with
erroneous values that propagate. Array element out-of-bounds
problems are among the most common and most frustrating

difficulties in scientific programming. When a compiler pro-
vides array bounds checking, it is worth using.

The nature of array storage can also lead to inefficient pro-
grams. On many computers, data which are actually on disk
can be treated as resident in memory, and are automatically
“swapped” into physical memory when needed. For efficiency,
large adjacent regions of the disk are often swapped into phys-
ical memory together. Efficient programs minimize swapping
by making the most possible use of data that reside in phys-
ical memory. By contrast, inefficient programs can produce
“thrashing,” a situation in which much of the computer’s time
is spent swapping rather than computing.

For example, consider4

DIMENSION A(1000, 1000)

DO 10 I = 1,1000

DO 10 J = 1,1000

10 A(I, J) = I + J

Because the elements of A are stored in column order, A(1, 1)
and A(1, 2) are a thousand locations apart. It would be more
efficient to reverse the loops

10 A(J, I) = I + J

so that adjacent locations (A(1, 1), A(2, 1) . . .) were used
successively.

• Uninitialized variables. Problems frequently result from
uninitialized variables: those used in calculation without their
values being set. A common example, summing an array

DO 10 I = 1, N

10 SUM = SUM + A(I)

can give strange results unless the compiler initializes SUM
as zero. Because this is not always the case, it is thus wise to
explicitly initialize, e.g.,

SUM = 0.0

before executing the loop. Proper initialization also helps to
ensure that programs do not give different results on different
computers.

• The computer may be wrong. Although most problems
result from programming errors, a very small fraction of the
time the error may be the computer’s. Compilers have been
known to contain “bugs” in common routines such as square
root, tangent, or complex arithmetic. This tempting explana-
tion for the failure of a long and intricate program can gener-
ally be rejected unless a test program that carries out only the
suspect operation yields the wrong answer.

A.8.5 Some philosophical points

To close our discussion, a few general thoughts are worth
considering. Historically, computers were considered a scarce
and valuable resource. Currently, as computer power increases
and costs fall, it is increasingly practical to carry out investi-

4 Hatton (1983c).



gations numerically. One example is the change, both in ex-
ploration and in global seismology, from earth models whose
properties vary only with depth, to three-dimensional models
that are evaluated numerically.

The role of analytic solutions is also changing. In addition
to the traditional goal of providing exact solutions to simplified
problems, analytic solutions provide test cases for numerical
solutions of more complex problems. Analytic solutions can
also yield the insight needed to evaluate numerical results.

Along with the increase in the complexity of problems that
can be solved computationally comes an increase in the volume
of output. Fortunately, a parallel development has been the
increasing role of graphic output, often in color. The proverb
“A picture is worth a thousand words” may be unduly con-
servative in this context. A thousand words on a computer
might be 32,000 bits; graphic output often makes it possible to
visualize data with millions of bits.

Finally, software such as spreadsheets or programs with
sophisticated general mathematical capabilities often eliminates
the need to write programs for a specific application. In this
book, we do not assume that such software will be used for the
problems, although many could be done this way. We think
that programming without using such software gives a deeper
understanding of the underlying principles. Hence, in educa-
tional applications, we strongly favor programming, even if in

non-educational applications ease of use may favor sophistic-
ated software.

Further reading

Many texts cover portions of the mathematical material summarized here.
Feynman (1982) discusses general issues of the relations between math-
ematics and science. Butkov (1968) and Menke and Abbott (1990) provide
introductions to many of these topics. Fung (1969), Hay (1953), Jeffreys
and Jeffreys (1950), and Marion (1970) treat vectors, vector transforma-
tions, and vector differential operators. Applied linear algebra texts such
as Franklin (1968) and Noble (1969) deal with the range of the subject
including numerical methods.

Articles by Hatton (1983a–d, 1984a,b, 1985) provide a broad and witty
introduction to computer science for geophysicists. Eckhouse and Morris
(1979) and Sloan (1980) cover topics in computer software, including the
representation of numbers and arithmetic operations. Kernighan and
Plauger (1976, 1978) discuss topics in programming style. Brooks (1975)
treats issues in the development and organization of computer software.
Numerical analysis texts like Froberg (1969) cover round-off and other
sources of error in numerical computations. Harkrider (1988) gives an enter-
taining anecdotal account of early (c.1960) computer usage in seismology.

The application of spherical geometry to the paths between an earth-
quake and a receiver, including the effects of the earth’s ellipticity are dis-
cussed by Ben-Menahem and Singh (1981) and Bullen and Bolt (1985).
The theory of the earth’s shape is treated by Cook (1973) and Jeffreys
(1976).
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Problems

1. Find the angle between the vectors (1, 4, 2) and (2, 3, 1).
2. Show, using index notation, that for the three-dimensional vectors

a, b, c:
(a) a × b is perpendicular to both a and b.
(b) | a × b | = | a || b | sin θ, where θ is the angle between the two

vectors.
(c) a · (b + c) = a · b + a · c.
(d) a × (b + c) = a × b + a × c.
(e) a · (b × c) = b · (c × a) = c · (a × b).
(f) a × (b × c) = b(a · c) − c(a · b).

3. Show that for arbitrary matrices A, B, and C:
(a) (AB)T = BTAT.
(b) (ABC)T = CTBTAT.

4. Prove the following properties of determinants for the case of a
2 × 2 matrix:

(a) The determinant of a matrix equals the determinant of its
transpose.

(b) If two rows or columns of a matrix are interchanged, the de-
terminant has the same absolute value, but its sign changes.

(c) If a multiple of one row (or column) of a matrix is added to
another row (or column), the determinant is unchanged.

(d) If two rows or columns of a matrix are the same, the
determinant is zero.

5. Express the determinant of a 3 × 3 matrix using the definition in
Eqn A.4.17.

6. Prove that if A has an inverse, the two solutions x and y satisfying
Ax = b and Ay = b are equal.

7. Find the inverse of the matrix

  

1 2
5 4

⎛
⎝⎜

⎞
⎠⎟

both by the cofactor method and by row operations. Check that
the solution is in fact the inverse.

8. Show that the inverse of a 2 × 2 matrix A is given by

    
A

A
a a
a a

− = −
−

⎛

⎝⎜
⎞

⎠⎟
1 22 12

21 11

1
  

| |
  .

9. Show that A, the transformation matrix for a rotation about the
ê3 axis (Eqn A.5.9) satisfies ATA = I and is thus orthogonal.

10. Prove that the magnitude of a vector is preserved by an orthogonal
transformation.

11. Expand the determinant that give the eigenvalues of a 3 × 3 matrix
(Eqn A.5.19) and verify that the invariants (Eqn A.5.21) are the
coefficients of the characteristic polynomial.

12. Prove the following vector identities using index notation:
(a) For any vector field u(x), ∇ · (∇ × u) = 0.
(b) For any scalar function φ(x), ∇ × ∇φ = 0.

13. For the vector field u(x, y, z) = (3x2y2 + z, 2x3y + 2y, x), find:
(a) ∇ · u.
(b) ∇ × u.
(c) ∇2u.
(d) A scalar field φ(x, y, z) such that u = ∇φ.
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14. Use index notation to show that the Laplacian in Cartesian coordin-
ates of any vector field u(x) satisfies

∇2u = ∇(∇ · u) − ∇ × ∇ × u.

15. Show that at any point in a spherical coordinate system, the spher-
ical basis vectors (êr, êθ , êφ) form an orthonormal set.

16. Use Eqn A.7.6 to derive the angular distance ∆ between the loca-
tions of an earthquake and a seismic station as given in Eqn A.7.7.

Computer problems
The solutions may be useful for other problems in this and other
chapters.
C-1. Find the largest integer your computer allows by starting with

“2,” “2 × 2,” “2 × 2 × 2,” and doing successive multiplication by
2. What happens when you exceed this number? Do the same for
floating point numbers using “10.0” instead of “2” in both single
and double precision. Does double precision allow larger floating
point numbers?

C-2. Find when your computer starts to show round-off error by start-
ing with “10.0” and doing successive multiplications by 10.0. At
each step, add 1.0 to the result and subtract the two numbers.
When does the difference become zero? Do the same in double
precision.

C-3. Write subroutines to do the following operations on an input
vector in three dimensions:

(a) Find the magnitude of a vector.
(b) Find the sum of two vectors.
(c) Find the scalar product of two vectors.
(d) Find the vector product of two vectors.

Your subroutines should include comment lines explaining the
purpose of the routine and the various inputs and outputs.

C-4. Write a subroutine using the necessary subroutines from problem
C-3 to find the angle between two vectors.

C-5. Use the solutions to problems C-3 and C-4 to find the magnitude,
sum, scalar product, and vector product of the vectors (1, 4, 2)
and (2, 3, 1), and the angle between the two vectors.

C-6. (a) Write a subroutine to multiply an n × m matrix by an m-
element vector.

(b) Write a subroutine to multiply an n × m matrix by an m × r
matrix.

(c) Write a subroutine to find the determinant of a 3 × 3 matrix.
C-7. (a) Write a subroutine that uses Gaussian elimination with

partial pivoting to solve the system of equations Ax = b. The
routine should take an arbitrary 3 × 3 matrix A and 3-element
vector b as inputs. The program should test the solution by
multiplying Ax and subtracting b from the result. The sub-
routines from C-6 may be helpful.

(b) Use the subroutine to solve

    

10 7 0
3 2 6
5 1 5
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C-8. (a) Write functions that return the values of the δij and εijk sym-
bols given the indices as arguments. Test the functions and
show that they give the correct values.

(b) Write a program that uses these two functions to prove the
identity

ε ijkεist = δjsδkt − δjtδks

by testing all possible combinations of indices. 1 Beyer (1984).

C-9. (a) Write a subroutine to invert a 3 × 3 matrix using elementary
row operations. The subroutine should first check to see if
the matrix is singular. It should test the result by multiplying
by the original matrix.

(b) Use this routine to invert

  

1 1 1
3 1 2
2 2 3

− −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  .

C-10. (a) Write a program to solve a 3 × 3 system of equations Ax = b
using the matrix inversion routine from the previous prob-
lem. The program should test the solution by multiplying Ax
and subtracting b from the result. The subroutines from C-6
may be helpful.

