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Introduction

A tectonic earthquake is a unique, interesting and challenging natural phenomenon. At the
same time the earthquake can cause death and huge material losses. The Emilia-Romagna,
Italy (moment magnitude Mw = 5.9, May 20, 2012), Tohoku-Oki, Japan (Mw = 9.0, March
3, 2011), Christchurch, New Zealand (Mw = 6.3, February 22, 2011), Chile (Mw = 8.8,
February 27, 2010), Port-au-Prince, Haiti (Mw = 7.0, January 12, 2010), L’Aquila, Italy
(Mw = 6.3, April 6, 2009), Sichuan, China (Mw = 7.9, May 12, 2008), Pisco, Peru (Mw =
8.0, August 15, 2007), Kashmir, Pakistan (Mw = 7.6, October 8, 2005), Sumatra, Indonesia
(Mw = 9.1, December 26, 2004), Bam, Iran (Mw = 6.6, December 26, 2003), Gujarat,
India (Mw = 7.7, January 26, 2001), Izmit, Turkey (Mw = 7.6, August 17, 1999), Kobe,
Japan (Mw = 6.8, January 17, 1995), and Northridge, California (Mw = 6.7, January 17,
1994) earthquakes are well-known examples of tragic and catastrophic events of the past
two decades. Three of them belong to the largest earthquakes ever recorded. Some of
them, however, indicate a troubling and important fact: an earthquake that kills and causes
large material damage is not necessarily a big event in terms of released energy. The Mw

6.7 Northridge 1994 and Mw 6.8 Kobe 1995 earthquakes caused, at the time, unprecedented
record economic losses in the USA and Japan, respectively, although they released (in
the form of seismic waves) roughly 3000 times less energy than the Mw 9.0 Tohoku-
Oki 2011 earthquake. In the long-term average, there are approximately 13 earthquakes
in the magnitude range [7, 7.9] and 120 in the magnitude range [6, 6.9] per year. Any
earthquake of this size can become a tragic and damaging event if it hits a densely populated
area.

Apparently surprisingly, a significant part of the world’s population lives in earthquake-
prone areas: large populated areas are close to active seismogenic faults, and, moreover,
large cities are often located at the surface of sediment-filled basins and valleys. The reasons
why large human settlements developed in such areas relate to the geology, hydrology,
climate and geography of the areas and regions. Both aspects of the locations of large cities,
that is, being close to seismogenic faults and atop sediments, have strong impacts on the
earthquake hazard and consequently also earthquake risk. Being close to a seismogenic fault
obviously poses an earthquake threat. Also being atop a sediment-filled basin or valley can
considerably increase the earthquake hazard. This is because seismic wave interference and
resonant phenomena in sediment-filled basins and valleys can produce anomalously large
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2 Introduction

earthquake motion at the Earth’s surface and lead to so-called ‘site effects’: characteristics of
the earthquake vibratory motion of the Earth’s surface can attain locally anomalous values –
e.g., amplitudes can be considerably amplified in the time or frequency domain, and strong
motion can be significantly prolongated. The anomalous values can occur at frequencies at
which buildings, constructions and industrial facilities can be damaged or destroyed. The
greatest damage to buildings and constructions is often due to mutual resonance between
the local geological and artificial structures. The September 19, 1985 Mexico quake is
one of the best examples of the damaging potential of such effects. The epicentre was on
the Pacific coast; however, the earthquake caused major damage in Ciudad de México –
more than 350 km away from the epicentre. A major part of the Mexican capital sits
on unconsolidated lake sediments and artificial land or, in other words, atop a very soft
sedimentary basin. The interference and resonant phenomena in sediments led to disastrous
effects. Hundreds of buildings were completely destroyed, hundreds partially collapsed or
were seriously damaged. At least 10 000 people died.

In the worldwide long-term average, the number of earthquakes will not decrease. On
the other hand, the density of population will increase in many areas. In industrialized
nations the technological complexity of the populated areas will increase. This could bring
more vulnerability to earthquakes if building codes are not either at the state-of-the-art
level or actually enforced. In developing countries the increasing population means great
and growing earthquake risk. Even relatively weak earthquakes will be capable of causing
tremendous human losses and damage, and consequently significantly affect the economy
of the region or the entire country.

Two natural scientific tasks for seismologists are, therefore, earthquake prediction and
prediction of ground motion during future earthquakes at a site of interest. These tasks are
also primary scientific responsibilities of seismologists towards society.

Seismologists still cannot predict the time, place and size of future earthquakes. Even
more interestingly, we still do not know whether such prediction is possible in principle
and will be possible technically. This is because we still do not have answers to important
questions regarding the processes of the long-term preparation and nucleation of earth-
quakes. We still do not know enough about seismogenic faults and the Earth’s interior at
depths where earthquakes are being prepared. This is mainly because we cannot simply
install sensors and instruments at those depths and places. In other words, a classical direct
controlled physical experiment aiming to measure these processes is impossible – at least
from an economic viewpoint at present. Direct measurements are practically restricted to
the Earth’s surface, and almost all information about the rupture process and structure of
the Earth’s interior is encoded in instrument records of earth motion (seismograms) during
earthquakes. Consequently, our knowledge of the earthquake source and the Earth’s interior
has to be confronted with the seismograms.

Hereby, we come to the role of theoretical and numerical-modelling methods. They are
irreplaceable tools in earthquake research – in investigating preparation and nucleation of
earthquakes, the rupture process on the fault, radiation of seismic waves, seismic wave
propagation in the Earth’s interior, and earthquake motion of the Earth’s surface.
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No matter whether seismologists can or cannot timely predict earthquake occurrence,
they must predict earthquake ground motion during potential future earthquakes in densely
populated areas and sites of special importance, e.g., sites of nuclear power plants, big
dams and key industrial facilities. Even if the timely prediction of earthquake occurrence
were physically possible and technically feasible, seismologists must predict what can
or will happen during a future earthquake. This is vital for land-use planning, designing
new buildings and reinforcing existing ones. It is also extremely important for undertaking
actions that could help mitigate losses during future earthquakes.

Prediction of the earthquake ground motion for a given area or site might be based on an
empirical approach if sufficient earthquake recordings at the site or physically relevant for
the site were available. In most cases, however, there is a severe lack of data. Consequently,
it is the theory and numerical simulations that have to be applied.

Although we still need to better understand processes in the Earth and considerably better
know the Earth’s interior and seismogenic faults, the present state of our knowledge and
the capabilities of modern seismic arrays impose stringent requirements on the theoretical
and computational models. For example, considering computational models of surface
local geological structures, it is necessary to include nonplanar interfaces between layers –
possibly with large contrasts in values of material parameters, gradients in P-wave and
S-wave speeds, density and quality factors inside layers, P-wave to S-wave speed ratio
possibly as large as 5 and more in the soft surface sediments, and often also free-surface
topography. In particular, the rheology of the medium has to allow for realistic broad-
band attenuation. Realistic strong ground motion simulations should also account for the
possibility of nonlinear behaviour in soft soils.

There are no exact (analytical) solutions for such realistic models. Only approximate
computational methods are able to account for the geometrical and rheological complexity
of the sufficiently realistic models. The most important aspects of all methods are accuracy
and computational efficiency (in terms of computer memory and time). These two aspects
are in most cases contradictory. It is, however, the reasonable balance between the accuracy
and computational efficiency in the case of complex realistic structures that makes the
numerical-modelling methods and, more specifically, so-called domain (in the spatial sense)
numerical methods dominant among all approximate methods.

A variety of domain numerical methods have been developed in application to earthquake
motion during the past few decades. The best known are the (time-domain) finite-difference,
finite-element, Fourier pseudo-spectral, spectral-element and discontinuous Galerkin meth-
ods. Both theoretical analyses and numerical experience show that none of these methods
can be chosen as the universally best (in terms of accuracy and computational efficiency)
method for all important problems in earthquake research, that is, for all medium-wavefield
configurations. Each method has its advantages and disadvantages, which often depend on
the particular application.

Moreover, recent experience from two international comparative numerical exercises
for the Grenoble valley, France, and the Mygdonian basin near Thessaloniki, Greece (ESG
2006 and E2VP, respectively), show that at least two different but comparably accurate
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methods should be used in order to obtain a reliable numerical prediction of earthquake
ground motion for a site of interest.

Two decades of 3D earthquake motion modelling, mainly in California, the SCEC com-
parative exercises, ESG 2006 and E2VP confirmed that, despite development of alternative
and new methods, the FD time-domain method has an important and, without hesitation
and exaggeration, irreplaceable position and role among recent time-domain numerical-
modelling methods in earthquake research.

It is important to say that the term ‘finite-difference method’(FDM) in the numerical
modelling of earthquake motion may represent one out of a large number of various FD
schemes and codes. The schemes may considerably differ from each other in several
methodological aspects. Consequently, the schemes and the numerical results obtained by
different schemes may differ considerably in accuracy and computational efficiency.

The most advanced FD schemes can be more than competitive, for many important con-
figurations, with other modern methods: at the same level of accuracy they can be compu-
tationally more efficient. For some configurations, other methods can be more appropriate.

More than four decades of development of the FDM in application to seismic wave
propagation and earthquake motion, and the present state of FD theory suggest that there is
room for further improvements, and that the future will bring even more accurate, efficient
and competitive schemes for geometrically and rheologically complex realistic problem
configurations.

In this book we focus on the FDM as applied to modelling earthquake motion and
earthquake ground motion prediction. Obviously, the included material also reflects our
contributions to the methodology of FD modelling. Due to the chosen focus and limited
extent, we do not cover all aspects of FD modelling. At the same time, we believe that the
book brings material that will be found useful by those who are not familiar with the method
(students, professionals, researchers) and also those who develop and apply numerical
modelling in their earthquake research or investigations of elastic wave propagation in
complex media (e.g., oil exploration, shallow geophysics, machine-induced vibrations).
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Basic mathematical-physical model

In this chapter we briefly present the basics of the mathematical-physical model neces-
sary for the explanations and elaborations in the following chapters. For more detailed
expositions of the theory of earthquakes, seismic wave propagation and earthquake ground
motion we refer to some of the recent monographs and fundamental textbooks. For a general
introduction to seismology – Aki and Richards (2002), Pujol (2003), Shearer (2009), Stein
and Wysession (2003), Lay and Wallace (1995), Kennett (2001), Beroza and Kanamori
(2009), Dziewonski and Romanowicz (2009); for earthquake sources – Kostrov and Das
(2005), Scholz (2002), Ohnaka (2013); for theory of seismic wave propagation – Ben-
Menahem and Singh (2000) and Carcione (2007); for global seismic wave propagation –
Dahlen and Tromp (1998); for full waveform modelling and inversion – Fichtner (2011);
for geotechnical earthquake engineering – Kramer (1996); and for waves and vibrations in
soils caused by earthquakes, traffic, shocks and construction works – Semblat and Pecker
(2009).

2.1 Medium

In order to reasonably numerically simulate seismic wave propagation and earthquake
motion in the Earth we need an adequate model of the medium inside a target domain
(volume) of the Earth. We should clearly distinguish geological models, physical models
and discrete (or grid) models.

In general, a physical model of a medium is described by 3D distributions of all material
parameters that determine seismic wave propagation and earthquake motion. Being focused
on seismic and earthquake motion in near-surface local structures, in most cases the real
material can be modelled as a heterogeneous linear viscoelastic isotropic continuum. Mod-
els of the medium may comprise both spatially smooth and discontinuous variations of
material parameters. The model has to properly account for attenuation due to anelasticity
of the Earth’s real material. A perfectly elastic medium or oversimplified description of
attenuation is not sufficient. A reasonable rheological viscoelastic model is necessary in
order to account for the realistic dependence of attenuation on frequency and its spatial
variations.

7
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So far, the least addressed aspect in numerical modelling of earthquake motion in near-
surface local structures is the (an)isotropy of the real material. We know, in general, that
there are true isotropic materials and true anisotropic materials. The question is, what can
be seen in seismic records? For example, anisotropy of the Earth’s upper mantle is clearly
observed in seismic records, and numerical modelling of seismic waves at the regional and
global scales has to assume inherent physical anisotropy. We are not in such a situation in
numerical modelling of earthquake motion in near-surface local structures.

Although the real medium and its physical model may consist of truly isotropic materials,
the mathematical-physical and grid representations of wave propagation in such a medium
may be anisotropic. We may speak, for instance, of an equivalent anisotropic medium in the
case of a low-frequency approximation (wavelengths much larger than the characteristic
size of heterogeneity) for wave propagation in heterogeneous isotropic media (Backus
1962, Helbig 1984).

The usual physical model of the medium is specified by 3D spatial distributions of the
P-wave and S-wave speeds (VP or α, and VS or β, respectively) at some frequency, density
(ρ), and P-wave and S-wave quality factors as functions of frequency (QP(ω) and QS(ω),
respectively).

Soft sediments near the free surface may behave in a nonlinear fashion. The stress–
strain relation is not linear but nonlinear hysteretic. In the simplest (but still tremendously
demanding) case the medium has to be represented by a rheological elastoplastic model.
This poses a major complication for 3D modelling of earthquake motion. At present,
reasonable 3D numerical modelling with possibly nonlinear behaviour of part of the whole
model is still a challenge for numerical modellers.

Plastic deformation in the close vicinity of a rupturing fault is another example of
nonlinear behaviour that is not trivial to model numerically.

2.2 Governing equation: equation of motion

Consider a material volume V of continuum with surface S. Material parameters are contin-
uous functions of spatial coordinates inside V. Consider an arbitrary volume�with surface
S� inside volume V. Let �n� be a normal vector to surface S� pointing from the interior of
volume � outward. Let �f (xk, t) be the density of the body force acting in volume � and
�T �(xk, t) the traction acting at surface S�. Here xk; k ∈ {1, 2, 3} are Cartesian coordinates
and t is time. The configuration is shown in Fig. 2.1. Let �u (u1, u2, u3) or, in an alternative
notation, �u (ux, uy, uz), be the displacement vector. Let εij be the strain tensor,

εij = 1

2

(
∂ui

∂xj
+ ∂uj
∂xi

)
; i, j ∈ {1, 2, 3} (2.1)

and σij the stress tensor. We briefly introduce the basic forms of the equations of motion
for the considered configuration.
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T Ω

T
SΩ

Ω

Figure 2.1 Material volume V of a smooth continuum bounded by surface S. External traction �T acts
at surface S, body force �f acts in volume V. Volume�with surface S� is a testing volume considered
in the derivation of the equation of motion.

In the following formulations, the traction vector appears explicitly, which means the
possible imposition of the Neumann boundary condition on a surface. The possible appli-
cation of the Dirichlet boundary condition (prescribed displacement) does not explicitly
appear in the formulations.

2.2.1 Strong form

An application of Newton’s second law to volume � gives

d

dt

∫
�

ρ
∂ui

∂t
dV =

∫
S�
T �i dS +

∫
�

fidV (2.2)

Throughout the text dV and dS will be used for volume and surface elements, respectively.
Because � and S� move with particles, the particle mass ρdV does not change with time.
The equation can be written as∫

�

ρ
∂2ui

∂t2
dV =

∫
S�
T �i dS +

∫
�

fidV (2.3)

At surface S�, traction T �i is related to the stress tensor σij :

T �i = σij n�j (2.4)

In Eq. (2.4) and hereafter we assume the Einstein summation convention for repeated
indices. Assuming continuity of the stress tensor throughout volume�, Gauss’s divergence
theorem can be applied to the surface integral:∫

S�
T �i dS =

∫
S�
σij n

�
j dS =

∫
�

∂σij

∂xj
dV (2.5)
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Equation (2.3) can be then written as∫
�

(
ρ
∂2ui

∂t2
− ∂σij
∂xj

− fi
)
dV = 0 (2.6)

Equation (2.6) is valid for any volume� inside V. Assume that the integrand is greater than
0 at some point inside V. Because the integrand is continuous throughout V, it is possible
to find such a volume � (containing that point) for which the integrand is greater than 0.
This, however, would be in contradiction with Eq. (2.6). Consequently,

ρ
∂2ui

∂t2
− ∂σij
∂xj

− fi = 0 (2.7)

everywhere in V. Equation (2.7) together with the boundary condition at surface S,

Ti = σij nj (2.8)

represent a strong formulation for the considered problem. The formulation requires con-
tinuity of displacement and its first spatial and temporal derivatives.

2.2.2 Weak form

Alternatively to the application of Newton’s second law to the material volume V we
can apply the principle of virtual work. Consider a fixed state of continuum at some
time and its virtual (arbitrary, infinitesimal) deformation. Let δui be the corresponding
virtual displacement. Then the virtual deformation is characterized by the virtual strain
tensor δεij :

δεij = 1

2

(
∂

∂xj
δui + ∂

∂xi
δuj

)
(2.9)

Because the virtual displacements are assumed in a fixed state of continuum, they do not
affect displacements and accelerations of continuum particles in this state. The principle
states that during virtual deformation the work done by external forces has to be equal to
the sum of the increment of energy of deformation and the work of inertial forces:∫

S

TiδuidS +
∫
V

fiδuidV =
∫
V

σij δεij dV +
∫
V

ρ
∂2ui

∂t2
δuidV (2.10)

Functions δui are arbitrary; they are equivalent to weight functions. Therefore, we replace
δui by wi in Eqs. (2.9) and (2.10). Then, due to symmetry of the stress tensor,

σij δεij = 1

2

(
σij
∂wi

∂xj
+ σij ∂wj

∂xi

)
= σij ∂wi

∂xj
(2.11)

Equation (2.10) can be written as∫
V

(
ρ
∂2ui

∂t2
− fi

)
widV +

∫
V

σij
∂wi

∂xj
dV =

∫
S

TiwidS (2.12)
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Equation (2.12) is called the weak form of the equation of motion. This is because the
requirement of continuity of displacement and its first spatial derivatives in the strong form
is replaced here by a weaker requirement of continuity of displacement and the weight
functions.

2.2.3 Integral strong form

Integration by parts of the last term on the left hand side (l.h.s.) of Eq. (2.12) yields∫
V

(
ρ
∂2ui

∂t2
− fi

)
widV +

∫
V

∂

∂xj

(
σijwi

)
dV −

∫
V

∂σij

∂xj
widV =

∫
S

TiwidS (2.13)

and, using Gauss’s divergence theorem,∫
V

(
ρ
∂2ui

∂t2
− fi

)
widV +

∫
S

σijnjwidS −
∫
V

∂σij

∂xj
widV =

∫
S

TiwidS (2.14)

Assembling the volume and surface integrals together gives∫
V

(
ρ
∂2ui

∂t2
− ∂σij
∂xj

− fi
)
widV =

∫
S

(
Ti − σij nj

)
widS (2.15)

In Eq. (2.15) we can specify the boundary condition for traction at surface S by specifying
values of Ti . We can call Eq. (2.15) the integral strong form of the equation of motion
(we adopted this term based on our personal communication with Robert J. Geller). While
being integral, the form requires continuity of the first derivative of displacement. These
two features clearly distinguish it from the (differential) strong form and the integral weak
form.

2.2.4 Concluding remark

In principle, any of the three forms can be the basis for discretization aiming in an FD
scheme. Most of the developed FD schemes are based on the differential strong form –
likely due to its apparent relative simplicity. Depending on the problem configuration, one
of the two other forms may be found more suitable. The weak form is the basis for the
traditional FEM, the more recent spectral-element method and the discontinuous Galerkin
method. These methods will be briefly characterized in Chapter 5.

2.3 Constitutive law: stress–strain relation

In order to solve the equation of motion we need a constitutive law that specifies the
relation between the stress and strain tensors, and consequently also the relation between
the stress tensor and displacement vector. We will consider three types of continuum –
linear elastic, linear viscoelastic and nonlinear elastoplastic. The linear elastic continuum
is the simplest type of continuum. It is useful for a simple introduction of many important
concepts and approaches but is incapable of accounting for attenuation of seismic waves
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and motion. Realistic attenuation can be reasonably accounted for by the viscoelastic
medium. Eventually we also describe the simplest elastoplastic continuum in order to
account for the hysteretic stress–strain relation in surface soft sediments. Rheological
models of a continuum will be addressed in detail in Chapter 3. Here we concisely present
the fundamental relations for the elastic and viscoelastic continua.

2.3.1 Elastic continuum

Cauchy’s generalization of the original Hooke’s law in tensor form reads

σij = cijklεkl (2.16)

where cijkl is a tensor of elastic constants (they are constant with respect to the strain-tensor
components, not necessarily with respect to spatial position). Equation (2.16) assumes that
each stress-tensor component is a linear combination of all components of the strain tensor.
Symmetry of the stress tensor and application of the first law of thermodynamics imply
symmetries

cijkl = cjikl, cijkl = cklj i (2.17)

respectively. They yield additional symmetry

cijkl = cjilk (2.18)

Symmetries (2.17) and (2.18) reduce from 81 down to 21 the number of independent elastic
constants that describe the most general anisotropic medium. The situation dramatically
simplifies in the case of an isotropic medium. The stress–strain relation of an isotropic
elastic medium is described by two independent elastic constants. The stress–strain relation
can be written in the form

σij = κεkkδij + 2μ
(
εij − 1

3εkkδij
)

(2.19)

where κ and μ are bulk and shear moduli, respectively, and

δij = 1; i = j δij = 0; i 	= j (2.20)

defines the Kronecker delta. Equation (2.19) corresponds to decomposition of the stress
tensor into dilatational and deviatoric components. Alternatively, using

κ = λ+ 2
3μ (2.21)

the stress–strain relation can be written using Lamé constants λ and μ in the form

σij = λεkkδij + 2μεij (2.22)

or as

σij = λ∂uk
∂xk
δij + μ

(
∂ui

∂xj
+ ∂uj
∂xi

)
(2.23)
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2.3.2 Viscoelastic continuum

The stress–strain relation in a viscoelastic medium can be defined as

σij (t) =
∫ t

−∞
ψijkl (t − τ )

∂εkl (τ )

∂τ
dτ (2.24)

where ψijkl is a tensor of relaxation functions describing the behaviour of the material. An
alternative form of the stress–strain relation is

εij (t) =
∫ t

−∞
χijkl (t − τ )

∂σkl (τ )

∂τ
dτ (2.25)

where χijkl is a tensor of creep functions.
For an isotropic medium the stress–strain relation can be written as

σij (t) = δkl
∫ t

−∞
ψκijkl (t − τ )

∂εkk (τ )

∂τ
dτ

(2.26)

+ 2
∫ t

−∞
ψ
μ
ijkl (t − τ )

[
∂εkl (τ )

∂τ
− 1

3

∂εkk (τ )

∂τ
δkl

]
dτ

where ψκijkl and ψμijkl are relaxation functions for the bulk and shear moduli, respectively.
Alternatively, using the time-dependent moduli, the stress–strain relation is

σij (t) = δij
∫ t

−∞
κ (t − τ ) εkk (τ ) dτ

(2.27)

+ 2
∫ t

−∞
μ (t − τ )

[
εij (τ ) − 1

3
εkk (τ ) δij

]
dτ

Analogously to the case of the elastic continuum, the latter relations can be expressed also
for Lamé constants λ and μ.

It is obvious from Eqs (2.24), (2.26) and (2.27) that the stress–strain relations in a
viscoelastic medium mean a considerable complication compared to an elastic medium:
stress at each spatial position and each time is determined not only by the strain at the same
time but by the entire history of the strain or strain rate at that spatial position. The approach
to avoiding this substantial computational difficulty as well as rheological models of the
viscoelastic continuum capable of accounting for realistic attenuation will be explained in
detail in Chapter 3.

2.4 Strong-form formulations of equations

Having found the equation of motion and constitutive law, we can now mention alternative
formulations in terms of which a field quantity is considered as an unknown function. Here
we restrict discussion to the strong formulation for an elastic and isotropic medium. We
can easily obtain four alternative formulations. Each of them can be the basis for a specific
FD scheme.
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Formally, it is easy to write down also formulations for a viscoelastic continuum – the
stress–strain relations for an elastic continuum would simply be replaced by those for a
viscoelastic one. We will address this later in detail.

2.4.1 Displacement–stress formulation

In the displacement–stress formulation both displacement vector and stress tensor are
treated explicitly as unknown variables:

ρ
∂2ui

∂t2
= ∂σij

∂xj
+ fi

(2.28)
σij = κεkkδij + 2μ

(
εij − 1

3εkkδij
)

2.4.2 Displacement formulation

Substitution of Hooke’s law for the stress tensor in the equation of motion yields

ρ
∂2ui

∂t2
= ∂

∂xi

[(
κ − 2

3μ
) ∂uk
∂xk

]
+ ∂

∂xj

(
μ
∂ui

∂xj

)
+ ∂

∂xj

(
μ
∂uj

∂xi

)
+ fi (2.29)

The displacement vector is the only unknown variable.

2.4.3 Displacement–velocity–stress formulation

Considering particle velocity vi we can treat explicitly displacement, particle velocity and
stress as unknown variables:

ρ
∂vi

∂t
= ∂σij

∂xj
+ fi, vi = ∂ui

∂t
(2.30)

σij = κεkkδij + 2μ
(
εij − 1

3εkkδij
)

2.4.4 Velocity–stress formulation

The equation of motion and the stress–strain relation differentiated with respect to time
in which the particle-velocity vector appears instead of the displacement vector give the
velocity–stress formulation:

ρ
∂vi

∂t
= ∂σij

∂xj
+ fi

(2.31)
∂σij

∂t
= κ ∂εkk

∂t
δij + 2μ

(
∂εij

∂t
− 1

3

∂εkk

∂t
δij

)
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where

∂εij

∂t
= 1

2

(
∂vi

∂xj
+ ∂vj
∂xi

)
(2.32)

This formulation is the one most used as a basis for FD schemes.
It may be advantageous to write the hyperbolic system of nine equations (2.31) in a

concise matrix form:

∂Q̃p

∂t
+ Apq ∂Q̃q

∂x
+ Bpq ∂Q̃q

∂y
+ Cpq ∂Q̃q

∂z
= 0; p, q ∈ {1, . . . , 9} (2.33)

Q̃ = (
σxx, σyy, σzz, σxy, σyz, σxz, vx, vy, vz

)T
(2.34)

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 − (λ+ 2μ) 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 −λ 0 0
0 0 0 0 0 0 0 −μ 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −μ

−b 0 0 0 0 0 0 0 0
0 0 0 −b 0 0 0 0 0
0 0 0 0 0 −b 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.35)

B =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 0 − (λ+ 2μ) 0
0 0 0 0 0 0 0 −λ 0
0 0 0 0 0 0 −μ 0 0
0 0 0 0 0 0 0 0 −μ
0 0 0 0 0 0 0 0 0
0 0 0 −b 0 0 0 0 0
0 −b 0 0 0 0 0 0 0
0 0 0 0 −b 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.36)

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 −λ
0 0 0 0 0 0 0 0 − (λ+ 2μ)
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 −μ 0
0 0 0 0 0 0 −μ 0 0
0 0 0 0 0 −b 0 0 0
0 0 0 0 −b 0 0 0 0
0 0 −b 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2.37)
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Here

b = 1/ρ (2.38)

2.5 Boundary conditions

Away from a rupturing fault, the two most important boundary conditions relate to the
Earth’s free surface and internal material discontinuities (interfaces). The rupturing fault
will be addressed in Subsection 4.1.1.

2.5.1 Free surface

In the numerical modelling of seismic wave propagation and earthquake motion in the Earth
it is sufficient, in most applications, to replace air above the Earth’s surface by vacuum.
Consequently, the Earth’s real surface, that is the real air/solid or air/water interface, can be
considered a traction-free surface. The traction-free surface is usually more briefly called
the free surface.

Consider surface S with normal vector �n. Let �T (�n) be the traction vector at surface S
corresponding to the normal vector �n. Then the traction-free condition at surface S is

�T (�n) = 0 (2.39)

or, equivalently,

σijnj = 0 (2.40)

If surface S is planar and perpendicular to the z-axis, the normal vector is �n = (0, 0,−1)
and the traction-free condition implies

σiz = 0; i ∈ {x, y, z} (2.41)

2.5.2 Welded material interface

The boundary conditions on the welded material interface are continuity of displacement
and continuity of traction. Let � be a smooth material interface with a unit normal vector
�n pointing, say, from �− to �+. Then,

ui |�+ = ui|�− (2.42)

and

σijnj
∣∣
�+ = σijnj

∣∣
�− (2.43)

express continuity of displacement and traction at �, respectively. These conditions have
to be incorporated in the mathematical-physical model if the medium includes a material
discontinuity that can be considered a welded interface.
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For strong, weak, integral strong and discontinuous strong formulations for a canonical
problem with a smooth material interface see Moczo et al. (2007a).

2.6 Initial conditions

It is usually assumed that the medium at an initial time is at rest. In the case of the
displacement–stress and displacement formulations, Eqs. (2.28) and (2.29), we therefore
assume the same conditions: ui(t = 0, xj ) = 0 and ∂2ui

∂t2
(t = 0, xj ) = 0. In the case of

the displacement–velocity–stress formulation, Eq. (2.30), we assume ui(t = 0, xj ) = 0
and vi(t = 0, xj ) = 0, and, in the case of the velocity–stress formulation, Eq. (2.31),
vi(t = 0, xj ) = 0 and σij (t = 0, xk) = 0. In all cases fi(t = 0, xj ) = 0.

The case of a dynamically rupturing fault is addressed in the next section.

2.7 Wavefield source (wavefield excitation)

Earthquake motion is due to spontaneous rupture on a fault. In general, seismic waves,
seismic motion and seismic noise can be generated by numerous natural and artificial
sources. Depending on the problem configuration and purpose of the numerical modelling
we can consider a point source, a finite-size rupturing fault, or incidence of a plane wave.

A point double-couple or moment-tensor source localized in the computational domain
can be adequate in the case of small local or near-regional earthquakes. Although a point
displacement discontinuity (slip, dislocation) is assumed at the source, mathematically the
source can be represented through the body-force term in the equation of motion for the
continuous medium. The point source is described by its position, focal mechanism and
source–time function for displacement or particle velocity.

A finite-size rupturing fault can be modelled kinematically or dynamically. In the kine-
matic model we assume a space–time distribution of point sources on the fault. Each point
source is defined a priori and it does not change during the numerical simulation. Its time
window, source–time function and focal mechanism are determined in order to mimic rup-
ture propagation on the fault. It is obvious that in the kinematic model there is no causal
interaction between the rupturing fault and generated seismic motion. The kinematic model
is used for its relative mathematical-physical and implementation simplicity.

In a dynamic model, assuming an initial traction and material parameters of the fault,
the nucleation, propagation and arrest of the rupture are controlled by the friction law. The
friction law relates the total traction to slip or slip rate at the same point of the fault. The
rupture causally interacts with the medium in seismic motion.

Incidence of a plane wave is sometime considered for specific purposes and investigations
of transfer properties of local near-surface structures. In general it is possible to consider
‘injecting’ an analytical source solution in the computational domain.
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Rheological models of a continuum

We consider mechanical models representing specific types of behaviour of real materials
under applications of stress. Such models are also called rheological models. We use them
in order to quantitatively describe two important phenomena: the intrinsic attenuation of
seismic waves due to anelasticity of the Earth’s real material, and the nonlinear hysteretic
stress–strain relation in very soft surface sediments in the case of large stress and strain
during so-called strong ground motion.

Attenuation in the Earth Observations, e.g., McDonal et al. (1958), Liu et al. (1976),
Spencer (1981), Murphy (1982), have shown that the internal friction (a measure of attenu-
ation) in the Earth is nearly constant over the seismic frequency range (from seismic body
waves to the Earth’s free oscillations, that is, for periods from approximately 0.01 s up to
1 hour). This is a consequence of the fact that the Earth’s material is composed of different
minerals and the attenuation in each of them is contributed to by several processes. Liu
et al. (1976) showed that a distribution of relaxation mechanisms (standard linear solids or
Zener bodies) can yield a reasonable approximation of the quality factorQ (Q−1 being the
measure of internal friction) which satisfies seismic observations.

Conversion of the convolutory stress–strain relation into a differential form Whereas
the stress–strain relation in a viscoelastic medium has a simple form in the frequency
domain, stress being a product of the complex viscoelastic modulusM(ω) and strain ε(ω),
σ (ω) = M(ω)ε(ω), it takes the form of the convolutory integral in the time domain. This
means that for updating stress at each time and each spatial position it is necessary to
know (and store) the entire history of strain and evaluate the convolutory integral. This
would pose a major problem in the time-domain numerical methods. If, however, M(ω)
is a rational function of frequency, the inverse Fourier transform of M(ω)ε(ω) yields the
nth-order differential equation for σ (t), which can be numerically solved much more easily
than the convolution integral. Day and Minster (1984) did not assume that, in general,
the viscoelastic modulus is a rational function. Therefore, they approximated a general
viscoelastic modulus by an nth-order rational function and determined its coefficients by the
Padé approximant method. They obtained n ordinary differential equations for n additional
internal variables, which replace the convolution integral. The sum of the internal variables
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multiplied by the unrelaxed modulus gives an additional viscoelastic term to the elastic
stress. The work of Day and Minster not only developed one particular approach but, in
fact, indirectly suggested the future evolution – direct use of the rheological models whose
M(ω) is a rational function.

Generalized Maxwell body and generalized Zener body Emmerich and Korn (1987)
realized that an acceptable relaxation function corresponds to the rheology of what they
defined as the generalized Maxwell body – n Maxwell bodies and one Hooke element
(elastic spring) connected in parallel; see Fig. 3.7. (Note that the generalized Maxwell
body in the literature on rheology is usually defined without the additional single spring.
Therefore, we denote the model considered by Emmerich and Korn by GMB-EK.) Because
the viscoelastic modulus of the GMB-EK has the form of a rational function, Emmerich
and Korn (1987) obtained similar differential equations as Day and Minster (1984). In
order to fit an arbitrary Q(ω) law they chose the relaxation frequencies logarithmically
equidistant over a desired frequency range and used the least-square method to determine
the weight factors of the relaxation mechanisms (classical Maxwell bodies). Independently,
Carcione et al. (1988a, b), in accordance with the approach by Liu et al. (1976), assumed
the generalized Zener body (GZB) – n Zener bodies, connected in parallel; see Fig. 3.7.
Carcione et al. developed a theory for the GZB and introduced the term ‘memory variables’
for the additional variables obtained.

After the important articles by Emmerich and Korn (1987) and Carcione et al. (1988a, b)
different authors decided either for the GMB-EK or for the GZB. The GMB-EK formulas
were used by Emmerich (1992), Fäh (1992), Moczo and Bard (1993), and in many other
studies. Moczo et al. (1997) implemented the approach also in the finite-element method
(FEM) and hybrid finite-difference–finite-element (FD–FE) method. In the mentioned arti-
cles, one memory variable was defined for one displacement component. (Later Xu and
McMechan (1995) introduced the term ‘composite memory variables’. The composite
memory variables, however, did not differ from the variables used from the very beginning
in the above articles.) Robertsson et al. (1994) implemented the memory variables based
on the GZB rheology into the staggered-grid velocity–stress FD scheme. Blanch et al.
(1995) suggested an approximate single-parameter method, the τ -method, to approximate
the constant Q(ω) law. Blanch and Robertsson (1997) implemented the GZB rheology in
their scheme based on a modified Lax–Wendroff correction. Xu and McMechan (1998)
used simulated annealing for determining the best combination of relaxation mechanisms
to approximate the desiredQ(ω) law. (There was a missing factor in the relaxation functions
in the two latter articles; see Subsection 3.3.7.)

Relation between GMB-EK and GZB There appear to have been few or no comments
by the authors using the GZB on the rheology of the GMB-EK and the corresponding
algorithms, and vice versa. Thus, two parallel sets of publications and algorithms were
developed over the years. Therefore, Moczo and Kristek (2005) analyzed both rheologies
and showed that they are equivalent.
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Coarse spatial distribution of memory variables The memory variables and material
coefficients describing attenuation in a medium considerably increase the number of quan-
tities that have to be stored. Zeng (1996) and independently Day (1998) realized that it is
not necessary to spatially sample the anelastic quantities as finely as the elastic quantities.
Therefore, they suggested a coarse spatial distribution of memory variables (in Day’s ter-
minology – coarse graining of memory variables). Day’s (1998) analysis of the problem is
remarkable. Day and Bradley (2001) extended the coarse-grain memory variable approach
proposed by Day (1998) to anelastic wave propagation in three dimensions. They imple-
mented the coarse-grain memory variables in the 4th-order velocity–stress staggered-grid
FD scheme. Graves and Day (2003) analyzed the stability and accuracy of the scheme with
coarse spatial sampling and defined the effective modulus and the quality factor necessary
to achieve sufficient accuracy. Liu and Archuleta (2006) developed an efficient and accurate
approach for determining parameters of the GMB-EK/GZB based on simulated annealing.
The approach is well applicable to the coarse-grain memory variables.

The memory variables introduced by Day and Minster (1984), Emmerich and Korn
(1987), Carcione et al. (1988a,b) and Robertsson et al. (1994) and considered by Day
(1998), Day and Bradley (2001), Graves and Day (2003) and Liu and Archuleta (2006) are
material dependent. In the case of the coarse spatial distribution it is necessary to interpolate
the missing variables at a grid position. The missing variables are obtained by averaging
of memory variables in the neighbouring positions. Consequently, such spatial averaging
introduces an additional and artificial averaging of the material parameters. However, there
is no reason for such an additional averaging. The problem can be circumvented by using
the material-independent anelastic functions introduced by Kristek and Moczo (2003).

3.1 Basic rheological models

We first briefly describe three fundamental and extreme rheological models. Then we
describe and analyze such combinations of these models as allow for quantitative descrip-
tion of realistic attenuation and hysteresis. For simplicity of explanation we restrict the
discussion to 1D models. In this chapter we will not explicitly indicate that both material
parameters and functional variables (stress, strain, anelastic functions) are functions of a
spatial coordinate. We will explicitly distinguish just functional dependence on time or
frequency because this is the essential aspect of the exposition in this chapter.

3.1.1 Hooke elastic solid

The Hooke elastic solid (H) represented by an ideally elastic weightless spring is a mechan-
ical model for the behaviour of a perfectly elastic (lossless) solid material in which stress
is a linear function of strain. The only material parameter is a time-independent elastic
modulus M [Pa]. The stress–strain relations in the time and frequency domains are given
in Table 3.1. Recall that we indicate explicitly only functional dependence on time or
frequency although both material parameters and stress and strain are also functions of a
spatial coordinate. Stress at a given time depends only on the deformation at the same time
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Table 3.1 Stress–strain relations for Hooke solid and Newton liquid

Model 
Stress-strain relation 

Time domain Frequency domain 

Hooke elastic solid (spring) 

 

( ) ( )t M tσ ε=  ( ) ( )Mσ ω ε ω=  

Newton viscous liquid (dashpot) 

( )( )t t
t

σ η ε∂=
∂

 ( ) ( )iσ ω ωη ε ω=  

 

 M

,σ ε

 

 
,σ ε

η

 

 

 

 

 

 

 

 

ε

0

M

σ

0M ε

( )1 0t t
σ
η

−

d

dt

εη

/d dtε

σ

 

 

t

ε

σ

σ σ
0t 1t t

t

0t 1t t

ε

 

 

Figure 3.1 Upper and middle panels: Behaviour of a Hooke solid (left) and a Newton liquid (right)
upon application of a step in stress at time t0 and its removal at time t1. Lower panel: Stress–strain
and stress–strain rate diagrams.

(a Hooke solid does not have memory). Application of a stress yields an instantaneous
strain. Removal of the stress yields instantaneous and total removal of the strain. In other
words, a Hooke solid can completely recover because the elastic energy does not dissipate.
The behaviour of a Hooke solid is illustrated in Fig. 3.1.
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,σ ε
Yσ

Figure 3.2 Saint-Venant body.