(b) Use the program to solve the system of equations in C-7.
C-11. (a) Write a subroutine to find the roots of a general cubic equa-

tion using the method given below.1

A cubic equation y3 + py2 + qy + r = 0 may be converted to

x3 + ax + b = 0

by defining

y = x − p/3, a = (3q − p2)/3, b = (2p3 − 9pq + 27r)/27.

If p, q, and r are real, the quantity

c = b2/4 + a3/27

characterizes the roots: if c > 0, there is one real root and two
conjugate imaginary roots; if c = 0, there are three real roots,
of which two are equal; and if c < 0, there are three real and
unequal roots. Using

A = (−b/2 + c1/2)1/3, B = (−b/2 − c1/2)1/3,

the values of x given by

x = A + B, [−(A + B) + (A− B) −3]/2,

−[(A + B) + (A − B) −3]/2

are the roots.
The subroutine requires complex arithmetic and should

test the roots by substituting back into the equation.
(b) Use the result to solve

y3 − 8y2 + 19y − 12 = 0.

C-12. (a) Write a subroutine to find the eigenvalues and eigenvectors
of a real, symmetric 3 × 3 matrix, using the results of C-11.
The program should check that the eigenvectors and eigen-
values satisfy their definition. Be careful to avoid dividing by
zero.

(b) Use this subroutine to find the eigenvalues and eigenvectors of

  

1 2 3
2 4 5
3 5 6

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟  .



C-13. (a) Write a program that accepts the latitude and longitude of
two points on the earth’s surface and finds the angular dis-
tance and distance along the earth’s surface between them,
and the azimuth and back azimuth.

(b) Use your program to find the distances and azimuths
between:

(i) Cairo, Illinois (37°N, 89°W) and Cairo, Egypt (30°N,
32°E).
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(ii) Berlin, New Hampshire (44.5°N, 71.5°W) and Berlin,
Germany (52.5°N, 13.5°E).

(iii) Montevideo, Minnesota (45°N, 95.5°W) and Monte-
video, Uruguay (35°S, 56°W).

(iv) Mexico, Maine (44.5°N, 70.5°W) and Mexico City,
Mexico (19°N, 99°W).
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486 Solutions to odd-numbered problems

Solutions to selected odd-numbered
problems

Note that in many problems (as in reality), the solution varies
depending on the interpretation of the data or the assumptions
used.

Chapter 2

(1) R12 = 0, T12 = 1.

(3a) (3, −2, 5).

(3b) (2, 1, 3).

(3c) (5, 3, 0)/ 14.

(5a) σ1 = 2, σ2 = 0, σ3 = −2; n(1) = (1, 1, 0)/ 2, n(2) = (0, 0, 1),

n(3) = (1, −1, 0)/ 2.

(5b) τ = 2. Planes have normals (1, 0, 0) and (0, 1, 0).

(7b) −150 kbar.

(7c)
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(7d) 450 km.

(9) 2%.
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(11b) 18λ + 16µ.

(13a) [(λ + 2µ)/ρ]1/2.

(13b) (µ /ρ)1/2.

(15) 3 .

(17a) L = 11.25 km/s; M = 6.18 km/s.

(17b) L /M = 1.82.

(19a) 0.8 km, 8 km, 800 km.

(19b) 0.000125 s, 0.125 s, 12.5 s; 8000 Hz, 8 Hz, 0.08 Hz.

(21) i2 = 13°; i3 = 17°; ic = 37°.

(23a) For the i1 = 0° wave: i2 = 0°, l1 = 2 km, l2 = 2 km, T = 3.3 s. For
the i1 = 30° wave: i2 = 49°, l1 = 2.3 km, l2 = 3.0 km, T = 4.3 s.

(23b) For the i1 = 0° wave: s1 = (0, 1) s/km, | s1 | = 1/v1, s2 = (0, 2/3) s/km,

| s2 | = 1/v2. For the i1 = 30° wave: s1 = (0.5, 3 /2) s/km,
| s1 | = 1/v1, s2 = (0.5, 0.44) s/km, | s2 | = 1/v2.

(25a) ΨI = B1 exp [i(ωt − kx x + kx rβ z)],

ΨR = B2 exp [i(ωt − kxx − kxrβ z)],

ΦR = A2 exp [i(ωt − kxx − kxrα z)].

(25b)
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α) − 2µrβB1 + 2µrβB2 = 0.

(25c) B2/B1 = −1, A2/B1 = 0.
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(27a) For ScS: jslab = 26°, jsurf = 4°. For ScSp: islab = 50°, isurf = 20°.

(27b) 50 km.

(29) ω1 = 0.58, ω2 = 1.16.

(33) (3/2)(5 cos2 θ sin θ − sin θ).

(35a) 2591 s.

(35b) 4.4 km/s.

(35c) 8.3 km/s, 13.8 km/s, 74.5 km/s.

(35d) c = 5.36 km/s, 5.01 km/s, 4.05 km/s; λ = 11,440 km, 1312 km,
307 km.

(37a) ∆ω /ω observed: 0.059.

(37b) ∆ω /ω predicted: 0.037.

(C-3) For P waves at the CMB, Tmc = 0.975, Rmc = −0.025,
Tcm = 1.025, Rcm = 0.025, 0R/0I = 0.0006, 0T /0I = 0.9994.
For S waves at the CMB, Tmc = 2, Rmc = 1, 0R/0I = 1, 0T/0I = 0.

Chapter 3

(1) α0 = 5.7 km/s, α1 = 7.8 km/s, h0 = 23 km.

(3a) αc = 6.7 km/s, αm = 8.2 km/s.

(3b) 3.1 km.

(3c) 5.4 km.

(5) αc = 6.5 km/s, αm = 8 km/s, dip = 4°, hu = 50 km, hd = 30 km.

(11) 24,000,000.
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(13a) 9.34 km/s.

(13b) 11.24 km/s.

(15) For D = 0 km: p40 = 8.3 s/degree, p60 = 6.9 s/degree, i40 = 26°,
i60 = 21°. For D = 600 km: p40 = 7.9 s/degree, p60 = 6.6 s/degree,
i40 = 52°, i60 = 41°.

(17a) 4.5 s/degree.

(17b) 13.4 km/s.

(17c) SKKS.

(19a) t1/e(0T2) = 58.3 hr, t1/e(0T30) = 3.0 hr, t1/e(0S30) = 4.2 hr.

(19b) 54,300 km for 0T30, 76,450 km for 0S30.

(21a) 3%.

(21b) 0.3%.

(23) Mc = 1.94 × 1024 kg, Nc = 11 g /cm3.

Chapter 4

(3) Earthquake a: (φ, δ, λ)1 = (310°, 65°, 90°) (thrust); (φ, δ, λ)2 =
(130°, 25°, 90°) (thrust); P axis (azimuth, plunge) = (40°, 20°);
T axis = (220°, 70°); B axis = (130°, 0°).
Earthquake b: (φ, δ, λ)1 = (176°, 80°, 195°) (right-lateral
strike-slip); (φ, δ, λ)2 = (83°, 75°, 350°) (left-lateral strike-slip);
P axis (azimuth, plunge) = (40°, 18°); T axis = (309°, 3°);
B axis = (209°, 72°).
Earthquake c: (φ, δ, λ)1 = (9°, 90°, 180°) (right-lateral
strike-slip); (φ, δ, λ)2 = (99°, 90°, 0°) (left-lateral strike-slip);
P axis (azimuth, plunge) = (234°, 0°); T axis = (144°, 0°);
B axis = (undefined, 90°).
Earthquake d: First solution: (φ, δ, λ)1 = (16°, 85°, 90°) (dip
slip); (φ, δ, λ)2 = (196°, 5°, 90°) (thrust); P axis (azimuth, plunge)
= (106°, 40°); T axis = (286°, 50°); B axis = (196°, 0°). Second
solution: (φ, δ, λ)1 = (78°, 66°, 25°) (left-lateral strike-slip);
(φ, δ, λ)2 = (337°, 67°, 154°) (right-lateral strike-slip);
P axis (azimuth, plunge) = (28°, 1°); T axis = (297°, 34°);
B axis = (119°, 56°).

(7) 0.
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(Double-couple scalar moment)/(original scalar moment) = 0.999.
(CLVD scalar moment)/(original scalar moment) = 0.054.

(9c) There are two solutions:

Solution 1:
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(Double-couple scalar moment)/(original scalar moment) =
0.546.
(CLVD scalar moment)/(original scalar moment) = 0.838.

Solution 2:
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(Double-couple scalar moment)/(original scalar moment) =
0.452.
(CLVD scalar moment)/(original scalar moment) = 0.892.

(11) 4.24 mm/yr, 0.85 mm/yr, 0.42 mm/yr.

(13) MS = 5.2.

(15) assuming µ = 3 × 1011; 200,000 km; 43,333 km.

(17) ~0.04 Hz.

(19b) 0.003–0.03.

(21) Japan: 8 mo. (M ≥ 6); 7 yr (M ≥ 7); 65 yr (M ≥ 8). S. California:
1 yr (M ≥ 6); 8 yr (M ≥ 7); ≈ 100 yr (M ≥ 8). New Madrid: 92 yr
(M ≥ 6); 920 yr (M ≥ 7); 9200 yr (M ≥ 8).

(C-1) Earthquake a: 4 = (0.453, −0.785, 0.423);
2 = (0.098, 0.515, 0.852).

Earthquake b: 4 = (0.853, −0.150, 0.500);
2 = (0.492, −0.087, −0.866).

Earthquake c: 4 = (0.853, −0.150, 0.500);
2 = (−0.492, 0.087, 0.866).

Earthquake d: 4 = (−0.633, −0.754, 0.174);
2 = (0.758, −0.559, 0.337).

Earthquake e: 4 = (−0.633, −0.754, 0.173);
2 = (−0.758, 0.559, −0.337).

(C-3) Earthquake a: 

  

0 088 0 157 0 427
0 157 0 808 0 451
0 427 0 451 0 720

. . .

. . .

. . .
.− −

− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Earthquake b: 

  

0 840 0 148 0 492
0 148 0 026 0 087
0 492 0 087 0 866

. . .

. . .

. . .
.

− −
−
− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Earthquake c: 

  

−
− −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 840 0 148 0 492
0 148 0 026 0 087
0 492 0 087 0 866

. . .

. . .

. . .
.
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Chapter 6

(1a) a0 = 0, ak = 0, bk = (2/kπ)(1 − cos (kπ)).

(1b) a0 = 0, ak = 0, bk = −cos (kπ)/kπ = (−1)k+1/kπ.

(3a) −1.

(3b) 4i.

(3c) −i.

(3d) 1.5 + 2.6i.

(7a) πe− iπ /2 [δ(ω  − ω0) − δ(ω  + ω0)].

(9a) a2σ 2
u + b2σ 2

v + 2abσ 2
uv.

(9b) a2v2σ 2
u + a2u2σ 2

v + 2a2uvσ 2
uv.

(9c) (a2/v2)σ 2
u + (a2u2/v4)σ 2

v − 2(a2u/v3)σ 2
uv.

(9d) a2b2u(2b−2)σ 2
u.

(11a) v∆t/(2 cos i).

(11b) 10 km.

(11c) (σ 2
v∆t2 + σ 2

∆tv
2 + σ 2

i v
2∆t2 tan2 i)/4 cos2 i.

(11d) 4 km.

Appendix

(1) 21°.

(5) a11a22a33 − a11a23a32 − a12a21a33 + a12a23a31 + a13a21a32 −
a13a22a31.

(7)
  
A− = −

−
⎛
⎝⎜

⎞
⎠⎟

1 2 3 1 3
5 6 1 6

  / /
/ /

.

(13a) 6xy2 + 2x3 + 2.

(13b) (0, 0, 0).

(13c) (6y2 + 6x2, 12xy, 0).

(13d) xz + x3y2 + y2 + constant.

(15) Hint: use Eqn A.7.4.

(C-5) | (1, 4, 2) | = 21; | (2, 3, 1) | =  14; sum = (3, 7, 3); a · b = 16;
a × b = (−2, 3, −5); θ = 21.1°.

(C-7b) (0, −1, 1).

(C-9b)

  

0 7 0 1 0 3
0 5 0 5 0 5
0 8 0 4 0 2

. . .

. . .

. . .
.

−
−

− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(C-11b) 1, 3, 4.

(C-13b) i: ∆ = 93°, ζ = 48°.
ii: ∆ = 54°, ζ = 49°.
iii: ∆ = 87°, ζ = 148°.
iv: ∆ = 35°, ζ = 232°.

Earthquake d: 

  

− − −
− −
− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

0 960 0 218 0 082
0 218 0 843 0 351
0 082 0 351 0 117

. . .

. . .

. . .
.

Earthquake e: 

  

0 960 0 218 0 082
0 218 0 843 0 351
0 082 0 351 0 117

. . .

. . .

. . .
.−

−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

(C-7b) 0.95.

(C-9a) Gaussian: 0.1%; Poisson: 4%.

(C-9b) Gaussian: 0.3%; Poisson: 3%.

(C-9c) Gaussian: 0.5%; Poisson: 2%.

(C-11a) τ  = 21.8 yr; σ  = 7.2 yr; Poisson: p = 37%;
Gaussian: C(1993, 1985) = 64%.

(C-11b) τ = 21.8 yr; σ = 1.5 yr; Poisson: p = 37%;
Gaussian: C(1993, 1985) = 99%.

(C-11c) τ  = 25.5 yr; σ  = 11.1 yr; Poisson: p = 31%;
Gaussian: C(2018, 2010) = 82%.

(C-11d) τ = 27.2 yr; σ = 14.7 yr; Poisson: p = 29%;
Gaussian: C(2028, 2020) = 74%.

Chapter 5

(1a) 0.77 m; Mw = 6.8, length = 31 km.

(1b) 4.62 m; Mw = 7.8, length = 240 km.

(3a) 40 mm/yr.

(3b) 125, 250, 500 yr.

(3c) For 25%: 500, 1000, 2000 yr; for 50%: 250, 500, 1000 yr.

(3e) Mw ≈ 8.4; M0 = 5 × 1028 dyn-cm.

(5) 6 × 1031 dyn-cm; Mw 10.5.

(7a) 47 mW/m2.

(7b) 33 mW/m2.

(7c) 84 mW/m2.

(9) ~1 Ga.

(11) −21.5 bar/°C.

(13) vL3/(24κ 2t); 28 (for v = 10 cm/yr and t = 150 Ma).

(17) 58°; 251 MPa.

(C-1b) San Andreas: 46 mm/yr at 324°; Aleutian: 53 mm/yr at 346°.

(C-3b) (θ, φ, |ω |) = (−63.0°, 107.4°, 0.641 °/my).

(C-3c) Hawaii: 66 mm/yr at 299°.
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antipodal focusing, 169, 170
Appalachian Mountains, 182, 334
apparent dip, 126, 153
apparent reflector, 153–4
apparent velocity

filtering, 145–6
seismic waves, 65–6
surface waves, 87–91

Armenia earthquake (1988) see Spitak (Armenia)
earthquake

arrays, seismometer networks, 407
aseismic deformation, 342
aseismic slip, 262, 307, 323–4, 340
asperities, 273
associated Legendre function, 103, 106
asthenosphere, 170, 286

anisotropy, 180–2
viscous flow, 331, 365

Atlantic Ocean, intraplate earthquakes, 326–7
atmosphere, evolution of, 288
attenuation

in crust, 197–8
geometric spreading, 56, 187
inverse problem for normal modes, 434–7
in mantle, 198
physical dispersion, 194–6
quality factor Q, 114, 190–3, 197–8
seismic waves, 114, 185–98, 229–30
spectral resonance peaks, 193–4

attenuation operator, 196
auto-correlation, 151, 384–5
auxiliary fault plane, 219
axial high, mid-ocean ridge, 299, 305
axial valley, mid-ocean ridge, 299, 305
azimuth, spherical coordinates, 463–5
azimuthal anisotropy, 179
azimuthal order of normal modes, 103

b-values, 274–7
back azimuth, 456, 464–5
backarc basin, 307
Balleny Islands earthquake (1998), 13, 328, 347
bandpass filter, 378–9, 383
bar, pressure unit, 41
basalt, 132
Basin and Range, 130, 293, 334
Bayes’s theorem, 279
BCIS see Bureau Central International de

Seismologie
benchmarks, 251n1
Benioff, H., 288
Big Bear earthquake (1992), 253–4

Birch, F., 119, 201
blind zone, refraction seismology, 123
block slider model, 360
body force, 39

equivalent for earthquakes, 220, 239, 245
body waves

core phases, 166–9
definition, 3
lower mantle, 171–4
magnitude, 264
modeling, 231–5
phases, 163–6
radiation patterns, 220–2
travel time studies, 162–76
and upper mantle structure, 169–71
visualizing, 174–6
see also P waves; S waves

Borah Peak earthquake, Idaho (1983), 293, 347
borehole seismometer, 400, 408, 433
boundary conditions

core–mantle, 105n4
different interfaces, 51–2
reflection and transmission, 76, 79
string waves, 33
surface waves, 87, 90

bowtie structure, 153–4
boxcar function, 231, 381, 383
breathing mode, 106
bridges, earthquake damage, 18
Brillouin scattering, 179
brittle fracture, 349, 352
brittle-ductile transition, 357
broadband seismometers, 403–4
Browning, I., 11n3
buildings

as damped harmonic oscillators, 194
earthquake risks, 14–18

bulk modulus, 50
bulk sound speed, 200
Bullen, K., 162n1, 201
Bureau Central International de Seismologie (BCIS),

398
Byerlee’s law, 353

Calavaras fault, 276
California Strong-Motion Instrumentation

Program, 410
Carrizo Plain, San Andreas fault, 215, 260
Cartesian coordinate system, 445, 455
caustic, 160, 169, 188
CDP see common depth point
cell hit-count plot, 311

absolute plate motions, 296–8
effect on spreading ridge, 305
relation to anisotropy, 182

absorption peak, 196
acceleration (ground motion), 14–17, 21–2
accelerometers, 14, 404–5
accuracy, of estimates, 6–7, 391–2
acoustic impedance, 33, 77
activation energy, 356
activation volume, 356
Adams–Williamson equation, 200–2
adiabatic gradient (adiabat), 201, 310
aftershocks, 217, 277
air gun, as seismic source, 148–9
Airy isostasy, 301n3
Alaska earthquake (1946), 19, 26
Alaska earthquake (1964), 19, 20, 238–9, 261–3

source parameters, 265–6
stress drop, 270

aleatory uncertainty, 7
Aleutian arc, 311
aliasing, 386–7, 405
amplitude modulation, 94n1
amplitude spectrum, 95, 102, 373
amplitude tomography, 433
amplitude

from ray densities, 100–1, 160, 169
reflected and transmitted waves, 32–4, 76, 85

Andes, deformation rates, 341
anelasticity, 185–6, 190–4

physical dispersion, 194–6
physical models, 196–7

angle of incidence
for plane waves, 65–6
in spherical earth, 157

angle of internal friction, 351
angle of sliding friction, 352
angular frequency, 31
angular order, 103
animal behavior, earthquake precursor, 25
anisotropy

asthenosphere, 180–2
azimuthal, 179
composite structures, 180
of core, 182–5
definition, 177
of lithosphere, 180–2
mantle, 182–4
of minerals and rocks, 179–80
olivine crystals, 60, 179
transverse isotropy, 178–9
velocities for, 178–9
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Central Indian Ocean ridge, 295, 329
central limit theorem, 392
centroid moment tensor project (CMT) see

Harvard centroid moment tensor project
Chagos–Laccadive ridge, 329n4
Chang Heng, 400–1
chaos theory, 24n11
characteristic polynomial, 457
Chile earthquake (1960), 11, 110, 265, 266, 321,

323
Chilean subduction zone, 323
China, earthquake prediction, 25–6
circular fault, 269
Clapeyron slope, 315–16
CLVD see compensated linear vector dipole
CMB see core–mantle boundary
CMP see common midpoint
CMT see Harvard centroid moment tensor project
Cocos plate, 294–5
coda, 189
coefficient of internal friction, 351
coefficient of sliding friction, 352
coefficient of thermal expansion, 201
cohesive strength, 351
collision, between plates, 336–9
common depth point (CDP) stack, 144
common midpoint (CMP) stacking, 141–4,

395–7
common source point (CSP), seismograms, 141
compensated linear vector dipole (CLVD), 245–6,