3.1.2 Newton viscous liquid

The Newton viscous liquid (N) is a mechanical model for the behaviour of a linearly
viscous liquid in which stress is a linear function of the strain rate. It is represented by a
dashpot consisting of a cylinder filled with a viscous liquid, and a piston with holes through
which the liquid can flow. The only material parameter is a time-independent (Newtonian)
viscosity η [Pa s]. The stress–strain relations are given in Table 3.1. Upon application of a
step in stress, strain starts linearly to increase. The accumulated strain completely remains
after removal of the stress (a Newton liquid has extreme memory). We can also say that
the dashpot is not capable of recovering because all the elastic energy has dissipated. The
behaviour of a Newton viscous liquid is illustrated in Fig. 3.1.

3.1.3 Saint-Venant plastic solid

Whereas at small strain and stress below some critical value a real material exhibits, in
general, linear viscoelastic behaviour, it fails if the stress reaches a critical value – a yield
stress. Failure of a material can result in discontinuous deformation, fracture, or continuous
deformation, plastic flow. In the case of plastic flow, with increasing strain the stress can
increase (so-called strain hardening), decrease (strain softening) or remain constant (ideal
or pure plasticity). We consider here the third case.

The Saint-Venant body (StV) is a mechanical model for the behaviour of an ideal or
pure plastic material. It is represented by a block on a rough base (Fig. 3.2). Note that,
in general, the static friction between a block and a base defines a yield stress σ Y. When
the applied stress reaches the value of the static friction, the block starts sliding and in a
short time the frictional stress decreases to a smaller value corresponding to a dynamic
friction. In the definition of a Saint-Venant body the static and dynamic friction levels
are not distinguished. Thus, if the applied stress is smaller than the yield stress σ Y, the
Saint-Venant body behaves as a rigid solid. If the block starts sliding and the loading stress
does not decrease below σ Y, the strain increases (at a constant σ = σ Y) to a value that
depends only on the time duration of the stress application. If the loading stress decreases
below σ Y, the sliding stops and the accumulated strain remains.

Clearly, a Saint-Venant body alone can approximate plastic behaviour but it cannot
approximate behaviour before the loading stress reaches σ Y and after (the plastic episode)
the stress decreases below σ Y.

Considering the configuration in Fig. 3.2, we can distinguish two possible directions of
stress application and the consequent sliding – to the right and to the left. Choosing, say,
the x -axis and stress positive to the right, we can distinguish two values of the yield stress:
σ Y and −σ Y. We will come back to the plastic behaviour in Section 3.4.
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Table 3.2 Time-domain and frequency-domain rules for combining rheological models

Connection Stress σ  Strain ε  

In series 
 

Equal Additive 

In parallel Additive Equal 

3.2 Combined rheological models

It is obvious that each of the three fundamental models has extremely simple behaviour that
approximates only one particular aspect of the behaviour of real materials. A Hooke solid
cannot dissipate elastic energy, a Newton liquid and a Saint-Venant body have no elasticity.
Reasonable combinations of the three fundamental models are necessary for approximating
the behaviour of real materials.

For combining the fundamental models (hereafter also called elements) we need unam-
biguous rules. Consider two elements, of different or the same type, in a connection. It is
reasonable to assume that in some situations both elements are exposed to the same loading
stress while they can respond with different strains. On the other hand, in some other situa-
tions they have to be exposed to different loading stresses in order to share the same strain.
Both situations can be unambiguously described by simple rules for connecting elements
in series and in parallel. They are given in Table 3.2.

3.3 Viscoelastic continuum and its rheological models

First we introduce concepts and relations that will be used in the next sections.

Fourier transform Hereafter we will use the symbol F for the direct and F−1 for the
inverse Fourier transforms:

F {ξ (t)} = ξ (ω) =
∫ ∞

−∞
ξ (t) exp (−iωt) dt

(3.1)

F−1 {ξ (ω)} = ξ (t) = 1

2π

∫ ∞

−∞
ξ (ω) exp (iωt) dω

Convolution Consider a linear causal system. Let iS(t) be an input (input signal) to the
system and r(t) the system’s response to the input (say, output signal). Assume that the
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system is invariable with respect to time: if input iS(t) yields response r(t), then input
iS (t − τ ) yields r (t − τ ). Then,

r(t) =
∫ t

−∞
H (t − τ ) iS(τ )dτ (3.2)

where H(t) is the impulse response of the system, that is, the response of the system to the
Dirac delta function δ(t) as an input. H(t) characterizes transfer properties of the system in
the time domain. In other words, response r(t) is given by convolution of input iS(t) and
impulse response H(t). Application of the Fourier transform to Eq. (3.2) gives

r(ω) = H(ω)iS(ω) (3.3)

where H(ω) = F {H(t)} is the transfer function in the frequency domain.
The integral in Eq. (3.2) is called a convolutory integral. It is obvious that the response at

time t depends on the entire signal iS(t), or, in other words, on the entire history of quantity
iS . Therefore, the integral in Eq. (3.2) is also called a hereditary integral.

3.3.1 Stress–strain and strain–stress relations in a viscoelastic continuum

3.3.1.1 Preliminary considerations

A Hooke solid, described by the stress–strain relation (Table 3.1)

σ (t) = Mε(t) (3.4)

has elasticity but no memory and, consequently, is incapable of dissipating energy. We can
formally ‘add memory’ by generalizing the simple relation (3.4) to the convolutory relation

σ (t) =
∫ t

−∞
M (t − τ ) ε(τ )dτ (3.5)

Note that the time-dependent modulus M(t) does not contradict the model invariability with
respect to time – as assumed in the previous section. M(t) behaves in the same way no
matter when the Dirac delta function δ(t) in strain is applied. Application of the Fourier
transform gives

σ (ω) = M(ω)ε(ω) (3.6)

with

σ (ω) = F {σ (t)} , M(ω) = F {M(t)} , ε(ω) = F {ε(t)} (3.7)

We can see that the assumption of a complex and frequency-dependent modulus, and
thus assumption of relation (3.6), would be exactly the most natural generalization of the
stress–strain relation of a Hooke solid in the frequency domain (Table 3.1).

We can further consider some function ψ(t)
∂

∂t
ψ(t) = M(t) (3.8)

Then, due to a property of convolution, Eq. (3.5) can be written as

σ (t) =
∫ t

−∞

∂

∂t
ψ (t − τ ) ε(τ )dτ =

∫ t

−∞
ψ (t − τ )

∂

∂τ
ε(τ )dτ (3.9)
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Comparing Eq. (3.9) with the relation in Table 3.1 for a Newton liquid we can see that
formally the generalization of perfect elasticity, Eq. (3.5), can also be viewed as a general-
ization of pure viscosity.

3.3.1.2 General theory in 1D

For a linear isotropic viscoelastic medium the stress–strain relation can be expressed by
Eq. (3.9), which can be considered a form of Boltzmann’s superposition and causality
principle. Functionψ(t) is the stress relaxation function. With reference to Eq. (3.2),ψ(t) is
a stress response to a Dirac delta function in the strain rate or, equivalently, to a Heaviside
unit step in the strain. Stress relaxation means a decrease of stress. Considering Eq. (3.5)
or (3.8), M(t) is the stress response to a Dirac delta function in strain. Application of the
Fourier transform to Eq. (3.8) yields

F
{
∂

∂t
ψ(t)

}
= M(ω) and ψ(ω) = M(ω)

iω
(3.10)

and application of the inverse Fourier transform to the latter equation gives

ψ(t) = F−1

{
M(ω)

iω

}
(3.11)

M(ω) is, in general, a complex frequency-dependent viscoelastic modulus, and Eq. (3.11)
is an important relation between the relaxation function and viscoelastic modulus.

Because ψ(t) is the stress response to a Heaviside unit step in strain, we can consider

ψ(t) = ψ̃(t)H (t); H (t) = 0; t < 0, H (t) = 1; t ≥ 0 (3.12)

Here and hereafter in this chapter, the Heaviside function, H(t), is equal to 1 for zero
argument. Equivalently, ψ̃(t) = ψ(t); t ≥ 0. Then,

∂ψ

∂t
= ∂ψ̃

∂t
H (t) + ψ̃(t)δ(t) (3.13)

and, according to the first of Eqs. (3.10),

M(ω) =
∫ ∞

−∞

[
∂ψ̃

∂t
H (t) + ψ̃(t)δ(t)

]
exp(−iωt)dt

= ψ(0) +
∫ ∞

0

∂ψ

∂t
exp(−iωt)dt

= ψ(0) +
∫ ∞

0

∂

∂t
[ψ(t) − ψ(∞)] exp(−iωt)dt

= ψ(0) + {[ψ(t) − ψ(∞)] exp(−iωt)}|∞0 −
∫ ∞

0
[ψ(t) − ψ(∞)]

d

dt
exp(−iωt)dt

= ψ(0) − [ψ(0) − ψ(∞)] −
∫ ∞

0
[ψ(t) − ψ(∞)]

d

dt
exp(−iωt)dt

= ψ(∞) + iω
∫ ∞

0
[ψ(t) − ψ(∞)] exp(−iωt)dt (3.14)
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Thus,

M(ω) = ψ(∞) + iω
∫ ∞

0
[ψ(t) − ψ(∞)] exp(−iωt)dt (3.15)

and, consequently,

M(ω = 0) = ψ(t → ∞) (3.16)

Alternatively to Eq. (3.14) we can consider

M(ω) =
∫ ∞

−∞

[
∂ψ̃

∂t
H (t) + ψ̃(t)δ(t)

]
exp(−iωt)dt

= ψ(0) +
∫ ∞

0

∂ψ

∂t
exp(−iωt)dt

= ψ(0) +
[
∂ψ

∂t

exp(−iωt)
−iω

]∞

0

−
∫ ∞

0

∂2ψ

∂t2
exp(−iωt)

−iω dt (3.17)

Then,

lim
ω→∞M(ω) = ψ(0) + lim

ω→∞

{[
∂ψ

∂t

exp(−iωt)
−iω

]∞

0

−
∫ ∞

0

∂2ψ

∂t2
exp(−iωt)

−iω dt

}
= ψ(0) (3.18)

and

M(ω → ∞) = ψ(t = 0) (3.19)

Recall that ψ(t) is a stress response to a Heaviside unit step in strain. Relation (3.19)
means that an instantaneous stress response to a Heaviside unit step in strain is equal to
M(ω → ∞). Relation (3.16) means that the stress eventually relaxes to a value equal to
M(ω = 0). Therefore, it is reasonable to introduce the unrelaxed modulus MU:

MU = lim
t→0
ψ(t) = lim

ω→∞M(ω) (3.20)

relaxed modulus MR:

MR = lim
t→∞ψ(t) = lim

ω→0
M(ω) (3.21)

and modulus defect or relaxation of modulus δM:

δM = MU −MR (3.22)

Alternatively to the stress–strain relation (3.9), it is possible to characterize the behaviour
of a viscoelastic medium using the strain–stress relation:

ε(t) =
∫ t

−∞
χ (t − τ )

∂

∂τ
σ (τ )dτ (3.23)
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where χ (t) is the creep function – a strain response to a Dirac delta function in the stress
rate or, equivalently, to a Heaviside unit step in the stress. Creep means an increase of strain.

In analogy to relations (3.5), (3.8), (3.10), (3.11) and (3.20)–(3.22) there are relations

ε(t) =
∫ t

−∞
C(t − τ ) σ (τ )dτ

∂

∂t
χ (t) = C(t)

F
{
∂

∂t
χ (t)

}
= C(ω) and χ (ω) = C(ω)

iω

χ (t) = F−1

{
C(ω)

iω

}
(3.24)

CU = lim
t→0
χ (t) = lim

ω→∞C(ω)

CR = lim
t→∞χ (t) = lim

ω→0
C(ω)

δC = CR − CU

where C means compliance and is equal to 1/M.

3.3.2 Maxwell and Kelvin–Voigt bodies

The two simplest possible viscoelastic rheological models are the Maxwell body (spring
and dashpot connected in series) and the Kelvin–Voigt body (spring and dashpot connected
in parallel). For a detailed analysis of the two models we refer to Moczo et al. (2007a) or
other monographic texts. Here we restrict our discussion to essential aspects relevant to the
possibility of using these models for incorporating attenuation. Figure 3.3 shows the strain
response of the two models to a step in stress, that is, creep. It is obvious that each of the two
models has a problem preventing its application for incorporating realistic attenuation. A
Maxwell body is capable of instantaneous elastic strain but fails to fully recover – it cannot
remove strain accumulated in the dashpot. In other words, a particle of such a viscoelastic
continuum would be unable to return to the original equilibrium position. A Kelvin–Voigt
model can fully recover but is incapable of an instantaneous nonzero strain response upon
application of a step in stress.

3.3.3 Zener body (standard linear solid)

The incapability of a Kelvin–Voigt body to instantaneously respond with nonzero strain
upon application of a step in stress naturally suggests connecting the Kelvin–Voigt model
in series with a spring. The additional spring can respond instantaneously with nonzero
strain. We can denote such a model as H-s-KV.
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Figure 3.3 Behaviour of a Maxwell body (left) and a Kelvin–Voigt body (right) upon application of
a step in stress at time t0 and its removal at time t1.
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Figure 3.4 Two alternative models of a Zener body (standard linear solid). Left: spring connected in
parallel with Maxwell model. Right: spring connected in series with Kelvin–Voigt model.

On the other hand, the incapability of a Maxwell body to remove accumulated strain
is due to the absence of a spring connected in parallel with the dashpot. This suggests
connecting a Maxwell body in parallel with a spring. We can denote this model as H-p-M.
Both configurations are shown in Fig. 3.4.

Hooke solid connected in parallel with Maxwell body: H-p-M It is easier to see the
meaning of the elastic moduli in H-p-M. At the time of application of the unit step in strain
an instantaneous stress, i.e., unrelaxed stress MU , will be given by the sum of the moduli
of the springs. At the same time, the strain of the dashpot will start to grow from zero.
The growth of the strain will gradually release the stress of the spring connected in series
with the dashpot. In the limit, the relaxed stress,MR, will be only in the spring connected
in parallel with the Maxwell body. Because MU = MR + δM , MR is the modulus of the
spring connected in parallel with the Maxwell body and δM is the modulus of the spring
in the Maxwell body.
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In the following, subscripts H and M will indicate quantities related to the Hooke and
Maxwell models. Application of the frequency-domain rules (Table 3.2) to model H-p-M
yields

σ (ω) = σH(ω) + σM(ω), ε(ω) = εH(ω) = εM(ω) (3.25)

where

σH(ω) = MR ε(ω) (3.26)

and σM(ω) is obtained from application of the rules to the Maxwell model:

ε(ω) = σM(ω)

δM
+ σM(ω)

iωηM

σM(ω) =
(
iωηMδM

δM + iωηM

)
ε(ω)

(3.27)

Substitution of σH(ω) and σM(ω) in Eq. (3.25) yields

σ (ω) = MRε(ω) + iωηMδM

δM + iωηM
ε(ω)

= MR
1 + iω ηM

δM

MU

MR

1 + iω ηM

δM

ε(ω) (3.28)

Denoting

τσ ≡ ηM

δM
, τε ≡ ηM

δM

MU

MR
(3.29)

the stress–strain relation in the frequency domain and the viscoelastic modulus are

σ (ω) = M(ω)ε(ω); M(ω) = MR 1 + iωτε
1 + iωτσ (3.30)

Using Eq. (3.11)

ψ(t) = F−1

{
MR

[−i
ω

+ iτε

i − τσω − iτσ

i − τσω
]}

= MR
[

1 +
(
τε

τσ
− 1

)
exp

(
− t

τσ

)]
H (t) (3.31)

It is also easy to obtain the creep function:

χ (t) = 1

MR

[
1 − τσ

τε

(
τε

τσ
− 1

)
exp

(
− t

τε

)]
H (t) (3.32)

Noting that

τε

τσ
= MU

MR
> 1 (3.33)
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it is clear from relations (3.31) and (3.32) that τσ and τε have the meanings of characteristic
stress-relaxation time and characteristic creep time, respectively.

Hooke solid connected in series with Kelvin–Voigt body: H-s-KV Application of the
frequency-domain rules (Table 3.2) to model H-s-KV yields

σ (ω) = σH(ω) = σKV(ω), ε(ω) = εH(ω) + εKV(ω) (3.34)

where

εH(ω) = σ (ω)

M1
(3.35)

Application of the rules to the Kelvin–Voigt model gives

σ (ω) = M2εKV(ω) + iωηKVεKV(ω) (3.36)

Then,

ε(ω) =
(

1

M1
+ 1

M2 + iωηKV

)
σ (ω) (3.37)

σ (ω) = M1M2 + iωηKVM1

M1 +M2 + iωηKV
ε(ω) (3.38)

and

σ (ω) = M(ω)ε(ω), M(ω) = M1M2

M1 +M2

1 + iωηKV

M2

1 + iω ηKV

M1 +M2

(3.39)

The unrelaxed and relaxed moduli are

lim
ω→∞M(ω) = M1, lim

ω→0
M(ω) = M1M2

M1 +M2
(3.40)

The relations between moduli M1 and M2 in H-s-KV and moduli MR and δM in H-p-M
are

MR = M1M2

M1 +M2
, δM = M2

1

M1 +M2
(3.41)

The behaviour of a Zener body is illustrated in Fig. 3.5.
Viscosities ηKV and ηM of the H-s-KV and H-p-M, respectively, are related by

ηKV = ηM

(
MU

δM

)2

(3.42)

Note that for a given set ofMR , δM and ηM in H-p-M it would be impossible to find moduli
M1 andM2 if we assumed ηKV = ηM.
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Figure 3.5 Behaviour of a Zener body. Left: strain upon application of step in stress at time t0 and its
removal at time t1. Right: stress response upon application of step in strain.

3.3.4 Phase velocity in elastic and viscoelastic continua

Phase velocity in a perfectly elastic medium Consider a harmonic wave propagating in
the positive x-direction:

u = exp [i (ωt − kx)] (3.43)

The requirement of ωt − kx = ω (t +�t) − k (x +�x) implies

�x

�t
= ω

k
(3.44)

and the phase velocity c:

c = ω

k
(3.45)

The 1D equation of motion and Hooke’s law in the elastic homogeneous medium are

ρ
∂2u

∂t2
= ∂σ

∂x
, σ = M∂u

∂x
(3.46)

or

∂2u

∂t2
= M

ρ

∂2u

∂x2
(3.47)

where M is a real constant elastic modulus. Assuming u is given by Eq. (3.43), Eq. (3.47)
implies

(iω)2u = M

ρ
(−ik)2u (3.48)

(ω
k

)2 = M

ρ
(3.49)
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The phase velocity is

c = ω

k
=
(
M

ρ

) 1
2

(3.50)

Phase velocity in a viscoelastic medium The 1D equation of motion and Hooke’s law in
the viscoelastic medium are

ρ
∂2u

∂t2
= ∂σ

∂x
, σ = M(t) ∗ ∂u

∂x
(3.51)

or

ρ
∂2u

∂t2
= M(t) ∗ ∂

2u

∂x2
(3.52)

where the asterisk indicates the convolution. Application of the Fourier transform to Eq.
(3.52) gives

(iω)2 F {u} = M(ω)

ρ

∂2

∂x2
F {u} (3.53)

whereM(ω) is, in general, the complex frequency-dependent viscoelastic modulus. In order
to distinguish the wavenumber in the viscoelastic medium from that in the elastic medium,
we denote it by K . Then, for any wave (the harmonic wave being a special case),

u (t, x) = ũ(t) exp (−iKx) (3.54)

we obtain

∂2

∂x2
F {u} = −K2F {u} (3.55)

Equation (3.53) implies

−ω2 = M(ω)

ρ
(−K2) (3.56)

and

K

ω
=
√

ρ

M(ω)
(3.57)

Assuming real ω, Eq. (3.57) implies that K may be complex:

K = Kreal + iKimag (3.58)

Generalization of the wave in Eq. (3.43) with the complex wavenumber K gives

u = exp(Kimagx) exp[i(ωt −Krealx)] (3.59)

In analogy with Eqs. (3.43) and (3.45), the real phase velocity is

c = ω

Kreal
(3.60)
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Considering (3.57) and (3.60) we obtain

1

c
= Kreal

ω
=
(√

ρ

M(ω)

)
real

(3.61)

Consequently, we can use the symbol of real k instead of Kreal,

k ≡ Kreal (3.62)

and write

K = k + iKimag (3.63)

We can also define a complex velocity V = Vreal + iVimag as

V ≡
√
M(ω)

ρ
(3.64)

Using Eqs. (3.57), (3.63) and (3.64),

k = ωVreal

|V |2 , Kimag = −ωVimag

|V |2 (3.65)

ConsideringM = Mreal + iMimag we obtain

Mreal

ρ
= V 2

real − V 2
imag,

Mimag

ρ
= 2VrealVimag (3.66)

We easily find the relation between the complex velocity V and the real phase velocity c
using Eqs. (3.61) and (3.65):

c = |V |2

Vreal
= V 2

real + V 2
imag

Vreal
(3.67)

3.3.5 Measure of dissipation and attenuation in a viscoelastic continuum

Whereas a Hooke perfectly elastic solid does not dissipate elastic (or strain) energy at all,
a Newton viscous liquid dissipates the energy completely but has no elasticity. A Zener
body, properly combining a Hooke solid and a Newton liquid, is capable of both an elastic
response and energy dissipation. A Hooke solid is characterized by a real elastic frequency-
independent modulus, a Zener body by a complex frequency-dependent viscoelastic mod-
ulus. Therefore, one may intuitively guess that the ratio between the imaginary and real
parts of the viscoelastic modulus,Mimag/Mreal, might be related to some measure of dissi-
pation. Indeed, O’Connell and Budiansky (1978) suggested using this ratio as a measure of
dissipation in a viscoelastic medium. Correspondingly, they suggested a definition of the
quality parameterQ of the medium (a term borrowed from electric circuit theory) as

Q(ω) = Mreal

Mimag
(3.68)
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In seismology, Q is commonly termed a quality factor. O’Connell and Budiansky (1978)
showed that Q is related to the energy dissipated per oscillation cycle assuming harmonic
loading in a unit volume of the continuum:

1

Q(ω)
= 1

4π

Edissipated

Eaverage
(3.69)

Here Edissipated is the dissipated energy and Eaverage is the average elastic energy stored
during one cycle of loading.

Note that the ratio of the imaginary and real parts of the viscoelastic modulus was used
as a loss parameter previously by White (1965) in his book on seismic waves.

Anelastic dissipation causes attenuation of free oscillations in time or spatial attenuation
of a propagating wave.

Recall wave (3.59) with k used instead of Kreal:

u = exp(Kimagx) exp[i(ωt − kx)] (3.70)

Assume that u has its peak value at xP . Consider a fixed time t and evaluate the ratio of the
u values at xP + λ and xP , where λ is the wavelength:

u(xP + λ, t)
u(xP , t)

= exp(Kimagλ) exp(−ikλ) = exp(Kimagλ) (3.71)

The latter equality is due to kλ = 2π . It is clear thatKimag has to be negative if the amplitude
decays with distance. Indeed, the attenuation coefficient α > 0 is defined as

α = −Kimag (3.72)

and thus,

u(xP + λ, t)
u(xP , t)

= exp (−αλ) (3.73)

The spatialQ is defined by relation

exp(−αλ) = exp

(
− π

Qspatial

)
(3.74)

Hence,

Qspatial = π

αλ
= k

2α
(3.75)

Using Eqs. (3.65) and (3.72) we obtain

Qspatial = Vreal

2Vimag
(3.76)

CompareQspatial withQ defined by Eq. (3.68). Using Eq. (3.66),

Q = Mreal

Mimag
= V 2

real − V 2
imag

2VrealVimag
= Vreal

2Vimag
− Vimag

2Vreal
(3.77)
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Using Eq. (3.76) we obtain

Q = Qspatial − 1

4Qspatial
(3.78)

AssumingQspatial 
 1 we haveQ ≈ Qspatial. Consider, e.g.,Qspatial = 10. ThenQ = 9.975.
ForQspatial = 5 there isQ = 4.95. These are small differences that can be neglected in most
numerical applications.

For more details we refer to the article by O’Connell and Budiansky (1978) and, for
example, books by Aki and Richards (2002), and Pujol (2003).

3.3.6 Attenuation in a Zener body

The viscoelastic modulus given by Eq. (3.30) can be written as

M(ω) = MR 1 + ω2τσ τε + iω (τε − τσ )

1 + ω2τ 2
σ

(3.79)

Equation (3.79) implies

1

Q(ω)
= Mimag(ω)

Mreal(ω)
= ω (τε − τσ )

1 + ω2τσ τε
(3.80)

Q−1(ω) has its maximum at frequency

ωm = 1√
τσ τε

= δM

η

√
MR

MU
(3.81)

Q−1(ω) is illustrated in Fig. 3.6. It is clear from the figure that one Zener body cannot
approximate, for instance, constant or almost constant Q(ω). A superposition of several
Zener bodies whose peaks are properly distributed over a desired frequency range might
provide a reasonable approximation.

3.3.7 Generalized Zener body (GZB)

A generalized Zener body (GZB) is a parallel connection of n Zener bodies. Consider each
of them to be of the H-p-M type (Fig. 3.7). The relaxed modulus MRl , modulus defect
δMl and viscosity ηl characterize each l-th Zener body. We denote by Ml , MUl , τσ l and
τεl the viscoelastic modulus, unrelaxed modulus, characteristic stress-relaxation time and
characteristic creep time of the l-th Zener body, respectively. Denoting stress and strain
of the l-th Zener body by σl(ω) and εl(ω), application of the frequency-domain rules for
combined models yields

σ (ω) =
∑n

l=1
σl(ω), ε(ω) = εl(ω); l = 1, 2, . . . , n (3.82)
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Figure 3.6 Example of Q−1(ω) of Zener body.

Using Eq. (3.30),

σl(ω) = Ml(ω)ε(ω); Ml(ω) = MRl 1 + iωτεl
1 + iωτσl (3.83)

with

τσ l = ηl

δMl
, τεl = ηl

δMl

MUl

MRl
(3.84)

we obtain

σ (ω) = M(ω)ε(ω), M(ω) =
∑n

l=1
MRl

1 + iωτεl
1 + iωτσl (3.85)

The relaxed and unrelaxed moduli are

MR = lim
ω→0

M(ω) =
∑n

l=1
MRl (3.86)

and, using Eq. (3.33),

MU = lim
ω→∞M(ω) =

∑n

l=1
MRl

τεl

τσ l
=
∑n

l=1
MUl

=
∑n

l=1
(MRl + δMl) = MR + δM (3.87)

where δM is the modulus defect (relaxation of modulus):

δM =
∑n

l=1
δMl (3.88)

As expected, upon application of a unit step in strain, the instantaneous elastic response,
quantified by the unrelaxed modulus MU , is due to the superposition of all the springs in
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Figure 3.7 Left: generalized Zener body. Each single Zener body is of the H-p-M type. Right:
generalized Maxwell body as defined by Emmerich and Korn (1987).

the model. Under a constant unit strain the model eventually relaxes down to the stress of
the superposition of all the springs connected in parallel with Maxwell bodies.

Using Eq. (3.11) we easily obtain the relaxation function:

ψ(t) =
{∑n

l=1
MRl

[
1 +

(
τεl

τσ l
− 1

)
exp

(
− t

τσ l

)]}
H (t) (3.89)

Assuming simplification (Carcione 2001, 2007; we will comment on this later)

MRl = 1

n
MR (3.90)

we obtain

M(ω) = MR

n

∑n

l=1

1 + iωτεl
1 + iωτσl (3.91)

ψ(t) = MR
[

1 + 1

n

∑n

l=1

(
τεl

τσ l
− 1

)
exp

(
− t

τσ l

)]
H (t) (3.92)

Formulas (3.90) and (3.91) were presented by Carcione (2001, 2007). Most, if not all,
articles dealing with the incorporation of the attenuation based on GZB, starting from Liu
et al. (1976), had the same error – the missing factor 1/n in the viscoelastic modulus and
relaxation function (1/L in most of the papers, L being the number of Zener bodies).
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The attenuation corresponding toM(ω) given by Eq. (3.85) is quantified by

1

Q(ω)
= Mimag(ω)

Mreal(ω)
=

∑n
l=1MRl

ω (τεl − τσ l)
1 + ω2τ 2

σ l∑n
l=1MRl

1 + ω2τεlτσ l

1 + ω2τ 2
σ l

(3.93)

from which a simplified version due to (3.90) is obtained immediately.
Before we quantitatively illustrate the attenuation in the GZB model we look at an

alternative model published by Emmerich and Korn (1987).

3.3.8 Generalized Maxwell body (GMB-EK)

The model published by Emmerich and Korn (1987) is shown in Fig. 3.7. Note that often
in the literature on rheology the generalized Maxwell body is defined as nMaxwell bodies
connected in parallel, that is, without the additional spring. The additional spring here,
however, makes that significant difference. Therefore, we use the abbreviation GMB-EK
instead of just GMB.

The l-th Maxwell body is characterized by elastic modulus Ml and viscosity ηl . The
additional Hooke spring is characterized by elastic modulus MH. Subscript l will indicate
the l-th Maxwell body whereas subscript H will indicate the additional spring. Application
of the rules in the frequency domain yields

σ (ω) = σH(ω) +
∑n

l=1
σl(ω), ε(ω) = εH(ω) = εl(ω); l = 1, 2, . . . , n (3.94)

where

σH(ω) = MHε(ω) (3.95)

ε(ω) = εl(ω) = σl(ω)

Ml
+ σl(ω)

iωηl
(3.96)

The latter equation implies

σl(ω) = iηlMlω

Ml + iηlω ε(ω) (3.97)

Define a characteristic (relaxation) frequency

ωl ≡ Ml

ηl
(3.98)

Then,

σ (ω) = M(ω)ε(ω), M(ω) = MH +
∑n

l=1

iMlω

ωl + iω (3.99)
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The relaxed and unrelaxed moduli are

MU = lim
ω→∞M(ω) = MH +

∑n

l=1
Ml

(3.100)
MR = lim

ω→0
M(ω) = MH

BecauseMU = MR + δM ,

δM =
∑n

l=1
Ml (3.101)

and Ml has the meaning of δMl . As expected, upon application of a unit step in strain,
the instantaneous elastic response, quantified by the unrelaxed modulus MU , is due to
superposition of all springs in the model. Under a constant unit strain the model eventually
relaxes down to the stress of the additional spring, that is, MH. Compare this with the
analogous statement regarding the GZB model after Eq. (3.87): the additional spring in
the GMB model plays the same role as all the springs connected in parallel with Maxwell
bodies in individual Zener bodies together.

Using Eq. (3.11), the second of Eqs. (3.99) and Eq. (3.100) we obtain the relaxation
function

ψ(t) =
[
MR +

n∑
l=1

Mle
−ωl t

]
H (t) (3.102)

The viscoelastic modulus and relaxation function can also be expressed using the unrelaxed
modulus. In the second of Eqs. (3.99) we replace MH by difference MU − δM , then δM
using Eq. (3.101), and obtain

M(ω) = MU −
∑n

l=1

Mlωl

ωl + iω (3.103)

Similarly we modify Eq. (3.102):

ψ(t) =
[
MU −

∑n

l=1
Ml
(
1 − e−ωlt)]H (t) (3.104)

The attenuation corresponding toM(ω) given by Eq. (3.103) is quantified by

1

Q(ω)
= Mimag(ω)

Mreal(ω)
=

∑n
l=1

Mlωlω

ω2
l + ω2

MU −∑n
l=1

Mlω
2
l

ω2
l + ω2

(3.105)

Before we continue with the attenuation we compare the GZB and GMB-EK models.

3.3.9 Equivalence of GZB and GMB-EK

The viscoelastic modulus of GZB is usually presented in the literature in the form of
Eq. (3.85), or in the simplified form of Eq. (3.91). Consider, however, expressions for the
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Table 3.3 Equivalence of GZB and GMB-EK

moduli with the parameters of springs and dashpots characterizing both models (Fig. 3.7):
for GZB using Eq. (3.28), for GMB-EK using (3.99). Both are given in Table 3.3, which
concisely compares rheologies of both models and shows their equivalence. The equivalence
was shown by Moczo and Kristek (2005). The equivalence could be similarly shown also
if we assumed GZB to be composed of H-s-KV.

Because GZB and GMB-EK are equivalent we can further continue with any of them.
GMB-EK has a smaller number of elements and its structure is simpler compared to GZB.
Consequently, relations for GMB-EK are also slightly simpler compared to those for GZB.
Moreover, description of GMB-EK uses one type of characteristic frequency whereas
description of GZB uses two characteristic times. The equivalence also implies that there
is no need for simplification (3.90).

3.3.10 Anelastic functions (memory variables)

Recall relations (3.5)–(3.11). The general form of the stress–strain relation in the frequency
domain in the viscoelastic continuum is

σ (ω) = M(ω)ε(ω) (3.106)

Having relations for the viscoelastic modulus and measure of attenuation, 1/Q(ω), we are
ready to finalize the incorporation of attenuation in the frequency domain: according to the
so-called correspondence principle in the linear theory of viscoelasticity, real frequency-
independent moduli are simply replaced by complex frequency-dependent moduli. Thus,
what remains is to find a way to determine the parameters of GMB-EK /GZB in order to fit
or approximate the measured or desiredQ(ω).
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However, aiming to incorporate realistic attenuation in the time domain, we have to
recall the stress–strain relation in the time domain:

σ (t) =
∫ t

−∞
M(t − τ )ε(τ )dτ (3.107)

with

M(t) = F−1 {M(ω)} or M(t) = ∂

∂t
ψ(t) (3.108)

Although we are ready to determine M(t), we still have a problem: with relation (3.107)
we need the entire history of strain in order to determine stress at time t at each spatial
position. Moreover, we have to evaluate the convolutory integral at each time. This is, in
practice, intractable or at least very inefficient – anticipating, for instance, no fewer than
106–108 spatial grid points and 103–104 time levels to be calculated in the grid methods.
A reasonable solution of the problem is to introduce anelastic functions (also memory
variables, new variables or internal variables).

Recall the relaxation function for GMB-EK, Eq. (3.104):

ψ(t) =
[
MU −

∑n

l=1
Ml
(
1 − e−ωlt)]H (t) (3.109)

Then,

M(t) = −
∑n

l=1
Mlωle

−ωl tH (t) +
[
MU −

∑n

l=1
Ml
(
1 − e−ωl t)] δ(t) (3.110)

Substituting the r.h.s. forM(t) in Eq. (3.107) yields

σ (t) = −
∫ t

−∞

∑n

l=1
Mlωle

−ωl (t−τ )H (t − τ )ε(τ )dτ

+
∫ t

−∞
MUδ(t − τ )ε(τ )dτ

−
∫ t

−∞

∑n

l=1
Ml
[
1 − e−ωl (t−τ )

]
δ(t − τ )ε(τ )dτ (3.111)

and

σ (t) = MUε(t) −
∑n

l=1
Mlωl

∫ t

−∞
e−ωl (t−τ )ε(τ )dτ (3.112)

Now it is possible to replace the convolution integral by anelastic functions. Whereas Day
and Minster (1984), Emmerich and Korn (1987) and Carcione et al. (1988a,b) defined the
anelastic functions (additional internal variables, memory variables) as dependent also on
the material properties, for an important reason that will be explained later, Kristek and
Moczo (2003) defined their anelastic functions as independent of the material properties.
Here we follow Kristek and Moczo (2003). Defining anelastic functions

ζl(t) = ωl
∫ t

−∞
e−ωl (t−τ )ε(τ )dτ , l = 1, . . . , n (3.113)
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we rewrite the latter stress–strain relation as

σ (t) = MUε(t) −
∑n

l=1
Mlζl(t) (3.114)

The stress–strain relation is now simple to evaluate if we know the anelastic functions.
Differentiate Eq. (3.113) with respect to time:

∂

∂t
ζl(t) = ωl

[
−ωl

∫ t

−∞
e−ωl (t−τ )ε(τ )dτ + ε(t)

]
(3.115)

The first term in the brackets is equal to −ζl(t) and consequently

∂

∂t
ζl(t) + ωlζl(t) = ωlε(t), l = 1, . . . , n (3.116)

Equations (3.114) and (3.116) together represent the time-domain stress–strain relations
for the viscoelastic continuum with GMB-EK/GZB rheology. The need to know the entire
history of strain at each spatial position and evaluate the convolutory integral at each time
is replaced by using additional functional variables that can be obtained by solving the
additional differential equations (3.116).

Having the relation for stress is sufficient for the displacement–stress formulation and
for developing the displacement formulation. We should also consider the velocity–stress
formulation.

Temporal differentiation of Eqs. (3.114) and (3.116) gives

∂

∂t
σ (t) = MU ∂

∂t
ε(t) −

∑n

l=1
Mlξl(t) (3.117)

∂

∂t
ξl(t) + ωlξl(t) = ωl ∂

∂t
ε(t), l = 1, . . . , n (3.118)

with

ξl(t) = ∂

∂t
ζl(t), l = 1, . . . , n (3.119)

Equations (3.112), (3.114) and (3.117) clearly decompose the whole stress into elastic
and anelastic parts. The elastic part is proportional to the unrelaxed modulus MU that
corresponds to the elastic modulus in a perfectly elastic continuum. The anelastic part
is determined by moduli Ml and anelastic functions ζl(t). We need to know how to find
parameters of GMB-EK/GZB in order to fit or approximate the measured or desiredQ(ω).

As mentioned in the introduction to this chapter, for many years two parallel sets of
publications and algorithms were developed for the GMB-EK or GZB models. We show
here equations equivalent to those presented by Robertsson et al. (1994) for GZB. Using
Eqs. (3.89), (3.8), (3.5), (3.86) and (3.87) we can obtain the stress–strain relation

∂

∂t
σ (t) = MU ∂

∂t
ε(t) −

∑n

l=1
rl(t) (3.120)
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and relaxation functions

rl(t) = MRl

τσ l

(
1 − τεl

τσ l

)∫ t

−∞

∂

∂t
ε(τ ) exp

[−(t − τ )
/
τσ l
]
dτ, l = 1, . . . , n (3.121)

ṙl(t) + 1

τσ l
rl(t) = MRl

τσ l

(
1 − τεl

τσ l

)
∂

∂t
ε(t), l = 1, . . . , n (3.122)

3.3.11 Anelastic coefficients and unrelaxed modulus

We can define anelastic coefficients

Yl = Ml

MU
; l = 1, . . . , n (3.123)

(Do not mix these up with the lower-case yl = Ml
/
MR; l = 1, . . . , n, used by Emmerich

and Korn, 1987.) The stress–strain relations (3.114) and (3.117) become

σ (t) = MU
[
ε(t) −

∑n

l=1
Ylζl(t)

]
(3.124)

∂

∂t
σ (t) = MU

[
∂

∂t
ε(t) −

∑n

l=1
Ylξl(t)

]
(3.125)

and Eqs. (3.116) and (3.118) remain unchanged. The viscoelastic and relaxed moduli are

M(ω) = MU
[

1 −
∑n

l=1
Yl

ωl

ωl + iω
]

(3.126)

MR = MU
(

1 −
∑n

l=1
Yl

)
(3.127)

Note thatMU
∑n
l=1 Yl represents the modulus defect (or relaxation of modulus).

The attenuation corresponding toM(ω) given by Eq. (3.126) is quantified by

1

Q(ω)
= Mimag(ω)

Mreal(ω)
=

∑n
l=1 Yl

ωlω

ω2
l + ω2

1 −∑n
l=1 Yl

ω2
l

ω2
l + ω2

(3.128)

The equation can be rewritten as

Q−1(ω) =
∑n

l=1

ωlω + ω2
l Q

−1(ω)

ω2
l + ω2

Yl (3.129)

Assume that values ofQ(ω) in a frequency range of interest are known – they are measured
or estimated. We can choose the number and values of the characteristic frequencies ωl in
order to reasonably cover the frequency range of interest. (Frequencies ωl are the same for
the whole computational domain.) Considering, for instance,Q values at frequencies ω̃k , a
system of equations (3.129), one equation for eachQ (ω̃k), is obtained. The system can be
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solved for the anelastic coefficients Yl using the least-square method if number of frequenc-
ies ω̃k is larger than number of frequencies ωl .