250
complex Fourier series, 371–2
complex numbers, properties, 443–4
composite structures, anisotropy, 180
Comprehensive Test Ban Treaty (CTBT), 27
compression, 40
compressional (P) axis, 221, 226–7, 243–4
compressional quadrant, 5, 219
compressional waves see P waves
compressive stress, 40, 351
computers

scientific programming, 466–74
solving linear equations, 453–4

Conrad discontinuity, 130
constitutive equations, 38, 48–51
continental drift, 9, 286, 295–6
continental earthquakes, 333–48
continental lithosphere, 287
continental plates

deformation, 339–43
plate boundary zones, 334–9
rifting, 333–4, 343, 345

continuum mechanics, 38
convolution

digital, 390–1
in earthquake modeling, 229–34
linear systems, 378, 379–80
in reflection seismology, 150–1

coordinate transformations, vectors, 455–6
coordinates

Cartesian coordinate system, 445, 455
polar, 443
spherical, 462–6

core of earth
anelasticity, 198
anisotropy, 182–5
body wave phases, 166–9
chemical composition of, 205, 208–10
inner core boundary (ICB), 162, 209–10
regions of, 162

core–mantle boundary (CMB), 105n4, 162,
174

density changes, 202
temperature, 204, 209

Coriolis force, 114
corner frequencies, 267, 270
coseismic displacement, 217, 254–6
Coulomb–Mohr failure criterion, 351, 362–3
coupling

of earth’s modes, 114–15
of P–SV waves, 64
see also seismic coupling

covariance, 394, 421
cracks, fluid-filled, 181
critical angle, waves at interface, 67–8, 78,

121
critical distance, refracted waves, 121
creep, 262
cross product, 447–8
cross-correlation, seismograms, 151, 383–5
crossover distance, refraction seismology, 121
crust

anisotropy, 180–2
attenuation, 197–8
boundary with mantle (Moho), 122, 130
geological composition, 130–4
refraction studies, 128–31

CSP see common source point
curl, vector fields, 460–1

D′′ region
composition of, 207–8
structure of, 171–4
temperature, 204

damped harmonic oscillator
model for anelasticity, 190–4
model for seismometer, 398–9

damped least squares solution, 430
damping factor, 190, 398
dams, earthquake damage, 18
data see seismic data
data space inversion, 436–7, 439
decomposition

matrix (Lanczos), 427, 429
moment tensor, 246, 250–1
vector field (Helmholtz), 54n3

deconvolution
earthquake source, 235, 380
linear systems, 80
in reflection seismology, 148–51

deformation
coseismic, 254–9
interseismic, 259–63
measuring, 251–4
permanent or transient, 342–3
postseismic, 365
regional, 364–5
rheology, 349–50
seismic or aseismic, 339–42
theoretical models, 349–66

degeneracy of normal modes, 104
delay time, 181, 232
delta functions

application to deconvolution, 150–1, 380
Dirac, 375–7
Kronecker, 449

density, within the earth, 199–202
deep earthquakes

definition, 308
relation to subduction, 310–21

depth of earthquakes
classification, 308
determining, 6–7, 232–4, 238
and lithospheric properties, 303, 357–62
at ridges, 305
at continental rifts, 334
at subduction zones, 310, 312, 318

depth of ocean, 301–3
deviatoric stresses, 45–6
DFT see Discrete Fourier Transform
diagonalized stress tensor, 43
differential interferogram, 253
diffraction, 2, 72–5, 153

and core phases, 167–8
diffraction hyperbola, 153
diffraction sum migration, 153
digital convolution, 390–1
digital seismographs, 251, 404
dilatation

volume change, 48
seismic first motion, 219

dilatational quadrant, 5, 219
dip angle, 218
dip filters, 147
dip-slip faulting, 218, 225–6, 236, 244, 256,

269–70
Dirac comb, 385–6
Dirac, Paul, 443n1
Dirac delta function, 375–7
direct wave, refraction seismology, 120
direction cosines, 455
directivity, 231
Discrete Fourier Transform (DFT), 387–91
dislocation, 265–6
dispersion

dispersive signals, 94–6
geometrical, 96–9
normal mode, 107–10
physical, 96, 194–6
surface waves, 87, 96–100, 433
tsunamis, 99–101
dispersion relations, 90, 107

displacement
potentials for, 54, 63
string wave, 30
seismic wave, 53–7, 63–5
static (coseismic), 254–6

distance, spherical coordinates, 464
divergence, vector field, 459–60
divergence theorem, 460
Dix equation, 136
Doppler effect, 231
dot product, 446–7
double-couple source, 220, 240, 242
downward continuation, 155
ductile flow, 355–7
ductile materials, 349
dunite, in mantle, 205
dynamic friction, 359
dynamic range of seismometers, 400

earth
anelastic structure, 197–8, 437
anisotropic structure, 177–85
density, 199–202
interfaces within, 75
models, 62–3, 119, 162, 202–3, 434–9
normal modes, 101–15
pressure in, 202
surface boundary conditions, 51–2
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study of, 1, 2–3, 119–20
temperature in, 202–4

earthquakes
acceleration from, 14–17, 21–2
continental, 333–48
damage caused by, 11–20
deaths due to, 12–13
deep, 308, 310, 312–21
depth determination, 6–7, 232–4, 238
distribution of, 9–10, 289
epicenter, 4, 416
energy radiated, 10, 11, 273
and faults, 215–16
first motions, 219–20
forecasting, 20–4, 278–81
frequency–magnitude relations, 274–7
geodesy, 251–63
hazard estimates, 14–15, 21–2, 346, 379
hypocenter, 4, 217, 251, 416
insurance, 14
intensity of shaking, 14–17, 346
intermediate depth, 308, 320–1
intraplate earthquakes, 11, 271, 288, 303,

326–48
continental, 343–8
list of notable, 12–13
locating, 416–24
location bulletins, 251, 398
magnitude, 4, 11, 263–6
numbers of, 11, 274–7
mid-ocean ridge and transform, 298–9, 305–7
oceanic, 326–32
plate boundaries, 288
prediction of, 9, 11n3, 24–6
probabilities, 21–4, 278–81
possible unpredictability of, 23–6, 274, 280
real-time warnings, 26
and regional deformation, 364–5
risks, 11–14
and rock friction, 359–64
shallow, 308
silent, 262
slow, 271
statistics, 274–81
and strength of lithosphere, 357–9
at subduction zones, 307–10
in subducting slabs, 312–21
swarms, 326, 328
trench, 321–5
yearly energy release, 275

East African rift, 333–5, 343
East Pacific rise, 299, 305, 307
Easter microplate, 307
Eastern North America

earthquakes, 14–17, 343–7
seismic attenuation, 17, 197–8
seismic hazards, 14–17, 22, 346–7

eclogite, 133, 321
effective stress, 353
effective viscosity, 356
efficiency, seismic, 273
eigenfrequencies, 36–8, 101–2, 107–10, 434–5,

466
eigenfunctions, 36, 92, 101–2, 107
eigenvalues, 426–9, 456–8
eigenvectors, 426–9, 456–8
Einstein, Albert, 279n5
Einstein summation convention, 449
elastic rheology, 48–51, 349
elastic lithosphere, 304

elastic moduli, 49–50, 177–8
elastic rebound, 21, 215, 259–62
elastic strain energy, 52, 61–2
elastic–perfectly plastic rheology, 349
electromagnetic seismometers, 401–2
endothermic phase transition, 206, 316, 318
energy

flux in P–SV waves, 80–1
flux in SH waves, 77–8
in harmonic waves, 35–6
in plane waves, 61–2
radiated in earthquakes, 10, 11, 273
strain energy, 52

engineering seismology, 14–18
epistemic uncertainty, 7
epicenter, of earthquakes, 4, 416
epicentral distance, 163
equal-area projection, 223n3
equation of equilibrium, 47, 314, 330
equation of motion, 38, 46–7
equivalent body forces, 220, 239–45
error ellipse

earthquake location, 422, 424
Euler poles, 344, 440

errors
earthquake location, 7, 420–2
propagation of, 393–4
random, 7, 392–5
systematic, 7, 392

Euler pole, 290–1
Euler vectors, 290–5, 326

inverse problem for, 439–40
for NUVEL-1A model, 294

Euler’s theorem, 290n1
evanescent wave, 68, 78
excitation amplitudes, 102, 111
excitation functions, 236
exothermic phase transition, 206, 315–16, 318
exploding reflectors experiment, 152
exploration seismology, 3–5, 134–57
explosions, as seismic sources, 245

far-field motion, 259–60
failure line, 351
Fast Fourier Transform (FFT), 389–90
“fault strength” paradox, 363
faults

analytical representation of geometry, 228–9
blind faults, 256
body wave radiation pattern, 220–2, 232–3
dip-slip, 218, 225–6, 236, 244, 256, 269–70
and earthquakes, 4–5, 215–17
geometry of, 217–19
heat flow, 363
normal, 45, 218, 225–7, 236, 244, 298–9, 328,

334, 336
reverse, 45, 218, 225–7, 236, 244
rupture propagation, 230–1, 238–9
seismic cycle, 217, 259–63
shear stresses, 40–5, 350–3
slip, 218, 230–1, 242, 254–62
static displacements, 254–6
stereographic projection, 223–8
stick-slip, 359–64
stress direction, 44–5, 226–7, 345
strike-slip, 45, 218, 225–7, 236, 244, 254–5,

269, 298–9, 328
surface wave radiation pattern, 235–6
thrust, 45, 218, 225–7, 236, 244, 328, 336
transform, 286, 298, 305–7

FDSN see Federation of Digital Broad-Band
Seismographic Networks

Federation of Digital Broad-Band Seismographic
Networks (FDSN), 398, 408

Fermat’s principle, 70–2, 74, 122, 188–90
Fernandina caldera, Galapagos Islands,

276
Feynman, Richard, 9n1
FFT see Fast Fourier Transform
filtering

anti-aliasing, 405
bandpass, 378–9, 383
signals, 369
tau-p, 147
velocity (dip), 145–7

finite impulse response (FIR) filter, 405
finite signal length, 380–3
FIR see finite impulse response
fire, caused by earthquakes, 18–19
first motions, earthquakes, 219–22, 239
flatness matrix, 430
focal hemisphere, 222
focal mechanism, 219–29, 235–9

deep earthquakes, 312–14
intermediate earthquakes, 312–14
ridge-transform earthquakes, 298–9

focus, of earthquake see hypocenter
foot wall block, 218
football mode, 106
force couple, 241–2
force-feedback seismometer, 403
forecasting, earthquakes, 20–4, 278–81
foreshocks, 25
Fort Tejon earthquake (1857), 22, 279, 334
Fortran, for scientific programming, 467
forward problems, 6, 415
410-km discontinuity, 163–4, 170–1, 202, 205–6,