Emmerich and Korn (1987) demonstrated that a sufficiently accurate approximation to
nearly constant Q(ω) is obtained if frequencies ωl cover the frequency range of interest
logarithmically equidistantly. One possibility is to considerQ values at 2n− 1 frequencies
ω̃k , andω1 = ω̃1,ω2 = ω̃3, . . . ,ωn = ω̃2n−1. Emmerich and Korn (1987) showed that n = 3
is sufficient for the frequency range [ωmin, 100ωmin]. A simple possible choice is ω̃1 = ωmin.
A more detailed discussion of the frequency range and its sampling by frequencies ω̃k can
be found in the article by Graves and Day (2003; Eqs. 13 and 14). For an efficient and
accurate determination of the parameters of the GMB-EK see Liu and Archuleta (2006).

If the phase velocity at a certain reference frequency ωref , that is c
(
ωref

)
, is known from

measurements, the unrelaxed modulus MU can be determined from the value of c
(
ωref

)
and the viscoelastic modulus. Recall that

1

c(ω)
= Re

{(
M(ω)

ρ

)−1/2
}

(3.130)

From Eqs. (3.126) and (3.130) we obtain (Moczo et al. 1997)

MU = ρc2
(
ωref

) R +�1

2R2
(3.131)

where

R = (
�2

1 +�2
2

)1/2
,

(3.132)

�1 = 1 −
∑n

l=1
Yl

ω2
l

ω2
l + ω2

ref

, �2 =
∑n

l=1
Yl
ωlωref

ω2
l + ω2

ref

If we knowQ(ω) and c(ωref ) from measurements, and if we assume viscoelastic rheology of
GMB-EK/GZB, we can determine the parameters of the viscoelastic stress–strain relation
using Eqs. (3.129) and (3.131) for a chosen set of frequencies ωl reasonably covering the
frequency range of interest.

3.3.12 Attenuation and phase velocity in GMB-EK/GZB continuum

In Fig. 3.8 we illustrate the attenuation and phase velocity for S waves, Q−1(ω) and c(ω),
obtained using the GMB-EK/GZB rheology assuming the exact constant Q(ω) = 20 and
the exact phase velocity c(ωref ) = 200 m/s specified at the reference frequency ωref = 2π1.
Three relaxation frequencies are assumed: ω1 = 2π0.04, ω2 = 2π0.4, ω3 = 2π4 in order
to sufficiently accurately approximate the attenuation in the frequency range [0.04, 4] Hz.
This approximation was used in the modelling of seismic motion in the sedimentary
Mygdonian basin near Thessaloniki, Greece, in the E2VP (EuroSeistest Verification and
Validation Project; see also Chapter 19).
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Figure 3.8 Left: Q−1(ω) exact (dashed) and approximated (solid). The approximation is obtained for
three relaxation frequencies ω1 = 2π0.04, ω2 = 2π0.4, ω3 = 2π4 and constant Q(ω) = 20. Right:
c(ω) exact (dashed) and approximated (solid) for c(ωref ) = 200 m/s; ωref = 2π1.

3.3.13 Stress–strain relation in 3D

So far we have considered the 1D problem for simplicity. In the 3D elastic continuum, two
independent elastic moduli are always necessary in order to describe both P- and S-wave
propagation. Recall the stress–strain relation for a perfectly elastic isotropic continuum,
Hooke’s law, in the form of Eq. (2.19):

σij = κεkkδij + 2μ
(
εij − 1

3εkkδij
)

(3.133)

If we assume a viscoelastic medium in 3D with the rheology of GMB-EK/GZB instead of
the perfectly elastic medium described by Eq. (3.133), we need two independent GMB-
EK/GZB bodies: one for the bulk modulus κ and one for the shear modulusμ. Consequently,
the stress–strain relation in 3D is

σij = κεkkδij + 2μ
(
εij − 1

3εkkδij
)

−
∑n

l=1

[
Y κl κζ

kk
l δij + 2Yμl μ

(
ζ
ij
l − 1

3ζ
kk
l δij

)]
(3.134)

The anelastic functions are solutions of the differential equations

∂

∂t
ζ
ij
l (t) + ωlζ ijl (t) = ωlεij (t), l = 1, . . . , n (3.135)

The equal-index summation convention applies to spatial index k but does not apply to
subscript l. For n characteristic frequencies ωl we have n anelastic coefficients Yκl , and
n anelastic coefficients Yμl . For each of six independent strain-tensor components εij we
have nmaterial-independent anelastic functions ζ ijl . Thus, compared to the perfectly elastic
medium we need 8n more quantities – 2n anelastic coefficients (material parameters) and
6n anelastic functions (additional functional variables).
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In the case of the velocity–stress formulation, Eqs. (3.134) and (3.135) are replaced by

∂

∂t
σij = κ ∂

∂t
εkkδij + 2μ

(
∂

∂t
εij − 1

3

∂

∂t
εkkδij

)

−
∑n

l=1

[
Y κl κξ

kk
l δij + 2Yμl μ

(
ξ
ij
l − 1

3ξ
kk
l δij

)]
(3.136)

∂

∂t
ξ
ij
l (t) + ωlξ ijl (t) = ωl ∂

∂t
εij (t), l = 1, . . . , n (3.137)

Assume that we know the quality factors for P and S waves, that isQα(ω) andQβ(ω). Here
α and β are the P-wave and S-wave speeds, respectively:

α = [(
κ + 4

3μ
)/
ρ
]1/2
, β = [μ/ρ]1/2 (3.138)

The anelastic functions corresponding to Qα(ω) and Qβ(ω) are Yαl and Y βl . They are
obtained by solving the system of equations

Q−1
γ (ω̃k) =

∑n

l=1

ωlω̃k + ω2
l Q

−1
γ (ω̃k)

ω2
l + ω̃2

k

Y
γ
l ; k = 1, . . . , 2n− 1; γ ∈ {α, β} (3.139)

using the least-square method. The anelastic coefficients Yκl and Yμl are obtained from

Y κl =
(
α2Y αl − 4

3β
2Y
β
l

)/(
α2 − 4

3β
2
)
, Y

μ
l = Yβl , l = 1, . . . , n (3.140)

In the case of using moduli λ and μ instead of κ and μ we have

∂

∂t
σij = λ ∂

∂t
εkkδij + 2μ

∂

∂t
εij

−
∑n

l=1

[
Yλl λξ

kk
l δij + 2Yμl μξ

ij
l

]
(3.141)

instead of Eq. (3.136). The anelastic coefficients Yλl are obtained from

Y λl =
(
α2Yαl − 2β2Y

β
l

)/(
α2 − 2β2

)
, l = 1, . . . , n (3.142)

Given the theory presented, we are now ready to address implementation of viscoelastic
rheology in the FD schemes.

3.4 Elastoplastic continuum

Figure 3.9 shows hysteresis loops reconstructed by Kausel and Assimaki (2002) from the
strain time histories for the 1995 Kobe earthquake record using Masing’s concept (see
Subsection 3.4.2). The hysteresis loops very clearly illustrate the strong nonlinear effects
induced in the surface soil during the earthquake.

The basic terms of the hysteresis loop, that is the backbone curve, loading, unloading
and reversal point, are illustrated in Fig. 3.10. Note that strain appears on the horizontal axis
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Figure 3.9 The hysteresis loops obtained by Kausel and Assimaki (2002) from the strain time histories
for the 1995 Kobe earthquake record. The stress values are scaled by the low-strain elastic shear
modulus and the strain values are scaled to the maximum strain of 0.05.
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Figure 3.10 Left: a symmetric hysteresis loop corresponding to symmetric loading and unloading.
Right: an asymmetric loop due to asymmetric loading and unloading.

and stress on the vertical axis. This corresponds to the fact that in the numerical simulation
stress is calculated from strain.

3.4.1 Simplest elastoplastic bodies

Analogously with the viscoelastic models, the simplest models combining elastic and plas-
tic behaviour can be obtained by serial or parallel connection of a Hooke solid (we will
also use the term ‘spring’ or symbol H) and a Saint-Venant body (StV). The rules
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Figure 3.11 Left: H-s-StV – serial connection of a Hooke solid (spring) and a Saint-Venant body.
Right: H-p-StV – parallel connection of a Hooke solid and a Saint-Venant body.
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Figure 3.12 Left: stress–strain diagram of H-s-StV. Right: stress–strain diagram of H-p-StV.

for combining rheological models in Section 3.2 are also assumed for the elastoplastic
models.

Serial connection of a Hooke solid and a Saint-Venant body: H-s-StV The rheological
model is shown in Fig. 3.11(left). Stresses are equal, strains are additive:

σ = σH = σStV, ε = εH + εStV (3.143)

Consider, for instance, pulling to the right. The following development is illustrated by the
stress–strain diagram in Fig. 3.12(left). If the applied stress is smaller than the yield stress
σY of StV, only the spring deforms (extends) – strain linearly increases with stress. When
the applied stress reaches a value of σY , StV starts deforming (moving to the right) and
the spring stops deforming. If the loading stress does not decrease below σY , the strain
increases (at a constant σ = σY ) to a value that depends only on the time duration of the
stress application and the strain of the spring is equal to εY . With the spring inactive, the
strain of StV increases until the value of the applied stress starts decreasing. We denote
the total strain reached by ε1. As soon as the applied stress starts decreasing, StV stops
deforming (its strain is ε1 − εY ) and the spring is activated. With StV inactive, the strain of
the spring linearly decreases. Consequently, the total strain also decreases linearly. When
the stress decreases down to zero, the spring has no stress and no strain. The total strain is
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equal to the strain of StV, that is, ε1 − εY . If the stress further decreases, the spring starts
shrinking. When the stress reaches a value of −σY , StV starts deforming – moving to the
left. At the same time, the spring stops deforming because StV is active at the constant
stress −σY . It is obvious that in H-s-StV the episodes of active spring (linear segments of
the stress–strain diagram) may alternate with episodes of active StV (horizontal segments).
It is also clear that H-s-StV does not exhibit plastic strain hardening. In this aspect it does
not differ from StV itself, which is a mechanical model for the behaviour of an ideal or
pure plastic material (see Subsection 3.1.3).

Parallel connection of Hooke solid and Saint-Venant body: H-p-StV The rheological
model is shown in Fig. 3.11(right). Stresses are additive, strains are equal:

σ = σH + σStV, ε = εH = εStV (3.144)

Consider again pulling to the right. The following development is illustrated by the stress–
strain diagram in Fig. 3.12(right). Because the strain at H, the strain at StV and the total
strain are equal at any time, the body is inactive until the stress at StV reaches the yield stress
σY . After the stress reaches a value of σY , both H and StV start deforming simultaneously.
The deformation is controlled by H. Because StV can deform at the constant stress σY ,
the strain is proportional to the difference σ − σY acting at H. (Note that because both H
and StV are active simultaneously, H-p-StV exhibits plastic strain hardening.) Assume that
after some time the stress reaches a value of σ1. The corresponding strain is (σ1 − σY )/M ,
the stress at H is σ1 − σY , and the stress at StV is σY . Assume that at this moment the stress
starts decreasing. This instantaneously stops deformation of both H and StV. The decrease
of the total stress reduces stress only at StV because at inactive H neither strain nor stress can
change. Consequently, both bodies will remain inactive until stress at StV reaches the yield
value of −σY . The total stress at that moment is σ1 − 2σY . Note that during the episode with
both bodies inactive the strain was constant although the stress was decreasing. As soon as
both bodies are activated, the strain linearly decreases with decreasing stress. It is obvious
that in H-p-StV the episodes with both bodies active (linear segments of the stress–strain
diagram) may alternate with episodes with both bodies inactive (vertical segments in the
stress–strain diagram).

Partial conclusion We can see the consequence and drawback of the serial connection of
H and StV: after the applied stress reaches the value of the yield stress, strain increases at
this stress until the applied stress starts decreasing. In other words, the model is not capable
of plastic strain hardening. The consequence and drawback of the parallel connection of H
and StV is that the model behaves as a rigid solid before the applied stress reaches the yield
stress. The main advantage of the parallel connection is that both H and StV are active at
the same time.

An indirect indication from the behaviour of both connections is to combine the serial
and parallel connections. There are several possibilities. For example, if we connect H-
p-StV in series with a spring, we add the capability of an instantaneous elastic response
to the behaviour of H-p-StV. As a consequence, we remove the vertical segments in the
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stress–strain diagram. Such a connection is used in the sophisticated and flexible model
developed by Iwan (1967).

3.4.2 Iwan elastoplastic model for hysteretic stress–strain behaviour

3.4.2.1 Preliminary considerations

Serial connection of springs Consider first N + 1 springs connected in series. LetMk be
the elastic modulus of the k-th spring. Obviously, application of stress to a body consisting
of springs connected in series instantaneously and simultaneously activates all the springs.
Consider some reference state of stress and strain at some time:

σ r = σ rH,k, εr =
∑N

k=0
εrH,k =

∑N

k=0

σ r

Mk
(3.145)

At some later time, due to an increment �σ in stress, the stress and strain are

σ = σ r +�σ

ε = εr +�ε = εr +
∑N

k=0

�σ

Mk
= εr + (σ − σ r)

∑N

k=0

1

Mk
(3.146)

Serial connection of the H-p-StV bodies Consider nowN + 1 H-p-StV bodies connected
in series. LetMk be an elastic modulus of the k-th spring and σY,k a yield stress of the k-th
StV. Without loss of generality consider

σY,0 < σY,1 < · · · < σY,N (3.147)

At each (H–p–StV)k at any time,

σk = σH,k + σStV,k = σ, εk = εH,k = εStV,k (3.148)

In general, we are interested in cyclic variation of the applied stress: not only the size but
also the direction of the stress varies. The applied stress can reverse (change its direction)
at any time. The application of stress in the positive direction may be called loading, the
application of stress in the negative direction may be called unloading (see Fig. 3.10, left).
A point at which the stress changes direction is a reversal point. Note that at each reversal
point all elements of the model are deactivated. A curve connecting two successive reversal
points is called a branch.

Contrary to the body consisting of springs connected in series, application of stress to
a serial connection of several H-p-StV bodies does not necessarily activate one or more
H–p–StV bodies. (H–p–StV)k is activated in the positive direction when σStV,k = σY,k and
in the negative direction when σStV,k = −σY,k . The total stress at which (H–p–StV)k is
activated may be called the activating stress. It follows from the first of Eqs. (3.148) that
the activating stresses for the two directions can be defined as

�σAk ≡ σH,k + σY,k, ←
σ
A

k ≡ σH,k − σY,k (3.149)

Note that the orientation of the arrow indicates the direction of the applied stress.
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Figure 3.13 Iwan elastoplastic model.

Consider some state of stress and strain as a reversal point, and denote it by [σR, εR].
The first of Eqs. (3.148) and Eqs. (3.149) imply

�σAk = σR − σRStV,k + σY,k, ←
σAk = σR − σRStV,k − σY,k (3.150)

where the upper index R indicates the reversal point.

3.4.2.2 Iwan model

Assume that σY,0 = 0 in the above serial connection of the H-p-StV bodies. In other words,
(H–p–StV)0 reduces to a spring H0. Consequently, we have a single spring H0 connected
in series with the serial connection of (H–p–StV)k; k = 1, . . . , N . This is the Iwan model
(Fig. 3.13). The reduction of (H–p–StV)0 to a single spring incorporates the capability of
an elastic response.

Consider an initial state with σ = 0 and ε = 0. The following development is illustrated
in Fig. 3.14. Assume application of stress σ in the positive direction (to the right) and

σY,K0 ≤ σ < σY,K0+1 (3.151)

This means that K0 H-p-StV bodies are activated. H0 and each of (H–p–StV)k; k =
1, . . . , K0 contribute to the total strain proportionally to the difference σ − σY,k and
inversely proportionally toMk :

ε =
∑K0

k=0

σ − σY,k
Mk

(3.152)

Note that for conciseness we formally included also the zero-valued σY,0.
Assume reversal at the state characterized by Eqs. (3.151) and (3.152), and denote the

stress and strain at that state by σR0 and εR0 :

εR0 =
∑K0

k=0

σR0 − σY,k
Mk

(3.153)

(The stress–strain curve connecting the initial state [σ = 0, ε = 0] with the reversal point
[σR0 , εR0 ] is part of the backbone curve.)

We have to realize now that the next reversal of the stress may occur even before any
of the H-p-StV bodies are activated during unloading. It may also happen that only some
of the H-p-StV bodies activated during loading are activated during the unloading. For all
possible developments we need to find the activating stresses in both directions.
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Figure 3.14 Development of stress σ and strain ε in the Iwan elastoplastic model. [�εAl , �σAl ] denotes
the strain–stress point at which the l-th H–p–StV activates. Rj denotes the j-th reversal point.

At the time of reversal, σY,K0 ≤ σR0 < σY,K0+1 and

σ
R0
StV,k = σY,k; k = 0, . . . , K0, σ

R0
StV,k = σR0 ; k = K0 + 1, . . . , N (3.154)

Using Eqs. (3.154) and (3.150) we obtain activating stresses after the reversal point[
σR0 , εR0

]
:

←
σ
A

k = σR0 − 2σY,k, �σAk = σR0 ; k = 0, . . . , K0

←
σ
A

k = −σY,k, �σAk = σY,k; k = K0 + 1, . . . , N (3.155)

Assume that after the change of stress direction at the reversal point [σR0, εR0 ], the stress
activates K1 bodies and the model reaches a state characterized by values [σ, ε]. It follows
from Eqs. (3.151) and (3.155) that

←
σ
A

K1+1 < σ ≤ ←
σ
A

K1
(3.156)

The total strain is then

ε = εR0 +�ε = εR0 +
∑K1

k=0

σ − ←
σ
A

k

Mk
(3.157)

because the increment�ε in the total strain is a sum of increments of strains at all activated
springs.
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Consider now the state reached as a reversal point [σR1 , εR1 ]:

εR1 = εR0 +
∑K1

k=0

σR1 − ←
σ
A

k

Mk
(3.158)

As mentioned before, at the reversal point all elements of the model are deactivated.
Therefore, we need to find activating stresses after the reversal point R1. Recalling Eqs.
(3.150) and distinguishing two possible cases we obtain

K1 < K0

k = 0, . . . , K1 : σ
R1
StV,k = −σY,k

�σAk = σR1 + 2σY,k,
←
σ
A

k = σR1

k = K1 + 1, . . . , K0 : σ
R1
StV,k = σY,k − (σR0 − σR1 )

�σAk = σR0 ,
←
σ
A

k = σR0 − 2σY,k

k = K0 + 1, . . . , N : σ
R1
StV,k = σR1

�σAk = σY,k, ←
σ
A

k = −σY,k

(3.159)

K1 ≥ K0

k = 0, . . . , K0 : σ
R1
StV,k = −σY,k

�σAk = σR1 + 2σY,k,
←
σ
A

k = σR1

k = K0 + 1, . . . , K1 : σ
R1
StV,k = −σY,k

�σAk = σR1 + 2σY,k,
←
σ
A

k = σR1

k = K1 + 1, . . . , N : σ
R1
StV,k = σR1

�σAk = σY,k, ←
σ
A

k = −σY,k

(3.160)

Compare now the activating stresses after the reversal point R1 with those after point R0.
We can see different activating stresses only for those H-p-StV that were activated between
R0 and R1. (Note that it was not necessary to calculate activating stresses for H-p-StV not
activated between R0 and R1.)

Assume that after the change of stress direction at the reversal point [σR1 , εR1 ], the stress
activates K2 bodies and the model reaches a state characterized by values [σ, ε] and

�σAK2
≤ σ < �σAK2+1 (3.161)

The total strain is then

ε = εR1 +�ε = εR1 +
∑K2

k=0

σ − �σAk
Mk

(3.162)

We have shown the calculation of strain for the first loading along the backbone curve, the
first unloading, and the second loading. It would be easy to continue if the state reached
becomes a reversal point.
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Table 3.4 Calculation of activating stresses at reversal points and strain at any state of
the system

General algorithm for calculating strain from stress The analysis performed leads to a
general conclusion. Assume the initial state [σ = 0, ε = 0] and original activating stresses
(model’s yield stresses) �σAk = σY,k, ←

σ
A

k = −σY,k . An activating stress for (H–p–StV)k
changes at the reversal point Rj only if (H–p–StV)k is activated between Rj−1 and Rj .
Calculation of the activating stresses at the reversal points and calculation of the strain at
any state of the system is summarized in Table 3.4.

Note an interesting point: considering formally the initial state as a reversal point and
σY,k as the activating stresses we obtain Eq. (3.152).

General algorithm for calculating stress from strain Contrary to the previous paragraph,
where we calculated strain from stress, in solving the equation of motion using a numerical
scheme we need to update stress from strain at each time level. Therefore, we also summarize
the corresponding algorithm.

Consider Eq. (3.162) and σ = �σAl ,K2 = l, and calculate strain for l = 0, . . . , K1:

�εAl = εR1 +
∑l

k=0

�σAl − �σAk
Mk

(3.163)

We denoted the total strain as �εAl for a simple reason: Eq. (3.163) gives the total strain
in the Iwan model when (H–p–StV)l is activated between the reversal points R1 and R2.
Therefore, we may speak about the activating strain. At the reversal point R1 it is sufficient
to update the activating strains only at those H–p–StV that were activated during unloading



3.4 Elastoplastic continuum 55

Table 3.5 Calculation of activating strains at reversal points and stress at any state
of the system

between R0 and R1. (This is analogous to updating activating stresses at the reversal point.)
Consider now a condition analogous to condition (3.161):

�εAK2
≤ ε < �εAK2+1 (3.164)

The total strain in the Iwan model between states
[�εAK2

, �σAK2

]
and

[�εAK2+1, �σAK2+1

]
is the same

as the strain ofK2 springs connected in series. Consider therefore the second of Eqs. (3.146)
and

[
εr = �εAK2

, σ r = �σAK2

]
. Then, assuming condition (3.164), we obtain

σ = �σAK2
+ ε − �εAK2∑K2

k=0
1
Mk

(3.165)

for the loading stress. Analogously, we could continue with further reversal points and for
unloading: Table 3.5 summarizes the relations for calculation of the activating strains and
the total stress.

3.4.2.3 Iwan model and Masing rules

The hysteretic relation between stress and strain can also be modelled using several empir-
ical rules. Two first rules were formulated by Masing (1926):
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Figure 3.15 Left: modulus reduction curve, calculated and measured damping ratio. Right: secant
shear modulus Gs , tangential shear modulus Gt and the elastic modulus Gmax.

(1) For initial loading, the stress–strain curve follows the backbone curve σ = Fbb(ε).
(2) If stress reversal occurs at a point defined by (εR, σR), the stress–strain curve follows

a path given by 1
2 (σ − σR) = Fbb( 1

2 (ε − εR)). In other words, the unloading and load-
ing curves have the same shape as the backbone curve (with the origin shifted to the
reversal point) enlarged by a factor of two.

The two Masing rules are sufficient in the case of cyclic loading between two fixed limits.
However, their application in the case of irregular loads gives a curve that is different from
the experimentally found curve. Therefore, two more rules were formulated (e.g., Kramer
1996):

(3) If the unloading or reloading curve exceeds the maximum past strain and intersects the
backbone curve, it follows the backbone curve until the next stress reversal.

(4) If an unloading or reloading curve crosses an unloading or reloading curve from the
previous cycle, the stress–strain curve follows that of the previous cycle.

The four rules are called the extended Masing rules. It is worth noting that the Iwan model
is consistent with all four rules, although the third and fourth rules were formulated after
Iwan’s (1967) article.

3.4.2.4 Determination of parameters for Iwan model

As shown previously, (H–p–StV)k is activated when the loading stress reaches a value of
σY,k . Activation of the spring with elastic modulusMk changes the slope of the stress–strain
curve. This means that the shear modulus of the Iwan model changes (it decreases). The
tangential shear modulus is defined (Joyner and Chen 1975) as

Gt = σY,k+1 − σY,k
εY,k+1 − εY,k =

(∑k

i=0

1

Mi

)−1

(3.166)

In practice, the decrease of the shear modulus is characterized by the modulus reduction
curve (Fig. 3.15, left) that shows normalized secant shear modulusGs/Gmax as a function of
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strain.Gmax is the elastic modulus and the secant modulus is illustrated in Fig. 3.15(right).
Assume, for instance, that the true modulus reduction curve is reasonably piece-wise
linearly approximated by a set of [εi, (Gs/Gmax)i] measured points. Then, see Fig. 3.15,

σY,i = GsεY,i = (Gs/Gmax)i GmaxεY,i (3.167)

Having determined all yield stresses and corresponding strains, we can iteratively use
relation (3.166) to calculate the elastic moduliMi .

3.4.2.5 Note on damping

Damping, the ratio of the dissipated energy and the maximum strain energy stored in the
system, see Eq. (3.69), is an inherent property of the Iwan model (beyond the first elastic
part of the backbone curve). For a given strain εm the dissipated energy is equal to area of
the symmetrical hysteresis loop – see Fig. 3.15(right). The Iwan model has no damping at
low strains but its value at high strains could be larger than the measured damping. The first
problem can be solved by including linear viscoelasticity, the second problem by changing
loading/unloading paths according to specified damping values, as proposed by Muravskii
(2005).

The Iwan model, as described in this chapter, is applicable in the case of interme-
diate strains. If possible, in order to check the validity of the procedure, it is recom-
mended to check the damping corresponding to the maximum strain computed during wave
propagation.

3.4.2.6 Concluding remark

In the section on the elastoplastic continuum we introduced only the basics of the nonlinear
hysteretic behaviour of soft soil at moderate and large strains. The possibility of hysteretic
behaviour considerably complicates numerical prediction of earthquake motion. If the
computational domain includes a part with possibly nonlinear behaviour, the numerical
scheme should be capable of accounting for such behaviour in order to produce realistic
predictions. At present, this is still a nontrivial task for 3D numerical modelling.

We finish this section by mentioning two impressive studies. Gélis and Bonilla (2012)
considered elastic, viscoelastic, elastoplastic and viscoelastoplastic rheologies, and investi-
gated the influence of rheology on seismic motion. They concluded that numerical simula-
tions should couple both viscoelasticity (to account for energy dissipation at small strains)
and nonlinearity (to account for hysteretic energy dissipation and shear modulus degrada-
tion at higher strains) in order to obtain realistic results. Gélis and Bonilla also investigated
the effect of the input motion on the development of nonlinear behaviour. For modelling
and numerical implementation of nonlinear hysteretic behaviour we also refer to the com-
prehensive article by Assimaki et al. (2008). Both articles refer to other recent studies of
nonlinear behaviour.
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Earthquake source

In this chapter we will focus on seismic radiation as emitted from a rupturing fault in the
Earth. On a large scale, due to tectonic loading the stress in the fault area increases until the
yield stress of the rock material is reached at some point in the fault zone. Reaching yield
stress leads to nonelastic deformation and to release of deformation energy. This increases
stress in the vicinity of the point. Reaching the yield stress at the neighbouring points may
consequently lead to a chain reaction – rupture propagation. When the rupture propagates
fast enough and in a nonsteady way it radiates seismic waves which then propagate away
from the fault. Note that seismic waves are radiated only if the rupture propagation speed
is a significant fraction of the S-wave speed; slow ruptures do not radiate. Note also that
subshear steady-state slip pulses do not radiate, except at their starting and stopping points;
radiation from subshear ruptures requires nonsteady slip. Rupture propagates on the fault
as long as the stress changes associated with the propagating rupture are large enough for
the stress at points in front of the crack tip to reach the yield stress.

The earthquake fault is usually considered a frictional contact. Therefore, friction is the
most important physical phenomenon during rupture nucleation and propagation. However,
there are many other physical processes that have an impact on the effective friction, e.g.,
thermal pressurization of pore fluids, flash heating and melting of the material in the fault
zone, nonelastic deformation (plasticity, crack formation, gouge formation), as summarized
by Bizzarri (2010) and Bizzarri and Cocco (2005), for example. It has been shown that
heterogeneous friction parameters (e.g., Ampuero et al. 2006, Liu and Lapusta 2008, Tinti
et al. 2005, 2009), geometrical complexity (e.g., Oglesby and Day 2001, Oglesby et al. 2008,
Oglesby and Mai 2012) and fault roughness (Dunham et al. 2011) may also significantly
impact the rupture behaviour. Rupture propagation on faults at the contact of two different
materials, the so-called bi-material faults, has also been intensively studied (e.g., Andrews
and Ben-Zion 1997, Harris and Day 1997, Ben-Zion and Andrews 1998, Ranjith and Rice
2001, Rubin and Ampuero 2007, Ampuero and Ben-Zion 2008).

We can use a dynamic or kinematic model of the earthquake source. These models differ
mainly in how they respect the physics. The temporal and spatial evolution of the slip rate
in the dynamic model is calculated by solving an equation of motion together with the
friction law, and possibly other physical laws (in order to explicitly include, for instance,
pore pressure or temperature). Consequently, the interaction between rupture and wavefield
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fault

Figure 4.1 Fault surface and the normal vector �n.

is implicitly included. Therefore, we can consider the resulting slip-rate functions in the
dynamic model to be physically consistent. On the other hand, the kinematic model is
described by the temporal and spatial evolution of the slip rate. The slip-rate evolution is
prescribed a priori and is not interacting with the stress changes induced by the rupture
propagation. Therefore, the kinematic model may be inconsistent with known friction laws
(this depends on how the slip-rate evolution was obtained). It is to be noted, however, that
large uncertainties remain about the physics of fault friction at natural scales. In the next
sections we will describe the models in more detail.

In order to use a source model in a numerical simulation we need to know values of
the model parameters. The parameter set will be different for different types of source
model but, in general, the parameters should be estimated from the observations. Different
approaches are used to derive parameters of the point, finite-fault kinematic and dynamic
source models from observations, although some of these parameters are poorly constrained
(e.g., Ide 2009, Guatteri and Spudich 2000). However, this represents a very wide topic
(which does not fit into the content of this book) and we refer the reader to, e.g., Dziewonski
et al. (1981), Sipkin (1982), Langston et al. (1982), Olson and Apsel (1982), Hartzell and
Heaton (1983), Peyrat et al. (2001), Liu and Archuleta (2004), Monelli et al. (2009), Festa
and Zollo (2012), Di Carli et al. (2010).

4.1 Dynamic model of an earthquake source

In many seismological problems an earthquake fault may be represented by a surface
embedded in a heterogeneous elastic or viscoelastic pre-stressed medium. Nonzero initial
stress is due to tectonic loading and residual stress after previous earthquakes on the fault.
An earthquake source itself may be modelled as spontaneous rupture propagation along
the fault. The rupture generates seismic waves, which then propagate from the fault into
the embedding medium. Inside the rupture, displacement and particle-velocity vectors are
discontinuous across the fault. At the same time, traction is continuous. Let �n (�x) be a unit
normal vector to the fault surface pointing from the ‘−’ to the ‘+’ side of the surface
(Fig. 4.1).
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Then slip, that is, discontinuity in displacement vector across the fault, can be defined
as

�s(�x, t) ≡ �u(�x+, t) − �u(�x−, t) (4.1)

Its time derivative, a slip rate, that is, discontinuity in the particle-velocity vector across the
fault is then

�̇s(�x, t) ≡ �v(�x+, t) − �v(�x−, t) (4.2)

For slip and slip rate we use the notation of Day and his colleagues (e.g., Day and Ely 2002,
Day et al. 2005, Dalguer and Day 2006, 2007).

The total traction on the fault can be divided into two parts:

�T (�n; �x, t) = �T 0(�n; �x) +� �T (�n; �x, t) (4.3)

� �T (�n; �x, t) is the traction change due to rupture propagation. �T 0(�n; �x) is the initial traction,
that is, the state of tectonic traction on the fault at the time when rupture nucleates. The time
it takes rupture to propagate over the fault depends on the size of the fault and consequently
on the size of the earthquake. This time is much shorter than the time scale at which we can
observe changes in the tectonic stress. Therefore, the changes in the tectonic stress during
rupture will be negligible, and we can assume that the tectonic load is entirely accounted
for by the initial traction. The friction determines the total traction inside the rupture:

�T = �T f (4.4)

where �T f is the frictional traction. The equation represents a fault constitutive law. The
frictional traction is determined by a friction law. As we already indicated in the introduction
to this chapter, friction may be a function of many different physical quantities, e.g., slip
path, slip rate, state variable, temperature and effective normal stress. Two simple friction
laws are shown in Subsection 4.1.2. Given the initial traction and material parameters of
the fault, it is the friction law that controls nucleation, propagation and healing (arrest) of
the rupture.

4.1.1 Boundary conditions for dynamic shear faulting

Consider only shear faulting. This means that there is no opening of the fault and no
interpenetrating of the fault materials. Define frictional strength or fault friction as

S ≡ μf
∣∣∣ �Tn∣∣∣ (4.5)

whereμf is the time-dependent coefficient of friction and �Tn is the fault-normal component
of traction on the fault.

Assume a locked fault. If, at a point of the fault surface, loading is smaller than the
frictional strength, the fault remains locked and the slip rate remains zero at the point.
If the loading exceeds the frictional strength, slip occurs. The shear traction then varies
following the friction law and eventually falls to the dynamic frictional level. Note that this
illustrative description is valid only for slip-weakening friction. For example, in the case of
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rate-and-state friction, the shear traction is always equal to the frictional strength and the
fault is always slipping.

Let subscripts sh and n denote the shear and normal components with respect to the fault
surface. The boundary conditions on the fault can be formulated as follows (Day 1982, Day
et al. 2005).

Shear faulting

�sn = 0, �̇sn = 0, �ssh 	= 0, �̇ssh 	= 0 (4.6)

Shear traction bounded by the frictional strength∣∣∣ �Tsh∣∣∣ ≤ S (4.7)

Colinearity of the shear traction and slip rate

�Tsh(�n) = S �̇ssh∣∣�̇ssh∣∣ (4.8)

The slip is opposed by the friction. The fact that the frictional traction opposes the slip is
consistent with the colinearity requirement because (1) we consider vector �n to be oriented
in the direction from the ‘−’ to the ‘+’ side of the fault (that is, �T (�n) characterizes traction
with which the ‘+’ side acts on the ‘−’ side of the fault), (2) we consider slip as the relative
motion of the ‘+’ side with respect to the ‘−’ side of the fault. Thus �T (�n) and slip have the
same direction. If slip was defined as the relative motion of the ‘−’ side with respect to the
‘+’ side of the fault, the requirement of the antiparallelism with the ‘−’ sign on the r.h.s.
of Eq. (4.8) would be consistent with frictional traction opposing the relative motion of the
fault faces.

4.1.2 Friction law

When a rupture front reaches a point of the fault and slip starts at that point (that is, the
two originally neighbouring points, one at the ‘−’ and the other at the ‘+’ side of the fault,
start slipping), the total traction varies according to a constitutive law that relates stress
change and frictional behaviour, and eventually falls to the dynamic frictional level. If the
variation in traction is gradual (not instantaneous), the traction at the point reaches the
dynamic frictional level during a finite time. During this finite time, points of the fault in
front of the considered point may start slipping. Thus, the process of traction degradation
obviously occurs within a finite zone behind the so-called crack tip (the rupture frontmost
point). This zone is termed the cohesive (also breakdown or process) zone. The friction law
determines processes and phenomena in the cohesive zone.

Following Bizzarri and Cocco (2005), the coefficient of friction can be a function of
several quantities:

μf = μf (l, |�̇s|, �1, . . . , �N, T ,H, λc, hm, g, Ce) (4.9)
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where l is the slip path length:

l(t) ≡
∫ t

0
|�̇s|(τ )dτ (4.10)

|�̇s| is modulus of the slip rate,�1, . . . , �N are state variables, T is temperature and accounts
for ductility, plastic flow, rock melting and vaporization, H is humidity, λc is the charac-
teristic length of the fault surface accounting for roughness and topography of asperity
contacts and possibly responsible for mechanical lubrication, hm is material hardness, g
is the gouge parameter accounting for surface consumption and gouge formation during a
sliding episode, and Ce is a chemical environment parameter. In general, the fault-normal
traction in Eq. (4.5) should stand for a time-dependent effective normal traction accounting
for a pore fluid pressure (which reduces the normal traction). Equation (4.9) coupled to
evolution equations for all the variables involved in its full generality may describe a very
complicated constitutive law.

According to Cocco and Bizzarri (2002) and Bizzarri and Cocco (2003), two main
groups of the friction laws have been proposed – slip-dependent (e.g., Andrews 1976a,b,
Barenblatt 1959, Ida 1972, Ohnaka and Yamashita 1989, Palmer and Rice 1973, Ionescu
and Campillo 1999) and rate- and state-dependent (e.g., Beeler et al. 1994, Dieterich 1979,
1986, Okubo 1989, Okubo and Dieterich 1984, Ruina 1980, 1983). An example of a friction
law that does not fit into these two groups is the time-weakening friction law proposed by
Andrews (1985). Because the traction in this friction law depends only on time, this law
may be used to initiate rupture propagation (for example, Andrews 1985, Bizzarri et al.
2001).

We may also mention the rate-and-slip-dependent laws such as Cochard and Madariaga
(1994) and Ampuero and Rubin (2008). Although these have formal relationships to rate
and state, their nature is different (especially because they do not have the same empirical
foundation).

Here we restrict the discussion to two types of frequently used constitutive relations in
earthquake source physics: the linear slip-weakening (SW) friction law as formulated by
Ida (1972) and Andrews (1976a,b), and the rate- and state-dependent (R&S) friction law
as formulated by Dieterich (1986). For a review of the constitutive relations for earthquake
ruptures we refer to Chapter 4 in the book by Ohnaka (2013).

4.1.2.1 Linear slip-weakening friction law

The value of the coefficient of friction in the linear SW friction law decreases linearly
from the value of static friction, μs , down to the value of dynamic (also called kinematic)
friction, μd , over a characteristic (also called critical) distance Dc :

μf = μs − μs − μd
Dc

l; l < Dc,

μf = μd ; l ≥ Dc.
(4.11)
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Figure 4.2 Linear slip-weakening (SW) friction law.

We can define static (yield) and dynamic (kinematic) frictional shear tractions, res-
pectively:

| �T ssh| = μs | �Tn|, | �T dsh| = μd | �Tn| (4.12)

We will also use symbols τs , τd , τ0 and τn for the static, dynamic, initial and normal
tractions, respectively:

τs ≡ | �T ssh|, τd ≡ | �T dsh|, τ0 ≡ | �T 0
sh|, τn ≡ | �Tn| (4.13)

The linear SW friction law is illustrated in Fig. 4.2.
Considering the SW friction law means that the evolution of the traction with slip on the

fault is ‘prescribed’ a priori. We know the static and dynamic tractions before the rupture
starts. We just do not know whether they will actually be reached. That will depend on the
evolution of stress on and near the fault, and slip on the fault.

4.1.2.2 Rate- and state-dependent friction law

The value of the coefficient of friction in the R&S friction law depends on the modulus of
the slip rate |�̇ssh| and state variable � :

μf = μ(|�̇ssh|, �)
d�

dt
= g(|�̇ssh|, �)

(4.14)
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Figure 4.3 Illustration of the R&S friction law. Here, τn = | �Tn|.

We can derive several constitutive relations from Eq. (4.14) using different functional forms
for μ and g (e.g., Beeler et al. 1994). The R&S friction law proposed by Dieterich (1986)
is

μf = μr − a ln

(
ṡr

|�̇ssh|
+ 1

)
+ b ln

(
�ṡr

L
+ 1

)
d�

dt
= 1 − �|�̇ssh|

L

(4.15)

Here a, b and L are constitutive parameters, μr is the reference coefficient of friction at
the slip rate value ṡr . The second equations in (4.14) and (4.15) describe evolution of the
state variable. Note that the most common version of R&S in current use does not have
the +1 terms in Eqs. (4.15). Unlike the SW friction law, the yield and kinematic frictional
tractions are not prescribed a priori, they depend on the slip rate and state variable. Therefore,
it is not possible to plot the general figure of the R&S friction law. Figure 4.3 shows only
an example of how traction may depend on slip for particular parameters (based on Cocco
et al. 2004). Though the R&S friction law (4.15) does not explicitly include dependence on
the slip path length, the law yields the slip-weakening, with a short slip-hardening phase, as
shown by Cocco and Bizzarri (2002). Cocco and Bizzarri (2002) and Bizzarri and Cocco
(2003, 2005) compared the two friction laws in detail.

4.2 Kinematic model of an earthquake source

In many applications, kinematic models are used instead of the dynamic ones. In the
finite-fault kinematic model, rupture propagation is simulated using a set of point sources
distributed along the fault surface. Each point source is a body-force equivalent and acts
independently of other point sources. Timing of the point sources along the fault surface and
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the slip time histories are determined prior to the numerical simulation itself. Consequently,
in the kinematic model the point sources do not physically interact with the medium.

The corresponding theory is well explained in many textbooks and monographs, e.g.,
Aki and Richards (2002), Kostrov and Das (2005), Gubbins (1990), Kennett (2001), Pujol
(2003). Here we restrict the discussion to a very brief review of the basic relations necessary
for subsequent explanation of the implementation of the kinematic sources in the numerical
methods.

4.2.1 Point source

At large distances the wavefield contains only wavelengths that are longer than the dimen-
sion of the fault because the shorter wavelengths are attenuated (e.g., Aki and Richards
2002). Therefore, if we are interested in the wavefield over a distance much larger than the
dimensions of the fault itself we can use an effective point-source approximation to a true
faulting surface.

The displacement at point �x and time t due to the faulting surface S can be expressed by
the representation theorem (Knopoff 1956, de Hoop 1958, Aki and Richards 2002):

un(�x, t) =
∫ ∞

−∞
dτ

∫
S

mpq (�ξ, τ )
∂Gnp(�x, t − τ ; �ξ, 0)

∂ξq
dS (4.16)

Here mpq is the moment-density tensor:

mpq (�ξ, t) = cpqrs(�ξ ) sr (�ξ, t) ns(�ξ ) (4.17)

where �ξ specifies position on the fault surface S, cpqrs is a tensor of the elastic moduli, �s
is the slip vector and �n is the fault normal. ∂Gnp

∂ξq
is a derivative of the Green tensor. ∂Gnp

∂ξq

is physically equivalent to having a single force couple with an arm in the q-direction
and forces in the p-direction at point �ξ on S. The convolution, further denoted by asterisk,
mpq ∗ ∂Gnp

∂ξq
, represents the n-component of displacement at �x due to force couples at �ξ ;

mpq is the strength of the (p, q) couple.
Here we will derive the expressions for the point-source approximation. In this case

we assume that surface S is eventually represented as a point and therefore we assume the
Green function to be constant over the whole surface S, that is,

un(�x, t) =
(∫

S

mpqdS

)
∗ ∂Gnp
∂ξq

(4.18)

In general, the moment tensor Mpq (the strength of the resulting (p, q) force couple at the
point) is defined as

Mpq ≡
∫
S

mpqdS (4.19)

Then the displacement is given by

un(�x, t) = Mpq ∗ ∂Gnp
∂ξq

(4.20)
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Let �ν be a unit vector in the direction of �s. In the case of the tangential slip, �n · �ν = 0, and
an isotropic medium, the moment-density tensor takes a simple form:

mpq = μ(npsq + nqsp) = μs(npνq + nqνp) (4.21)

where s = |�s|. The moment tensor is then

Mpq =
∫
S

μs(npνq + nqνp)dS (4.22)

Assuming a planar fault (fixed vector �n on the fault surface), fixed slip orientation (fixed
vector �ν) and a homogeneous medium in the source region (or average μ) we obtain

Mpq = μ(npνq + nqνp)
∫
S

s(�ξ, t)dS (4.23)

Assuming an average slip s̄(t) over the fault plane the integral can be approximated:∫
S

s(�ξ, t)dS ≈ s̄(t)
∫
S

dS = s̄(t)A = s̄ sTF(t)A (4.24)

Here A is the total size of the fault surface and sTF(t) is the source-time function:

sTF(t) ≡ s̄(t)

s̄
, s̄ ≡ s̄(t → ∞) (4.25)

Then the moment tensor takes a simple form:

Mpq = μAs̄ sTF(t)(npνq + nqνp) (4.26)

Using the scalar seismic momentM0 defined as

M0 ≡ μAs̄ (4.27)

we eventually obtain the moment tensor for the tangential slip:

Mpq = M0 (npνq + nqνp) sTF(t) (4.28)

In the coordinate system (Fig. 4.4) with the x-axis heading north, y-axis heading east and
z-axis positive downward, the components of vector �ν and the fault-normal vector �n are

νx = cos λ cos�S + cos δ sin λ sin�S

νy = cos λ sin�S − cos δ sin λ cos�S

νz = − sin λ sin δ

(4.29)

nx = − sin δ sin�S, ny = sin δ cos�S, nz = − cos δ (4.30)
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Figure 4.4 Definition of the fault-orientation parameters and the coordinate system. �S – strike, δ –
dip, λ – rake, �n – fault normal, �s = s�ν is slip taken as the movement of the hanging wall relative to
the foot wall.

From Eqs. (4.28)–(4.30) we obtain

Mxy = M0
(
sin δ cos λ cos 2�S + 1

2 sin 2δ sin λ sin 2�S
)
sTF(t),

Myz = −M0
(
cos δ cos λ sin�S − cos 2δ sin λ cos�S

)
sTF(t),

Mzx = −M0
(
cos δ cos λ cos�S + cos 2δ sin λ sin�S

)
sTF(t), (4.31)

Mxx = −M0
(
sin δ cos λ sin 2�S + sin 2δ sin λ sin2�S

)
sTF(t),

Myy = M0
(
sin δ cos λ sin 2�S − sin 2δ sin λ cos2�S

)
sTF(t),

Mzz = M0 sin 2δ sin λ sTF(t).

Due to the moment-tensor symmetry the remaining components are

Myx = Mxy, Mzy = Myz, Mxz = Mzx (4.32)

Sometimes it may be useful to work with the coordinate system with the x-axis heading
east, y-axis heading north and z-axis positive upward (compare with the system in Fig. 4.4).
The components of vector �ν and the fault-normal vector �n are

νx = cos λ sin�S − cos δ sin λ cos�S,

νy = cos λ cos�S + cos δ sin λ sin�S,

νz = sin λ sin δ,

(4.33)

nx = sin δ cos�S, ny = − sin δ sin�S, nz = cos δ (4.34)
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From Eqs. (4.28), (4.33) and (4.34) we obtain

Mxy = M0
(
sin δ cos λ cos 2�S + 1

2 sin 2δ sin λ sin 2�S
)
sTF(t),

Myz = M0
(
cos δ cos λ cos�S + cos 2δ sin λ sin�S

)
sTF(t),

Mzx = M0
(
cos δ cos λ sin�S − cos 2δ sin λ cos�S

)
sTF(t),

Mxx = M0
(
sin δ cos λ sin 2�S − sin 2δ sin λ cos2�S

)
sTF(t),

Myy = −M0
(
sin δ cos λ sin 2�S + sin 2δ sin λ sin2�S

)
sTF(t),

Mzz = M0 sin 2δ sin λ sTF(t).

(4.35)

4.2.2 Finite-fault kinematic source

In situations when we are interested in the wavefield at distances comparable to or smaller
than the size of the fault, the point-source approximation is not appropriate. In such situa-
tions we have to consider the finite-fault source. If using the dynamic source is not feasible,
we may use the finite-fault kinematic source.

Recall the representation theorem (4.16),

un(�x, t) =
∫ ∞

−∞
dτ

∫
S

mpq(�ξ, τ )
∂Gnp(�x, t − τ ; �ξ, 0)

∂ξq
dS (4.36)

Divide the fault surface S into k nonoverlapping sub-faults Sk . Then,

un(�x, t) =
∑
k

(∫
Sk

mpq ∗ ∂Gnp
∂ξq

dS

)
(4.37)

Consider each sub-fault as a point source. Consequently, we consider one Green tensor per
sub-fault. Then,

un(�x, t) =
∑
k

(∫
Sk

mpqdS ∗ ∂G
k
np

∂ξq

)
=
∑
k

(
Mk
pq ∗ ∂G

k
np

∂ξq

)
(4.38)

Assuming only tangential slip on each sub-fault we can use Eqs. (4.21)–(4.23) to express
the moment-tensor components for sub-faults:

Mk
pq = μk

(
nkpν

k
q + nkqνkp

) ∫
Sk

sdS (4.39)

Similarly as in the case of a point source the integral can be approximated using Eq. (4.24):

Mk
pq = μk s̄k skTF(t)Ak

(
nkpν

k
q + nkqνkp

)
. (4.40)

Here Ak is size of the k-th sub-fault surface and skTF(t) is the source-time function for the
k-th sub-fault:

skTF(t) ≡ s̄k(t)

s̄k
, s̄k ≡ s̄k (t → ∞) (4.41)
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Using the scalar moment we can write

Mk
pq = Mk

0

(
nkpν

k
q + nkqνkp

)
skTF(t) (4.42)

In this derivation we considered the point-source assumptions for each sub-fault. Therefore,
the finite-fault kinematic source is represented by a set of point sources. Each point source
is characterized by its position �xk and moment-tensor components Mk

pq (including the
source-time functions skTF(t)). We can also characterize each point source by strike �kS , dip
δk , rake λk , scalar momentMk

0 and source-time function skTF(t), and use Eqs. (4.31) or (4.35)
to obtain the moment-tensor components. Note that a source-time function (4.41) is defined
for each point source since rupture nucleated at a hypocentre. For a single point source
this is natural. In the case of finite-fault kinematic models, usually source-time function
and rupture-onset time are defined for each point source. Rupture-onset time defines when
rupture arrives at a particular point and after that time the time evolution is prescribed by
the source-time function. In this way the rupture propagation is controlled by rupture onset
time and the source-time functions are defined only for the time they are really needed.
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Time-domain numerical methods

5.1 Introduction

A large variety of time-domain methods have been developed for modelling earthquake
ground motion. They may be divided into three groups – boundary methods, domain
methods and hybrid methods (note that the adjectives boundary and domain here relate
to space). In general, the boundary methods are more accurate than the domain methods,
but they are not computationally efficient in the case of complex (realistic) models. The
reasonable balance of accuracy and computational efficiency in applications to complex
models is the primary reason why the domain methods are dominant, not only in the
recent modelling of earthquake motion but also in waveform inversion. Development of
hybrid approaches is the consequence of a simple but important fact – no single method is
the most accurate and computationally efficient for all wavefield–medium configurations.
Combining two or more methods makes it possible to overcome the limitations of individual
methods.

In this book we do not address the boundary methods. For an excellent overview of
the boundary integral equation, boundary-element, discrete-wavenumber and Aki–Larner
methods as well as of the hybrid approaches we refer to Bouchon and Sánchez-Sesma
(2007).

The finite-difference method (FDM), finite-element method (FEM), Fourier pseudo-
spectral method (FPSM), spectral-element method (SEM), and discontinuous Galerkin
method (DGM) are the most representative domain methods for modelling rupture prop-
agation, seismic wave propagation and earthquake ground motion. The domain methods
primarily differ from each other by their approach to spatial discretization. In this book we
address in detail FDM or, more precisely, FDTD (finite-difference time-domain) method,
and briefly FEM and their hybrid combination. Therefore, we include in the next three
sections of this chapter concise descriptions of FPSM, SEM and ADER-DGM contributed
by Peter Klin, Emmanuel Chaljub, Martin Käser and Christian Pelties.

The three following sections and the subsequent chapters refer to many important arti-
cles related to the methods. Here we just mention books and chapters in books that provide
introductions and overviews of the numerical domain methods: Chaljub et al. (2007) for
SEM, de la Puente (2008) for ADER-DGM, Moczo et al. (2007a,b) for FDM. We may
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specially mention the excellent book by Andreas Fichtner (2011) on full seismic waveform
modelling and inversion. Although the primary focus of the book is waveform inver-
sion, Fichtner briefly characterizes recent time-domain methods and concisely describes
FDM and SEM. Finally, the SEG Geophysics Reprint Series No. 28 edited by Robertsson
et al. (2012) provides both a concise introduction to numerical-modelling methods and
78 selected articles published in a variety of journals in the period 1984–2011. This volume
is the follow-up to the SEG Geophysics Reprint Series No. 13 edited by Kelly and Marfurt
(1990).

5.2 Fourier pseudo-spectral method

The Fourier pseudo-spectral method (FPSM) combines the simplicity of spatial discretiza-
tion using a structured grid with the optimal accuracy of global spectral differential oper-
ators. The method was introduced by Kreiss and Oliger (1972) for the integration of the
hyperbolic equations in dynamic meteorology and oceanography. Following the first test
applications to 2D acoustic (Gazdag 1981) and 2D elastic (Kosloff et al. 1984) wave
propagation, FPSM was considered a very promising approach in the early years of 3D
seismic numerical modelling (e.g., Reshef et al. 1988), mainly owing to its unbeatable low
spatial sampling rate and computational efficiency. Soon these advantages were counter-
balanced by accuracy problems in the modelling of seismic wave propagation in media
with sharp velocity contrasts (Mizutani et al. 2000) and free-surface boundary conditions
(Xu et al. 1999). The main weakness of FPSM, however, was the expense of the inter-
processor communication required by the parallel implementation of the algorithm. As a
consequence, the use of FPSM could not benefit from early distributed-memory parallel
computers as much as other methods did. As shown recently by Klin et al. (2010), it is
possible to alleviate the mentioned accuracy problems with minor workarounds, whereas
the inter-processor communication poses a much less critical problem with up-to-date
high-performance computing resources. Therefore, FPSM can be qualified as concurrent
with other well-established methods for the numerical simulation of earthquake ground
motion. Here we describe the essential aspects of the application of FPSM to seismic wave
propagation in a 3D anisotropic viscoelastic medium.

The peculiarity of FPSM consists in the evaluation of the spatial derivatives by means
of multiplication in the wavenumber domain:

∂�

∂xp
= F−1

p {ikpFp{�}} (5.1)

where Fp denotes the spatial Fourier transform in the p-th direction (performed using the
fast Fourier transform algorithm), kp is the wavenumber in the p-th direction, and � may
stand for a displacement-vector component. Actually, the term ‘pseudo-spectral’ is a little
misleading because it refers only to the evaluation of the spatial derivative, whereas the
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temporal evolution is usually solved using nonspectral approaches. The usual choice is the
2nd-order explicit FD scheme:

�u (�x, t +�t) = 2�u (�x, t) − �u (�x, t −�t) + (�t)2 ∂
2�u (�x, t)
∂t2

(5.2)

where �u is the displacement vector. The equation of motion for a viscoelastic anisotropic
medium can be expressed as

∂2 �u (�x, t)
∂t2

= 1

ρ (�x)
∇ · [C (�x) ∇T �u (�x, t) + R (�x, t)]+ �f (�x, t) (5.3)

where C is the 6 × 6 symmetric elasticity matrix (in Voigt notation), R is the 6-component
vector that accounts for viscoelasticity, �f is the source term, and ∇ is the spatial differen-
tiation operator:

∇ =
⎛
⎝∂x 0 0 0 ∂z ∂y

0 ∂y 0 ∂z 0 ∂x
0 0 ∂z ∂y ∂x 0

⎞
⎠ (5.4)

Viscoelasticity and attenuation correspond to the rheology of the generalized Maxwell
body (GMB-EK in Chapter 3) and the term R includes the anelastic functions (memory
variables).

The differentiation approach described in Eq. (5.1) is exact if the amplitude spectrum of
the wavefield vanishes for wavenumbers larger than the Nyquist wavenumber kN = π/h,
where h is the grid spacing. Therefore FPSM allows for a relatively coarse spatial sampling
(Fornberg 1987), which represents a valuable advantage in solving 3D problems. On the
other hand, the nature of the global differential operators implies that numerical artefacts
are spread over the whole spatial domain when a singularity arises in the wavefield (Gibb’s
phenomenon). This problem is significantly reduced if the differential operators are defined
on staggered grids (Özdenvar and McMechan 1996) and formally expressed as

D±
p � = F−1

p

{
ikp exp

(±ikp 1
2h
)Fp {�}} (5.5)

Operators D+
p and D−

p evaluate the spatial derivative of � in the grid (the staggered grid)
which is shifted by h/2 in the p-th direction, forward and backward, respectively. In order
to obtain the acceleration terms in the same grid, where the displacement terms are defined,
the application of operators D+

p and D−
p should follow an adequate inter-changing role

while solving the equation of motion.
In earthquake ground motion simulations the free-surface boundary condition is typically

imposed on the top of the spatial domain. The condition implies discontinuities in the
periodic extension of the differentiated wavefield, which in turn appears ill-suited for
the operators defined in Eq. (5.5). In order to incorporate the free-surface condition, the
differentiated wavefield is first appropriately modified – it has to be made suitable for
application of the differential operator. Once the operator is applied, the known effects of the
employed modification are removed. The modification consists in the removal of possible
discontinuities in the displacement field across points at which the free-surface condition
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is imposed by means of subtraction of a linear function evaluated from the discontinuity.
In order to account for the modification, a sum of constant value is applied to the obtained
derivative. The free-surface condition is imposed using stress imaging (Subsection 10.1.1),
but the same result can be obtained by using a sine transform instead of the ordinary fast
Fourier transform to transform the stress field in the wavenumber domain and by returning
with the cosine transform after the wavenumber multiplication.

FPSM is based on the heterogeneous formulation of the equation of motion. In con-
sequence, the use of a relatively coarse regular spatial sampling exposes it particularly to
numerical artefacts caused by staircase approximations of nonplanar material interfaces.
The approaches based on mapping of the computational grid to the geometry of the main
interfaces (e.g., Fornberg 1988b), which were proposed to mitigate these artefacts, appear
impractical in the general 3D case. More workable approaches consist in honouring the
discretization rules proposed by Pelties et al. (2010), and in adopting the volume harmonic
averaging of the elastic moduli and volume arithmetic averaging of density proposed by
Moczo et al. (2002) for the FD modelling schemes. The homogenization approach (e.g.,
Capdeville and Marigo 2007, 2013, Capdeville et al. 2010a,b, 2013) seems to be a reason-
able perspective.

The rectangular spatial grid makes it easy to implement PML (Chapter 12) in order to
simulate absorbing boundary conditions for the outgoing wavefield at boundaries of the
spatial grid.

FPSM can be successfully applied in the numerical simulation of the seismic wavefield
produced by an earthquake in large 3D crustal models (Vuan et al. 2011). We refer to Klin
et al. (2010) for a more comprehensive review of FPSM and related discussions.

5.3 Spectral element method

The spectral element method (SEM) was developed in the eighties in the field of computa-
tional fluid dynamics (Patera 1984, Maday and Patera 1989) with the objective to extend
the spectral method to deal with realistic 2D or 3D geometries, to capture local variations
of the physical solutions and to alleviate implementation of boundary conditions.

For example, in the spectral method, complex geometries can only be handled by the
so-called ‘mapping and patching’ strategy (Boyd 2001): a computational domain is first
split into regions, or sub-domains, each of which is the image of a canonical domain (e.g.,
a cube in 3D) through a regular mapping. The solutions on each sub-domain are expanded
on a local spectral basis (trigonometric functions or orthogonal polynomials), then patched
together by enforcing the continuity of the displacement and traction vectors, usually
through iterative procedures and/or overlapping strategies. For complex geometries, there
is a trade-off between increasing the number of sub-domains to accurately represent the
geometry of the domain and solving the resulting system of interface conditions. Moreover,
this domain decomposition strategy does not change the fact that boundary conditions have
to be enforced with special care and usually leads to lower accuracy near the boundaries
affecting, e.g., surface waves.
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As stated by Komatitsch and Vilotte (1998), SEM could have developed after the simi-
larity between the spectral collocation methods (in which the equation of motion is exactly
satisfied by the numerical solution at some well-chosen points) and variational formulations
with consistent quadrature (numerical integration formula) was understood.

Thus, SEM relies on the variational formulation (weak form) of the equation of motion
and in most cases its displacement formulation, in which the displacement field is forced
to be globally continuous whereas the continuity of the traction vector (also at the free
surface) is satisfied implicitly. We refer to Cohen and Fauqueux (2005) for the mixed
velocity–stress formulation and to Festa and Vilotte (2005) for a comparative analysis of
the two formulations. Here we just note that the mixed formulation makes it easier to
implement PML.

SEM appears as an FEM where the solution is expanded in each element onto spectral
polynomial bases of high order and where numerical integration is realized with Gauss–
Jacobi quadratures. It is therefore connected to the h− p version of FEM, where the
accuracy of the numerical solution can be increased by decreasing the element size h or by
increasing the local polynomial order p.

The first applications of SEM to acoustic and elastic wave propagation by Seriani
and Priolo (1994) and Priolo et al. (1994) used Chebyshev polynomials together with
Gauss–Lobatto–Chebyshev quadrature – as Patera (1984) did in his original article. The
implementation combined the geometrical flexibility of FEM with the accuracy of the
spectral methods and minimized numerical dispersion and dissipation even in challenging
applications involving interface and surface waves. One drawback was that the mass matrix
had to be inverted when an FD scheme was used for time evolution. This problem was
circumvented independently by Faccioli et al. (1997) and by Komatitsch and Vilotte (1998):
they used Gauss–Lobatto–Legendre quadrature together with polynomial bases built upon
Legendre polynomials to derive SEM in which the mass matrix is diagonal (as in the article
of Maday and Patera 1989). The implementation has become most popular in seismic
applications for its computational efficiency, resulting from the use of the explicit FD
time-evolution schemes, without any loss of accuracy compared to the use of Chebyshev
polynomials and quadrature.

In all the above SEM implementations (Chebyshev or Legendre type), the polynomial
bases are first built in one space dimension, then extrapolated by tensorization to 2D and 3D.
This represents a gain in computational efficiency but also a constraint that the geometry of
the elements has to be tensorized too: the elements are restricted to deformed quadrilaterals
in 2D and hexahedra in 3D. The problem of finding an accurate quadrature that would
possibly preserve the diagonality of the mass matrix for non-tensorized geometries is still
open – as discussed by Mercerat et al. (2006), who implemented SEM for 2D triangular
grids.

The optimal choice of the polynomial order for SEM is between N = 4 and N = 8:
the lower orders do not significantly reduce numerical dispersion whereas higher orders
result in a too severe Courant–Friedrichs–Lewy condition for the time step, which is not
compensated by the number of grid points per wavelength needed for an acceptable level of
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numerical dispersion and anisotropy (Seriani and Oliveira 2007, de Basabe and Sen 2007).
An average number of five or six grid points per wavelength (i.e., about one element if
N = 4 and half an element if N = 8 ) is used in practical applications.

Surprisingly, choosing an appropriate h can be a much more difficult task when dealing
with complex heterogeneous 3D models. The main problem is how to represent variations
of geometrical or mechanical properties that occur on scales smaller than the minimum
propagating wavelength. A material discontinuity is a very good example. The polynomial
bases used in SEM are not adapted to represent such variations – as in the original SM.
The only possibility is to have the discontinuity coincide with the boundaries of elements.
This approach can, however, pose a tremendous meshing task in some applications – see
Chaljub et al. (2010). In such cases, the so-called homogenization (e.g., Capdeville and
Marigo 2007, 2013, Capdeville et al. 2010a,b, 2013) can probably help.

For reviews presenting the numerous developments of the Legendre SEM for global or
regional seismology applications we refer to Komatitsch et al. (2005) and Chaljub et al.
(2007). For examples of earthquake ground motion simulations including effects of local
geology we refer to Komatitsch et al. (2004), Lee et al. (2008b, 2009), Stupazzini et al.
(2009a,b), Chaljub et al. (2010), Pilz et al. (2011). SEM has also been applied to study
rupture dynamics; e.g., Madariaga et al. (2006), Festa and Vilotte (2006), Kaneko et al.
(2008, 2011). Computational aspects can be found in articles by Komatitsch et al. (2010)
and Peter et al. (2011).

Here, we briefly recall the key features of the Legendre SEM discretization. We recall
the weak form of the equation of motion, Eq. (2.12), which can be rewritten as

∂2

∂t2

∫
�

ρ �u · �wd�+
∫
�

σij (�u) εij ( �w) d� =
∫
�

�T · �wd� +
∫
�

�f · �wd� (5.6)

where� is the computational domain and � its boundary with prescribed traction �T . Other
quantities are the same as those in Eq. (2.12).

The spatial discretization starts with a decomposition of the computational domain �
intoK unstructured non-overlapping hexahedral elements�k; k = 1, . . . , K . Each element
is obtained by a regular mapping of a reference element �ref (the unit cube in 3D). Then,
virtual (also admissible) displacements are approximated by polynomials of degree N in
each element and we obtain

K∑
k=1

∂2

∂t2

∫
�k

ρ �ujN · �wjNd�+
K∑
k=1

∫
�k

σln

(
�ujN
)
εln

(
�wjN
)
d�

=
K∑
k=1

∫
�k

�T jN · �wjNd� +
K∑
k=1

∫
�k

�f jN · �wjN d�; j = 1, . . . , N

(5.7)

where �ujN , �wjN , �T jN and �f jN are scalar j-th components of vectors approximating �u, �w, �T
and �f , respectively. The summation convention is assumed for indices j, l, n, and is not
assumed for indexN . Note that in Eq. (5.7) we implicitly assume that the displacements are
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continuous but the material properties can be discontinuous across elements. The integrals
in Eq. (5.7) are evaluated numerically by a high-order quadrature based on the Gauss–
Lobatto–Legendre (GLL) points and weights (e.g., Canuto et al. 1988). The polynomials
used for approximating the displacements are then defined as the Lagrange interpolants of
the GLL points. Assembling the elementary contributions to account for the continuity of
displacements, Eq. (5.7) can be written as a global system of ordinary differential equations
in time:

M Ü (t) + KU (t) = F(t) + T(t) (5.8)

where F(t) and T(t) are global vectors accounting for external body force and tractions,
respectively, M and K are global mass and stiffness matrices, respectively, and U (t) is
the global vector of discrete (approximating) displacements. An important consequence
of the choice of the polynomial basis is that the mass matrix is diagonal, which, as stated
previously, allows for the use of a fully explicit FD scheme for the time evolution. The
latter is usually done using the explicit, conditionally stable, 2nd-order leapfrog scheme
(e.g., Maggio and Quarteroni 1994).

5.4 Spectral discontinuous Galerkin scheme with ADER time integration

The discontinuous Galerkin (DG) FE scheme combined with a time integration technique
using Arbitrarily high order DERivatives (ADER) is a numerical method for solving the 3D
equations of motion in the velocity–stress formulation. A hyperbolic system of equations
may be concisely written for isotropic or anisotropic elastic, viscoelastic or poroelastic
media in the form (see Eq. (2.33)),

∂Q̃p

∂t
+ Apq ∂Q̃q

∂ξ
+ Bpq ∂Q̃q

∂η
+ Cpq ∂Q̃q

∂ζ
= EpqQ̃q + Sp (5.9)

Here

Q̃ = (σxx, σyy, σzz, σxy, σyz, σxz, vx, vy, vz)
T (5.10)

The Jacobian matrices Apq , Bpq and Cpq include parameters corresponding to the type
of medium (Dumbser and Käser 2006, Käser et al. 2007, de la Puente et al. 2007, 2008).
Matrix Epq represents viscoelasticity and attenuation corresponding to the rheology of the
generalized Maxwell body (GMB-EK in Chapter 3). Term Sp is an external source term
representing forces of the moment-tensor sources.

In the ADER DG approach the solution is approximated inside each tetrahedral element
by a linear combination of space-dependent polynomial basis functions and time-dependent
degrees of freedom, as expressed through

(Q̃h)p(ξ, η, ζ, t) = Q̂pl(t)�l(ξ, η, ζ ) (5.11)

where the basis functions �l form an orthogonal modal basis and are defined on the
canonical reference tetrahedron such that no integration points are necessary. For a detailed
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derivation of the numerical scheme we refer to articles by Käser and Dumbser (2006),
and Dumbser and Käser (2006). The unique property of the ADER-DG scheme is that
the temporal accuracy of the scheme is automatically coupled to the spatial accuracy
determined by the degree of approximation polynomials used in Eq. (5.11). This is due
to the ADER time-integration approach (Titarev and Toro 2002) that uses a Taylor series
expansion in time of the solution of Eq. (5.9), replacing all temporal derivatives recursively
by spatial derivatives. Thus, the Taylor series expansion only depends on spatial derivatives
of the basis functions and lower-order time derivatives of the source terms. The resulting
expression for the degrees of freedom can be integrated in time analytically as shown in
detail by Dumbser and Käser (2006) or Käser et al. (2007). Therefore, the ADER-DG
approach provides an arbitrarily high order approximation in space and time depending on
the degree of the used basis polynomials in Eq. (5.11) and the corresponding order of the
chosen Taylor series in time.

Once the high-order time-integrated degrees of freedom are computed, the evolution of
the numerical solution in time is calculated via local stiffness and flux terms (Dumbser and
Käser 2006). Numerical fluxes out of an element and into an element have to be calculated
for each element boundary, i.e., triangular surface, for each tetrahedral element. Each flux
computation requires a multiplication of two dense matrices with dimensions (N ×N ) and
(N × 9), respectively, with N being the number of degrees of freedom and 9 the number
of variables in the vector of unknowns in Eq. (5.10). The calculation of the three stiffness
terms has to be carried out only once per element via a multiplication of two matrices
of the same size as above; however, the (N ×N ) stiffness matrix is typically sparse. All
operations use only local data from the element itself and its direct neighbour element
sharing a common boundary. Due to this local character of the numerical scheme it is well
suited for parallel computing.

With the ADER-DG approach it is possible to vary the degree of the approximation
polynomials in Eq. (5.11) from one element to another. Due to the direct coupling of the
temporal and spatial accuracy via the ADER approach, the scheme automatically becomes
adaptive in temporal accuracy – this is the so-called pτ -adaptation. The pτ -adaptation
allows for an adaptive choice of spatial accuracy, which enhances computational efficiency
in most applications. This is because the computational domain is typically larger than the
particular zone of interest where high-order accuracy is required. Even more important, the
ADER-DG method can use local time stepping to reduce computational cost. Geometrically
complex computational domains or requirements on spatial resolution often lead to meshes
including small and large elements with significant differences in the element size. The
time step for the explicit numerical schemes is restricted by the ratio of the mesh size
h of the smallest element and the corresponding maximum wave speed in this element.
For the global time-stepping schemes all elements are updated with this possibly strongly
restrictive time step. This can lead to a large number of time levels that must be computed.
With the ADER approach, time-accurate local time stepping can be used: each element
can be updated with its own optimal time step. An element can be updated to the next
time level if its actual time level and its local time step fulfil a certain update criterion.
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The information exchange between elements across their joint boundaries works through
numerical fluxes that depend on the length of the local time interval over which the flux
is integrated. The local time-stepping approach can reduce the overall amount of flux
calculations dramatically because only the small elements have to be updated frequently
according to their small time steps. For a complete description of the pτ -adaptation and
local time stepping see the article by Dumbser et al. (2007).

De la Puente et al. (2009) and Pelties et al. (2012) demonstrated that the ADER-DG
method is capable of numerically simulating dynamic rupture propagation on complex
faults without spurious high-frequency oscillations, which pose a serious problem for
other numerical grid methods. The latter aspect is important for earthquake source studies
as well as for numerical simulation of earthquake ground motion. Moreover, the pτ -
adaptation and local time stepping can be advantageous in the cohesive zone of frictional
sliding.

The absence of the spurious high-frequency oscillations is due to the numerical prop-
erties of the exact Riemann solver (Godunov flux). In fact, the constitutive friction law
is incorporated in the solution of the so-called inverse Riemann problem at element inter-
faces. A mesh is constructed so that the fault everywhere coincides with the interface of two
elements. The Godunov flux is an upwind scheme that is intrinsically dissipative, with the
attribute that the dissipation increases steeply as a function of frequency depending on the
element size and applied order of approximation. Therefore, the high-frequency content is
adaptively damped without perturbing the lower, physically meaningful frequencies. Actu-
ally, this numerical property has two positive consequences: (1) no spurious high-frequency
oscillations during frictional sliding, (2) mesh coarsening (h-adaptivity) is possible without
causing artificial reflections or instabilities at the area of grid refinement due to numerical
impedance.

The method has been successfully applied also to more advanced dynamic rupture
problems such as bi-material faults, faults with heterogeneous stress loading, surface rup-
ture, and fault branching (see SCEC Dynamic Rupture Code Verification Project: http://
scecdata.usc.edu/cvws/). The method can accommodate both the linear slip-weakening and
rate-and-state type friction laws.

The discontinuous Galerkin method is a powerful general approach that can be the basis
for a variety of formulations. We refer to, e.g., de Basabe et al. (2008), Delcourte et al.
(2009), Etienne et al. (2010), Wilcox et al. (2010) and Tago et al. (2012).

5.5 Hybrid methods

Each of the many computational and numerical methods that have been developed so far for
seismic wave propagation and earthquake motion has at least one feature in which it is better
or more advantageous compared to other methods – at least with respect to some specific
medium–wavefield configuration. We can also say that none of the existing methods can
be considered the most accurate and, at the same time, the most computationally efficient
for all important medium–wavefield configurations. In many problem configurations it is

http://scecdata.usc.edu/cvws/
http://scecdata.usc.edu/cvws/
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therefore reasonable to combine two or even more computational methods in order to solve
the problem with a reasonable level of accuracy and computational efficiency.

It can be advantageous to solve the time dependence of a field variable using one
method and the spatial dependence using some other method. For example, Alexeev
and Mikhailenko (1980) combined partial separation of variables and an FD method,
Mikhailenko and Korneev (1984) combined the finite integral Fourier transform and FDM.

It can be advantageous to split the computational domain into two or more parts and
solve each part by the best-suited method. For example, one method may be applied in a
sub-domain that includes a dynamically rupturing fault, another method may be applied in
the sub-domain that includes topography of the free surface, and one method may be applied
in the major part of the whole computational domain for efficient seismic wave propagation.
Another example is the configuration in which we are interested in detailed modelling of
earthquake ground motion in a surface local structure due to a relatively distant source. In
this type of hybrid approach it is important to develop a stable and noise-free algorithm,
ensuring the causal communication between neighbouring sub-domains respecting the
physics of the adopted model. Several hybrid methods have been developed, most of
them in 2D, in an effort to achieve reasonable computational efficiency in applications to
relatively complex structural models. They include methods by Ohtsuki and Harumi (1983),
Shtivelman (1984, 1985), Van den Berg (1984), Kummer et al. (1987), Kawase (1988),
Stead and Helmberger (1988), Emmerich (1989, 1992), Gaffet and Bouchon (1989), Fäh
(1992), Fäh et al. (1993), Bouchon and Coutant (1994), Rovelli et al. (1994), Robertsson
et al. (1996), Zahradnı́k and Moczo (1996), Moczo et al. (1997), Lecomte et al. (2004), Ma
et al. (2004), Galis et al. (2008), Zhao et al. (2008), Liu and Sen (2010), Liu et al. (2011),
Monteiller et al. (2012). Extensive references on the hybrid approaches can be found in the
article by Opršal et al. (2009).

In Chapter 18 we describe the hybrid FD–FE method developed by Galis et al. (2008).
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Brief introduction to the finite-difference method

Application of the method to a particular differential problem includes:

(a) Construction of a discrete FD model of the problem
– coverage of the computational domain by a space–time grid,
– FD approximations of derivatives, functions, initial and/or boundary condition at the

grid points,
– construction of a system of algebraic equations; we may call them FD equations or

FD scheme.
(b) Analysis of the FD model

– consistency and order of the approximation,
– stability and grid dispersion,
– convergence,
– local error.

(c) Numerical computations.

Analysis of the FD model and numerical computations may lead to redefinition of the grid
and FD approximations if the numerical behaviour of the developed FD scheme is not
satisfactory.

Note that in the case of the so-called explicit FD schemes (see later), the term ‘scheme’
is often used in a narrower meaning for the explicit algebraic formula for updating a field
variable (displacement or particle-velocity or stress-tensor component) at a spatial grid
position.

6.1 Space–time grids

6.1.1 Cartesian grid

Consider a spatial Cartesian coordinate system (x, y, z) and a computational domain in the
4D space of variables (x, y, z, t) with t meaning time. A set of discrete space–time points
(or positions)

(xI , yK, zL, tm), I,K,L,m ∈ {0, 1, 2, . . .}
xI = x0 + I�xI , yK = y0 +K�yK, zL = z0 + L�zL, tm = t0 +m� (6.1)

83



84 Brief introduction to the finite-difference method

defines a space–time grid. Grid coordinates xI , yK, zL determine a spatial grid point (posi-
tion), coordinate tm determines a time level. The spatial increments�xI ,�yK and�zL are
usually called grid spacings, � is the time step. The value of a function ϕ at the grid point
(xI , yK, zL, tm), that is ϕ (xI , yK, zL, tm), may be denoted by ϕ (I,K,L,m) or ϕmI,K,L or
ϕ|mI,K,L. The exact value should be distinguished from its FD approximation, which may
be denoted, e.g., by �mI,K,L.

The Cartesian coordinate system is convenient and natural for modelling of earthquake
motion in local surface structures. Systems other than Cartesian coordinate systems can
also be used to define a grid. The particular choice should be problem dependent. Whereas
spherical coordinates might be convenient for whole Earth models, cylindrical coordinates
might be more suitable for borehole modelling. The choice of the grid determines the
structure and properties of the FD approximations of derivatives, and consequently the
properties of the FD scheme.

6.1.2 Uniform, nonuniform and discontinuous grids

A grid specified by Eqs. (6.1) is nonuniform in all coordinate directions – the size of the
grid spacing in general varies point to point. In many applications it might be reasonable
to use �xI = �yK = �zL = h. In such a case the grid is uniform. The use of a uniform
grid usually yields the algorithmically simplest FD schemes. This, however, may contradict
the computational efficiency. Therefore, in some applications it is advantageous to use a
spatially discontinuous grid – part of the computational domain is covered with a uniform
grid with grid spacing hF whereas the rest of the computational domain is covered with a
uniform grid with grid spacing hC > hF . The subscripts indicate coarser and finer grids,
respectively. This is usually related to the heterogeneity of the medium. It is also possible
to use a grid that is discontinuous in size of spatial grid spacing and/or time step.

6.1.3 Structured and unstructured grids

If at a grid point explicit information about the connection to neighbouring grid points is
needed we speak about unstructured grids. If at a grid point explicit information is not
needed (e.g., we can find neighbouring grid points just by using indices) we speak about
structured grids. Obviously, structured grids usually yield computationally faster algorithms
compared to those on unstructured grids.

6.1.4 Space–time locations of field variables

Grids and consequently FD schemes may differ in the grid positions of the
displacement/particle-velocity and stress-tensor components. It is natural to think of having
all of them at each space–time grid position. Clearly, such location of all field variables is
ideal for imposing initial and boundary conditions in an isotropic medium and, in general,
for an anisotropic medium. As will be seen later, however, having all field variables at
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Figure 6.1 Illustration of the conventional, collocated, partly-staggered and staggered grids. The
upper index m indicates the time level of the variable.

each grid space–time position and, at the same time, having ‘easy/natural/desirable’ FD
approximations of derivatives is not trivial.