315–16, 395
Fourier analysis, 369–70
linear systems, 377–85
Fourier series, 370–2
Fourier transform, 94–5, 229, 372–5

delta functions, 375–7
Discrete Fourier Transform (DFT), 387–91
double Fourier transform, 146
Fast Fourier Transform (FFT), 389–90
finite length signals, 380–3
inverse Discrete Fourier Transform (IDFT),

388–9
properties of, 374–5
spatial, 145–6

fractal scaling, 274
fractional crystallization, 209n11
fracture, of rocks, 349–54
fracture strength, 349
fracture zone, 298
free oscillations, 36, 101
frequency domain, 373
frequency response, seismometer, 402
frequency–magnitude relations, earthquakes,

274–7
frequency–time domain equivalence, 229, 235,

373–4
Fresnel zone, 166, 188
friction, and earthquakes, 359–64
friction and fracture, in rocks, 350–4
fundamental modes

Love wave, 91–2, 96
spheroidal, 106
torsional, 105
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gabbro, 130–4, 321
gain, seismometer, 402
Gaussian distribution, 279–80, 392–5
Gaussian elimination with partial pivoting, 454
Gaussian pill box, 51–2
Gauss’s theorem, 460
GDSN see Global Digital Seismic Network
geodesy

combined with seismological data, 256–9
coseismic deformation, 254–6
interseismic deformation, 259–63
space-based methods, 251–4
plate motions from, 295–6

geoid, 303
geological composition, crust and upper mantle,

130–4
geology, effect on earthquake damage, 18
geometric ray theory, 70–2
geometric spreading, 56, 160, 187
geometrical dispersion, 96–9
geophones, 141
GEOSCOPE network, 407
geotherm, 202–4

oceanic lithosphere, 302
and rock strength, 357–8
subducting slab, 309

Gilbert Islands, earthquake swarm (1981–3), 328
glacial loads, removal, 346
Global Digital Seismic Network (GDSN), 407
global plate motions, 8, 293–5
Global Positioning System (GPS), 251–2, 296, 323,

336–41, 344–5, 365
Global Seismic Network (GSN), 407–8
Gloria transform fault, 326
GPS see Global Positioning System
gradient, vector field, 459, 465
Grand Banks earthquake, Newfoundland (1929),

241, 346–7
granite, 133, 359
gravimeter, 403
gravity within earth, 199–202
grazing incidence, 78, 80
great circles, 463–4
Green’s function, 235, 246–7, 380
Greenwich meridian, 463
ground motion from earthquakes

acceleration, 14–17, 21–2
intensity, 14–17, 246

ground roll, 141
groundwater, earthquake precursor, 25
group velocity, 94–7
Guatemala earthquake (1976), 235
Gulf of Aden, 333, 334
Guralp-3T seismometer, 404
Gutenberg, Beno, 274n2
Gutenberg–Richter relation, 274–7

Haicheng (1975) earthquake, 12, 25
halfspace model, oceanic lithosphere, 302
half-spreading rate, 300
hanging wall block, 218
harmonic oscillation, damped, 190–4, 398–9
harmonic waves

definition, 31–2
energy in, 35–6
plane wave, 55

harmonics, spherical, 103–4
vector spherical, 105–6

Harvard centroid moment tensor project (CMT),
251, 266

Hawaii
intraplate earthquakes, 327–8
tsunamis, 19, 26

Hawaiian-Emperor seamount chain, 297
hazards, definition, 11
head wave

amplitude, 128
dipping layers, 123–6
flat layers, 121–3

heat engine model of earth, 287
heat flow

oceanic, 301–3
on faults, 363

Hebgen Lake earthquake, Montana (1959),
347

Hellenic trench, 339, 342, 431
Helmholtz decomposition, 54n3
Herglotz–Wiechert integral, 161–2
highways, earthquake damage, 18
Hilbert transform, 166n3
Himalayas, 336
homogeneous equation of motion, 47, 53–4
homogeneous medium, earthquake location,

419–20
Hooke’s law, 49, 177
horizontal slowness, 69, 137
hot spots, 297, 327, 347–8
Huygens’ principle, 72–5, 122, 153, 189
hydrophones, 141
hydrostatic pressure, 354
hypocenter, of earthquakes, 4, 217, 251, 416

IASP91 earth model, 162–4
ICB see inner core boundary
IDA see International Deployment of

Accelerometers
identity matrix, 451
IDFT see inverse Discrete Fourier Transform
ilmenite, 205
imaginary numbers, 443–4
impedance, 33, 77, 83
impulse response, 377
IMS see International Monitoring System
incompressibility, 50
Incorporated Research Institutions for Seismology

(IRIS), 398, 403
Global Seismographic Network (GSN) program,

407–8
index notation, 38n1, 448–9
India-Eurasia plate collision, 336
Indian Ocean, earthquakes, 328–9
infinitesimal strain theory, 49
inhomogeneous wave, 78
inhomogeneous wave equation, 56
inner core boundary (ICB), 162, 209–10
InSAR see Synthetic Aperture Radar interferometry
intensity of shaking, 14–17, 346
intercept-slowness (tau-p)

filtering, 147–8
formulation for travel time, 137–40

interfaces
boundary conditions, 51–2
in the earth, 75
SH reflection and transmission at, 76–8
P–SV reflection and transmission, 81–6
Snell’s law, 66–8

interferometry, 252–4
intermediate depth earthquakes

definition, 308
relation to subduction, 310–21

Intermountain Seismic Belt, 347
internal friction, 186
International Deployment of Accelerometers (IDA),

403–4
International Monitoring System (IMS), 28, 408
International Seismological Centre (ISC),

earthquake bulletins, 251, 398
International Seismological Summary (ISS), 398,

407
interplate earthquakes, 288

mid-ocean ridges, 298–9, 305–7
trench, 321–5

interseismic motion, 217, 259–63
intraplate earthquakes, 288
continental, 343–8
oceanic, 326–32

intraplate earthquakes, 11, 271, 288, 303, 326–48
intraplate stress field, 331, 345
intrinsic attenuation, seismic waves, 185, 190–8
inverse Discrete Fourier Transform (IDFT), 388–9
inverse filters, 150–1, 380
inverse Fourier transform, 95, 372
inverse problems

earthquake location, 416–24
migration as, 153
plate motions, 439–41
solving, 6, 415–16
stratified earth structure, 434–9
surface wave dispersion, 96–9
travel time tomography, 424–34

inverse theory, 415–19
Iran earthquake (1990), 11
IRIS see Incorporated Research Institutions for

Seismology
isoseismals, 15
isostasy, 301
isotherms, 300
isotropy, 50, 177
ISS see International Seismological Summary
Izmit earthquake, Turkey (1999), 13, 339, 363

Jackson, David, 9n7
Jamaica earthquake (1692), 20
Japan

earthquake prediction program, 9
regional networks, 410
seismicity, 322n5

Jeffreys, Harold, 9, 162n1
Jeffreys–Bullen (JB) earth model, 162

in travel time tomography, 430–2
joint hypocenter determination, 424
Juan de Fuca plate, 291, 293, 295

Kalapana earthquake, Hawaii (1975), 327–8
Kansu earthquake, China (1920), 20
Kepler, Johannes, 110n7
kernels, 434–7
Kirchoff migration, 153–5
Klauder wavelet, 151
Kobe earthquake, Japan (1995), 9, 13, 18
Kronecker delta, 449
Kuhn, Thomas, 9
Kuril subduction zone, 323

Lg phase, 197
Labrador Sea, 327
Lame constants, 50
Lanczos decomposition, 427, 429
Landers earthquake (1992), 12, 253–4, 282,

293
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landslides
caused by earthquakes, 20
as seismic sources, 241

Laplacian, vector field, 461–2, 466
Large Aperture Seismic Array (LASA), 409
lateral spreading, 20
lattice-preferred orientation (LPO) anisotropy,

177
layered medium

dipping, 123–6
as earth model, 62–3
plane waves in, 62–86
refraction seismology, 120–3

least-squares solution, 418
left-lateral slip, 218
Legendre polynomials, 103
Lehmann, Inge, 168n6
Lesser Antilles, travel time tomography, 432
lid see seismic lithosphere
light, analogies for seismic waves, 2, 32n3, 38n6,

56–7, 61n1, 67, 70n2, 74, 96, 185, 189n3,
194n5, 231n2

linear elasticity, 48
linear superposition, 34, 377
linear systems, 377–85

convolution and deconvolution, 379–80
linear vector space, 450
linear velocity, plate motions, 290
liquefaction, caused by earthquakes, 20
lithosphere, 170, 286–7

anisotropy, 180–2
strength of, 357–9
see also oceanic lithosphere

lithostatic stress, 45–6
Loma Prieta earthquake (1989), 7, 12–13, 15, 24,

282, 293
aftershocks, 277
damage caused by, 13, 18
ground motion, 62
liquefaction, 20
source parameters, 265–7

Long Beach earthquake (1933), 17
Long Valley caldera, 246, 334
longitudinal waves, 57
Love, A. E. H., 86n1, 110
Love waves

definition, 86–7
dispersion, 91–3, 96–7
focal mechanisms, 235–9
layer over halfspace, 90–3, 102
and torsional modes, 107, 109

low-velocity zone (LVZ), 99, 170, 204, 303, 358,
435

lower focal hemisphere, 222
lower mantle see mantle
LPO see lattice-preferred orientation anisotropy
lunar seismology, 210–11
LVZ see low-velocity zone

magma chamber, 186, 246, 305
magnesiowustite, 205, 316
magnetic reversals, 293
magnitude, earthquake

body wave, 264
of earthquakes, 4, 11, 263–6
frequency–magnitude relations, 274–7
local, 263
moment, 266
and radiated energy, 273
saturation, 265, 268

surface wave, 264
uncertainties in, 7, 266

magnitude of vectors, 446
mainshock, 277
mantle

anisotropy, 182–4
attenuation, 198, 435–7
boundary with crust (Moho), 122, 128–31
chemical composition of, 204–7
convection system, 286–7
discontinuities, 170–1
lower mantle structure, 171–4
regions of, 162
temperature of, 204
upper mantle structure, 169–71
viscosity of, 331–2, 350, 355–7
see also core–mantle boundary; D′′ region

mantle plume hypothesis, 297
mantle waves, 251
Mars, 211, 287–8
master event methods, earthquake location, 424
mathematical techniques, 443
matrix

adjoint, 451
cofactor, 452
computer solutions of linear equations, 453–4
diagonalization and decomposition, 426–7,

456–7
definitions, 450–1
determinant, 451–2
eigenvalues and eigenvectors, 456–7
generalized inverse 247, 418, 426–7
Hermitian, 451
identity, 451
invariants, 43, 457
inverse, 452
linear equations, 452–3
orthogonal, 452
symmetric, 451
transpose, 451

maximum time path, 71–2, 164–6
Maxwell relaxation time, 355–6
Maxwell viscoelastic material, 355
mean recurrence time, 278
Mediterranean collision zone, 337–9
megaton, energy unit, 11
Mercury, 211
meridians, 463
metastability, 316n3
meteor impacts, as seismic source, 241
meteorites, composition of, 209
mesosphere, 319
Mexico City earthquake (1985), 12, 18
mica, anisotropy, 179–80
microplates, 307
microearthquakes, 299, 305
microseismicity, 25
microseisms, 400
Mid-Atlantic ridge, 298–9
mid-ocean ridges, 286–8, 298–9, 305–7
migration, reflection seismology, 152–6
Millikan, R., 7
minerals

anisotropy, 179–80
crust and upper mantle, 130–4
phase changes and deep earthquakes, 317–18
phase changes and intermediate earthquakes, 321
in subducting slabs, 315–17
in transition zone, 205–7

minimum time path, 71–2, 164–6

mode–wave duality, 101
model resolution matrix, 427
models

of the earth, 62–3, 119, 162
in inverse problems, 415–16
plate motions, 8, 293–4
use of, 5–9

modes, normal see normal modes
Modified Mercalli scale, 14–16
Moho (Mohorovicic discontinuity), 75

discovery of, 122
reflection and transmission at, 82–4, 122
geological composition, 130–1
waveforms, effects on, 127–8, 130

Mohorovicic, Andrija, 122
Mohr envelopes, 353
Mohr’s circle, 350–4
moment, see seismic moment
moment magnitude, 266, 273
moment tensor, seismic, 239–51

compensated linear vector dipoles (CLVDs),
245–6

interpretation of, 249–51
inversion, 246–9
isotropic, 245
stress (P, T, B) axes, 243–4

moon
moonquakes, 210
scattering of seismic waves, 189–90
velocity structure, 210–11

Mt. St. Helens, explosion, 240–1
moveout, 134, 142
multichannel data geometry, reflection seismology,

140–1
multipathing

seismic waves, 185, 187–8
tsunami, 100

multiplet, 104, 114–15, 184, 194, 388
music of the spheres, 110n7

namazu (catfish), 322n5
Nankai trough, 322–3
Nazca plate, 144, 305, 307, 339–40
networks see seismological networks
New Madrid earthquakes (1811 & 1812) and

seismicity, 12, 14–16, 274, 343–6
Newtonian fluids, 356
Newton’s second law of motion, 29, 38, 47, 101
Niigata earthquake (1964), 20
Ninetyeast ridge, 329
Nisqually earthquake (2001) 334
NMO see normal moveout
nodal lines, 104–6
nodal planes, 219, 222, 224, 226–9
nodal surfaces, 105–7
nodes, 92, 105
noise, in seismograms, 141, 145, 369, 383, 395, 400
noncausality, 195, 378, 405
nonlinear tomography, 433
normal fault earthquakes, 218–19, 298–9, 307,

328–9, 334
surface waves, 236

normal modes of the earth, 101–15
attenuation, 114, 434–7
dispersion, 107–9
inverse problem for, 434–7
radial, 106
of a sphere, 101–11
spheroidal, 106–10
splitting, 114–15
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normal modes of the earth (continued)
synthetic seismograms, 111
torsional, 104–10
traveling wave equivalence, 106–10

normal modes of string, 36–8
normal moveout (NMO), 134, 142
NORSAR see Norwegian Seismic Array
North American plate

absolute motion, 297–8
boundary with Pacific plate, 291–3, 334
intraplate earthquakes, 343–7
relative motion, 294
rigidity, 344
stress field, 347

North Anatolian fault, 339, 363
Northridge earthquake (1994), 13, 14, 257–8, 282,

363
Northwest Pacific, subduction zones, 319
Norwegian Seismic Array (NORSAR), 409
nuclear explosion, source, 241, 245
nuclear testing, monitoring of, 26–8, 198, 407, 409
null (B) axis, 220–2, 226–8, 243–4
NUVEL-1A global plate motion model, 293–6,

326, 441
Euler vectors, 294

Nyquist frequency, 386–8

oblique convergence, 321–3
oblique slip, 225
oblique spreading, 299
ocean bottom seismometers (OBS), 408, 409
oceanic crust

anisotropy, 180
mineralogical transitions, 321
refraction studies, 129
structure, 129

oceanic earthquakes, intraplate, 326–32
oceanic lithosphere

age of, 287
anisotropy, 180–1, 182
evolution of, 299–305
forces and stresses, 328–31

oceans, evolution of, 288
Oldham, Richard, 167n5
olivine

anisotropy, 60, 179
in mantle, 205
metastable wedge, 316–18
spinel transition phase, 311
strength of, 357, 358

Omori, Fusakichi, 277n3
Omori’s law, 277
one-dimensional scalar wave equation, 30
origin time, 1, 416
orthogonal transformations, 456
outlier earthquakes, 319
overdetermined system of equations, 99, 247, 417,

425
overtones, 91, 105

P waves, 3, 56–61
at interfaces, 81–6
body wave phases, 107, 164–6
core phases, 166–9
critical angle, 67–8
displacement equations, 63–5
equations, 53–4
first motions, 219
in layered medium, 63–8
ray parameter, 69–70

reflection and transmission; at an interface, 81–4;
at a free surface, 79–81

refraction, 122–3, 127–8
Snell’s law, 66–7
SV waves coupling, 57
transverse isotropy, 179
velocity, 58–9
waveform modeling, 231–3

Pacific Plate motion, 294
palaeomagnetism, 293
palaeoseismology, 22–3, 28
Pallett Creek, earthquake forecasting, 22–4, 281
Palmdale Bulge, 25, 28
paradigm shifts, 9
parameter space inversion, 436, 438–9
Parkfield, earthquake forecasting, 23, 281
Parseval’s theorem, 375
particle motion plot, 58, 89, 182, 189
passive margins, 334
perfect fluids, 50
period, 31–2
period equations, 90
permutation symbol, 449
perovskite, 205, 208, 316
Peru trench

seismic section, 144
tectonics, 339–41

phase nomenclature, 164
phase spectrum, 95, 373
phase velocity, 94, 97–9, 107, 195
physical dispersion, seismic waves, 96, 194–6
plane wave decomposition, 147
plane waves, 54–5

energy in, 61–2
in layered medium, 63–5
Snell’s law, 66–75
see also P waves; S waves

planetary evolution, 210–11
plastic deformation, 349
plate boundaries, 286–7, 333–4
plate boundary zones

continental plates, 334–9
faults, 260

plate dynamics, 288
plate motions, 288, 290–8

absolute plate motions, 296–8
continental plates, 334
global plate motions, 8, 293–5
inverse problem, 439–41
relative plate motions, 290–3
space-based geodesy, 295–6

plate model, oceanic lithosphere, 302–3
plate tectonics, 5, 286–90

continental earthquakes, 333–48
oceanic intraplate earthquakes, 326–32
plate kinematics, 290–8, 334
spreading centers, 298–307
subduction zones, 307–25

point sources, 72, 152–3, 231
Poisson distribution, 278, 280
Poisson solid, 51
Poisson’s ratio, 51
polar coordinates, 443
polarization, shear waves, 57–8, 178
poloidal modes see spheroidal modes
pore pressure, 353–4
postseismic phase, 217
potentials, 54
power spectrum, 384
precision, of estimates, 391–2

precursors
earthquake predicting, 24–6
from FIR filters, 405
to PKP phase, 168
to ScS phase, 172–3
to SS phase, 395

PREM (Preliminary Reference Earth Model), 162,
171

density structure, 202
model parameters, 203

preseismic stage, 217
pressure

earth profile, 202
effect on rocks, 349
hydrostatic, 200
lithostatic, 50

principal stresses, 42–3, 227, 350
probability, assessment of, 7, 278–81, 441
probability density distribution, 278
propagation of errors, 393–4
pure path method, variable velocity measurement,

98–9
pyrolite, 205

quality factor Q, wave attenuation, 114, 190–1,
192–3, 197–8, 229–30, 434–5

quartz
in rocks, 132
strength of, 357, 358

radial component, 57–9
radial earth model, 162
radial order, modes, 102
radiation patterns

body waves, 220–2
surface waves, 236–9

radon gas, earthquake precursor, 25
Radon transform, 147
ramp function, 372
ray parameter

definition, 69–70
layered medium, 134–5
spherical earth, 157

ray paths
dipping interface, 123–6
low-velocity zone, 161
seismic waves, 65, 120–1
spherical earth, 157–9
velocity increase, 160

ray theory, see geometric ray theory
Rayleigh waves

definition, 86–7
dispersion, 96, 98–9
focal mechanisms, 236–9
in homogeneous halfspace, 87–9
inversion, 438
relation to spheroidal modes, 106–7, 110

real-time data, 408
real-time warnings, earthquake, 26
receiver function, 380
reciprocity, principle of, 38, 122
recurrence time, 278
Red Sea, 333, 334
reflection coefficients