Figure 6.1 shows four typical FD grid cells. The first one is the conventional grid with
the displacement-vector components at each grid point (position, node). It is a natural
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grid for displacement schemes solving the displacement formulation of the equation of
motion (the 2nd-order equation of motion). The second is the collocated grid with all the
particle-velocity vectors and all the stress-tensor components at each grid position. It is a
natural grid for the velocity–stress formulation with a vector of field variables consisting
of all the particle-velocity and stress components. In the conventional and collocated grids
all the field variables relate to the same time. The third type is the partly-staggered grid
with all the particle-velocity components located at one grid position and all the stress
components located at another grid position. Finally, in the staggered grid, each particle-
velocity component and each shear stress component has its own grid position. The normal
stress-tensor components share another grid position. In the velocity–stress formulation
the temporal location of the particle-velocity vector is shifted by a half time step from
the temporal location of the stress tensor in the case of the partly-staggered and staggered
grids. Note, however, that in general the temporal location depends on the type of time-
marching scheme. For example, use of the Runge–Kutta time-marching scheme with a
spatially staggered grid leads to the same time for the particle-velocity and stress-tensor
components. Use of the leapfrog time-marching scheme with a collocated grid leads to
different temporal locations for the particle-velocity and stress-tensor components.

The collocated, partly-staggered and staggered grids may also be used for the
displacement–stress formulation. In such a case all field variables relate to the same time.

The simplest, most natural, complementary and homogeneous is the approximation of
derivatives in the velocity–stress staggered-grid schemes.

In all types of grids, an effective density (or its reciprocal value) is assigned to a grid
position of each displacement or particle-velocity component, whereas an effective elastic
modulus is assigned to each grid position of the stress-tensor components.

There are additional material parameters and field variables in the case of a viscoelastic
or elastoplastic medium. They will be introduced later.

6.2 FD approximations based on Taylor series

6.2.1 Simple approximations

We assume sufficient smoothness of function ϕ and consider a Taylor series expansion of
the function at point x + h about point x:

ϕ(x + h) = ϕ(x) + hϕ′(x) + 1
2h

2ϕ′′(x) + 1
6h

3ϕ′′′(x) +O(h4) (6.2)

The equation implies

ϕ′(x) = 1

h
[ϕ(x + h) − ϕ(x)] − 1

2hϕ
′′(x) − 1

6h
2ϕ′′′(x) −O(h3) (6.3)

We can define a forward approximation of the first derivative by

DFx ϕ(x) ≡ 1

h
[ϕ(x + h) − ϕ(x)] (6.4)
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The accuracy of the approximation can be characterized by the truncation error. The
truncation error of approximation (6.4) is

TrunErr
{
DFx ϕ(x)

} ≡ TaylorExpansion
{
DFx ϕ(x)

}− ϕ′(x)

= 1
2hϕ

′′(x) + 1
6h

2ϕ′′′(x) +O (h3
)

(6.5)

The leading term of the truncation error, 1
2hϕ

′′(x), is proportional to increment h. Therefore,
we can simply write:

TrunErr
{
DFx ϕ(x)

} = O (h) (6.6)

DFx ϕ(x) = ϕ′(x) +O (h) (6.7)

and say that the forward approximation (6.4) of the first derivative is 1st-order accurate.
Analogously we can write for the backward approximation:

DBx ϕ(x) ≡ 1

h
[ϕ(x) − ϕ (x − h)] ; DBx ϕ(x) = ϕ′(x) +O (h) (6.8)

1st-order accuracy is rarely sufficient. From Taylor series expansions:

ϕ (x ± h) = ϕ(x) ± hϕ′(x) + 1
2h

2ϕ′′(x) ± 1
6h

3ϕ′′′(x) +O(h4) (6.9)

we easily obtain

ϕ′(x) = 1

2h
[ϕ (x + h) − ϕ (x − h)] − 1

6h
2ϕ′′′(x) −O(h4) (6.10)

The leading term of the truncation error, 1
6h

2ϕ′′′(x), is proportional to h2. We can thus
define the 2nd-order centred approximation:

Dxϕ(x) ≡ 1

2h
[ϕ(x + h) − ϕ(x − h)]; Dxϕ(x) = ϕ′(x) +O(h2) (6.11)

Note that

Dxϕ(x) = 1
2

[
DFx ϕ(x) +DBx ϕ(x)

]
(6.12)

Later we will develop various approximations. Here we show one approximation that is
fundamental for many recent velocity–stress FD schemes. We derive the approximation in
order to indicate how to find any desired approximation. Suppose we want to approximate
the 1st derivative at x using function values at points {x − 3

2h, x − 1
2h, x + 1

2h, x + 3
2h}.

Assume the approximation in the form

D(1−4)
x ϕ(x) = 1

h

∑2

j=1
cj
{
ϕ
[
x + 1

2 (2j − 1)h
]− ϕ [x − 1

2 (2j − 1)h
]}

(6.13)

We want to find coefficients c1 and c2. Taylor expansion of the r.h.s. of Eq. (6.13) gives

(c1 + 3c2)ϕ′(x) + 1
24 (c1 + 27c2)ϕ′′′(x)h2 + 1

1920 (c1 + 243c2)ϕ(5)(x)h4 +O(h6) (6.14)
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We require

c1 + 3c2 = 1, c1 + 27c2 = 0 (6.15)

Solving system of equations (6.15) we obtain c1 = 9
8 , c2 = − 1

24 . The desired approximation
is then

D(1−4)
x ϕ(x) = 1

h

{
9
8

[
ϕ
(
x + 1

2h
)− ϕ (x − 1

2h
)]− 1

24

[
ϕ
(
x + 3

2h
)− ϕ (x − 3

2h
)]}

(6.16)

D(1−4)
x ϕ(x) = ϕ ′(x) +O(h4) (6.17)

Superscript (1–4) thus indicates the 4th-order accurate approximation of the 1st spatial
derivative.

It is also easy to find forward and backward approximations of the 4th-order accuracy.
Forward and backward approximations are sometimes called one-sided approximations.
Consider that the x-axis is oriented positive to the right. Approximation (6.4) uses a
functional value at the grid point at which we want to approximate the derivative and one
grid point on the right. Approximation (6.8) uses a functional value at the grid point at which
we want to approximate the derivative and one grid point on the left. In general, however,
the terms forward, backward and one-sided approximation refer to approximations using
values at grid points on both sides of the position at which they approximate the derivative.
An approximation is called, say, forward, if it uses more points on the right and fewer points
on the left. We will see such approximations in Chapter 7.

6.2.2 Combined approximations: convolution

In this subsection we show how we can obtain an approximation of a higher derivative using
approximations of a lower derivative. We will use this approach in Chapter 7. Here we will
indicate spatial positions using subscripts – as introduced in Subsection 6.1.1. Consider
two approximations:

Dax�I ≡
∑
k

ak/N�I+k/N , Dbx�I ≡
∑
l

bl/N�I+l/N (6.18)

where k, l, I, N are integers. Apply Dax to Dbx�I :

Dax
(
Dbx�I

) =
∑
k

ak/N
∑
l

bl/N�I+l/N+k/N

=
∑
k

∑
l

ak/Nbl/N�I+(l+k)/N (6.19)

Using substitution

j ≡ l + k (6.20)
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we obtain

Dax
(
Dbx�I

) =
∑
k

∑
j

ak/Nb(j−k)/N�I+j/N (6.21)

Define

cj/N ≡
∑
k

ak/Nb(j−k)/N (6.22)

Then,

Dabx �I ≡ Dax
(
Dbx�I

) =
∑
j

cj/N�I+j/N (6.23)

Approximation Dabx �I has the same form as Dax�I and Dbx�I . Its coefficients cj/N are
given by convolution of coefficients ak/N and bl/N . We may indicate the convolution by
symbol ◦:

Dabx �I ≡ Dax
(
Dbx�I

) = Dax ◦Dbx�I (6.24)

Example 1. Consider the centred approximation of the first spatial derivative:

D(1)
x �I = 1

h

(
�I+1/2 −�I−1/2

) =
∑
k

ak/2�I+k/2

(6.25)

a±1/2 = ± 1

h
, ak/2 = 0; k 	= ±1

Define approximation D(2)
x :

D(2)
x �I = D(1)

x ◦D(1)
x �I =

∑
j

cj/2�I+j/2 (6.26)

According to Eq. (6.22),

cj/2 =
∑
k

ak/2 a(j−k)/2 (6.27)

We easily obtain

c−2/2 = 1

h2
, c0/2 = −2

h2
, c2/2 = 1

h2
, cj/2 = 0; j 	= 0,±2 (6.28)

and

D(2)
x �I = D(1)

x ◦D(1)
x �I = 1

h2
(�I−1 − 2�I +�I+1) (6.29)

Example 2. Consider forward and backward approximations:

DFx �I = 1

h
(�I+1 −�I ) , DBx �I = 1

h
(�I −�I−1) (6.30)
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They may be written as

DFx �I = ∑
k

ak�I+k; a0 = −1

h
, a1 = 1

h
, ak = 0; k 	= 0, 1

DBx �I = ∑
l

bl�I+l; b−1 = −1

h
, b0 = 1

h
, bl = 0; l 	= −1, 0

(6.31)

Combine the two approximations:

DFBx �I ≡ DFx DBx �I = DFx ◦DBx �I =
∑
j

cj�I+j (6.32)

cj =
∑
k

akbj−k (6.33)

We easily obtain

c−1 = 1

h2
, c0 = −2

h2
, c1 = 1

h2
, cj = 0; j 	= 0,±1 (6.34)

and

DFBx �I = 1

h2
(�I−1 − 2�I +�I+1) (6.35)

Note that the approximations (6.35) and (6.29) are the same.

6.2.3 Approximations applied to a harmonic wave

Here we develop relations that will be advantageously used in investigations of the stability
of FD schemes in Chapter 7. Assume a harmonic wave:

�mI = exp [i (ωm�− kIh)] (6.36)

and apply the approximation defined by Eq. (6.25):

D(1)
x �

m
I = D(1)

x {exp [i (ωm�− kIh)]}

= 1

h

[
exp

(
−ik h

2

)
− exp

(
ik
h

2

)]
�mI

= −i 2
h

sin

(
k
h

2

)
�mI (6.37)

Denote

D(1)
x ≡ −i 2

h
sin

(
k
h

2

)
(6.38)

Then,

D(1)
x �

m
I = D(1)

x {exp [i (ωm�− kIh)]} = D(1)
x ·�mI (6.39)

where we use the dot to indicate a simple multiplication of D(1)
x and �mI .
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Apply now the approximation defined by Eq. (6.29) to the harmonic wave (6.36):

D(2)
x �

m
I = D(2)

x {exp [i (ωm�− kIh)]}

= 1

h2

[
exp (ikh) − 2 + exp (−ikh)

]
�mI

= 2

h2
[cos (kh) − 1]�mI

=
[
−i 2
h

sin

(
k
h

2

)]2

�mI (6.40)

Denote

D(2)
x ≡

[
−i 2
h

sin

(
k
h

2

)]2

(6.41)

The result may be then written as

D(2)
x �

m
I = D(2)

x {exp [i (ωm�− kIh)]} = D(2)
x ·�mI (6.42)

Compare relations (6.38) with (6.41) and also (6.39) with (6.42). We see that

D(2)
x = D(1)

x · D(1)
x (6.43)

This is understandable: it is due to the fact that approximation D(2)
x is defined as the

convolution D(2)
x = D(1)

x ◦D(1)
x , see Eqs. (6.26) and (6.29).

In general, if

Dabx = Dax ◦Dbx (6.44)

then

Dabx {exp [i (ωm�− kIh)]} = Dax ◦Dbx {exp [i (ωm�− kIh)]}
= Dax · Dbx · exp [i (ωm�− kIh)] (6.45)

We will use this important relation in deriving grid-dispersion relations in Chapter 7.

6.2.4 General note on the FD approximations

Later we will present approximations for different schemes. We will see that in searching
for an appropriate approximation of the spatial derivative we can choose

� the number of spatial grid positions that are to be used,
� the number of time levels that are to be used; the spatial derivative at a time level may be

then approximated by a weighted average of approximations at several time levels; this
choice leads to an implicit FD scheme (see Section 6.3),

� a centred/backward/forward approximation or their combination,
� order of approximation,
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� uniformity/nonuniformity of approximations in different spatial directions; later we will
see how this affects properties of the schemes with respect to variation of the ratio
between the P-wave and S-wave speeds.

In searching for an appropriate approximation of the temporal derivative we can choose

� the number of time levels that are to be used,
� the number of spatial grid positions that are to be used; the temporal derivative at a spatial

position may be then approximated by a weighted average of approximations at several
spatial positions; this choice leads to an implicit FD scheme,

� a centred or forward approximation,
� a replacement of higher-order derivatives by spatial derivatives.

We can also choose whether the order of approximation of the spatial derivative will be the
same as the order of approximation of the temporal derivative.

The set of choices depends on the formulation of the equations of motion and should
correspond to the desired properties of a scheme. It may be, however, far from trivial
to predict the resulting properties of the scheme. Some iterations (including construction,
theoretical analysis and numerical tests) might be necessary to develop a scheme appropriate
for a problem.

More on the FD approximations may be found in articles by, e.g., Dablain (1986),
Fornberg (1988a), Holberg (1987), Kindelan et al. (1990), Klimeš (1996), Tam and Webb
(1993), Hixon (1997), Geller and Takeuchi (1995, 1998), Cohen (2002), JafarGandomi
and Takenaka (2009), Abreu et al. (2013). Dablain (1986) demonstrated the properties and
practical advantages (mainly significantly reduced memory requirements) of the higher-
order FD approximation in application to the scalar wave equation. Fornberg (1988a)
derived simple recursive formulas for calculating weights in FD approximations for any
order of derivative and any order of accuracy on 1D grids with arbitrary spacing. Geller
and Takeuchi (1995, 1998) approximated the spatial derivative at time tm as an average of
spatial derivatives at times tm−1, tm and tm+1. Similarly, they approximated the temporal
derivative at position xI as an average of temporal derivatives at positions xI−1, xI and
xI+1. Holberg (1987) thought that construction of the FD approximations based on Taylor
series expansion lacks physical insight. Instead of minimizing the error measured in terms
of higher-order derivatives, he minimized the relative error in the components of the group
velocity vector due to the grid dispersion within a specific frequency band emitted by
sources. The argument for minimizing the relative error in the components of the group
velocity was that the propagation of energy is governed by the group velocity. Tam and
Webb (1993) minimized the error in dispersion – see Section 6.5. JafarGandomi and
Takenaka (2009) developed an approximation based on the correction functions and the FD
Laplacian. The correction functions are used to modify the time and space discretization
steps for a design frequency and wavenumber for achieving higher phase accuracy. The FD
Laplacian is introduced to reduce the grid anisotropy. Abreu et al. (2013) generalized the
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complex-step method to develop different approximations of the 1st and 2nd derivatives of
any complex analytic function.

Simple illustration of a variety of FD schemes Consider the 1st-order hyperbolic equation
with a constant coefficient:

∂ϕ

∂t
= a ∂ϕ

∂x
(6.46)

Here is an example, taken from Strikwerda (2004), of five alternative approximations of
the equation at the time level m and spatial position I :

� forward in time and space

1

�

(
ϕm+1
I − ϕmI

) ≈ a 1

h

(
ϕmI+1 − ϕmI

)
(6.47)

� forward in time, backward in space

1

�

(
ϕm+1
I − ϕmI

) ≈ a 1

h

(
ϕmI − ϕmI−1

)
(6.48)

� forward in time, centred in space

1

�

(
ϕm+1
I − ϕmI

) ≈ a 1

2h

(
ϕmI+1 − ϕmI−1

)
(6.49)

� centred in time and space (so-called leapfrog)

1

2�

(
ϕm+1
I − ϕm−1

I

) ≈ a 1

2h

(
ϕmI+1 − ϕmI−1

)
(6.50)

� Lax–Friedrichs approximation

1

�

[
ϕm+1
I − 1

2

(
ϕmI+1 − ϕmI−1

)] ≈ a 1

2h

(
ϕmI+1 − ϕmI−1

)
(6.51)

In Subsection 7.3.6 we explain the Lax–Wendroff and MacCormack approximations of Eq.
(6.46)

6.3 Explicit and implicit FD schemes

In an implicit scheme, the field variable at a time level at a spatial position is calculated
using values at the same time level and previous time levels. Consequently, the field variable
at a time level has to be calculated simultaneously at all spatial grid points from the values
of the field variables at previous time levels. Implicit schemes applied to realistic models
lead to relatively large matrices. In an explicit scheme, the field variable at a spatial grid
point and time level is calculated using an explicit FD formula that uses only values of field
variables at previous time levels. Clearly, the explicit schemes are computationally much
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simpler. Therefore, explicit FD schemes have been used in most earthquake ground motion
modelling and exploration seismology studies.

An interesting example was presented by Geller and Takeuchi (1998). Their optimization
of the classical 2nd-order FD displacement scheme led to an implicit FD scheme (they
named it the optimally accurate scheme) because they approximated the spatial derivative
as a weighted average of approximations at three time levels, and, similarly, the temporal
derivative as a weighted average of approximations at three spatial positions. In order to
avoid solving large systems of algebraic equations, Geller and Takeuchi applied a predictor-
corrector scheme.

In compact schemes (e.g., Lele 1992) the spatial derivative at one spatial position is
calculated using both spatial derivatives and values at neighbouring grid positions. As a
consequence, the compact schemes are implicit.

For the implicit schemes see also, e.g., Emerman et al. (1982), Mufti (1985), Liu and
Sen (2009).

6.4 Basic properties of FD schemes

An FD scheme should be consistent with the original problem, stable and convergent. Here
we very briefly characterize these three properties. We recommend more mathematically
oriented books for more detailed exposition and analysis: e.g., Isaacson and Keller (1966),
Richtmyer and Morton (1967), Mitchell (1969), Marchuk (1982), Mitchell and Griffiths
(1994), Morton and Mayers (1994), Thomas (1995), Shashkov (1996), Durran (1999),
Cohen (2002), Forsythe and Wasow (2004), Strikwerda (2004), LeVeque (2007).

We use here the abbreviation FDEQ for FD equations or FD scheme, and EQ for a
partial differential equation.

Consistency An FDEQ is consistent with the EQ if the difference between the FDEQ and
the EQ (the approximation or truncation error) vanishes as the sizes of the time step� and
spatial grid spacing h go to zero independently, that is,

lim
h→0,�→0

|EQ − FDEQ| = 0 (6.52)

In most cases no relation between h and � is required. If, however, condition (6.52) is
true only when a certain relation is satisfied between h and �, the FDEQ is conditionally
consistent.

Stability An FDEQ is stable if it produces a bounded solution when the exact solution is
bounded, and is unstable if it produces an unbounded solution when the exact solution is
bounded. If the solution of the FDEQ is bounded for all values of h and �, the FDEQ is
unconditionally stable. If the solution of the FDEQ is bounded only for certain values of h
and �, the FDEQ is conditionally stable. If the solution of the FDEQ is unbounded for all
values of h and �, the FDEQ is unconditionally unstable.
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The stability analysis can be performed only for a linear EQ. A nonlinear EQ must be
first linearized locally. The FDEQ of the linearized EQ can be analyzed for stability. There
are several methods for analyzing stability. Probably the best known is the von Neumann
method. The basic idea of the von Neumann method is to represent a discrete solution at
a time level and spatial grid point by a finite Fourier series, and examine stability of the
individual Fourier components. In this sense the method investigates the local stability. The
discrete solution is stable if and only if each Fourier component is stable.

The von Neumann method and also other methods of stability analysis are applicable
to linear FDEQ with constant coefficients; in other words, for a homogeneous medium.
Therefore, the stability condition found for the homogeneous medium has, in fact, an
indicative meaning and should be checked in numerical computations for heterogeneous
media.

Note that the explicit schemes can be only conditionally stable, whereas some implicit
schemes can be unconditionally stable.

Convergence An FDEQ is convergent if the solution of the FDEQ approaches the exact
solution of the EQ as the sizes of the time step and spatial grid spacing go to zero.
Denoting the solutions obtained by the EQ and FDEQ as ϕmI,K,L and �mI,K,L respectively,
the convergence means

lim
h→0,�→0

∣∣�mI,K,L − ϕmI,K,L
∣∣ = 0 (6.53)

It is important to note that the consistency is the property of the FDEQ because it relates
the FDEQ to the EQ. On the other hand, stability and convergence are properties of the
numerical solution of the FDEQ.

Lax equivalence theorem In general, while it is easy to analyze the consistency, proving
convergence can be a very difficult mathematical problem. Therefore, it is very helpful
that the convergence is related to the consistency and the stability: it follows from the Lax
equivalence theorem that if the FDEQ is consistent and stable, it is also convergent.

Grid dispersion Because the FD solution is a discrete approximation of a true solution,
the phase and group velocities in the grid in general differ from the true velocities in the
medium. Grid dispersion is a very important grid phenomenon. It has a cumulative effect
on wave propagation – the longer the travel distance, the larger the effect of the difference
between the grid and true velocity. Therefore, grid dispersion has to be analyzed prior to
the numerical calculations. Given the desired travel path, one has to choose appropriate
spatial sampling of the wavelength to be propagated with a desired level of accuracy.

The grid-dispersion relation is a relation comprising frequency (real or grid), wavenum-
ber (grid or real, respectively), grid spacing, time step and true physical speed(s) of the
medium. Due to discretization, the dispersion relation in the grid differs from the dispersion
relation between frequency and wavenumber in the true physical continuum. The dispersion
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relation can be obtained from the stability analysis. Such analysis is feasible for many FD
schemes assuming a homogeneous medium. It may be very complicated for heterogeneous
media. Consequently, the effects of grid dispersion should be examined by careful numer-
ical tests if the scheme is to be applied to heterogeneous media – which, in fact, is almost
always the case.

For a detailed analysis of stability, grid dispersion and accuracy of the FD schemes in
solving the equation of motion in 2D and 3D problems in homogeneous media see, e.g.,
articles by Marfurt (1984), Crase et al. (1992), Geller and Takeuchi (1995, 1998), Igel et al.
(1995), Klimeš (1996), Mizutani et al. (2000), Moczo et al. (2000), Takeuchi and Geller
(2000), Zingg (2000), Liu and Sen (2011a,b), Geller et al. (2012).

6.5 Approximations based on a dispersion-relation-preserving criterion

Tam and Webb (1993) presented an interesting approach for finding FD approximations.
They pointed out that the quality of FD schemes (in computational fluid dynamics) is
generally ranked by the order of the Taylor series expansion truncation. For example,
a 4th-order scheme should be better than a 2nd-order scheme. They claim that whereas
for time-independent problems such a criterion is quite sufficient, for time-dependent
problems, especially acoustics problems, a consistent, stable and convergent higher-order
scheme does not guarantee a good quality numerical wave solution. Their basic argument
is: the propagation characteristics of the waves governed by a system of partial differential
equations are encoded in the dispersion relation in the frequency and wavenumber space.
Therefore, what is needed is an FD scheme that has the same or almost the same dispersion
relation as the original partial differential equations.

The dispersion relation may be obtained by applying the space and time Fourier trans-
forms to the governing equations. If the dispersion relation is to be preserved then the FD
approximation should be constructed so that the Fourier transform is preserved. In other
words, an FD approximation should have nearly the same Fourier transform in space or
time as the original partial derivative.

Hixon (1997) used the dispersion-relation-preserving (DRP) approach of Tam and Webb
(1993) and developed one-sided (forward and backward) approximations of the first deriva-
tive. Zhang and Chen (2006) and Zhang et al. (2012) applied a combination of the forward
and backward DRP approximations developed by Hixon (1997) in their FD modelling. We
will address their scheme in Chapter 7.

Tam and Webb (1993) also showed that it is possible to combine the truncated Taylor
series FD approximation and the wavenumber space approximation.
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1D problem

It is certainly very useful and instructive to introduce FD schemes in the case of the 1D
problem. Many essential concepts and approaches can be explained without the unnecessary
complexity of the 2D or 3D problems. Clearly, on the other hand, the 1D problem does not
make it possible to introduce and distinguish important aspects of different FD schemes
that emerge in 2D and 3D. One important example is the approximation of the 2nd mixed
spatial derivatives in the displacement formulation. The consistency of the approximations
of the 2nd mixed and nonmixed spatial derivatives is closely related to the accuracy of
numerical schemes with respect to the VP /VS ratio.

The explanations in this chapter are essential for understanding the following chapters.

7.1 Equation of motion and the stress–strain relation

Consider a Cartesian coordinate system with spatial coordinates (x, y, z) or, interchange-
ably, (x1, x2, x3). (Indices 1, 2, 3 and letters x, y, z can also be used interchangeably as
subscripts in order to denote displacement-vector and stress-tensor components). Consider
a perfectly elastic isotropic medium with density ρ (x) and Lamé elastic coefficients μ (x)
and λ (x) being continuous functions of the spatial coordinate x. Let �u (x, t) and σij (x, t)
be the displacement vector and stress tensor, respectively. This defines a 1D problem along
the x-axis. Table 7.1 shows wave-propagation configurations that can be described by the
same form of equations. P means the longitudinal wave. If the x- and y-axes are horizontal,
then SH and SV denote shear waves polarized in the horizontal and vertical directions,
respectively.

Denoting the appropriate displacement-vector and stress-tensor components by u and
σ , respectively, and the appropriate elastic modulus by M , the strong-form equations
of motion and the stress–strain relation, i.e., Hooke’s law, can be written in one of the
alternative formulations (omitting the body-force term):

Displacement–stress (DS) formulation

ρ
∂2u

∂t2
= ∂σ

∂x
, σ = M∂u

∂x
(7.1)

97
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Table 7.1 Wave-propagation configurations described by the same form of the equation

Direction of 
propagation 

Displacement- 
vector 

component u  

Stress-tensor 
component 

σ  

Elastic 
modulus 

M  
Wave 

 
Polarization 

 

x  

xu  xxσ  2λ μ+  P x+-
 

yu  xyσ  μ  SH x
+

-

 

zu  xzσ  μ  SV x

+

-

 

Displacement (D) formulation

ρ
∂2u

∂t2
= ∂

∂x

(
M
∂u

∂x

)
(7.2)

Note that in the case of a homogeneous medium the equation simplifies:

ρ
∂2u

∂t2
= M∂

2u

∂x2
(7.3)

The simplification is significant for FD approximations – the modulus is not spatially
differentiated. Considering wave speed c and relation c2 = M

ρ
, Eq. (7.3) can be written

as

∂2u

∂t2
= c2 ∂

2u

∂x2
(7.4)

that is also known as the 2nd-order acoustic wave equation. It is easy to obtain the relation
for even derivatives:

∂2ju

∂t2j
= c2j ∂

2ju

∂x2j
, j = 1, 2, . . . (7.5)

Displacement–velocity–stress (DVS) formulation

ρ
∂v

∂t
= ∂σ

∂x
, v = ∂u

∂t
, σ = M∂u

∂x
(7.6)

Velocity–stress (VS) formulation

ρ
∂v

∂t
= ∂σ

∂x
,
∂σ

∂t
= M ∂v

∂x
(7.7)
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or, defining buoyancy b,

b = 1

ρ
(7.8)

∂v

∂t
= b∂σ

∂x
,
∂σ

∂t
= M ∂v

∂x
(7.9)

Defining vector w and matrix A,

w ≡ (v, σ )T , A ≡
[

0 b

M 0

]
(7.10)

Eqs. (7.9) can be written in the form of a matrix equation:

∂w
∂t

= A
∂w
∂x

(7.11)

Equation (7.11) is the 1D version of the matrix Eq. (2.33).
Unlike the displacement formulation, equations in the DS, DVS and VS formulations

have the same form in both homogeneous and smoothly heterogeneous media.
Note the important relations between the temporal and spatial derivatives: Equations

(7.9) imply

∂2j v

∂t2j
= Ljxxv,

∂2j+1v

∂t2j+1
= Ljxx

(
b
∂σ

∂x

)
, j = 1, 2, . . .

(7.12)

Ljxx = LxxLxx . . . Lxx︸ ︷︷ ︸
j

, Lxx = b ∂
∂x

(
M
∂

∂x

)

and an analogous relation for the temporal derivative of σ . Equation (7.11) implies

∂jw
∂tj

= Ljxw, j = 1, 2, . . . , Ljx = LxLx . . . Lx︸ ︷︷ ︸
j

, Lx = A
∂

∂x
(7.13)

7.2 A simple FD scheme: a tutorial introduction to FD schemes

This section is intended as a tutorial detailed introduction to FD modelling in the simplest
case of the 1D problem in an unbounded homogeneous elastic isotropic continuum. Using
the example of a simple FD scheme on a conventional space–time grid we explain the basic
difference between propagation of a planar harmonic wave in a true physical continuum
and in a discrete space–time grid. We analyze the properties of the scheme and grid wave
in detail.

Originally we were much inspired by Chapter 2 of the book by Taflove and Hagness
(2005) and also by Section 7.3 of the book by Thomas (1995). Eventually we elaborated
our own version of the comprehensive analysis.
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7.2.1 Plane harmonic wave in a physical continuum

Consider a plane harmonic wave with unit amplitude:

u(x, t) = exp[i(ωt − kx)] (7.14)

which satisfies the 1D equation of motion in an unbounded homogeneous elastic isotropic
medium (7.4). We call this wave a true physical wave in order to distinguish it from the
wave in a grid. For a given spatial position, the behaviour of the wave is determined by
the real angular frequency ω. For a given time, the behaviour of the wave is determined by
the real wavenumber k. Consider time t +�t . Clearly, at this time we can find the same
value of displacement (as u (x, t)) at some other spatial position, say, x +�x, at which
the argument of the wave (7.14) has the same value as the argument had at time t and
spatial position x. The phase ω (t +�t) − k (x +�x) can be equal to phase ωt − kx only
if �x
�t

= ω
k

. The latter equation means that the value u (x, t) of displacement has moved
during time �t to the spatial position x +�x with the phase velocity

c = ω

k
(7.15)

The fact that quantities ω and k are related is logical and necessary for wave (7.14) to
satisfy Eq. (7.4). The relation between ω and k is called the dispersion relation. It is easy to
realize that in our case the phase velocity is one and the same for any value of the angular
frequency. The wave propagation can be then called dispersionless. The dispersionless
propagation in our case is due to the fact that Eq. (7.4) describes wave propagation in an
unbounded homogeneous elastic isotropic continuum.

In general, the dispersion relation may be written in one of three equivalent forms:
ω = ω (k), k = k (ω) or λ = λ (f ), where λ is the wavelength and f the frequency.

In Eq. (7.14) we assume that the amplitude is equal to 1. Clearly, because ω and k are
real the amplitude does not change with time or spatial position. If the amplitude does
not change with time we can say that Eq. (7.4) is nondissipative. If the amplitude does
not change with spatial position we can say that Eq. (7.4) is nonattenuative. Also, these
properties are due to the fact that Eq. (7.4) describes wave propagation in an unbounded
homogeneous elastic isotropic continuum.

Because the dissipation and attenuation are directly related to ω and k, we can realize
that relation ω = ω (k) describes not only dispersion but, in fact, also dissipation and
attenuation.

7.2.2 Plane harmonic wave in a grid

In analogy with a true physical wave (7.14), we can investigate whether a harmonic wave
can propagate in a grid characterized by time step� and grid spacing h. In order to account
for possible effects of the discrete representation we have to assume numerical (or grid)
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quantities ω̃ and k̃, which can differ from the true physical ω and k. The numerical (or grid)
wave is

umI = exp[i(ω̃m�− k̃Ih)] (7.16)

In general ω̃ and k̃ can be complex:

ω̃ = ω̃real + iω̃imag, k̃ = k̃real + ik̃imag (7.17)

Then,

umI = exp
{
i
[(
ω̃real + iω̃imag

)
m�− (

k̃real + ik̃imag
)
Ih
]}

= exp
(−ω̃imagm�+ k̃imagIh

)
exp

[
i
(
ω̃realm�− k̃realIh

)]
(7.18)

It is clear that with nonzero imaginary parts of ω̃ and/or k̃ the amplitude of the grid
wave is not equal to 1. ω̃imag and k̃imag determine dissipation in time and attenuation in
space, respectively. The real parts ω̃real and k̃real determine propagation in time and space,
respectively. Consequently, the grid phase velocity is

ṽ ≡ ω̃real

k̃real
(7.19)

Obviously, with nonzero ω̃imag and/or k̃imag the phase velocity does not mean the velocity
of propagation of a particular value of displacement, as was the case for a true physical
wave. Note also that even if the grid ω̃ and k̃ are real, they are not necessarily equal to the
true physical ω and k.

7.2.3 (2,2) 1D FD scheme on a conventional grid

Assume a conventional discrete space–time grid with time step � and grid spacing h.
Use the centred 2nd-order FD approximation to replace both the temporal and spatial 2nd

derivatives in Eq. (7.4). Then the partial differential equation can be approximated by the
FD equation:

1

�2

(
um+1
I − 2umI + um−1

I

) = c2 1

h2

(
umI+1 − 2umI + umI−1

)
(7.20)

from which we have an explicit FD scheme:

um+1
I = 2umI − um−1

I +
(
c
�

h

)2 (
umI+1 − 2umI + umI−1

)
(7.21)

Denote

EQ ≡ ∂2u

∂t2
− c2 ∂

2u

∂x2

FDEQ ≡ 1

�2

(
um+1
I − 2umI + um−1

I

)− c2 1

h2

(
umI+1 − 2umI + umI−1

) (7.22)
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Then the truncation error of the FD approximation of the partial differential equation is

TrunErr {FDEQ} = TaylorExpansion {FDEQ} − EQ

= 1

12

(
∂4u

∂t4
�2 − c2 ∂

4u

∂x4
h2

)
+O(�4) +O(h4) (7.23)

Equation (7.23) means that the FD equation (7.20) is consistent with the differential equation
(7.4) with 2nd-order accuracy both in time and space. Further, we will indicate the 2nd-order
accuracy in time and space using abbreviation (2,2). Thus, in this case we can say that
scheme (7.21) is a (2,2) FD scheme.

Whereas Eq. (7.4) describes wave propagation in an unbounded homogeneous elastic
isotropic continuum, Eq. (7.20) describes wave propagation in a discrete representation of
the continuum. Whereas a true continuum is characterized by the wave speed c, its discrete
representation is characterized by the true wave speed c, time step � and grid spacing
h. Moreover, for given c, � and h, the wave propagation depends also on the scheme
itself – Eq. (7.20) is just one of many possible approximations that are consistent with
Eq. (7.4).

We substitute displacement (7.16) for discrete displacement in Eq. (7.20). Denoting the
r.h.s. of Eq. (7.16) by E, we obtain

umI = E
um+1
I = E exp [i (ω̃�)] um−1

I = E exp [i (−ω̃�)]

umI+1 = E exp[i(−k̃h)] umI−1 = E exp[i(k̃h)]

(7.24)

and Eq. (7.20) transforms into

cos(ω̃�) − 1 =
(
c
�

h

)2

[cos(k̃h) − 1] (7.25)

from which we obtain two equivalent numerical (or discrete) dispersion relations:

ω̃ = 1

�
arccos

{
1 +

(
c
�

h

)2 [
cos

(
k̃h
)− 1

]}
(7.26)

or

k̃ = 1

h
arccos

{
1 +

(
h

c�

)2

[cos (ω̃�) − 1]

}
(7.27)

The relations are sometimes called dispersion–dissipation relations. Denoting

S ≡ c�
h

(7.28)

we have

ω̃ = 1

�
arccos{1 + S2[cos(k̃h) − 1]} (7.29)
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or

k̃ = 1

h
arccos

{
1 + 1

S2
[cos (ω̃�) − 1]

}
(7.30)

It is obvious that the dispersion relation obtained for a planar wave propagating in the
grid and governed by the FD Eq. (7.20) is fundamentally different from the dispersion
relation (7.15) of the true harmonic wave in a physical continuum. We have to analyze the
grid-dispersion relation in order to find the differences between the true and grid harmonic
waves.

The two alternative dispersion relations (7.29) and (7.30) naturally lead us to formulate
two alternative partial problems, respectively:

(a) Assume a harmonic wave with k and ω propagating in a true physical continuum
without dispersion. Assume a grid wave with k̃ = k. What will be the grid angular
frequency ω̃?

(b) Assume a harmonic wave withω and k propagating in a true physical continuum without
dispersion. Assume a grid wave with ω̃ = ω. What will be the grid wavenumber k̃?

We will answer the two questions by investigating the behaviour of the grid wave with time
and spatial position.

Before we proceed, note that relation (7.25) could be written as

sin2 ω̃�

2
= S2 sin2 k̃h

2
(7.31)

7.2.4 Analysis of grid-dispersion relations

7.2.4.1 Behaviour of a grid wave with time: grid ω̃ for a wave with physical k – Part 1

The behaviour of the grid wave with time is determined by the grid angular frequency ω̃.
The grid wavenumber k̃ can be considered a parameter – real and not different from the
physical k. The real k̃ means that the amplitude does not change with spatial position.

Assuming complex ω̃ and real k̃, the displacement at the spatial position I and time level
m can be written as

umI = exp{i[(ω̃real + iω̃imag)m�− k̃Ih]}
= exp (−ω̃imagm�) exp[i(ω̃realm�− k̃Ih)] (7.32)

The value of ω̃imag determines the behaviour of the amplitude with time:

ω̃imag > 0: the amplitude exponentially decreases with time at a given spatial position;
the scheme is dissipative,

ω̃imag = 0: the amplitude remains constant with time at a given spatial position; the
scheme is nondissipative,

ω̃imag < 0: the amplitude exponentially increases with time at a given spatial position;
the scheme is unstable.
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Before we proceed, note that even if we considered k̃ complex, the following analysis
of the behaviour with time would not change: the imaginary part of k̃ would just lead
to a contribution to the amplitude at a given spatial position. The contributions would be
different at different spatial positions but would not change with time.

The argument of the cosine in the dispersion relation (7.29) can be expressed as

k̃h = kh = 2πh

λ
(7.33)

It is reasonable to define the spatial sampling as

Nλ ≡ λ

h
(7.34)

(Note that we define Nλ here – in the investigation of the behaviour of the grid wave with
time. This is an important difference compared to the definition by Taflove and Hagness,
2005. We explain this in Subsection 7.2.5.) Then,

ω̃ = 1

�
arccos

{
1 + S2

[
cos

(
2π

Nλ

)
− 1

]}
(7.35)

Denoting

ξ = 1 + S2

[
cos

(
2π

Nλ

)
− 1

]
(7.36)

and using relation

arccos ξ = π

2
− arcsin ξ (7.37)

we can write the dispersion relation (7.29) for ω̃ as

ω̃ = 1

�

(π
2

− arcsin ξ
)

(7.38)

7.2.4.2 Behaviour of a grid wave with spatial position: grid k̃ for a wave
with physical ω – Part 1

The behaviour of the grid wave with spatial position is determined by the grid wavenumber
k̃. The grid angular frequency ω̃ can be considered a parameter – real and not different from
the physical ω. The real ω̃ means that the amplitude of the grid wave does not change with
time.

Assuming complex k̃ and real ω̃, the displacement at spatial position I and time levelm
can be written as

umI = exp{i[ω̃m�− (k̃real + ik̃imag)Ih]} = exp (k̃imagIh) exp[i(ω̃m�− k̃realIh)]

(7.39)
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The value of k̃imag determines the behaviour of the amplitude with spatial position:

k̃imag > 0: the amplitude exponentially increases with spatial position at a given time,
k̃imag = 0: the amplitude does not change with spatial position at a given time; the scheme

is nonattenuative,
k̃imag < 0: the amplitude exponentially decreases with spatial position at a given time;

the scheme attenuates the wave in the grid.