P–SV waves, 79–84
SH waves, 76–8
string waves, 33

reflection seismology
common midpoint (CMP) stacking, 141–4
deconvolution, 148–52
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examples, 85–6
intercept-slowness formulation, 137–40
migration, 152–6
multichannel data geometry, 140–1
principle of, 2
signal enhancement, 145–7
travel time curves, 134–7

reflectivity method, 127
refraction

critical, 67
definition, 2, 67

refraction seismology
crustal structure, 128–31
dipping layer method, 123–6
flat layer method, 120–3
principle of, 2

regional networks, 410
Reid, H., 215
relative plate motion, 290
relaxation time, 191, 355
reservoirs, cause of earthquakes, 18
residual vector, 418
residuals, travel time, 420
resolution, model, 415
resolution matrix, model, 427
resonance curve, 193–4
resonant frequency, 193
resonant period, of buildings, 17
reverse fault, 45, 218, 225–7, 236,

244
rheology, 349–50
Richter, Charles, 274n2
Richter scale, 263
ridge push, 328, 330
rifts, continental, 333, 334
right-lateral slip, 218
rigid body rotation, 47
rigidity, 50
ringwoodite, 205
rise time, 230, 267
risks, seismic, 11–14
rocks

anisotropy, 179–80
crust and upper mantle, 130–4
fracture and friction, 350–4
friction, 359–64
strength of, 357–9
viscosity, 355–7

rupture
geometry, 269–70
direction, 230, 231
process, 258–9
propagation, 238–9
time, 230, 267
velocity, 230

S waves, 3, 56–61
body wave phases, 164–6
core phases, 166–9
displacement equations, 63–5
equations, 53–4
motion, 221–2
radiation pattern, 220–2
ray parameter, 69–70
transverse isotropy, 178–9
velocity, 59
visualizing, 174–6

SH waves
definition, 57
reflection and transmission, 76–8

Snell’s law, 68–9
waveform modeling, 233

SV waves
energy flux, 80–1
P wave coupling, 57
reflection and transmission, 79–84
Snell’s law, 66–7

Sacks, Selwyn, 149n5
sampling

and b-values, 275, 277
and earthquake probability, 278
cell hit count, 311–12
of continuous data, 385–7

San Andreas fault, 5, 11, 21
aseismic slip, 262
b-values, 276
earthquake probability, 279
and earthquakes, 215, 260
“fault strength” paradox, 363
heat flow across, 363
interseismic deformation, 260
interseismic motion, 260
locking, 263
palaeoseismology, 22–3
plate boundary zone, 334
plate movements, 293
seismic gaps, 23–4
space geodesy, 296

San Fernando earthquake (1971), 12, 18, 265, 267,
334, 363

seismograms, 406–8
San Francisco earthquake (1906), 11–12, 215

damage caused by fire, 18
seismoscope recording, 401
source parameters, 265, 266, 267
stress shadow, 363

sand blows, 20
Sanriku earthquake (1896), 12, 19
SAR see Synthetic Aperture Radar interferometry
Satellite Laser Ranging (SLR), 251, 296
satellites, use in geodesy, 251–4, 296
scalar wave equation

one-dimensional, 30
three-dimensional, 54–5

scalars
definition, 444–5
scalar fields, 458–9
scalar product, 446–7

scale invariance, 274–5
scaling relations, seismic sources, 268–9
scattering

PKP precursors, 169–70
seismic waves, 189–90

Schmidt projection, 223n3
sectoral harmonics, 104
SEED see Standard for the Exchange of Earthquake

Data
seismic coupling, 323–4
seismic cycle, 217, 259–63
seismic data

networks, 407–12
publication of, 251, 398
sampling of, 385–7

seismic efficiency, 273
seismic energy, 61–2, 273
seismic gaps, 23–4, 280–1, 323
seismic hazards and risks, 11–14
seismic intensity, 14–16
seismic lithosphere (lid), 170, 304, 435, 437
seismic moment, 4, 221–2, 265, 273, 305

seismic moment tensor, 240, 241, 242–4
seismic parameter, 200
seismic phases, P waves:

antipodal phases, 169–70
P, 3, 163–5, 232–4, 396, 433
P coda, 190
PcP, 109, 163–4, 166, 195
PcPPKP, 170
Pdiff (also Pd), 58, 86, 109, 164, 167–8
PdP, 172–3
Pg, 122–3
Pi, 123
P2, 129
P3, 129
P3P, 129
PiP, 123
PKIIKP, 169
PKiKP, 58, 163–4, 167–9, 409
PKIKP, 110, 165, 167–9, 184, 198
PKJKP, 107, 110, 165, 169
PKKP, 58, 86, 164, 169
PKP, 109, 163–4, 167–9, 189, 433
PKP2, 167
PKP-AB, 167–9
PKP-BC, 167–9, 184
PKP-DF, 167–9, 184, 210
PKP precursors, 168–9
PKPPKP, 169
PmP, 122–3, 127–9
Pn, 122–3, 127–31, 180–1
Pn2, 123
pP, 3, 163–6, 232–4, 396
PP, 3, 58, 86, 163–7, 169, 396
P′P′, 164, 169
pPcP, 165
pPcPSKKP, 165
pPdiff , 58
pPKP, 164
pPP, 163, 166
PPP, 164–5, 167
pSP, 58
PwP, 234
ScP, 163–4, 166
SKiKP, 163–4
SKP, 58, 163–5
SKPPKP, 165
SKKP, 58, 164–5
sP, 163–6, 232–4, 395
sPdiff , 58
SP, 86, 164–5
SwP, 234

seismic phases, S waves:
PcS, 163, 166
PKS, 58
PKKS, 164
PPS, 165
pPS, 58
PS, 58, 164
pSKS, 164
S, 3, 108, 163–4, 176, 383–4, 433
Sbc, 173
Scd, 173
ScS, 3, 85, 108–10, 112, 163–6, 176, 182, 193,

195, 384, 433
ScSp, 85
ScS2, 3, 108, 165–7, 176
ScS3, 3, 176
ScS4, 3
ScS220S, 176
ScS400S, 176
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seismic phases, S waves (continued):
ScS670S, 176
Sdiff, 58, 86, 108–9, 176, 182–3
Sdiff200Sdiff , 176
Sdiff400Sdiff , 176
Sdiff670Sdiff , 176
SdS, 172–3
Sg, 122
SKS, 58, 86, 109, 163–5, 168, 174, 181–2
SKKS, 58, 86, 163–5, 168
SKKKS, 168
Sn, 122
SPdKS, 174
sPS, 165–6
sS, 3, 108, 163–4, 176
sScS, 3, 108, 176
sScS2, 3
sScS3, 3
sScS4, 3
sSdiff , 58
SS, 3, 58, 86, 108, 163–7, 176, 383–4, 395, 433
sSKS, 164
SSS, 3, 86, 108, 164–6, 176
sSS, 108
S4, 3, 86, 164, 166, 176
S220S, 176
S400S, 176
S410S, 395
S520S, 395
S660S, 395
S670S, 176
S5, 166, 176

seismic ray, 6, 65
seismic section, 143–4
seismic slip

continental deformation zones, 340–1
subduction zones, 323–4

seismic sources, 1, 4, 141
air gun, 148–9
double couples, 220, 240, 242
equivalent body force, 220, 240
exploding reflectors, 152
explosive, 245
force couples, 241–2
isotropic, 245, 247
magnitudes and moment, 4, 263–6
moment tensors, 239–51
moving point, 231
point, 56, 152–3
scaling relations, 268–9
single forces, 240–1
spectra, 266–8
stress drop, 269–73
time function, 222, 230, 235, 258–9
Vibroseis unit, 149–52

seismic spectrum, 59
seismic strain rate tensor, 341
seismic velocity see velocity
seismic waves

attenuation, 114, 185–98
introduction to, 1–3
in layered medium, 62–86
phases, 2–3
plane waves, 54–5, 61
ray paths, 2, 65, 120–1
seismic wave equation, 53–4
signal filtering, 369
in spherical earth, 157–62
spherical waves, 55–6
string waves, 29–38

travel times, 60–1, 119–20
see also body waves; surface waves

seismicity
deep, 289–90, 312, 319–22
geographic distribution, 9–10, 289
temporal distribution, 11, 274–6

seismograms
common midpoint (CMP) stacking, 141–4
cross-correlation, 383–5
data processing sequence, 156–7
data sampling, 385–7
digital, 405–7
Fourier analysis, 369–77
introduction to, 1–3
linear systems, 377–85
mode observation, 110
multichannel, 140–1
P and S waves, 57–8, 60–1
receivers, 141
record sections, 122
rotated, 57–8
stacking, 391–7
synthetic, 111, 383

seismological networks
arrays, 407, 408–9
global, 407–8
regional, 407, 410–12

seismometers, 1
analog, 401
arrays, 408–9
broadband, 404
damped harmonic oscillator, 190–1, 398–9
digital, 403–7
earth noise reduction, 400
electromagnetic, 401–2
force-feedback, 403
IDA gravimeter, 403
networks, 407–12
ocean bottom, 408
response, 229–30, 379, 401–2
strainmeter, 404, 406
Streckheisen, 404
strong-motion, 404
time recording, 405
types of, 141, 385, 398, 400–5
WWSSN, 402–3
Wood–Anderson, 263

seismometry
definition, 398
development of, 401

seismoscopes, 400–1
self-similarity, 274
shadow zone, 161, 167–8
Shah function, 385
shape-preferred orientation (SPO) anisotropy, 177
shear modulus, 50
shear stresses, 40, 43–5, 350–1
shear wave splitting, 181–2
shear waves see S waves
shift theorems, 374
shock wave, from explosion, 245
Sierra Nevada, crustal structure, 129–30
signal enhancement, reflection seismology, 145–7
signal processing, 369
signals, finite length, 380–3
silent earthquakes, 262
sinc function, 73, 381, 383
single forces, 240–1
single-couple source, 241
singlets, normal mode, 104, 114

660-km discontinuity, 163–4, 171, 202–3, 205–7,
315–20

slab pull, 314, 315, 324, 330
slabs, subducting, 286, 308–21
slant stacks, 147, 396
Slichter mode, 106
slider model, 360
sliding, stick-slip, 359–64
sliding friction, 352
slip

aseismic, 262, 324, 340
at faults, 218, 254–6, 262–3
seismic, 323–4

slip partitioning, 322
slip vector, 218, 228, 243, 293
slow earthquakes, 271
slowness

horizontal, 69
intercept-slowness, 137–40
and ray parameter, 69–70
vector, 69
vertical, 69