Recall the dispersion relation for the grid wavenumber (7.30):

k̃ = 1

h
arccos

{
1 + 1

S2
[cos (ω̃�) − 1]

}
Considering period T , the argument of the cosine can be written as

ω̃� = ω� = 2π

T
� (7.40)

It is reasonable to define the time sampling as

NT ≡ T

�
(7.41)

Then,

k̃ = 1

h
arccos

{
1 + 1

S2

[
cos

(
2π

NT

)
− 1

]}
(7.42)

Denoting

ζ = 1 + 1

S2

[
cos

(
2π

NT

)
− 1

]
(7.43)

and using relation (7.37) for ζ the dispersion relation becomes

k̃ = 1

h

(π
2

− arcsin ζ
)

(7.44)

7.2.4.3 Behaviour of a grid wave with time and spatial position: a joint part

Both dispersion relations (7.38) and (7.44) have the form

ϕ = 1

δ

(π
2

− arcsinχ
)

(7.45)

where {ϕ, δ, χ} stand for {ω̃,�, ξ } or {k̃, h, ζ }, respectively. Considering the definition of
the function arcsin it is reasonable to investigate the case when χ is from interval 〈−1, 1〉,
and the case when χ is outside interval 〈−1, 1〉.
The case: −1 ≤ χ ≤ 1

It follows from −π
2 ≤ arcsinχ ≤ π

2 and Eq. (7.45) that

ϕ = 1

δ

(π
2

− arcsinχ
)
, 0 ≤ ϕreal ≤ π

δ
, ϕimag = 0 (7.46)
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In order to consider χ outside interval 〈−1, 1〉, use the relation (e.g., Korn and Korn 2000,
p. 817)

arcsinχ = −i ln
(
iχ +

√
1 − χ2

)
(7.47)

The case: χ > 1
Rewrite relation (7.47) as follows:

arcsinχ = −i ln
(
iχ +

√
1 − χ2

)
= − i ln

(
iχ + i

√
χ2 − 1

) = −i ln
[
exp

(
i π2
)(
χ +

√
χ2 − 1

)]
= − i{ln [exp

(
i π2
)]+ ln

(
χ +

√
χ2 − 1

)}
= − i{i π2 + ln

(
χ +

√
χ2 − 1

)} = π
2 − i ln

(
χ +

√
χ2 − 1

)
Then,

ϕ = i 1
δ

ln
(
χ +

√
χ2 − 1

)
, ϕreal = 0, ϕimag = 1

δ
ln
(
χ +

√
χ2 − 1

)
(7.48)

The case: χ < −1
Rewrite relation (7.47) as follows:

arcsinχ = −i ln
[
i
(
χ +

√
χ2 − 1

)] = −i ln
[−i(−χ −

√
χ2 − 1

)]
= − i ln

[
exp

(
−i π

2

) (−χ −
√
χ2 − 1

)]
= − i

{
ln
[
exp

(
−i π

2

)]
+ ln

(−χ −
√
χ2 − 1

)}
= − i

{
−i π

2
+ ln

(−χ −
√
χ2 − 1

)} = −π
2

− i ln
(−χ −

√
χ2 − 1

)
Then,

ϕ = 1

δ

[
π + i ln

(−χ −
√
χ2 − 1

)]
(7.49)

ϕreal = π

δ
, ϕimag = 1

δ
ln
(−χ −

√
χ2 − 1

)
< 0

The latter inequality is due to the fact that the argument of the logarithm is positive and
smaller than 1.

Having obtained relations (7.46), (7.48) and (7.49) for −1 ≤ χ ≤ 1, χ > 1 and χ < −1,
respectively, we can continue with the analysis of the scheme.

7.2.4.4 Behaviour of a grid wave with time: grid ω̃ for a wave with physical k – Part 2

Because 2π
Nλ

is real, −1 ≤ cos
(

2π
Nλ

) ≤ 1. It follows from Eq. (7.36) that

1 − 2S2 ≤ ξ ≤ 1 (7.50)

Recall that S > 0, see Eq. (7.28). We can recognize two cases.
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The case: −1 ≤ ξ ≤ 1
Investigate when −1 ≤ ξ ≤ 1. It is clear from condition (7.50) that always ξ ≤ 1.

Substituting definition (7.36) for ξ in the condition −1 ≤ ξ we can obtain

S2 ≤ 2

1 − cos

(
2π

Nλ

) (7.51)

Thus, if S satisfies condition (7.51), −1 ≤ ξ ≤ 1, and, according to (7.46),

ω̃ = 1

�

(π
2

− arcsin ξ
)
, 0 ≤ ω̃real ≤ π

�
, ω̃imag = 0 (7.52)

Recalling Eq. (7.29),

ω̃ = ω̃real = 1

�
arccos

{
1 + S2

[
cos

(
2π

Nλ

)
− 1

]}
(7.53)

Equivalently,

ω̃ = ω̃real

= 1

�
arccos

{
1 + S2 [cos (kh) − 1]

}
= 1

�
arccos

{
1 + S2

[
cos

(
ω�

S

)
− 1

]}
(7.54)

Referring to Eq. (7.32) we obtain the first partial conclusion on the behaviour of the grid
wave with time if S satisfies condition (7.51):

(a) Whereas a harmonic wave with k and ω can propagate in a true physical continuum
without dispersion, a grid wave with k̃ = k can propagate with grid dispersion and its
angular frequency ω̃ is given by relation (7.53) or (7.54).

(b) At any spatial grid position the amplitude of a harmonic wave does not change with
time. The numerical scheme is nondissipative.

The case: ξ < −1
Investigate now when ξ < −1. Substituting definition (7.36) for ξ in the latter condition
we can obtain

S2 >
2

1 − cos

(
2π

Nλ

) (7.55)

Thus, if S satisfies condition (7.55), ξ < −1, and, according to (7.49),

ω̃ = 1

�

[
π + i ln

(−ξ −
√
ξ 2 − 1

)]
ω̃real = π

�
, ω̃imag = 1

�
ln
(−ξ −

√
ξ 2 − 1

)
< 0

(7.56)

Referring again to Eq. (7.32) we obtain the second partial conclusion on the behaviour of
the grid wave with time if S satisfies condition (7.55):

(c) Whereas a harmonic wave with k and ω can propagate in a true physical contin-
uum without dispersion, a grid wave with k̃ = k can propagate with the grid angular
frequency ω̃real = π

�
.
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(d) At any spatial grid position the amplitude exponentially increases with time. The
scheme is unstable.

We can quantify the exponential increase of the amplitude. Because, see (7.32) and (7.56),

umI = exp
(−ω̃imagm�

)
exp

[
i
(
ω̃realm�− k̃Ih)]

= exp
[
−m ln

(−ξ −
√
ξ 2 − 1

)]
exp

[
i
(
mπ − k̃Ih)]

= exp
[
ln
(−ξ −

√
ξ 2 − 1

)−m]
exp

[
i
(
mπ − k̃Ih)]

= 1(−ξ −
√
ξ 2 − 1

)m exp
[
i
(
mπ − k̃Ih)]

the amplitude amplification factor per time step is

q =
∣∣um+1
I

∣∣∣∣umI ∣∣ = 1

−ξ −
√
ξ 2 − 1

= −ξ +
√
ξ 2 − 1 > 1 (7.57)

The smaller ξ is, the larger is q. The amplification factor q gains its maximum value for
the minimum value of ξ , that is for ξ = 1 − 2S2 (see Eq. (7.50)):

qmax = −(1 − 2S2) +
√

(1 − 2S2)2 − 1 = (S +
√
S2 − 1)2 (7.58)

It follows from Eq. (7.36) that ξ gains its minimum value for 2π
Nλ

= π , that is, for Nλ = 2.
Thus, the exponential increase of the amplitude is largest at wavelength

λU = 2h (7.59)

This exponential growth originates the numerical instability. The frequency of the unstable
grid wave is

fU = ω̃real

2π
= 1

2�
(7.60)

being determined only by the time step �.

Stability We have identified two regimes of the scheme behaviour with time. The nondissi-
pative or stable regime is determined by condition (7.51), the unstable regime is determined
by condition (7.55). The value of S, discriminating the two regimes, depends on Nλ. This
is illustrated in Fig. 7.1.

In practice, however, we usually do not simulate one harmonic wave, that is, a wave
with one wavelength. We have a range of wavelengths. Therefore, for a given value of grid
spacing h we have a range of Nλ values – the shorter the wavelength, the smaller is Nλ. If
we admit any positive value of Nλ, conditions (7.51) and (7.55) transform to

S ≤ 1 (7.61)
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Figure 7.1 Value of factor S, discriminating the nondissipative (stable) and unstable regimes of
the grid wave with physical wavelength, as a function of the spatial sampling Nλ of the physical
wavelength of one harmonic wave.

and

S > 1 (7.62)

respectively.
For the analyzed scheme, 1 is the maximum value of S for which the analyzed FD

scheme is stable. It is reasonable to anticipate that for some other FD scheme the limiting
value may be different from 1. Therefore, we denote the limiting value in general as SM .
Consequently, a general form of the stability condition for 1D schemes can be written as

S ≤ SM (7.63)

From

S = c�
h

≤ SM (7.64)

we have

� ≤ h

c
SM (7.65)

Define the stability ratio p as

p ≡ c�

hSM
(7.66)

Then,

0 < p ≤ 1 (7.67)

� = ph
c
SM (7.68)
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Clearly, h
c
SM is the maximum time step for which the scheme is stable and p quantifies

the fraction of the maximum time step. Condition (7.61) for the analyzed scheme can be
written as

S = pSM ; 0 < p ≤ 1, SM = 1 (7.69)

Thus, the main conclusion of the performed analysis of the scheme behaviour with time is
that it is necessary to choose

� = ph
c
SM ; 0 < p ≤ 1, SM = 1 (7.70)

in order to prevent instability of the numerical solution. Factor S can be called the stabil-
ity factor and relation (7.61), (7.69) or (7.70) the stability condition for the investigated
numerical scheme. Factor S is also known as the Courant number. Let us note that the name
reflects the fundamental article by Courant, Friedrichs and Lewy (1928 in German, 1967 in
English translation) – the first article on the stability and convergence of the FD schemes
solving partial differential equations. For more details see, e.g., LeVeque (2007).

Considering Eq. (7.69), relations (7.53) and (7.54) can be written as

ω̃ = ω̃real = 1

�
arccos

{
1 + p2

[
cos

(
2π

Nλ

)
− 1

]}

= 1

�
arccos

{
1 + p2 [cos (kh) − 1]

}
= 1

�
arccos

{
1 + p2

[
cos

(
ω�

p

)
− 1

]}
(7.71)

7.2.4.5 Behaviour of a grid wave with spatial position: grid k̃ for a wave
with physical ω – Part 2

Clearly we can apply the results of the joint part of the analysis also in the investigation of
the behaviour of the grid wave with spatial position. In the investigation, however, we have
to account for the fact that we have found the stability condition (7.69) for S.

Because 2π
NT

is real, −1 ≤ cos
(

2π
NT

) ≤ 1. It follows from Eq. (7.43) that

1 − 2

S2
≤ ζ ≤ 1 (7.72)

and, using (7.69),

1 − 2

p2
≤ ζ ≤ 1 (7.73)

We can recognize two cases.
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The case: −1 ≤ ζ ≤ 1
Investigate when −1 ≤ ζ ≤ 1. It is clear from condition (7.72) that always ζ ≤ 1.

Substituting definition (7.43) for ζ in the condition −1 ≤ ζ and using (7.69) we can obtain

NT ≥ 2π

arccos(1 − 2p2)
(7.74)

Relation (7.74) can be transformed into the frequency domain:

T = �NT ≥ 2π�

arccos(1 − 2p2)

f = 1

T
≤ arccos(1 − 2p2)

π

1

2�

(7.75)

Define frequency fATT

fATT ≡ arccos(1 − 2p2)

π
fN (7.76)

where fN is the Nyquist frequency

fN ≡ 1

2�
(7.77)

The frequency-domain equivalent of condition (7.74) can be then written as

f ≤ fATT (7.78)

Thus, ifNT satisfies condition (7.74) or, equivalently, f satisfies condition (7.78), according
to (7.46)

k̃ = 1

h

(π
2

− arcsin ζ
)
, 0 < k̃real ≤ π

h
, k̃imag = 0 (7.79)

Recalling Eq. (7.42):

k̃ = 1

h
arccos

{
1 + 1

p2

[
cos

(
2π

NT

)
− 1

]}
(7.80)

Equivalently,

k̃ = 1

h
arccos

{
1 + 1

p2
[cos (ω�) − 1]

}

= 1

h
arccos

{
1 + 1

p2
[cos (pkh) − 1]

}
(7.81)

Referring to Eq. (7.39) we obtain the first partial conclusion on the behaviour of a grid wave
with spatial position if NT satisfies condition (7.74) or, equivalently, f satisfies condition
(7.78):

(a) Whereas a harmonic wave with ω and k can propagate in a true physical contin-
uum without dispersion, a grid wave with ω̃ = ω ≤ 2πfATT can propagate with grid
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dispersion and its wavenumber k̃ is given by either of the alternative relations (7.80)
and (7.81).

(b) At any time level the amplitude does not change with spatial position. The numerical
scheme is nonattenuative.

It is clear from relation (7.76) that only for p = 1 is the regime nonattenuative up to the
Nyquist frequency fN .

The case: ζ < −1
The condition occurs if

NT <
2π

arccos(1 − 2p2)
(7.82)

or, equivalently,

f > fATT (7.83)

Then, according to (7.49),

k̃ = 1

h

[
π + i ln

(−ζ −
√
ζ 2 − 1

)]
k̃real = π

h
, k̃imag = 1

h
ln
(−ζ −

√
ζ 2 − 1

)
< 0

(7.84)

Because f is upper-bounded by the Nyquist frequency fN , we can formulate the second
partial conclusion on the behaviour of a grid wave with spatial position if NT satisfies
condition (7.82):

(c) Whereas a harmonic wave with ω and k can propagate in a true physical continuum
without dispersion, a grid wave with any ω̃ = ω ∈ (2πfATT , 2πfN ) can propagate only
with the grid wavenumber k̃real = π

h
.

(d) At any time level the amplitude exponentially decreases with spatial position.

We can quantify the exponential decrease by the attenuation per grid spacing. Recall (7.39)
and define

exp (−αh) ≡ exp (k̃imagh)

= exp
[
ln
(−ζ −

√
ζ 2 − 1

)] = −ζ −
√
ζ 2 − 1 (7.85)

Referring to the argument for Eq. (7.49):

0 < −ζ −
√
ζ 2 − 1 < 1 (7.86)

Relations (7.85) and (7.86) show that the amplitude is multiplied per one grid spacing by a
positive number smaller than 1.
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Figure 7.2 Value of the normalized frequency fATT,normalized , discriminating the nonattenuative and
attenuative regimes of the grid wave with physical frequency, as a function of the stability ratio p for
one harmonic wave.

Grid attenuation We have identified two regimes of the scheme behaviour with spatial
position. The nonattenuative regime is determined by condition (7.74) or (7.78), the attenu-
ative regime is determined by condition (7.82) or (7.83). The value of fATT , discriminating
the two regimes, depends on p.

Let us illustrate the relation between fATT and p numerically. Consider normalized
frequency

fnormalized ≡ f� (7.87)

Correspondingly we define

fATT,normalized ≡ arccos (1 − 2p2)

2π
(7.88)

Note that the normalized Nyquist frequency is

fN,normalized = 0.5 (7.89)

Figure 7.2 shows fATT,normalized as a function of the stability ratio p.
We can also numerically illustrate the attenuation. Because

fnormalized = f� = 1

NT
(7.90)

ζ defined by Eq. (7.43) and appearing in relation (7.85) can be written as

ζ = 1 + 1

p2
[cos (2πfnormalized) − 1] (7.91)

Considering 2 ≤ NT <∞, we have 0 < fnormalized ≤ 1
2 .
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Table 7.2 Identified partial regimes of the investigated FD scheme

Behaviour with time Behaviour with spatial position 
 continuum: k  and ω  
 grid: k  and ω  

 continuum: ω  and k  
 grid: ω  and k  

0 1S< ≤  ( )2

2
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Figure 7.3 The amplitude attenuation factor of the grid wave with physical frequency as a function of
the normalized frequency fnormalized . For each value of the stability ratio p the amplitude attenuation
factor falls from the unit value at the normalized frequency of fATT,normalized .

Figure 7.3 shows the amplitude factor exp (k̃imagh) as a function of fnormalized. For
each value of the stability ratio p, the amplitude factor reaches its maximum value, 1, at
the corresponding fATT,normalized. At frequencies smaller than fATT,normalized the regime is
nonattenuative and the amplitude factor exp (k̃imagh) is equal to 1.

7.2.5 Summary of the identified partial regimes

We have identified four partial regimes of the scheme behaviour with time and spatial
position. They are summarized in Table 7.2. Compare the role and meaning of the spatial
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sampling Nλ and time sampling NT . Nλ quantifies sampling of the physical wavelength,
which is also the grid wavelength. NT quantifies sampling of the physical period which
is also the grid period. Note that Nλ should not be used in the analysis of the behaviour
with spatial position because in that case it would quantify a wavelength that does not
propagate in the grid. Similarly, NT should not be used in the analysis of the behaviour
with time because in that case it would quantify a period that does not propagate in the
grid.

Obviously, for numerical simulation of wave propagation we need a conjunction of
the nondissipative and nonattenuative regimes. If we choose S ≤ 1, the simulation will be
stable. It will be nonattenuative up to frequency fATT .

We have found that grid wave propagation is not dispersionless in these regimes. We
should therefore quantify grid dispersion in terms of grid phase velocity.

7.2.6 Grid phase and group velocities

7.2.6.1 Grid phase velocity

The grid phase velocity is given by Eq. (7.19):

ṽ = ω̃real

k̃real

As we have found, we have two possibilities:

First possibility: Assume k̃ = k and use the dispersion relation for ω̃.
Second possibility: Assume ω̃ = ω and use the dispersion relation for k̃.

The first possibility will lead to the grid phase velocity of the wave with a true physical
wavelength. The second one will lead to the grid phase velocity of the wave with a true
physical frequency.

Grid phase velocity of the wave with a true physical wavelength
Recalling relations (7.71) and (7.70) we obtain the following alternative relations for

stable wave propagation:

ṽ = ω̃real

k
= 1

pkh
arccos

{
1 + p2 [cos (kh) − 1]

}
c

= 1

ω�
arccos

{
1 + p2

[
cos

(
ω�

p

)
− 1

]}
c

= Nλ

2πp
arccos

{
1 + p2

[
cos

(
2π

Nλ

)
− 1

]}
c (7.92)

The grid phase velocity given by any one of the relations (7.92) is the velocity of the grid
wave that has the same wavelength λ as the true physical wave. The fourth of the relations
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Figure 7.4 The normalized grid phase velocity (a) and normalized grid group velocity (b) of the grid
wave with physical wavelength λ, as a function of the spatial samplingNλ of the physical wavelength.

(7.92) is useful for practical simulations because, for a given value of the stability ratio p,
it directly relates grid phase velocity to spatial sampling Nλ. The normalized grid phase
velocities for five values of p are shown in Fig. 7.4a.

It is also interesting to look at the phase velocity of an unstable wave. Recalling relations
(7.56) and (7.59), the phase velocity is

ṽU = ω̃real

k
= π

�

λU

2π
= π

�

2h

2π
= h

�
= c

S
(7.93)

The phase velocity of an unstable wave is surprisingly simply related to the stability factor
S. Note that ṽU = h

�
is the maximum possible grid phase velocity. A grid wave cannot

propagate a larger distance than h in one time step �.
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Grid phase velocity of the wave with a true physical frequency
We obtain the following alternative relations for the nonattenuative regime:

ṽ = ω

k̃real
= ω�

p arccos

{
1 + 1

p2
[cos (ω�) − 1]

}c

= kh

arccos

{
1 + 1

p2
[cos (pkh) − 1]

}c

= 2π

pNT arccos

{
1 + 1

p2

[
cos

(
2π

NT

)
− 1

]}c (7.94)

The grid phase velocity given by any one of the relations (7.94) is the velocity of the grid
wave that has the same frequency as the true physical wave.

What is the phase velocity in the nondissipative (stable) but attenuative regime? Using
(7.84) we obtain

ṽ = ω

k̃real
= h

π

2π

T
= 2

SNT
c = 2

pNT
c (7.95)

The grid phase velocity can be numerically illustrated. In order to compare the phase
velocity with attenuation, we rewrite the relations for the phase velocities (7.94) and (7.95)
as functions of fnormalized:

for f ≤ fATT

ṽ = 2πfnormalized

p arccos
{

1 + 1
p2 [cos (2πfnormalized) − 1]

}c (7.96)

for fATT < f ≤ fN

ṽ = 2fnormalized

p
c (7.97)

The upper panel of Fig. 7.5 shows the normalized grid phase velocity, the bottom panel
shows the amplitude attenuation factor. Both panels clearly visualize the sudden change of
the displayed quantities at fATT .

7.2.6.2 Grid group velocity

The existence of grid dispersion of the phase velocity implies the existence of the grid
group velocity:

ṽG ≡ ∂ω̃

∂k
(7.98)
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Figure 7.5 The normalized grid phase velocity (top panel) and the amplitude attenuation factor
(bottom panel) of the grid wave with physical frequency ω as a function of the normalized frequency
fnormalized . For each value of the stability ratio p the normalized grid phase velocity has a sharp
minimum at the normalized frequency of fATT,normalized. For each value of p the amplitude attenuation
factor falls from the unit value at fATT,normalized.

Recalling relations (7.53), (7.54), (7.69) and (7.70)

ṽG = ∂ω̃

∂k
= p sin (kh)√

1 − {
1 + p2 [cos (kh) − 1]

}2
c

= p
sin

(
2π

Nλ

)
√

1 −
{

1 + p2

[
cos

(
2π

Nλ

)
− 1

]}2
c (7.99)

The normalized grid group velocities for five values of p are shown in Fig. 7.4b.
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7.2.7 Local error

Recall scheme (7.21):

um+1
I = 2umI − um−1

I +
(
c
�

h

)2 (
umI+1 − 2umI + umI−1

)
(7.100)

which can be written symbolically as

u (I, t +�) = numerical scheme {u (t −�) , u (t)} (7.101)

Define a numerical solution in one time step as

uN (I, t +�) ≡ numerical scheme
{
uE (t −�) , uE (t)

}
(7.102)

where the upper index N indicates the numerical solution, and the upper index E indicates
an exact value. Because we consider

u (x, t) = exp [i (ωt − kx)] (7.103)

the exact displacement is complex. We can define a local error for real parts of the numerical
and exact displacements as follows: a relative local error in amplitude is

εRel
ampl ≡

(
�ref

�

)2 ∣∣∣∣AN − AE

AE

∣∣∣∣ =
(
�ref

�

)2 ∣∣∣∣AN

AE
− 1

∣∣∣∣ (7.104)

where AN is the modulus of the real part of the numerical displacement in one time step
and AE is the modulus of the real part of the exact displacement – both evaluated at time
t +�. If the local error is to be a general concept it has to be reasonably defined also
for possible comparisons with other schemes. Because different numerical schemes use
different time steps, we have to normalize the error for a unit time. Because the time
derivative is approximated with the 2nd-order accuracy, we have to normalize the error with
the square of �. The division gives the error a physical unit (s−2) and larger value. These
can be compensated, for example, by multiplication by the square of some time-step value
�ref taken as a reference.

Without loss of generality, consider for simplicity

xI = 0, tm = 0 (7.105)

Then the errors are evaluated at

xI = 0, tm+1 = � (7.106)

The exact real displacement at this space–time grid position is

Re
{
uE (0,�)

} = cosω� (7.107)

and

AE = ∣∣Re
{
uE (0,�)

}∣∣ = |cosω�| (7.108)
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The exact complex displacements entering the r.h.s. of scheme (7.100) are

umI = 1 um−1
I = exp (−iω�)

umI+1 = exp (−ikh) umI−1 = exp (+ikh)
(7.109)

The numerical complex displacement at xI = 0 and tm+1 = � is

uN (0,�) = 2 − exp (−iω�) + S2
[
exp (−ikh) − 2 + exp (+ikh)

]
= 2 − cosω�+ i sinω�+ 2S2 [cos kh− 1]

(7.110)

The real part of the numerical displacement is

Re
{
uN (0,�)

} = 2 − cosω�+ 2S2 [cos kh− 1] (7.111)

AN = ∣∣Re
{
uN (0,�)

}∣∣ = ∣∣2 − cosω�+ 2S2 [cos kh− 1]
∣∣ (7.112)

Then,

εRel
ampl =

(
�ref

�

)2
∣∣∣∣∣
∣∣2 − cosω�+ 2S2 [cos kh− 1]

∣∣
|cosω�| − 1

∣∣∣∣∣ (7.113)

In the previous analyses we assumed either true physical k and grid ω̃ or true physical ω
and grid k̃. Here the values entering the scheme at time levels m− 1 and m are exact. This
means that both k and ω are assumed exact at both time levels:

kh = 2πh

λ
= 2π

Nλ
(7.114)

ω� = 2π

T
� = 2π

λ
c p
h

c
SM︸ ︷︷ ︸
�

= 2π

Nλ
pSM (7.115)

Because SM = 1,

εRel
ampl =

(
�ref

�

)2

∣∣∣∣∣∣∣∣

∣∣∣∣2 − cos

(
2π

Nλ
p

)
+ 2p2

[
cos

(
2π

Nλ

)
− 1

]∣∣∣∣∣∣∣∣cos

(
2π

Nλ
p

)∣∣∣∣
− 1

∣∣∣∣∣∣∣∣ (7.116)

Note that (7.115) implies (
�ref

�

)2

=
(
Nλ

Nλ,ref

)2

(7.117)

The local errors in amplitude for five values of p are shown in Fig. 7.6. Note that the error
is zero for p = 1.

Note on the local error and grid dispersion It is clear that the local error in amplitude
quantifies how the exact amplitude changes in one time step due to inaccuracy of the
numerical scheme. In the analysis of grid dispersion we assume a constant amplitude of
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Figure 7.6 The local error in amplitude as a function of the spatial sampling Nλ of the physical
wavelength. �ref is chosen as the time step for Nλ = 20. Note that the error is zero for p = 1 – the
corresponding line is missing.

the grid wave (wave propagating in the stable nonattenuative regime). In one analysis
we assume a grid wave with grid wavenumber k̃ equal to the true wavenumber k and
investigate how the grid frequency ω̃ will be different from the true physical frequency ω.
In the other analysis we assume a grid wave with frequency ω̃ equal to the true frequency
ω and investigate how the grid wavenumber k̃ will be different from the true physical
wavenumber k. In both cases, the price for propagating the harmonic plane wave with
constant amplitude in a discrete grid is a grid velocity that differs from the true velocity,
and the difference depends on the size of the grid spacing and time step.

7.2.8 Sufficiently accurate numerical simulation

Consider an unbounded homogeneous medium characterized by the true wave speed c. Con-
sider that a wavefield is generated in the frequency range [fMIN, fMAX]. The corresponding
range of the wavelengths is [λMIN, λMAX] = [

c
fMAX
, c
fMIN

]
.

We want to numerically simulate the wavefield using the analyzed FD scheme (7.20)
sufficiently accurately for the range of wavelengths [λMIN, λMAX].

In order to prepare the numerical calculation we need to recall the stability condition,
Eq. (7.70),

� = ph
c
SM ; 0 < p ≤ 1, SM = 1 (7.118)

the grid dispersion of the phase velocity, Eq. (7.92) and Fig. 7.4,

ṽ = Nλ

2πp
arccos

{
1 + p2

[
cos

(
2π

Nλ

)
− 1

]}
c (7.119)
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and the grid dispersion of the group velocity, Eq. (7.99) and Fig. 7.6,

ṽG = p
sin

(
2π

Nλ

)
√

1 −
{

1 + p2

[
cos

(
2π

Nλ

)
− 1

]}2
c (7.120)

Relations (7.119) and (7.120) can be written as

ṽ = � (Nλ;p) c (7.121)

and

ṽG = �G (Nλ;p) c (7.122)

with

� (Nλ;p) = Nλ

2πp
arccos

{
1 + p2

[
cos

(
2π

Nλ

)
− 1

]}
> 0 (7.123)

and

�G (Nλ;p) = p
sin

(
2π

Nλ

)
√

1 −
{

1 + p2

[
cos

(
2π

Nλ

)
− 1

]}2
> 0 (7.124)

We can proceed as follows:

(a) We choose a value of the stability ratio 0 < p ≤ 1 that is a fraction of the maximum
possible time step.

(b) We require that the absolute value of the difference between the true arrival time and
numerical phase arrival time at distance D be not larger than δ:∣∣∣∣Dc − D

ṽ (p)

∣∣∣∣ ≤ δ (7.125)

Condition (7.125) transforms to

D

D + cδ ≤ � (Nλ;p) ≤ D

D − cδ (7.126)

(c) We find the smallest Nλ ≡ Np,δλ that satisfies condition (7.126).
(d) If we apply the spatial sampling Np,δλ to λMIN , we obtain the value of the grid spacing:

h = λMIN

N
p,δ
λ

(7.127)

(e) Having the grid spacing h we can determine the value of the time step:

� = ph
c
SM (7.128)

(f) Finally, we can check whether fMAX� ≤ fATT,normalized (p), see Eq. (7.88).
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Figure 7.7 Conventional space–time grid for the 1D displacement formulation.

Steps (b)–(f) can alternatively be applied to the grid group velocity. The choice of either of
the two grid velocities may be case dependent.

7.3 FD schemes for an unbounded smoothly heterogeneous medium

7.3.1 (2,2) displacement scheme on a conventional grid

Consider an unbounded smoothly heterogeneous perfectly elastic medium characterized by
elastic modulusM(x) and density ρ(x). Recall the equation of motion in the displacement
formulation (7.2):

ρ
∂2u

∂t2
= ∂

∂x

(
M
∂u

∂x

)
(7.129)

which can be written as

EQ ≡ ρ ∂
2u

∂t2
− ∂

∂x

(
M
∂u

∂x

)
, EQ = 0 (7.130)

Consider a conventional space–time grid with time step � and spatial grid spacing h, see
Fig. 7.7.

Approximate Eq. (7.130) at the time level m and spatial position I . Whereas the 2nd

temporal derivative can be easily approximated using the 2nd-order centred FD formula, it
is clear that approximating the 2nd spatial derivative is not trivial due to the presence of
modulus M, which is a function of x. Defining an auxiliary function φ,

φ ≡ M∂u
∂x

(7.131)

the 2nd spatial derivative can be approximated as

∂

∂x

(
M
∂u

∂x

)∣∣∣∣m
I

= ∂φ

∂x

∣∣∣∣m
I

.= 1

h

(
φmI+1/2 − φmI−1/2

)
(7.132)

Rewrite Eq. (7.131):

φ

M
= ∂u

∂x
(7.133)
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and integrate it: ∫ xI+1

xI

φ

M
dx =

∫ xI+1

xI

∂u

∂x
dx (7.134)

Applying the mean-value theorem to the l.h.s. integral and approximating the mean value
by φmI+1/2 we obtain

φmI+1/2

∫ xI+1

xI

1

M
dx

.= umI+1 − umI (7.135)

Define an effective grid material parameter as an integral harmonic average:

MxH
I+1/2 ≡

[
1

h

∫ xI+1

xI

1

M
dx

]−1

(7.136)

Then Eq. (7.135) gives

φmI+1/2
.= MxH

I+1/2
1

h

(
umI+1 − umI

)
(7.137)

Applying approximation (7.137) to Eq. (7.132) we obtain

∂

∂x

(
M
∂u

∂x

)∣∣∣∣m
I

.= 1

h2

[
MxH
I+1/2

(
umI+1 − umI

)−MxH
I−1/2

(
umI − umI−1

)]
(7.138)

The FD approximation of EQ, say FDEQ, is then

FDEQ|mI ≡ ρI 1

�2

(
um+1
I − 2umI + um−1

I

)
− 1

h2

[
MxH
I+1/2

(
umI+1 − umI

)−MxH
I−1/2

(
umI − umI−1

)] (7.139)

Note that the integration leading to the integral harmonic averaging of the elastic modulus
was originally suggested by Tikhonov and Samarskii (see, e.g., Boore 1972b; Mitchell
1969, p. 23) as a mathematical tool to avoid differentiating the modulus.

In order to find the truncation error of the approximation, consider for simplicity that
MxH
I±1/2 are the local values ofM at the grid positions I ± 1/2. Then,

TrunErr {FDEQ} = TaylorExpansion {FDEQ} − EQ

= 1

12
ρ
∂4u

∂t4
�2 +O(�4)

−
(

1

24

∂3M

∂x3

∂u

∂x
+ 1

8

∂2M

∂x2

∂2u

∂x2
+ 1

6

∂M

∂x

∂3u

∂x3
+ 1

12
M
∂4u

∂x4

)
h2 +O(h4)

(7.140)
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Because the leading term of the truncation error consists of a term with�2 and a term with
h2, we can say that FDEQ is consistent with EQ with 2nd-order accuracy both in time and
space. In the case of a homogeneous medium, FDEQ and its truncation error simplify:

FDEQ|mI = ρ 1

�2

(
um+1
I − 2umI + um−1

I

)−M 1

h2

(
umI+1 − 2umI + umI−1

)
(7.141)

TrunErr {FDEQ} = 1

12
ρ
∂4u

∂t4
�2 +O(�4) − 1

12
M
∂4u

∂x4
h2 +O(h4) (7.142)

FDEQ for a homogeneous medium was investigated in detail in Section 7.2.
Approximations (7.139) and (7.141) imply the explicit FD scheme:

Um+1
I = 2UmI − Um−1

I

+ bI
(
�

h

)2 [
MxH
I+1/2

(
UmI+1 − UmI

)−MxH
I−1/2

(
UmI − UmI−1

)]
(7.143)

for a smoothly heterogeneous medium, and

Um+1
I = 2UmI − Um−1

I + bM
(
�

h

)2 (
UmI+1 − 2UmI + UmI−1

)
(7.144)

for a homogeneous medium. Using U instead of u we indicate that values in the schemes
are, except for two initial time levels, approximate.

Note that Zahradnı́k (1995b), Zahradnı́k and Priolo (1995), Moczo et al. (1999) and
Kristek and Moczo (2006) demonstrated that harmonic averaging (7.136) is essential for
accounting for the medium heterogeneity.

7.3.2 (2,2) displacement–stress scheme on a spatially staggered grid

For the displacement–stress (DS) formulation (7.1) we define

EQu ≡ ρ ∂
2u

∂t2
− ∂σ
∂x
, EQu = 0

EQσ ≡ σ −M∂u
∂x
, EQσ = 0

(7.145)

In the DS formulation we can explicitly treat both the displacement u and stress σ . Consid-
ering a possible space–time grid we can notice an interesting feature: according to the first
of Eqs. (7.145), the 2nd temporal derivative of u and the 1st spatial derivative of σ have to
be approximated at the same space–time grid position. Similarly, according to the equation
for EQσ , also σ and the 1st spatial derivative of u have to share a space–time grid position.
If we want to use centred approximations to both 1st spatial derivatives, we naturally come
to the spatially staggered grid illustrated in Fig. 7.8.
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Figure 7.8 Spatially staggered space–time grid for the 1D displacement–stress formulation.

Approximate EQu at time level m and spatial position I :

FDEQu|mI ≡ ρI 1

�2

(
um+1
I − 2umI + um−1

I

)− 1

h

(
σmI+1/2 − σmI−1/2

)
(7.146)

and EQσ at time level m and spatial position I + 1/2:

FDEQσ |mI+1/2 ≡ σmI+1/2 −MI+1/2
1

h

(
umI+1 − umI

)
(7.147)

The two approximations imply the explicit DS scheme on a spatially staggered grid:

Um+1
I = 2UmI − Um−1

I + bI �
2

h

(
T mI+1/2 − T mI−1/2

)
(7.148)

T mI+1/2 = MI+1/2
1

h

(
UmI+1 − UmI

)
(7.149)

We used symbol T to indicate approximate grid values of the stress. If we need to calculate
explicitly both displacement and stress, we can use scheme (7.149) to calculate stress
(having explicit variables for stress in a computer code) and then use the values of stress for
updating displacement according to scheme (7.148). Note, however, that substituting T mI+1/2

and T mI−1/2 by the appropriate r.h.s. of scheme (7.149) we eliminate the stress variables and
obtain

Um+1
I = 2UmI − Um−1

I

+ bI
(
�

h

)2 [
MI+1/2

(
UmI+1 − UmI

)−MI−1/2
(
UmI − UmI−1

)] (7.150)

which differs from the displacement scheme (7.143) only by the effective grid elastic
moduli. This is just because in elaborating the DS approximation we did not face the
explicit problem with the spatial derivative of the modulus and simply used MI+1/2 and
MI−1/2. From the simple way of making the approximation, we cannot see how the effective
grid values of modulus should be determined in order to properly account for the medium
heterogeneity. We will address this important question later. Here, we just note that the use
of the harmonic averages gives the best results (e.g., Kristek and Moczo 2006).
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Figure 7.9 Space–time grid positions for the 2nd-order approximations of the 1st temporal and spatial
derivatives in the velocity–stress formulation.

Apart from the effective grid moduli, we see that the approximation of the equation in the
displacement formulation on a conventional grid and the approximations of the equations in
the DS formulation on a spatially staggered grid, in both cases using the 2nd-order centred
FD approximations to the temporal and spatial derivatives, led to the same explicit scheme.
This is just because we deal with the 1D problem and use 2nd-order approximations.

7.3.3 (2,2) velocity–stress scheme on a staggered grid

For the velocity–stress (VS) formulation (7.9) we can define

EQv ≡ ∂v

∂t
− b∂σ

∂x
, EQv = 0

EQσ ≡ ∂σ

∂t
−M ∂v

∂x
, EQσ = 0

(7.151)

The formulation itself suggests treating both particle velocity and stress explicitly. At the
same time, it is reasonable to consider replacing all the first derivatives by the centred FD
approximation. In order to have both ∂v

∂t
and ∂σ

∂x
approximated by the centred FD formula

at the same space–time grid position, it is reasonable to have the spatial grid position of σ
displaced from that of ∂v

∂t
. Consequently, the temporal grid position of v should be shifted

from that of σ – see Fig. 7.9a.
Similarly, in order to have both ∂σ

∂t
and ∂v

∂x
approximated by the centred FD formula at

the same space–time grid position, it is reasonable to consider the space–time grid positions
shown in Fig. 7.9b. Naturally, we come to the grid that is staggered in both time and space,
Fig. 7.10.

Equations (7.151) may be approximated as

FDEQv|mI ≡ 1

�

(
v
m+1/2
I − vm−1/2

I

)
− bI 1

h

(
σmI+1/2 − σmI−1/2

)
FDEQσ |m−1/2

I−1/2 ≡ 1

�

(
σmI−1/2 − σm−1

I−1/2

)
−MI−1/2

1

h

(
v
m−1/2
I − vm−1/2

I−1

) (7.152)
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Figure 7.10 Space–time grid for the 1D velocity–stress formulation. The grid is staggered in both
time and space.

The approximations are 2nd-order accurate in time and space. They imply the (2,2) VS
scheme on the staggered grid:

V
m+1/2
I = V m−1/2

I + bI �
h

(
T mI+1/2 − T mI−1/2

)
T mI−1/2 = T m−1

I−1/2 +MI−1/2
�

h

(
V
m−1/2
I − V m−1/2

I−1

) (7.153)

Clearly, the second scheme can be used to update stress. Then the first scheme can be used
to update particle velocity.

Substituting T mI+1/2 and T mI−1/2 in the scheme for particle velocity gives

V
m+1/2
I = V m−1/2

I + bI �
h

[
T m−1
I+1/2 +MI+1/2

�

h

(
V
m−1/2
I+1 − V m−1/2

I

)

− T m−1
I−1/2 −MI−1/2

�

h

(
V
m−1/2
I − Vm−1/2

I−1

)]
(7.154)

The scheme for particle velocity applied to time level m− 1 implies

bI
�

h

(
T m−1
I+1/2 − T m−1

I−1/2

)
= V m−1/2

I − Vm−3/2
I (7.155)

Using Eq. (7.155) in Eq. (7.154) leads to

V
m+1/2
I = 2V m−1/2

I − Vm−3/2
I

+ bI
(
�

h

)2 [
MI+1/2

(
V
m−1/2
I+1 − V m−1/2

I

)
−MI−1/2

(
V
m−1/2
I − Vm−1/2

I−1

)]
(7.156)
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Comparison of scheme (7.156) with scheme (7.143) reveals that scheme (7.156) corre-
sponds to the equations

ρ
∂2v

∂t2
= ∂

∂x

(
M
∂v

∂x

)
(7.157)

or

ρ
∂2v

∂t2
= ∂

∂x

∂σ

∂t
,
∂σ

∂t
= M ∂v

∂x
(7.158)

that are obtained by temporally differentiating the displacement-formulation equation (7.2)
or the DS equations (7.1), respectively. Note that once we have eliminated the explicit
presence of stress we could replace temporal indices in scheme (7.156) by integer indices.

7.3.4 Optimally accurate displacement scheme on a conventional grid

Is the 2nd-order accuracy in time and space sufficient for the acceptably accurate and
computationally efficient numerical modelling of seismic wave propagation? Despite the
relativity of the concept the answer is no. Nor for 1D propagation over distances of several
dominant wavelengths are the 2nd-order accurate schemes efficient. The question is, how
to obtain an FD scheme that would be sufficiently efficient.

Here we explain a particular optimization approach by Geller and Takeuchi (1995, 1998).
The concise exposition of the general criterion for the optimally accurate FD operators
developed by Geller and his co-workers can be found in, e.g., Moczo et al. (2007a,b). Later
we will explore other possibilities.

Recall the truncation error (7.142) corresponding to approximation (7.141) and scheme
(7.143). In the case of a homogeneous medium it also applies to scheme (7.150), and its
structure is the same as that of scheme (7.156) – apart from the particle velocity appearing
instead of displacement and non-integer temporal indices. Write the error (7.142) as

TrunErr {FDEQ} = 1

12
�2 ∂

2

∂t2

(
ρ
∂2u

∂t2

)∣∣∣∣m
I

+O(�4)

+ 1

12
h2 ∂2

∂x2

(
−M∂

2u

∂x2

)∣∣∣∣m
I

+O(h4) (7.159)

We can think of an approximation, say OFDEQ, with the truncation error equal to

TrunErr {OFDEQ} = 1

12
�2 ∂

2

∂t2

(
ρ
∂2u

∂t2
−M∂

2u

∂x2

)∣∣∣∣
m

I

+O(�4)

+ 1

12
h2 ∂2

∂x2

(
ρ
∂2u

∂t2
−M∂

2u

∂x2

)∣∣∣∣m
I

+O(h4) (7.160)

Why? Because the leading term of the error would be identically equal to zero in the case
of normal modes in a homogeneous medium – due to the expressions in parentheses. The
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Figure 7.11 Space–time grid positions for approximating derivatives at the spatial position xI and
time tm: (a) the 2nd spatial derivative, (b) the 2nd temporal derivative.

corresponding FD approximation, OFDEQ, would then be two orders more accurate in
both time and space than FDEQ in Eq. (7.141).

We now try to find OFDEQ. The new term 1
12�

2 ∂2

∂t2

(−M ∂2u
∂x2

)∣∣m
I

in error (7.160) can
appear in the truncation error due to an approximation of the 2nd spatial derivative in Eq.
(7.130). This is possible if the approximation of the spatial derivative at time tm is some
weighted average of approximations of spatial derivatives at times tm−1, tm and tm+1. This
is illustrated in Fig. 7.11a.

Similarly, the new term 1
12h

2 ∂2

∂x2

(
ρ ∂

2u
∂t2

)∣∣m
I

in Eq. (7.160) can appear due to an approx-
imation of the 2nd temporal derivative in Eq. (7.130). This is possible if the approxima-
tion of the temporal derivative at the spatial position xI is some weighted average of
approximations of temporal derivatives at positions xI−1, xI and xI+1. This is illustrated
in Fig. 7.11b. Consequently, the sought approximation OFDEQ of Eq. (7.130) should
include displacement values at nine space–time positions and could be formally written
as

OFDEQ|mI = ρ 1

�2

(
a11u

m+1
I−1 + a12u

m+1
I + a13u

m+1
I+1

+ a21u
m
I−1 + a22u

m
I + a23u

m
I+1

+ a31u
m−1
I−1 + a32u

m−1
I + a33u

m−1
I+1

)
−M 1

h2

(
c11u

m+1
I−1 + c12u

m+1
I + c13u

m+1
I+1

+ c21u
m
I−1 + c22u

m
I + c23u

m
I+1

+ c31u
m−1
I−1 + c32u

m−1
I + c33u

m−1
I+1

)
(7.161)

or, in a concise form, as

OFDEQ =
(
ρ

1

�2
aij −M 1

h2
cij

)
uij (7.162)
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where we assume the summation convention for indices i and j (no matrix multiplication),
and uij means displacements at nine space–time positions. In matrix form they are

[
uij
] ≡

⎡
⎢⎣
um+1
I−1 um+1

I um+1
I+1

umI−1 umI umI+1

um−1
I−1 um−1

I um−1
I+1

⎤
⎥⎦ (7.163)

The 18 unknown coefficients aij and cij have to be determined so that the truncation error

TrunErr {OFDEQ} = TaylorExpansion {OFDEQ} −
(
ρ
∂2u

∂t2
−M∂

2u

∂x2

)
(7.164)

is equal to that given by Eq. (7.160). Because OFDEQ uses values of displacements
at nine space–time positions, only nine coefficients of the Taylor expansion of OFDEQ
are independent. The two known terms in parentheses in Eq. (7.164) do not change the
structure of independence of the Taylor expansion coefficients. Consequently, we have
freedom in choosing for which coefficients we impose conditions in order to obtain the
desired TrunErr{OFDEQ}. Denote

coefD(k,l)u ≡ coefficient of (TaylorExpansion{OFDEQ} − EQ) at
∂k+l

∂tk∂xl

(7.165)

The 18 unknown coefficients aij and cij can be found from the system of equations:

8 conditions: coef D(k,l)u = 0; k, l ∈ {0, 1, 2} , (k, l) 	= (2, 2) , k + l ≤ 3 (7.166)

1 condition: coef D(2,2)u = 1

12
(h2ρ −�2M) (7.167)

9 conditions: aij = cji ; i, j ∈ {1, 2, 3} (7.168)

Conditions (7.166) mean that the truncation error does not include terms with derivatives
∂u
∂t
, ∂

2u
∂t2
, ∂u
∂x
, ∂

2u
∂x2 ,

∂2u
∂t∂x
, ∂

3u
∂t∂x2 ,

∂3u
∂t2∂x

and u itself. Condition (7.167) requires those two addi-
tional terms in error (7.160) that are not present in error (7.159). Conditions (7.168) mean
that the matrix of coefficients aij is a transpose to the matrix of coefficients cij . In other
words, the temporal derivative at position xI is calculated as an average of temporal deriva-
tives at positions xI−1, xI and xI+1 in the same way as the spatial derivative at time tm is
calculated as an average of spatial derivatives at times tm−1, tm and tm+1.

Note that conditions

coefD(4,0)u = 1

12
�2ρ, coefD(0,4)u = 1

12
h2M (7.169)

implied by Eq. (7.160) do not need to be explicitly required because they are not indepen-
dent.
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Solving system (7.166)–(7.168) we obtain the following coefficients:

aij = 1

12

⎡
⎣ 1 10 1

−2 −20 −2
1 10 1

⎤
⎦ , cij = 1

12

⎡
⎣ 1 −2 1

10 −20 10
1 −2 1

⎤
⎦ (7.170)

Substituting them in Eq. (7.161) gives

OFDEQ = ρ 1

12�2

[
um+1
I−1 − 2umI−1 + um−1

I−1 + 10
(
um+1
I − 2umI + um−1

I

)
+ um+1

I+1 − 2umI+1 + um−1
I+1

]−M 1

12h2

[
um+1
I+1 − 2um+1

I + um+1
I−1

+ 10
(
umI+1 − 2umI + umI−1

)+ um−1
I+1 − 2um−1

I + um−1
I−1

]
(7.171)

Equation (7.171) is the sought optimized FD approximation, that is, the approximation with
the desired truncation error (7.160). The structure of terms in the first brackets clearly visu-
alizes how ∂2u

∂t2

∣∣m
I

is approximated. It is the 1–10–1 weighted average of the standard centred
2nd-order approximations of the 2nd temporal derivatives at spatial positions xI−1, xI and
xI+1. Similarly, the structure of terms in the second brackets visualizes the approximation
of ∂

2u
∂x2

∣∣m
I

by the 1–10–1 weighted average of the standard centred 2nd-order approximations
of the 2nd spatial derivatives at times tm−1, tm and tm+1.

Compare the standard FDEQ, Eq. (7.141), with the optimized OFDEQ, Eq. (7.171). The
standard one can be written in the form of Eq. (7.171) or (7.162):

FDEQ =
(
ρ

1

�2
ãij −M 1

h2
c̃ij

)
uij (7.172)

ãij =
⎡
⎣0 1 0

0 −2 0
0 1 0

⎤
⎦ , c̃ij =

⎡
⎣0 0 0

1 −2 1
0 0 0

⎤
⎦ (7.173)

It is obvious that OFDEQ does not give an explicit FD scheme. This is the price for
obtaining the desired truncation error by approximating the spatial derivative at time tm by
the average of approximations at times tm−1, tm and tm+1, and approximating the temporal
derivative at position xI by the average of approximations at positions xI−1, xI and xI+1.
In this case, however, it is easy to avoid solving a large system of linear equations of the
implicit scheme at each time step by using the predictor-corrector method suggested by
Geller and Takeuchi (1998). The method is based on the 1st-order Born approximation.

Method for solving the implicit optimally accurate scheme Write the standard explicit
and optimized implicit FD schemes in the same form:(

ρ
1

�2
ãij −M 1

h2
c̃ij

)
Ũij = 0 (7.174)(

ρ
1

�2
aij −M 1

h2
cij

)
Uij = 0 (7.175)
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Grid displacements Ũij andUij have the same structure as uij in Eq. (7.163). It is reasonable
to use an easy-to-calculate explicit scheme for obtaining the predictor value. Consider

δaij ≡ aij − ãij , δcij ≡ cij − c̃ij , δUij ≡ Uij − Ũij (7.176)

Substituting relations (7.176) in Eq. (7.175) and applying the 1st-order Born approximation
we obtain (

ρ
1

�2
ãij −M 1

h2
c̃ij

)
δUij = −

(
ρ

1

�2
δaij −M 1

h2
δcij

)
Ũij (7.177)

Predictor-corrector algorithm for solving the implicit scheme (7.175)

(1) Find Ũm+1
I (that is Ũ12 – see Eq. (7.163)) by solving the explicit scheme (7.174). Apply

to all spatial positions.
(2) Evaluate the r.h.s. of Eq. (7.177).
(3) Solve Eq. (7.177) assuming δU at time levels m− 1 and m equal to zero. Then it is

easy to obtain δUm+1
I , that is δU12.

(4) Um+1
I (≡ U12) = Ũm+1

I + δUm+1
I .

(5) The value of Um+1
I is assigned to variable Ũm+1

I .
(6) m+ 1 → m, m→ m− 1, continue with step 1.

Concluding remark Kristek and Moczo (2006) performed a detailed comparison of the
1D (2,2) displacement conventional-grid scheme, the optimized scheme and the (2,4)
displacement–stress staggered-grid scheme (the next section) for a homogeneous space, a
contact of two halfspaces and an interior layer with velocity gradient. They demonstrated
superior accuracy of the optimized scheme with respect to the two other schemes.

7.3.5 (2,4) and (4,4) velocity–stress schemes on a staggered grid

We now return to the VS formulation on a staggered grid (SG) and try to find approximations
more accurate than those of the (2,2) scheme. Consider the SG illustrated in Fig. 7.10 and
recall Eq. (7.151) for the VS formulation:

EQv ≡ ∂v

∂t
− b∂σ

∂x
− bf, EQv = 0

EQσ ≡ ∂σ

∂t
−M ∂v

∂x
, EQσ = 0

(7.178)

Here we included the body force f for a reason that will become clear later. From the
difference of Taylor expansions of vm+1/2

I and vm−1/2
I about vmI we obtain

v
m+1/2
I = vm−1/2

I +� ∂v
∂t

∣∣∣∣m
I

+ 1

24
�3 ∂

3v

∂t3

∣∣∣∣m
I

+O(�5) (7.179)
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Similarly, from Taylor expansions of σmI−1/2 and σm−1
I−1/2 about σm−1/2

I−1/2 ,

σmI−1/2 = σm−1
I−1/2 +� ∂σ

∂t

∣∣∣∣m−1/2

I−1/2

+ 1

24
�3 ∂

3σ

∂t3

∣∣∣∣m−1/2

I−1/2

+O(�5) (7.180)

Then EQv and EQσ may be expressed as

EQv|mI

= 1

�

(
v
m+1/2
I − vm−1/2

I

)
− 1

24
�2 ∂

3v

∂t3

∣∣∣∣m
I

+O(�4) − b∂σ
∂x

∣∣∣∣m
I

− b f |mI (7.181)

EQσ |m−1/2
I−1/2

= 1

�

(
σmI−1/2 − σm−1

I−1/2

)
− 1

24
�2 ∂

3σ

∂t3

∣∣∣∣m−1/2

I−1/2

+O(�4) − M ∂v
∂x

∣∣∣∣m−1/2

I−1/2

(7.182)

We have two possibilities: if we drop the terms with the 3rd temporal derivative in both
equations we can obtain only 2nd-order accuracy in time; if we keep the terms we can obtain
4th-order accuracy. We will explore both possibilities.

7.3.5.1 (2,4) VS SG scheme

Consider first the simpler case:

EQv|mI = 1

�

(
v
m+1/2
I − vm−1/2

I

)
+O(�2) − b∂σ

∂x

∣∣∣∣m
I

− b f |mI (7.183)

EQσ |m−1/2
I−1/2 = 1

�

(
σmI−1/2 − σm−1

I−1/2

)
+O(�2) − M ∂v

∂x

∣∣∣∣m−1/2

I−1/2

(7.184)

The approximation of the spatial derivatives with 2nd-order accuracy (and omitting the
body-force term) would give Eqs. (7.152) and eventually the (2,2) scheme (7.153). The
spatial derivatives can, however, be approximated with 4th-order accuracy. Then the approx-
imations of EQσ and EQv are

FDEQv|mI = 1

�

(
v
m+1/2
I − vm−1/2

I

)
− bI 1

h

[
9
8

(
σmI+1/2 − σmI−1/2

)− 1
24

(
σmI+3/2 − σmI−3/2

)]− b f |mI
FDEQσ |m−1/2

I−1/2 = 1

�

(
σmI−1/2 − σm−1

I−1/2

)
−MI−1/2

1

h

[
9
8

(
v
m−1/2
I − vm−1/2

I−1

)
− 1

24

(
v
m−1/2
I+1 − vm−1/2

I−2

)]
(7.185)
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The approximations lead to the explicit (2,4) VS scheme on the SG:

V
m+1/2
I = V m−1/2

I + bI �
h

[
9
8

(
T mI+1/2 − T mI−1/2

)− 1
24

(
T mI+3/2 − T mI−3/2

)]+�b f |mI

T mI−1/2 = T m−1
I−1/2 +MI−1/2

�

h

[
9
8

(
V
m−1/2
I − V m−1/2

I−1

)
− 1

24

(
V
m−1/2
I+1 − V m−1/2

I−2

)]
(7.186)

We compare both schemes later – after we introduce the (4,4) schemes. A simple FD code
based on the scheme, with a detailed guide and numerical examples, can be found in the
introductory course by Moczo et al. (2004b).

7.3.5.2 (4,4) VS SG schemes

If we want to have 4th-order accuracy also in time we have to also approximate terms with the
3rd temporal derivative in Eqs. (7.182) and (7.181). It is clear that directly approximating
the 3rd temporal derivative would undesirably increase the number of time levels in the
scheme and thus also the requirements on computer memory. Moreover, the absolute value
of the weight coefficient of the most advanced time level would be considerably smaller
than those for the time levels closer to the time at which the derivative is approximated.
Consequently, the corresponding explicit formula for the most advanced time level might
be numerically inaccurate.

We may recall the Lax–Wendroff idea (Lax and Wendroff 1960; see Subsection 7.3.6)
to replace the 1st temporal derivative by the 1st spatial derivative. In this case, however,
we replace the 3rd temporal derivative by an adequate spatial derivative. In order to find
relations between them, recall Eqs. (7.178) and write

∂v

∂t
= b∂σ

∂x
+ bf, ∂σ

∂t
= M ∂v

∂x
(7.187)

We easily find

∂3v

∂t3
= b ∂

∂x

[
M
∂

∂x

(
b
∂σ

∂x

)]
+ b ∂
∂x

[
M
∂

∂x
(bf )

]
+ b∂

2f

∂t2

∂3σ

∂t3
= M ∂

∂x

[
b
∂

∂x

(
M
∂v

∂x

)]
+M ∂

∂x

(
b
∂f

∂t

) (7.188)

It is obvious that the relations are considerably complicated by the body-force term. Define
auxiliary functions:

ṽ ≡ b∂σ
∂x
, ˜̃σ ≡ M ∂ṽ

∂x
, ˜̃̃v ≡ b∂

˜̃σ

∂x
(7.189)

σ̃ ≡ M ∂v
∂x
, ˜̃v ≡ b∂σ̃

∂x
, ˜̃̃σ ≡ M ∂

˜̃v

∂x
(7.190)
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The 3rd temporal derivatives (7.188) are then

∂3v

∂t3
= ˜̃̃v + b ∂

∂x

[
M
∂

∂x
(bf )

]
+ b∂

2f

∂t2
≡ ˜̃̃v + fv

∂3σ

∂t3
= ˜̃̃σ +M ∂

∂x

(
b
∂f

∂t

)
≡ ˜̃̃σ + fσ

(7.191)

where we denoted terms with derivatives of the body force by fv and fσ . Equations (7.181)
and (7.182) then become, omitting the O symbol,

EQv|mI = 1

�

(
v
m+1/2
I − vm−1/2

I

)
− 1

24�
2 ˜̃̃v
m

I − ṽmI − 1
24�

2 fv|mI − b f |mI (7.192)

EQσ |m−1/2
I−1/2 = 1

�

(
σmI−1/2 − σm−1

I−1/2

)
− 1

24�
2 ˜̃̃σ
m−1/2

I−1/2 − σ̃ m−1/2
I−1/2 − 1

24�
2 fσ |m−1/2

I−1/2 (7.193)

The 4th-order approximation should be applied to calculate σ̃ and ṽ:

ṽmI = bI 1

h

[
9
8

(
σmI+1/2 − σmI−1/2

)− 1
24

(
σmI+3/2 − σmI−3/2

)]
σ̃
m−1/2
I−1/2 = MI−1/2

1

h

[
9
8

(
v
m−1/2
I − vm−1/2

I−1

)
− 1

24

(
v
m−1/2
I+1 − vm−1/2

I−2

)] (7.194)

We can continue with one of three options to obtain ˜̃̃v and ˜̃̃σ : (a) we consistently apply
the 4th-order approximation to calculate each of the 1st spatial derivatives in Eqs. (7.189)
and (7.190); (b) we apply the 4th-order approximation to calculate ṽ and σ̃ , and then the
2nd-order approximation to obtain the remaining quantities in Eqs. (7.189) and (7.190);
(c) we consistently apply the 2nd-order approximation to calculate each of the 1st spatial
derivatives in Eqs. (7.189) and (7.190). The last two options are possible because terms
with ˜̃̃v and ˜̃̃σ in Eqs. (7.192) and (7.193) are proportional to�2. Correspondingly, we may
refer to the three schemes as the (4,4a), (4,4b) and (4,4c) schemes. This will be clear from
the truncation errors.

7.3.5.3 Comparison of the (2,2), (2,4) and (4,4) VS SG schemes

The question is, how do the (2,2), (2,4), (4,4a), (4,4b) and (4,4c) VS SG schemes compare
to each other in terms of accuracy and computational efficiency? Consider for simplicity a
homogeneous medium.

In the homogeneous medium and without the body-force term, Eqs. (7.192) and (7.193)
considerably simplify and we obtain

1

�

(
v
m+1/2
I − vm−1/2

I

)
= 1

24
�2b2M

∂3σ

∂x3

∣∣∣∣m
I

+ b∂σ
∂x

∣∣∣∣m
I

(7.195)

1

�

(
σmI−1/2 − σm−1

I−1/2

)
= 1

24
�2bM2 ∂

3v

∂x3

∣∣∣∣m−1/2

I−1/2

+ M ∂v
∂x

∣∣∣∣m−1/2

I−1/2

(7.196)
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Table 7.3 Summary of the VS SG schemes and applied approximations of the spatial
derivatives

Denote the 2nd-order and 4th-order approximations of the first spatial derivative:

D(1−2)
x �mI ≡ 1

h

(
�mI+1/2 −�mI−1/2

)
(7.197)

D(1−4)
x �mI ≡ 1

h

[
9
8

(
�mI+1/2 −�mI−1/2

)− 1
24

(
�mI+3/2 −�mI−3/2

)]
(7.198)

�mI denotes either vmI or σmI . The schemes and applied approximations are summarized in
Table 7.3. Symbol ◦ denotes the convolution, see Subsection 6.2.2.

Truncation errors The leading terms of the truncation errors of the approximations of
equations for particle velocity (EQv) for a homogeneous medium are

(2, 2)
1

24

∂3v

∂t3
�2 − 1

24
b
∂3σ

∂x3
h2

(2, 4)
1

24

∂3v

∂t3
�2 + 3

640
b
∂5σ

∂x5
h4

(4, 4a)
1

1920

∂5v

∂t5
�4 + 3

640
b
∂5σ

∂x5
h4

(4, 4b)
1

1920

∂5v

∂t5
�4 − 1

288
b2M

∂5σ

∂x5
h2�2 + 3

640
b
∂5σ

∂x5
h4

(4, 4c)
1

1920

∂5v

∂t5
�4 − 1

192
b2M

∂5σ

∂x5
h2�2 + 3

640
b
∂5σ

∂x5
h4

(7.199)

The leading terms of the truncation errors for stress are analogous. Comparison of the
leading terms for the (2,2) and (2,4) schemes shows the significant effect of the 4th-
order approximation of the spatial derivative. Similarly, comparison for the (2,4) and (4,4)
schemes shows the effect of the 4th-order approximation of the temporal derivative. The
second terms in the errors for the (4,4b) and (4,4c) schemes are due to the 2nd-order
approximations applied to ˜̃σ and ˜̃v, and their spatial derivatives. Both schemes can be
considered (4,4) schemes because � is proportional to h and thus product h2�2 means
4th-order accuracy.
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Although the leading terms of the truncation errors suggest that the (4,4a) scheme might
be more accurate than the other schemes, it is necessary to check the accuracy of the
schemes in terms of grid dispersion.

Grid dispersion Assume

�mI = A� exp
[
i
(
ω̃m�− k̃Ih)] (7.200)

Then,

D(1−2)
x �mI = −i 2

h
sin
(

1
2 k̃h

)
�mI ≡ D(1−2)

x ·�mI (7.201)

D(1−4)
x �mI = −i 2

h

[
9
8 sin

(
1
2 k̃h

)− 1
24 sin

(
3
2 k̃h

)]
�mI ≡ D(1−4)

x ·�mI (7.202)

With reference to Subsection 6.2.3, note that,for example,D(1−2)
x �mI means the application

of the D(1−2)
x approximation operator to quantity �mI , whereas D(1−2)

x ·�mI means a simple
multiplication (indicated by a dot). It follows from Eq. (6.45) that for �mI given by Eq.
(7.200)

D(1−4)
x ◦D(1−4)

x ◦D(1−4)
x �mI = [

D(1−4)
x

]3 ·�mI
D(1−2)
x ◦D(1−2)

x ◦D(1−4)
x �mI = [

D(1−2)
x

]2 D(1−4)
x ·�mI (7.203)

D(1−2)
x ◦D(1−2)

x ◦D(1−2)
x �mI = [

D(1−2)
x

]3 ·�mI
It will be useful to introduce symbols S2 and S4,

S2 = sin
(

1
2 k̃h

)
, S4 = 9

8 sin
(

1
2 k̃h

)− 1
24 sin

(
3
2 k̃h

)
(7.204)

so that

D(1−2)
x = −i 2

h
S2, D(1−4)

x = −i 2
h
S4 (7.205)

For the l.h.s. of Eqs. (7.195) and (7.196) we obtain

1

�

(
v
m+1/2
I − vm−1/2

I

)
= i 2

�
sin
(

1
2 ω̃�

)
vmI (7.206)

1

�

(
σmI−1/2 − σm−1

I−1/2

)
= i 2

�
sin
(

1
2 ω̃�

)
σ
m−1/2
I−1/2 (7.207)

It will also be useful to introduce symbol Sω:

Sω = sin
(

1
2 ω̃�

)
(7.208)

We are now ready to derive grid-dispersion relations for the schemes listed in Table 7.3.
Here we explicitly show only the derivation for the (4,4b) scheme because it incorporates
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Table 7.4 Dispersion relations for the
VS SG schemes

Scheme Dispersion relation 

(2,2) 

( )2 1
2

sin ω Δ =  

2 2
2S S  

(2,4) 2 2
4S S  

(4,4a) ( )22 2 2 21
4 461S S S S−  

(4,4b) ( )22 2 2 21
4 26

1S S S S−  

(4,4c) ( )22 2 31
4 26

S S S S−  

both the D(1−2)
x and D(1−4)

x approximations. Equations (7.195) and (7.196) may be written
as

i
2

�
Sωv

m
I = 1

24
�2b2M

(
−i 2
h
S2

)2 (
−i 2
h
S4

)
σmI + b

(
−i 2
h
S4

)
σmI (7.209)

i
2

�
Sωσ

m−1/2
I−1/2 = 1

24
�2bM2

(
−i 2
h
S2

)2 (
−i 2
h
S4

)
v
m−1/2
I−1/2 +M

(
−i 2
h
S4

)
v
m−1/2
I−1/2

(7.210)

After rearrangement:

− SωvmI = �

h
bS4

(
1 − 1

6S
2S2

2

)
σmI (7.211)

− Sωσm−1/2
I−1/2 = �

h
MS4

(
1 − 1

6S
2S2

2

)
v
m−1/2
I−1/2 (7.212)

where, see Eqs. (7.28) and (7.69), S is the Courant number:

S = �

h

√
bM = �

h
c (7.213)

Substituting m and I for m− 1/2 and I − 1/2, respectively, in Eq. (7.212), we obtain

− SωσmI = �

h
MS4

(
1 − 1

6S
2S2

2

)
vmI (7.214)

Multiplying the l.h.s./r.h.s. of Eq. (7.211) by the l.h.s./r.h.s. of Eq. (7.214), respectively, we
obtain

S2
ω = S2S2

4

(
1 − 1

6S
2S2

2

)2
(7.215)

Equation (7.215) is the grid-dispersion relation for scheme (4,4b). Similarly, we obtain
relations for the other schemes listed in Table 7.3. All are summarized in Table 7.4.
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Figure 7.12 Plot of the r.h.s. of the dispersion relation Eq. (7.216) for −1 ≤ S2 ≤ 1 and 0 ≤ S ≤ 4.

Stability conditions In Subsection 7.2.4 we investigated the stability of scheme (7.21)
and found the stability condition S ≤ SM = 1; see Eqs. (7.61)–(7.70). Here we can use
the obtained dispersion relations for finding stability conditions for the investigated VS
SG schemes. Consider again the (4,4b) scheme. Equation (7.215) implies, after algebraic
manipulations,

sin
(

1
2 ω̃�

) = 1
36SS2

(
6 + S2

2

) (
6 − S2S2

2

)
(7.216)

An important feature of Eq. (7.216) is that the sine function on the r.h.s. appears only with
one argument 1

2 k̃h. Figure 7.12 shows a plot of the r.h.s. of Eq. (7.216) for −1 ≤ S2 ≤ 1
and 0 ≤ S ≤ 4. We want to find the minimum value of S above which the l.h.s. of Eq.
(7.216) falls outside interval [−1, 1]. It is clear from Fig. 7.12 that the value sought, SM , is
obtained from Eq. (7.216) for S2 = 1 or S2 = −1. In both cases we obtain SM = 1.05018.
The conclusion for the (4,4b) scheme is that the scheme is stable if

S ≤ SM = 1.05018 (7.217)
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Table 7.5 Modified dispersion relations and maximum values SM of
Courant number S for the VS SG schemes

or, equivalently,

� ≤ h

c
SM = 1.05018

h

c
(7.218)

Analogously, we can analyze the other schemes listed in Table 7.3. The modified dispersion
relations and SM values are given in Table 7.5.

The stability conditions for the (2,2) and (2,4) schemes are very well known. The SM
value for the (4,4c) scheme appears reasonable. The SM values for the (4,4a) and (4,4b)
schemes may be surprising because they are larger than 1. This is a consequence of the
larger stencil – the larger number of grid points used for approximating the 3rd spatial
derivative.

At this point we recommend additional reading on the analysis of stability and the
Courant–Friedrichs–Lewy condition in mathematical books such as those by Strikwerda
(2004) and LeVeque (2007).

Normalized grid phase velocity Any of the grid-dispersion relations in Table 7.5 may be
written as

sin
(

1
2 ω̃�

) = �(S, k̃h) (7.219)

from which we have

ω̃ = 2

�
arcsin�(S, k̃h) (7.220)

Assume k̃ = k, that is a grid wave with a true physical wavelength. The grid phase velocity,
Eq. (7.19), is

ṽ = ω̃real

k
= 2

k�
arcsin� (S, kh) (7.221)

The normalized grid phase velocity is then

ṽ

c
= 2

ck�
arcsin� (S, kh) (7.222)
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Table 7.6 Relations for the grid phase velocity in the VS SG schemes

Scheme 
Normalized grid 
phase velocity Ψ  

(2,2) 

arcsin
M

N

p S
λ

π
Ψ  

2S S  

(2,4) ( )1 2
2 26 6S S S− +  

(4,4a) ( )4 2 3 2 2 2 2
2 2 2 26 6 6 (6 )S S S S S S− + − +  

(4,4b) ( ) ( )2 2 2 2
2 2 26 6 6S S S S S− + −  

(4,4c) ( )1 2 2 2
2 2 26 6S S S S S− + −  

( )2 sin /MS p S S Nλπ= =  

c
ṽ

Recall Eqs. (7.63) and (7.66) for Courant number S, time step � and stability ratio p:

S ≤ SM, � = ph
c
SM (7.223)

Considering the definition of Courant number S we have

S = pSM ; 0 < p ≤ 1 (7.224)

Recall also the definition of the spatial sampling ratio Nλ, Eq. (7.34),

Nλ = λ

h
(7.225)

Then,

2

ck�
= 2λc

c2πphSM
= Nλ

πpSM
, kh = 2π

λ
h = 2π

Nλ
(7.226)

ṽ

c
= Nλ

πpSM
arcsin� (pSM,Nλ) (7.227)

Relations for the grid phase velocities are summarized in Table 7.6.
Although the stability condition found for the (4,4a) scheme formally admits values of

Courant number S ≤ SM = 2.44056, the normalized grid phase velocity for, approximately,
p > 0.4 and Nλ < 6 falls steeply below 1. The fraction p = 0.4 of SM = 2.44056 approx-
imately corresponds to S = 1. Therefore, we further consider SM = 1 for all investigated
VS SG schemes except the (2,4) scheme for which S ≤ SM = 6/7 ≈ 0.857143. Figure 7.13
shows the normalized grid phase velocities for all schemes for the spatial sampling ratio
2 ≤ Nλ ≤ 15 and four values of the stability ratio p = 0.9, 0.5, 0.2, 0.1. For p = 0.9 the
time step is equal to 90% of its maximum value. Consider a homogeneous medium. An
adequate choice then is, e.g., p = 0.9. It is clear from Fig. 7.13 that the grid phase velocity
ṽ of the optimized (4,4) schemes is closer to the true physical value c than the grid velocities
of the (2,2) and (2,4) schemes for, approximately, Nλ > 5. The best of the (4,4) schemes
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Figure 7.13 Normalized grid phase velocities ṽ/c for the (2,2), (2,4), (4,4a), (4,4b) and (4,4c)
velocity–stress staggered-grid schemes. Nλ is the spatial sampling ratio, p is the stability ratio
(fraction of the maximum possible/admitted time step). The maximum value of Courant number S is
set equal to 1 except in the (2,4) scheme for which it is 6/7.

is the (4,4c) scheme. The partial conclusion is that the optimization has a positive effect –
it reduces the grid dispersion compared to the schemes that are only 2nd-order accurate in
time.

Consider, however, a heterogeneous medium covered with a uniform spatial grid.
Assume, for instance, that the S-wave speed in the surface sediments is twice smaller
than the S-wave speed beneath the sediments. For a fixed value of the grid spacing h, the
maximum possible time step � is given by the stability condition S ≤ SM . The Courant
number for the sediments is, however, twice smaller than the Courant number for the
medium beneath the sediments. Consequently, the time step applied to sediments is twice
smaller than that required by the stability condition only for sediments. This means that
if p = 0.9 in the medium beneath sediments, p = 0.45 in sediments. We see that the dis-
persion curves of the (4,4) schemes for p = 0.5 are very close to each other, significantly
better than the curve of the (2,2) scheme, and better than the curve of the (2,4) scheme
for, approximately, Nλ > 6. In many realistic models of surface sedimentary structures,
however, the maximum-to-minimum S-wave speed ratio is 5 and even more. This means
that if p = 0.9 in the medium beneath sediments, p ≤ 0.18 in sediments. We see that
the dispersion curves for the (4,4) schemes are almost the same and very close to the



144 1D problem

dispersion curve for the (2,4) scheme. Eventually, the dispersion curves of all schemes that
are 4th-order accurate in space are practically the same for small p.

The conclusion is that in the heterogeneous models with maximum-to-minimum S-wave
speed ratio larger than 2 the optimized VS SG schemes with 4th-order accuracy in both
time and space do not reduce the grid dispersion compared to the (2,4) scheme.

7.3.6 (4,4) velocity–stress schemes on a collocated grid

The velocity–stress formulation can also be used for developing schemes on the collocated
grid. Both the particle velocity v and stress σ are assumed at each spatial grid position.
Then, instead of treating two equations of the same form, see Eq. (7.9), it is advantageous
to recall the matrix formulation, Eqs. (7.10) and (7.11):

w ≡ (v, σ )T , A ≡
[

0 b

M 0

]
, b ≡ 1

ρ
(7.228)

∂w
∂t

= A
∂w
∂x

(7.229)

7.3.6.1 Lax–Wendroff and MacCormack schemes

Before we continue with approximating Eq. (7.229), we briefly mention the Lax–Wendroff
(1960) and MacCormack (1969, 1971) schemes. Consider for simplicity the 1st-order scalar
hyperbolic equation with constant coefficient:

∂u

∂t
= a ∂u

∂x
+ f (7.230)

Lax-Wendroff scheme Taylor expansion of um+1
I about umI yields

um+1
I = umI +� ∂u

∂t

∣∣∣∣m
I

+ 1

2
�2 ∂

2u

∂t2

∣∣∣∣m
I

+O(�3) (7.231)

Equation (7.230) implies

∂2u

∂t2
= a ∂

2u

∂t∂x
+ ∂f
∂t

= a2 ∂
2u

∂x2
+ a ∂f

∂x
+ ∂f
∂t

(7.232)

Using Eqs. (7.230) and (7.232) in Eq. (7.231) yields

um+1
I = umI +� a ∂u

∂x

∣∣∣∣m
I

+ 1

2
�2a2 ∂

2u

∂x2

∣∣∣∣m
I

+� fmI + 1

2
�2a

∂f

∂x

∣∣∣∣m
I

+ 1

2
�2 ∂f

∂t

∣∣∣∣m
I

+O(�3) (7.233)
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Replacing the spatial derivatives by the 2nd-order centred approximations and ∂f
∂t

by the
forward approximation we obtain the Lax–Wendroff scheme:

um+1
I = umI + �

2h
a
(
umI+1 − umI−1

)+ �2

2h2
a2
(
umI+1 − 2umI + umI−1

)
+ �

2

4h
a
(
f mI+1 − f mI−1

)+ �
2

(
f m+1
I + f mI

)+O(�3) +O(h2�) (7.234)

For stability of the scheme and comparison with other schemes see, e.g., Strikwerda (2004),
LeVeque (2007).

MacCormack scheme Consider now the following approximation of Eq. (7.230). First we
apply forward approximations of the temporal and spatial derivatives (the latter indicated
by operator DFx ) at time level m and position I :

1

�

(
ũm+1
I − umI

) ≈ aDFx umI + f mI (7.235)

Because the approximations are one-sided, the value of u at the time level m+ 1 may be
considered provisional and therefore denoted by a tilde. Equation (7.235) implies

ũm+1
I ≈ umI +� aDFx umI +� fmI (7.236)

We now approximate Eq. (7.230) in another way. Having the provisional value atm+ 1 we
may apply a backward approximation at this time level. In order to obtain spatial symmetry
about position I , we may apply a backward approximation at this spatial position:

2

�

(
um+1
I − um+1/2

I

)
≈ aDBx ũm+1

I + f m+1
I (7.237)

u
m+1/2
I may be approximated as

u
m+1/2
I ≈ 1

2

(
umI + ũm+1

I

)
(7.238)

Equations (7.237) and (7.238) yield

um+1
I ≈ 1

2

(
umI + ũm+1

I +� aDBx ũm+1
I +�fm+1

I

)
(7.239)

Using relations (7.236) and DBx D
F
x u

m
I = DFx DBx umI in the latter equation we obtain

um+1
I ≈ umI + 1

2� a
(
DFx u

m
I +DBx umI

)+ 1
2�

2a2DBx D
F
x u

m
I

+ 1
2� f

m
I + 1

2�
2aDBx f

m
I + 1

2�f
m+1
I (7.240)

Considering

DFx u
m
I ≡ 1

h

(
umI+1 − umI

)
,DBx u

m
I ≡ 1

h

(
umI − umI−1

)
,DBx f

m
I ≡ 1

h

(
f mI − f mI−1

)
(7.241)
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in Eq. (7.240) we eventually obtain

um+1
I = umI + �

2h
a
(
umI+1 − umI−1

)+ �2

2h2
a2
(
umI+1 − 2umI + umI−1

)
+ �

2

(
f m+1
I + f mI

)+ �
2

2h
a
(
f mI − f mI−1

)+O(�3) +O(h2�) (7.242)

Relation between Lax–Wendroff and MacCormack schemes Assuming f = 0, rela-
tions (7.234) and (7.242) give the same (2,2) scheme.