SLR see Satellite Laser Ranging
slump earthquakes, 241, 346–7
Snell’s law

and Fermat’s principle, 71
and Huygens’ principle, 72–3
P–SV waves, 66–7
SH waves, 68–9
in spherical earth, 157–9

SNREI earth, 111–15
SOFAR channel (SOund Fixing and Ranging), 70
solidus, 204, 209
source location, 419–20
source time function, 222, 230, 235, 258–9
South American plate, deformation, 339–40,

342–3, 365
Southern California Seismographic Network, 410
Soviet Union, nuclear testing, 26–7
spatial aliasing, 407n7
spatial eigenfunction, 36
spatial frequency, 31
spectral resonance peaks, attenuation, 193–4
sphere, modes of, 101–11
spherical coordinates, 462–3

axes, 465
distance and azimuth, 463–5
vector operators, 465–6

spherical earth, ray paths and travel times, 157–9
spherical harmonics, 103–4
spherical waves, 55–6
spheroidal modes, 106, 109–10
spinel, transition from olivine, 205–6, 311,

316–18
Spitak (Armenia) earthquake (1988), 12–13, 15
splitting, mode, 104, 114–15
SPO see shape-preferred orientation anisotropy
spread, statistical, 393, 420
spreading centers, 286, 298–307

mid-ocean ridges and transforms, 288, 298–9,
305–7

oceanic lithosphere formation, 299–305
stable sliding, 357
stacking, 391–7
Standard for the Exchange of Earthquake Data

(SEED), 408
standard linear solid, 196
standing waves, 36, 101, 466
starting model, 417
static displacements, faults, 254–6
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static friction, 359–60
static time correction, 145
station corrections, 424
steady state friction, 361
stereographic projection, faults, 223–8
stereonet, 223
Stevenson, D., 174n9
stick-slip earthquakes, 359–64
stishovite, 205, 208
strain

infinitesimal strain theory, 49
recording of, 404
seismic strain rate tensor, 341
strain energy, 52, 61–2
strain tensor, 38, 47–8
see also stress

strainmeters, 404, 406
Streckheisen seismometers, 404
strength, of lithosphere, 357–9
strength envelope, 357
stress

constitutive equations, 38, 48–51
deviatoric stresses, 45–6
earthquake stress drop, 269–73
elastic moduli, 49–50
field, 45–7, 345
maximum stress difference, 356
normal stress, 40, 42, 350–1, 353, 357
in oceanic lithosphere, 328–31
principal stresses, 42–3
and rock fracture, 350–4
shear stresses, 40, 43–5, 350–1
stress drop, 269–73
stress and strain tensor, 50, 177–8
stress tensor, 38, 39–42, 350
stress–strain curve, 349
viscous relaxation of, 355–6
yield stress, 349
see also strain

strike angle, 218
strike-slip fault, 45, 218, 225–7, 236, 244, 254–5,

269, 298–9, 328
string waves

calculation, 466–9
harmonic waves, 31–2, 35–6
normal modes, 36–8
reflection and transmission, 32–5
theory, 29–31

strong-motion sensors, 404, 406
STS-1 seismometer, 404
STS-2 seismometer, 404
subduction zones, 198, 286, 307–25

earthquakes, 307–8, 309–10
interplate trench earthquakes, 321–5
subduction slab earthquakes, 312–21
thermal models, 308–12

summation convention, 449
superadiabatic gradient, 201, 209
superposition, 34, 219, 377
surface force, 39
surface wave magnitude, 264
surface waves, 3, 86–93

anisotropy, 182
dispersion, 87, 93–100, 433
focal mechanisms, 235–9
geometry, 87
Lg waves, 197–8
mantle waves, 251
mode equivalence, 106–7, 109
radiation amplitudes, 236–7

waveform modeling, 235–9
see also Rayleigh wave, Love wave, tsunami

swarm, earthquake, 326, 328
sweep signals, 149–52
symmetric matrix, 458
Synthetic Aperture Radar interferometry (InSAR),

252–4
synthetic seismogram calculation, 466–9
synthetic seismograms, 111, 229
synthetic waveforms see waveform modeling
systematic errors, 391–2, 397
systematic bias, 392–3

t*, 196
take-off angle, 222
tangential motion, spheroidal modes, 110
tangential traction, 43–4, 116
Tango, Japan, earthquake (1927), 254, 256
Tangshan, China, earthquake (1976), 12,

26
tau function, 121, 138, 159
tau-p method, 137–40
tectosphere, 170
temperature

in the earth, 202–4
measuring variations, 186

tensional stress, 40, 51
tensional (T) axis, 221, 227–8
tensor

invariants, 43, 457
stress, 38–9
strain, 38, 47–8

Tericiera Rift, 326
tesseral hermonics, 104
thermal boundary layer, 170, 204, 287
thermal diffusivity, 300, 309
thermal isostasy, 301n3
thermal lithosphere, 304
thermal models, subduction, 308–12
thrust earthquakes, 321–3, 340

moment tensor, 250
thrust fault, 45, 218, 225–7, 236, 244, 328,

336
Tibet, 336–7
tides, solid earth, 373, 400
Tien Shan mountain belt, 336
time series analysis, 369
time-dependent behavior, 349–50, 355
time-frequency domain equivalence, 229, 235,

373–4
Tokyo earthquake (1923), 12, 18–19, 407
tomography, 99, 425

attenuation, 198–9
cross-borehole, 433
nonlinear, 433
whole-mantle, 433–4
see also travel time tomography

Tonga arc, 311
Tonga subduction zone, 199, 320
toroidal modes, 104
torsional modes, 104–6
total reflection, 33
total internal reflection, 67
traction vector, 39

normal traction, 44
tangential traction, 44

transfer function, 377, 379
transform faults, 286

continental, 334
spreading centers, 298, 305–7

transition zone, 162–3, 171
and deep earthquakes, 317
mineralogy, 205
velocities and density, 203

transmission coefficients
P–SV waves, 79–84
SH waves, 76–8
string waves, 33

transverse component, 57
transverse isotropy, 178–9, 208
transverse waves, 57
travel time curves

AK135, 162
earthquake location, 422–4
IASP91, 162–4
inversion, 161–2
Jeffreys–Bullen, 162
PREM, 202–3

travel time equation
dipping layer, 125
direct arrival, 120
head wave, 121
layered structure, 123
reflected wave, 121
in spherical earth, 159

travel time tables, 162–4
travel time tomography

examples, 430–4
inverse problem, 426–30
subduction zones, 311
theory, 424–6

travel times
intercept-slowness formulation, 137–40
low-velocity zone, 160–1
reflected waves, 134–7
refracted waves, 121–2
residuals, 420
seismic waves, 60–1, 119–20
spherical earth, 157–9
triplication, 160, 171
upper mantle, 171

trenches, 288
see also subduction zones

triple vector dipole, 245
triplication, 160

core, 168
upper mantle, 171

Truckee earthquake (1966), 267
tsunamis, 19–20, 241, 271

dispersion, 99–101
real-time warnings, 26
seismic sources, 241, 271

two-station method, phase velocity, 97–8

ultra-low-velocity zone (ULVZ), 174, 208
uncertainty principle, 7, 382
uniaxial tension, 51
uniformitarianism, 341n4
United States

Advanced National Seismic System (ANSS),
410

earthquake forecasting, 21
earthquake hazard map, 15, 21
earthquake risk, 13–14
National Earthquake Hazards Reduction

Program, 25
National Seismographic Network (NSN),

408
regional networks, 410

upper mantle see mantle
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Van Norman dam, 18
variance, 393–4, 420
variance–covariance matrix, 421
vector calculus, 458–62

curl, 460–1
divergence, 459–60
gradients, 459
Laplacian, 461–2
scalar and vector fields, 458–9

vector dipole, 241
vector potentials, layered medium, 63
vector spherical harmonics, 104, 106
vector transformations, 454–8

coordinate transformations, 455–6
eigenvalues and eigenvectors, 456–8
symmetric matrix, 458

vectors
definition, 445–6
index notation, 448–9
magnitude, 446
scalar product, 446
spherical coordinates, 465–6
vector fields, 458–9
vector operations, 446
vector products, 447–8
vector spaces, 449–50

velocity
apparent velocity, 65–6
dispersion of surface waves, 93–4, 97–9
filtering, 145–7
group, 94
interval velocity, 136
linear, 290
P and S waves, 58–9

phase, 94
in spherical earth, 159–61
subduction zones, 311

velocity structure
at Moho, 127–8, 130
of the earth, 119–20, 162

Venus, 211, 287–8
vertical slowness, 69, 137
Very Long Baseline Interferometry (VLBI), 251, 296
Vibroseis unit, sweep signals, 149–52, 214
viscoelastic material, 196, 355
viscosity, of mantle, 204, 331–2, 350, 355–7
viscous fluid models, 365
volcanoes

predicting eruptions, 20–1
as seismic sources, 240–1, 246

Wadati, K., 288
Wadati–Benioff zones, 288, 307–8, 312, 319
wadsleyite, 205, 315
Walvis ridge, seismic wave dispersion, 96–7
water layer, 212, 234
wave equation

one-dimensional, 30
homogeneous plane wave, 54
inhomogeneous plane wave, 55
migration, 155
spherical wave, 36

wave field, 32
downward or upward continuation, 155–6

wave front
body wave, 187
plane, 55
energy, 56, 61–2

spherical, 56
surface wave, 187

wave vectors, 55, 65
horizontal component, 69
vertical component, 69

waveform annealing, 74
waveform modeling, 171, 229–39

body waves, 231–5
source time function, 230–1
surface waves, 235–9

waveguides, 70, 321
wavelength, 31–2
wavenumber, 31–2
Wegener, Alfred, 9, 286, 295
weighted damped least squares inversion,

430
weighted least squares solution, 430
Whittier Narrows earthquake (1987), 363
Wilson cycle, 333
Wilson, J. Tuzo, 333n1
window functions, 380–1
Wood–Anderson seismograph, 263
World Wide Standardized Seismographic Network

(WWSSN), 26, 288, 398, 407, 408
seismometers, 402–3

Yellowstone hot spot, 334, 347–8
yield, explosion, 26–7
yield stress, 349
Young’s modulus, 51

Zeeman effect, 115
zero-offset section, 143, 152, 154
zonal harmonics, 104
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