7.3.6.2 General relations

We return now to Eq. (7.229); for the following analysis we do not include the force term.
Denoting

EQw ≡ ∂w
∂t

− A
∂w
∂x
, EQw = 0 (7.243)

we can express EQw at time levelm and spatial position I , for example, using two or three
time levels. The first option is indicated by 2TL, the second one by 3TL:

2TL : EQw|mI = 1

�

(
wm+1
I − wmI

)
−1

2
�
∂2w
∂t2

∣∣∣∣m
I

− 1

6
�2 ∂

3w
∂t3

∣∣∣∣m
I

− 1

24
�3 ∂

4w
∂t4

∣∣∣∣m
I

+O(�4) − A
∂w
∂x

∣∣∣∣m
I

(7.244)

3TL : EQw|mI = 1

2�

(
wm+1
I − wm−1

I

)
− 1

6
�2 ∂

3w
∂t3

∣∣∣∣m
I

+O(�4) − A
∂w
∂x

∣∣∣∣m
I

(7.245)

Replacing the temporal derivatives by spatial derivatives, see Eq. (7.13), we obtain

2TL : EQw|mI = 1

�

(
wm+1
I − wmI

)
− 1

2
� A

∂

∂x

(
A
∂w
∂x

)∣∣∣∣m
I

− 1

6
�2 A

∂

∂x

[
A
∂

∂x

(
A
∂w
∂x

)]∣∣∣∣m
I

− 1

24
�3 A

∂

∂x

{
A
∂

∂x

[
A
∂

∂x

(
A
∂w
∂x

)]}∣∣∣∣m
I

+O(�4) − A
∂w
∂x

∣∣∣∣m
I

(7.246)

3TL : EQw|mI = 1

2�

(
wm+1
I − wm−1

I

)
− 1

6
�2 A

∂

∂x

[
A
∂

∂x

(
A
∂w
∂x

)]∣∣∣∣m
I

+O(�4) − A
∂w
∂x

∣∣∣∣m
I

(7.247)
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We define auxiliary functions:

w̃ = A
∂w
∂x
, ˜̃w = A

∂w̃
∂x
, ˜̃̃w = A

∂ ˜̃w
∂x
,

˜̃̃
w̃ = A

∂ ˜̃̃w
∂x

(7.248)

Then we can rewrite Eqs. (7.246) and (7.247) as

2TL : EQw|mI = 1

�

(
wm+1
I − wmI

)
− 1

2
� ˜̃wmI − 1

6
�2 ˜̃̃wmI − 1

24
�3 ˜̃̃

w̃mI +O(�4) − w̃mI (7.249)

3TL : EQw|mI = 1

2�

(
wm+1
I − wm−1

I

)
− 1

6
�2 ˜̃̃wmI +O(�4) − w̃mI (7.250)

The corresponding relations for the FD schemes are then

2TL : wm+1
I = wmI + 1

2
�2 ˜̃wmI + 1

6
�3 ˜̃̃wmI + 1

24
�4 ˜̃̃

w̃mI +�w̃mI (7.251)

3TL : wm+1
I = wm−1

I + 1

3
�3 ˜̃̃wmI + 2�w̃mI (7.252)

7.3.6.3 Centred approximations

If we want (4,4) accuracy, we have to apply the 4th-order approximation to obtain w̃ and ˜̃w.

Then we could continue with application of the 2nd-order approximation to obtain ˜̃̃w and
˜̃̃
w̃

because terms with these auxiliary functions are proportional to �2 and �3, respectively.

The 4th- and 2nd-order approximations are applied also to ˜̃w and
˜̃̃
w̃, respectively, because

the centred approximations are of even order. Here we restrict the discussion to consistent
application of the 4th-order approximation to each 1st spatial derivative.

The simplest available centred 4th-order approximation is

A
∂ϕ

∂x

∣∣∣∣m
I

= AI
1

h

[
2
3

(
ϕmI+1 − ϕmI−1

)− 1
12

(
ϕmI+2 − ϕmI−2

)]
(7.253)

where ϕ stands for any of the single- to triple-tilde auxiliary functions. Though easy to
obtain, the resulting 2TL scheme is rather lengthy. Therefore, we show here only the 3TL
scheme for the homogeneous medium:

vm+1
I = vm−1

I + 864

5184
b
�

h

[
8
(
σmI+1 − σmI−1

)− (
σmI+2 − σmI−2

)]
+ 1

5184
b2M

�3

h3

[−1584
(
σmI+1 − σmI−1

)+ 387
(
σmI+2 − σmI−2

)+ 488
(
σmI+3 − σmI−3

)
− 192

(
σmI+4 − σmI−4

)+ 24
(
σmI+5 − σmI−5

)− (
σmI+6 − σmI−6

)]
(7.254)
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σm+1
I = σm−1

I + 864

5184
M
�

h

[
8
(
vmI+1 − vmI−1

)− (
vmI+2 − vmI−2

)]
+ 1

5184
bM2�

3

h3

[−1584
(
vmI+1 − vmI−1

)+ 387
(
vmI+2 − vmI−2

)+ 488
(
vmI+3 − vmI−3

)
− 192

(
vmI+4 − vmI−4

)+ 24
(
vmI+5 − vmI−5

)− (
vmI+6 − vmI−6

)]
(7.255)

We can see an interesting result. vm+1
I depends on vm−1

I and σmI±k; k = 1, . . . , 6. σm+1
I

depends on σm−1
I and vmI±k; k = 1, . . . , 6. This means that, although we have both vm+1

I

and σm+1
I at the same space–time grid point, formally vm+1

I does not know about σm+1
I and

vice versa. Moreover, the odd-indexed and even-indexed time levels of the particle velocity
are separated (decoupled). The same is true of the stresses. This is known as temporal
odd–even decoupling.

In the case of the 2TL scheme, vm+1
I depends on vmI±k; k = 0, . . . , 8 and σmI±k; k =

1, . . . , 6. Similarly, σm+1
I depends on σmI±k; k = 0, . . . , 8 and vmI±k; k = 1, . . . , 6. In other

words, contrary to the 3TL scheme, vm+1
I and σm+1

I are not independent.
Both schemes have, however, one more important property. Consider first the 2TL

scheme. Assume the following initial conditions:

v0
I = 0, σ 0

2k+1 = σODD, σ 0
2k = σEVEN, k = 0,±1,±2, . . . (7.256)

that is, zero velocity everywhere, σODD at the odd-indexed spatial positions and σEVEN at
the even-indexed spatial positions. The 2TL scheme gives

vmI = 0, σm2k+1 = σODD, σm2k = σEVEN, k = 0,±1,±2, . . . (7.257)

The scheme simply reproduces the initial values.
In the case of the 3TL schemes (7.254) and (7.255), we can restrict the treatment to one

of the two independent schemes. Assume the following initial conditions:

v0
I = 0, σ 1

2k+1 = σODD, σ 1
2k = σEVEN, k = 0,±1,±2, . . . (7.258)

The scheme gives

v2m
I = 0, σ 2m+1

2k+1 = σODD, σ 2m+1
2k = σEVEN, k = 0,±1,±2, . . . (7.259)

The scheme reproduces the initial values.
The phenomenon observed in both the 2TL and 3TL schemes is known as spatial

odd–even decoupling. The spatial decoupling is due to the application of the centred
approximation to the first spatial derivative. Similarly, the temporal decoupling is due to
the application of the centred approximation to the first temporal derivative.

The property of odd–even decoupling is general – it arises if the 1st derivatives in the
1st-order hyperbolic equations are replaced by centred approximations on the collocated
grids.
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7.3.6.4 Noncentred approximations

It is obvious that we can avoid temporal odd–even decoupling by using the 2TL approach,
and spatial odd–even decoupling by using a noncentred approximation of the first spatial
derivative.

Define the 4th-order forward and backward operators:

DFx [ϕI ] ≡ 1

h

∑3

j=−1
cjϕI+j , DBx [ϕI ] ≡ 1

h

∑3

j≡−1
−cjϕI−j (7.260)

with coefficients

c−1 = −1

4
, c0 = −5

6
, c1 = 3

2
, c2 = −1

2
, c3 = 1

12
(7.261)

Then,

A
∂ϕ

∂x

∣∣∣∣F
I

≈ AIDFx [ϕI ] , A
∂ϕ

∂x

∣∣∣∣B
I

≈ AIDBx [ϕI ] (7.262)

Define auxiliary quantities:
F w̃mI ≡ AIDFx

[
wmI
]
, Bw̃mI ≡ AIDBx

[
wmI
]

B ˜̃wmI ≡ AIDBx
[
F w̃mI

]
, F ˜̃wmI ≡ AIDFx

[
Bw̃mI

]
F ˜̃̃wmI ≡ AIDFx

[
B ˜̃wmI

]
, B ˜̃̃wmI ≡ AIDBx

[
F ˜̃wmI

]
B ˜̃̃

w̃mI ≡ AIDBx
[
F ˜̃̃wmI

]
, F ˜̃̃

w̃mI ≡ AIDFx
[
B ˜̃̃wmI

]
(7.263)

Equation (7.251) then can be written as

wm+1
I = wmI +�1

2

(
F w̃mI + Bw̃mI

)+ 1

2
�2 1

2

(
B ˜̃wmI + F ˜̃wmI

)
+ 1

6
�3 1

2

(
F ˜̃̃wmI + B ˜̃̃wmI

)
+ 1

24
�4 1

2

(
B ˜̃̃

w̃mI + F ˜̃̃
w̃mI
)

(7.264)

In the homogeneous medium the resulting scheme for the particle velocity is

vm+1
I = vmI + 1

497664

{
6

(
−135360bM

�2

h2
+ 60265b2M2�

4

h4

)
vmI

+ b�
h

[
435456

(
σmI+1 − σmI−1

)− 124416
(
σmI+2 − σmI−2

)+ 20736
(
σmI+3 − σmI−3

)]
+ bM�

2

h2

[
456192

(
vmI+1 + vmI−1

)− 41472
(
vmI+2 + vmI−2

)− 13824
(
vmI+3 + vmI−3

)
+ 5184

(
vmI+4 + vmI−4

)]+ b2M
�3

h3

[−264600
(
σmI+1 − σmI−1

)
+ 211536

(
σmI+2 − σmI−2

)− 62904
(
σmI+3 − σmI−3

)+ 5760
(
σmI+4 − σmI−4

)
+ 2088

(
σmI+5 − σmI−5

)− 624
(
σmI+6 − σmI−6

)+ 72
(
σmI+7 − σmI−7

)]
+ b2M2�

4

h4

[−260496
(
vmI+1 + vmI−1

)+ 87888
(
vmI+2 + vmI−2

)
− 3568

(
vmI+3 + vmI−3

)− 6468
(
vmI+4 + vmI−4

)+ 1968
(
vmI+5 + vmI−5

)
− 80

(
vmI+6 + vmI−6

)− 48
(
vmI+7 + vmI−7

)+ 9
(
vmI+8 + vmI−8

)]}
(7.265)

The scheme for the stress is analogous.
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Assuming the initial conditions (7.256), scheme (7.265) will reproduce the initial particle
velocities. It will not, however, reproduce the initial stresses. The scheme will smooth the
odd–even stress distribution by subtracting a value proportional to |σEVEN − σODD| from
the larger of the two stresses and adding the same value to the smaller of the two stresses
in each time step. In other words, the scheme will dissipate the initial odd–even stress
distribution. Clearly, this is a substantial positive difference in behaviour compared to the
2TL scheme with the centred approximation.

7.3.6.5 Combination of MacCormack approach, DRP approximations and 4th-order
Runge–Kutta time-marching scheme

Zhang and Chen (2006) and Zhang et al. (2012) presented an interesting scheme combining
the higher-order MacCormack approach with the DRP FD operators (Tam and Webb 1993;
Hixon 1996, 1997) and the 4th-order Runge–Kutta time-marching scheme. Both articles
aimed to develop an FD scheme capable of including a nonplanar free surface; the first
one in 2D, the second one in 3D. Here we restrict the discussion to its 1D version, solving
Eq. (7.229).

The forward and backward operators are the same as those in Eqs. (7.260) except for
the values of the coefficients. Coefficients c−1, . . . , c3 in Eqs. (7.260) are replaced by

a−1 = −0.30874, a0 = −0.6326, a1 = 1.2330, a2 = −0.3334, a3 = 0.04168

(7.266)

The coefficients are obtained by minimizing the dissipation error at eight points or more per
wavelength (Hixon 1997) and giving the 4th-order accuracy for the dispersion error. The
update of wI from time level m to time level m+ 1 is performed in the following partial
steps:

wm(1)
I = �AIDFx

[
wmI
]

wm(2)
I = �AIDBx

[
wmI
]+�AIDBx

[
1
2 wm(1)

I

]
(7.267)

wm(3)
I = �AIDFx

[
wmI
]+�AIDFx

[
1
2 wm(2)

I

]
wm(4)
I = �AIDBx

[
wmI
]+�AIDBx

[
wm(3)
I

]

wm+1
I = wmI + 1

6
wm(1)
I + 1

3
wm(2)
I + 1

3
wm(3)
I + 1

6
wm(4)
I (7.268)

Although the algorithm is clear and easy to perform, the overall effective (resulting) structure
is not so obvious. Therefore, we substitute wm(k−1)

I in the equation for wm(k)
I by the r.h.s. of
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the equation for wm(k−1)
I . Eventually we obtain

wm+1
I = wmI +�

{
1

2
AIDFx

[
wmI
]+ 1

2
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[
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]}
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(7.269)

It is clear that the expressions in the four braces are approximations to

A
∂w
∂x
,A
∂

∂x

(
A
∂w
∂x

)
,A
∂

∂x

[
A
∂

∂x

(
A
∂w
∂x

)]
,A
∂

∂x

{
A
∂

∂x

[
A
∂

∂x

(
A
∂w
∂x

)]}
(7.270)

at (I,m), respectively. Comparison with Eqs. (7.246) and (7.251) shows that scheme (7.267)
and (7.268) can be obtained by the Lax–Wendroff approach applied to Eq. (7.229) and
aiming to develop the (4,4) velocity–stress scheme on the collocated grid using two time
levels. Consequently, the difference between scheme (7.267)–(7.268) and scheme (7.263)–
(7.264) is in the method of approximating the four terms (7.270).

7.4 FD schemes for a material interface

In Section 7.2 we assumed an unbounded homogeneous medium in which both the elastic
modulus and density are spatial constants. In Section 7.3 we assumed a smoothly hetero-
geneous medium. Comparison of the strong-form formulations indicates why we explicitly
addressed the question of determining the effective grid modulus (MI ) only in Subsection
7.3.1, where we presented the (2,2) displacement scheme on a conventional grid. We had
to treat the term ∂ (M∂u/∂x)/∂x in the displacement formulation, Eq. (7.2). We used a
mathematical trick to avoid differentiating the modulus. The other strong-form formula-
tions did not force us to treat the determination of the grid modulus explicitly. We simply
indicated the effective grid modulus assigned to a grid spatial position by a corresponding
spatial subscript. The same applies to density ρ or its reciprocal value b for all strong-form
formulations.

Although the smoothness of the heterogeneous medium is a mathematically clear con-
cept, it is obvious that two smooth media can differ from each other by gradient. Loosely,
we can guess that local values of modulus and density at a spatial grid position might be
sufficient in the case of small gradients. On the other hand, we may have some doubts
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about using the local values in the case of large gradients. What is a small and what is a
large value of a gradient is, of course, relative. In general, appropriate measures of spatial
variability of the medium should be compared with the wavelengths or frequencies that
are to be sufficiently accurately propagated in the grid. Consequently, the determination of
optimal values of modulus and density at a grid position is not a trivial problem.

Probably the most important type of spatial variability of a material parameter is its
discontinuous change – in other words, a material discontinuity or a material interface.

7.4.1 Simple general consideration

We start with a simple general consideration. Let ϕ− (x), K− (x) and ψ− (x) be real
functions of a real argument x < 0. Similarly, let ϕ+ (x), K+ (x) and ψ+ (x) be real
functions of a real argument x > 0. Assume that the functions have their limits at x = 0,
which we denote by ϕ−(0), K−(0), ψ−(0), ϕ+(0), K+(0) and ψ+(0), respectively. The
functions satisfy equations

ϕ− (x) = K− (x)ψ− (x) , ϕ+ (x) = K+ (x)ψ+ (x) (7.271)

Moreover, functions ϕ± (x) satisfy the boundary (continuity) condition

ϕ(0) = ϕ−(0) = ϕ+(0) (7.272)

Due to the boundary condition, neither of Eqs. (7.271) alone can be used as an equation for
x = 0.

Define

ψA(0) ≡ 1
2

[
ψ−(0) + ψ+(0)

]
(7.273)

Then,

ψA(0) = 1

2

[
ϕ−(0)

K−(0)
+ ϕ+(0)

K+(0)

]
= 1

2
ϕ(0)

[
1

K−(0)
+ 1

K+(0)

]
(7.274)

Define

KH (0) ≡ 2[
1

K−(0)
+ 1

K+(0)

] (7.275)

Then,

ϕ(0) = KH (0)ψA(0) (7.276)

Equation (7.276) has two important properties: (1) it is valid directly at x = 0, (2) it has
the same form as each of Eqs. (7.271). This is due to the arithmetic averaging of ψ−(0)
and ψ+(0), and the harmonic averaging of K−(0) and K+(0). Note that the arithmetic and
harmonic averages are indicated by superscripts A and H starting with Eqs. (7.273) and
(7.275).
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7.4.2 Hooke’s law and equation of motion for a welded interface

Now we consider the contact of two homogeneous elastic halfspaces at x = 0. In each of
the halfspaces the stress is given by Hooke’s law:

σ−(x) = M−(x) ε−(x), σ+(x) = M+(x) ε+(x) (7.277)

Assuming the contact to be a welded material interface (Subsection 2.5.2), the traction
continuity across the interface imposes a boundary condition for the stress:

σ−(0) = σ+(0) (7.278)

It follows then from the above general consideration and Eqs. (7.271)–(7.276) that the
stress at a welded interface can be described by

σ (0) = MH (0) εA(0) (7.279)

whereMH (0) is the harmonic average of the elastic moduli M−(0) andM+(0), and εA(0)
is the arithmetic average of the strains:

MH (0) = 2
1

M−(0)
+ 1

M+(0)

, εA(0) = 1
2

[
ε−(0) + ε+(0)

]
(7.280)

The equations of motion in the two halfspaces are

∂2u−

∂t2
= b− ∂σ

−

∂x
,
∂2u+

∂t2
= b+ ∂σ

+

∂x
(7.281)

Assuming continuity of displacementu and consequently continuity of acceleration ∂2u/∂t2

across the welded interface, the equation of motion at the interface can be written as

∂2u

∂t2

∣∣∣∣
x=0

= bH (0)

[
∂σ

∂x

]A∣∣∣∣∣
x=0

(7.282)

where superscripts H and A indicate the harmonic and arithmetic averages, respectively.
Because b is the reciprocal of density, b = 1/ρ,

(bH )−1 = 1
2

(
ρ− + ρ+) = ρA (7.283)

and Eq. (7.282) can also be written as

ρA(0)
∂2u

∂t2

∣∣∣∣
x=0

=
[
∂σ

∂x

]A∣∣∣∣∣
x=0

(7.284)

Partial summary (1) Equation (7.279) for the stress at a welded interface has the same form
as Hooke’s law in each of the two halfspaces. Equation (7.279) is consistent with the traction-
continuity condition at a welded interface. The effective elastic modulus representing a
welded interface is the harmonic average of the moduli in the homogeneous halfspaces.
(2) Equation (7.282) or (7.284) for the particle acceleration at a welded interface has the
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same form as the equation of motion in each of the two halfspaces. Equation (7.282)
or (7.284) is consistent with the condition of continuity of displacement and particle
acceleration at a welded interface. The effective density representing a welded interface
is the arithmetic average of densities in the halfspaces. The statements make an important
basis for developing an FD scheme for the grid point at the interface and grid points in the
halfspaces.

7.4.3 Simple rheological model of a welded interface

Before we continue with an FD scheme we can recall the simple rheological model of two
Hooke elements (elastic springs) connected in series, see Chapter 3. The resulting stress is
equal to the stresses acting on the springs:

σ = σ− = σ+ (7.285)

whereas the strains of the springs are additive:

ε = ε− + ε+ = σ

M− + σ

M+ (7.286)

We can think of finding an averaged Hooke spring such that the serial connection of two
averaged springs would make an equivalent, in terms of the resulting stress and strain, to the
considered serial connection of two different springs. We easily find the averaged spring:

σ = MHεA, MH = 2
1

M− + 1

M+

, εA = 1

2

(
ε− + ε+) (7.287)

This means that the elastic modulus of the averaged spring is the harmonic average of
the elastic moduli of the two springs. The serial connection of two springs can thus be
considered a rheological model for traction continuity at the welded interface of two
homogeneous halfspaces.

Similarly, we could consider a system of two connected particles with masses m− and
m+. If the particles move together, the equivalent system can be made of two identical
particles with mass equal to the arithmetic average of masses m− and m+.

7.4.4 FD schemes

Equations (7.279) and (7.284) suggest (a) harmonic averaging of the elastic moduli and
arithmetic averaging of the densities at the material discontinuity, (b) averaging of the
spatial derivatives of the functions at the material discontinuity.

The averaging of derivatives means averaging one-sided approximations of the deriva-
tives of stresses and displacements (or strains). In 1D this poses a minor algorithmical
problem. Having in mind the perspective of 2D or 3D simulations for a medium with
nonplanar interfaces, it is clear that calculations of one-sided derivatives pose a more
complicated problem. Moreover, it is not trivial to test the accuracy of such an approach.
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Kristek and Moczo (2006) neglected averaging of the spatial derivatives at the interface.
They defined the effective grid modulus and density as

MH
I+1/2 ≡

[
1

h

∫ xI+1

xI

1

M(x)
dx

]−1

, ρAI ≡
[

1

h

∫ xI+1/2

xI−1/2

ρ(x)dx

]
(7.288)

They applied these effective grid material parameters to three 1D schemes – (2,2) displace-
ment scheme on the conventional grid, (2,4) displacement–stress scheme on the spatially
staggered grid, and displacement optimally accurate scheme on the conventional grid. They
performed detailed numerical tests of the three schemes for an unbounded homogeneous
space, two halfspaces in welded contact, and for a model of an interior layer between two
halfspaces. The interior layer had a large velocity gradient. The model of an unbounded
homogeneous space enabled them to compare the pure effect of grid dispersion. The sim-
ulations for the model with a material interface were designed so that it was possible to
separate the error due to the interface. The third model enabled them to compare the capa-
bility of the schemes to account for a dramatic change of velocity inside the layer between
two identical halfspaces.

All simulations obtained with the FD schemes were compared with analytical matrix
solutions. The level of accuracy of the FD solutions was quantified and characterized using
envelope and phase misfits with respect to the analytical solutions.

For all three schemes and models, Kristek and Moczo (2006) demonstrated the superior
accuracy of harmonic averaging of the elastic modulus compared to considering local
values or arithmetic averaging of the elastic modulus. Also relevant for this chapter is the
conclusion that the optimally accurate scheme is significantly more accurate than the two
other schemes tested.

It is obvious that neglecting the averaging of the spatial derivatives of stress and strain
decreases the order of accuracy of the scheme across the interface. Moczo et al. (2007a,
Chapter 10) compared the conventional and optimally accurate schemes (1st-order accurate
at the interface) with conventional and optimally accurate schemes treating the interface
explicitly (and thus 2nd-order accurate at the interface). As might be expected, the applica-
tion of the latter schemes increased accuracy at the interface.

In conclusion, all the FD schemes presented so far can be used with the effective grid
parameters defined by Eqs. (7.288). The use of harmonic averaging of the elastic modulus
in smoothly and discontinuously heterogeneous media makes an FD scheme capable of
sufficiently accurately accounting for the medium heterogeneity. Specifically, it makes the
scheme capable of sensing the position of the material interface within one grid spacing,
that is, anywhere between two neighbouring spatial grid points.

7.5 FD schemes for a free surface

Two aspects make the Earth’s surface a very important structural feature that has to be
modelled sufficiently accurately: (a) seismic motion is often recorded at or close to the
Earth’s surface; (b) the Earth’s surface significantly affects seismic wave propagation and
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earthquake motion. In most seismological applications, the air/fluid (ocean) or air/solid
(land) interface can be thought of as a free surface where a fluid or solid discontinuously
terminates and air is replaced by vacuum. This means that the Earth’s surface may be
approximated by a surface with vanishing traction.

Consider a free surface at x = 0 and medium at x ≥ 0. The traction-free condition (2.39)
reduces in 1D to

σ (x = 0) = 0 (7.289)

No matter which FD scheme is used, it is desirable to locate the grid position of displacement
or particle velocity at the free surface. We restrict our considerations here to the velocity–
stress schemes, although much of the explained approaches can also be applied to the
displacement–stress or displacement schemes. In the case of a staggered grid the stress is
located inside the medium – a half-grid spacing away from the free surface. In the case of
a collocated grid the stress is also located at the free surface.

We have two principal possibilities for calculating particle velocity at the free surface,
and particle velocity and stress inside the medium near the free surface. The first approach:
apply the same FD schemes as for the interior grid points assuming virtual values of stress,
particle velocity and material parameters outside the medium. The second approach: apply
one-sided schemes that do not need any virtual values outside the medium.

The advantage of the first approach is the use of one and the same scheme at any
grid point. Its disadvantage is the need to reasonably define virtual values outside the
medium. The disadvantage of the second approach is the application of different schemes
for different grid positions inside the medium near the free surface – the number of grid
positions depends on the scheme and the order of approximation.

The first approach leads to the so-called vacuum formalism (zero modulus outside the
medium), medium taper (density taper) or imaging method. In this 1D introduction we
outline only the imaging method suggested by Levander (1988). The second approach will
be illustrated by the adjusted FD approximations suggested by Kristek et al. (2002).

7.5.1 Stress imaging

The basic idea in 1D is very simple: the antisymmetry

σ (−x) = −σ (x) (7.290)

ensures that the boundary condition given by Eq. (7.289) is satisfied. Recall the (2,4)
velocity–stress staggered-grid scheme (7.186) with the spatial index I + 1/2 for stress:

V
m+1/2
I = V m−1/2

I + bI �
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[
9

8
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)− 1

24

(
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T mI+1/2 = T m−1
I+1/2 +MI+1/2

�

h

[
9

8

(
V
m−1/2
I+1 − V m−1/2

I

)
− 1

24

(
V
m−1/2
I+2 − Vm−1/2

I−1

)]
(7.291)

We assume the effective grid material parameters calculated according to (7.288).
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Assume I = 0 corresponding to the free surface, that is, x = 0. For calculating T m1/2
we also need the value of the particle velocity outside the medium, V m−1/2

−1 . The simplest
possibility is to set it equal to zero (Robertsson 1996). Levander (1988) considered the
2nd-order approximation of the boundary condition and imaged stress-tensor components.
In 1D:

∂σ

∂t

∣∣∣∣m−1/2

−h/2
= − ∂σ

∂t

∣∣∣∣m−1/2

h/2

(7.292)

M−1/2
1

h

(
V
m−1/2

0 − Vm−1/2
−1

)
= −M1/2

1

h

(
V
m−1/2

1 − V m−1/2
0

)
(7.293)

Assuming

M−1/2 = M1/2 (7.294)

we obtain

V
m−1/2
−1 = V m−1/2

1 (7.295)

Consistently with assumption (7.294), we can consider

ρA0 = 2

h

∫ h/2

0
ρ(x) dx, b0 = 1

2ρA0
(7.296)

For calculating V m+1/2
0 at the free surface we also need two values of stress outside the

medium: T m−1/2 and T m−3/2. They are obtained from

T m−1/2 = −T m1/2, T m−3/2 = −T m3/2 (7.297)

In 1D the stress imaging gives satisfactory results. In 3D this is not so. Kristek et al. (2002)
demonstrated that in the 3D case the stress imaging in 4th-order FD modelling needs at
least twice as many grid spacings per wavelength compared to what is enough inside the
medium if the Rayleigh waves are to be propagated without significant grid dispersion,
even in the case of a simple homogeneous halfspace. Stress imaging in 3D is presented in
Subsection 10.1.1.

7.5.2 Adjusted FD approximations

Here we adapt the 3D scheme presented by Kristek et al. (2002) to the 1D case. Consider
again the (2,4) velocity–stress staggered-grid scheme (7.186) for interior grid points. The
scheme cannot be applied for calculating Vm+1/2

1 , T m1/2 and V m+1/2
0 if no virtual values of
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stress and particle velocity outside the medium are assumed. Each of the three grid positions
requires an adjusted 4th-order scheme. They are

T m1/2 = T m−1
1/2 +M1/2

�

h

(
− 91

72V
m−1/2

0 + 11
8 V

m−1/2
1 − 1

8V
m−1/2

2 + 1
72V

m−1/2
3

)
V
m+1/2

1 = V m−1/2
1 + b1

�

h

(− 31
24T

m
1/2 + 29

24T
m

3/2 − 3
40T

m
5/2 − 1

168T
m

7/2

)
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V
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0 = V m−1/2
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)
where

b0 = 1

ρA0
; ρA0 = 2

h

∫ h/2

0
ρ (x) dx (7.299)

Note that in schemes for V m+1/2
1 and V m+1/2

0 we explicitly used the boundary condition and
the consequence of the boundary condition (the spatial derivative of the particle velocity at
the free surface is zero).

Kristek et al. (2002) developed a technique for simulating the planar free surface in
the 3D case based on direct application of the boundary condition at the free surface
and adjusted FD approximations of the spatial derivatives that use only values at the grid
positions inside the medium. They demonstrated that with their technique it is possible
to apply the same spatial sampling as inside the medium. The technique is presented in
Subsection 10.1.2.

7.6 Boundaries of a spatial grid

The spatial grid has a finite number of grid points (true grid points physically addressed
in the computer memory). Consequently, the grid has boundaries. In 1D there are two
boundaries. Considering a rectangle in 2D, there are four boundaries, and considering a
rectangular prism (rectangular parallelepiped) in 3D, there are six boundaries. In many
applications a free surface makes one boundary (planar or nonplanar). Except for the free
surface, the boundaries are artificial – they do not represent a surface beyond which there is
no medium. Therefore, the boundaries should be designed so that they represent the true
interaction of the wavefield inside the computational domain covered by the grid with the
medium outside the grid. In principle, the boundary of the grid may be anything in between
or including two extreme types – absolutely reflecting and absolutely transparent. In most
cases we want transparent boundaries – no energy should be reflected from the boundary
of the computational domain back into its interior. In some cases it may be useful to use a
boundary that simulates a periodic repetition of the computational region. In other cases a
condition of symmetry/antisymmetry may be reasonable.

Here we present the 1D version of only one, but so far the best, of the developed
approaches – the perfectly matched layer (PML), originally introduced by Bérenger (1994)
for electromagnetic wave propagation and later generalized for elastic wave propagation
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by Chew and Liu (1996) and others. The name comes from the fact that the PML in a true
continuum space does not reflect energy back to the computational domain. In 2D or 3D the
PML makes a ‘sponge’ region surrounding the computational domain. Inside a PML the
particle velocity and stress are attenuated in the direction perpendicular to the boundary.
In 1D a PML reduces to a spatial range of grid points at the ‘end’ of the computational
1D domain. Here we adapt the 3D theory presented by Komatitsch and Martin (2007) and
Kristek et al. (2009).

7.6.1 Perfectly matched layer: theory

Application of the Fourier transform to Eqs. (7.9) yields

iωv = b∂σ
∂x
, iωσ = M ∂v

∂x
(7.300)

Here we use the same symbols for the quantities in the frequency and time domains. Further,
we indicate the time or frequency as variables just to emphasize them. We replace the spatial
differentiation with respect to x by the spatial differentiation with respect to x̃:

∂

∂x̃
= 1

s

∂

∂x
(7.301)

Here s is the stretching factor (or coordinate stretching variable):

s = γ + �

α + iω
(7.302)

where γ , � and α are, in general, functions of x and define the PML medium profile. The
stretching factor has to be complex if it is to attenuate. Equations (7.300) then become

iωv = 1

γ
b
∂σ

∂x
− d

a + iω
b
∂σ

∂x
, iωσ = 1

γ
M
∂v

∂x
− d

a + iω
M
∂v

∂x
(7.303)

with

a = α +�/γ , d = �/γ 2 (7.304)

Because the second term on the r.h.s. of each of Eqs. (7.303) is a product of two complex
quantities, an application of the inverse Fourier transform to the equations would give the
time-domain equations with convolutory terms. In order to avoid the convolution, we define
auxiliary functions:

θ (ω) = − d

a + iω
b
∂σ

∂x
, ζ (ω) = − d

a + iω
M
∂v

∂x
(7.305)

Equations (7.303) then become

iωv = 1

γ
b
∂σ

∂x
+ θ (ω), iωσ = 1

γ
M
∂v

∂x
+ ζ (ω) (7.306)
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Application of the inverse Fourier transform to the latter equations gives

∂v

∂t
= 1

γ
b
∂σ

∂x
+ θ (t),

∂σ

∂t
= 1

γ
M
∂v

∂x
+ ζ (t) (7.307)

In order to find relations for θ (t) and ζ (t), we rewrite Eqs. (7.305):

a θ (ω) + iω θ (ω) = −db∂σ
∂x
, a ζ (ω) + iω ζ (ω) = −dM ∂v

∂x
(7.308)

and apply the inverse Fourier transform. We obtain

∂

∂t
θ (t) + a θ (t) = −db∂σ

∂x
,

∂

∂t
ζ (t) + a ζ (t) = −dM ∂v

∂x
(7.309)

Partial summary Whereas inside the computational region Eqs. (7.9) are to be solved,
modified Eqs. (7.307) and additional Eqs. (7.309) have to be solved inside the PML. It is
now clear that the auxiliary variables θ (t) and ζ (t) have the meaning of memory variables
(or additional variables), and solving the additional Eqs. (7.309) replaces calculation of
convolutory integrals. The selection of the PML profile, that is, parameters γ , � and α, is
key to efficient attenuation inside the PML.

Consider for simplicity a PML starting at x = 0 and extending for x > 0, and the
simplest special case of the stretching factor with γ = 1 and α = 0:

s = 1 + � (x)

iω
; � (x) > 0 (7.310)

Then,

x̃ = x − i

ω

∫ x

0
� (ξ ) dξ (7.311)

Consider a plane harmonic wave exp [i (ωt − kx)] propagating in the positive x-direction.
Replacement of x by x̃ introduces a multiplying factor due to the second term on the r.h.s.
of Eq. (7.311). Because the multiplying factor decreases with increasing x, it attenuates the
wave with increasing x.

7.6.2 Perfectly matched layer: scheme

Here we adapt the 3D scheme presented by Kristek et al. (2009) to the 1D case. For
brevity of expressions we omit the spatial grid indexing. This should pose no problem.
Clearly, θ shares a spatial position with v. Similarly, ζ shares a spatial position with σ . The
parameters of the PML should be indexed if they are functions of x. Consider the following
approximations at the time level m:

θm
.= 1

2

(
θm+1/2 + θm−1/2

)
,

∂θ

∂t

∣∣∣∣m .= 1

�

(
θm+1/2 − θm−1/2

)
(7.312)
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Application of the approximations to the first of Eqs. (7.309) yields

θm+1/2 .= 2 − a�
2 + a�θ

m−1/2 − 2d�

2 + a�b
∂σ

∂x

∣∣∣∣m (7.313)

If we relate the first of Eqs. (7.307) to the time level m, we need θm. Using the first of Eqs.
(7.312) and Eq. (7.313) we obtain

θm
.= 2

2 + a�θ
m−1/2 − d�

2 + a�b
∂σ

∂x

∣∣∣∣m (7.314)

Using Eq. (7.314) we can rewrite the first of Eqs. (7.307):

∂v

∂t

∣∣∣∣m =
(

1

γ
− d�

2 + a�
)
b
∂σ

∂x

∣∣∣∣m + 2

2 + a�θ
m−1/2 (7.315)

Replacing a and d in Eqs. (7.313) and (7.315) using Eqs. (7.304) we obtain

θm+1/2 .= 2γ − (αγ +�)�

A
θm−1/2 − 1

γ

2��

A
b
∂σ

∂x

∣∣∣∣m (7.316)

∂v

∂t

∣∣∣∣m = 1

γ

(
1 − ��

A

)
b
∂σ

∂x

∣∣∣∣m + 2γ

A
θm−1/2 (7.317)

where

A = 2γ + (αγ +�)� (7.318)

Analogously we obtain an equation for stress and the corresponding memory variable:

ζm+1 .= 2γ − (αγ +�)�

A
ζm − 1

γ

2��

A
M
∂v

∂x

∣∣∣∣m+1/2

(7.319)

∂σ

∂t

∣∣∣∣m+1/2

= 1

γ

(
1 − ��

A

)
M
∂v

∂x

∣∣∣∣m+1/2

+ 2γ

A
ζm (7.320)

The temporal and spatial derivatives are approximated correspondingly to the scheme used
inside the computational domain.

7.7 Wavefield excitation

In general, numerical simulation of an earthquake source and other sources of seismic
waves is not a trivial problem and may considerably depend on the FD scheme. In 3D it
will be addressed in detail later. Here we indicate three methods of wavefield excitation:
the use of a body-force term (introduced by Aboudi 1971, Frankel 1993, Yomogida and
Etgen 1993, Graves 1996), incremental stress (introduced by Virieux 1986, Coutant et al.
1995, Olsen et al. 1995a), and wavefield decomposition (introduced by Alterman and Karal
1968).
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Table 7.7 Spatial distribution of the field variables for injecting a
known source based on wavefield decomposition: the case of the

(2,2) VS SG scheme

7.7.1 Body-force term and incremental stress

Consider the velocity–stress formulation with a body-force term f :

∂v

∂t
= b∂σ

∂x
+ bf, ∂σ

∂t
= M ∂v

∂x
(7.321)

Intuitively, it is most natural to make use of a body-force term in the equation of motion.
In the simplest case we can prescribe function f (t) at one grid position of the particle
velocity.

Another possibility is to add an incremental stress �σ (t) at the grid position of the
stress.

7.7.2 Wavefield injection based on wavefield decomposition

The basic idea Finally, it is also possible to inject an exact solution for the particle velocity
due to a desired source. Let vS be the particle velocity produced by a source and known
from the analytical solution. The total particle velocity can be decomposed in the form

v (x, t) = vS (x, t) + vR (x, t) (7.322)

where vR is the particle velocity corresponding to the residual (or scattered) wavefield.
However, it is not necessary to apply the decomposition everywhere.

Algorithm for the (2,2) velocity–stress staggered-grid scheme Consider a grid with the
leftmost spatial index IMIN and rightmost spatial index IMAX . Let I ∗ be the spatial index
of the grid point at which we want to ‘inject’ vS (x, t). Assume the spatial distribution of
vR , v, σR and σ as shown in Table 7.7. Moreover, for simplicity, assume a homogeneous
medium at the spatial range [I ∗ − 1, I ∗ + 2]. We want the wave to propagate in the positive
x-direction. Assume zero particle velocity and stress everywhere before the time level 1/2
at which the injecting starts at I ∗ with vS (t = 0).
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Table 7.8 Spatial distribution of the field variables for injecting
a known source based on wavefield decomposition: the case of

the (2,4) VS SG scheme

Field variable 
Range of spatial indices of grid points 

where the field variable is located 

R  MINI  
I≤ ≤  

* 5I +  

 *I  MAXI  

Rσ  1 2MINI +  
1 / 2I≤ + ≤  

* 7 2I +  

σ  * 3 2I +  1 2MAXI −  

The algorithm of the injection is:

(a) σR is updated using the scheme at I + 1/2; IMIN ≤ I ≤ I ∗

(b) σ is updated using the scheme at I + 1/2; I ∗ ≤ I ≤ IMAX − 1
(c) vR is updated using the scheme at I ; IMIN ≤ I ≤ I ∗

(d) v is updated using the scheme at I ; I ∗ + 1 ≤ I ≤ IMAX

(e) v(tm+1/2) = vR(tm+1/2) + vS(tm) at I ∗

(f) vR(tm+1/2) = v(tm+1/2) − vS(tm − τI ) at I ∗ + 1

Here τI denotes travel time of the injected wave from the spatial position I ∗ to the spatial
position I ∗ + 1.

Algorithm for the (2,4) velocity–stress staggered-grid scheme Because the stencil of
the scheme is larger, the zone where variables of the total and residual wavefield overlap is
broader. The spatial distribution of vR , v, σR and σ is shown in Table 7.8. A homogeneous
medium is assumed at the spatial range [I ∗ − 1, I ∗ + 6].

Then the algorithm of injection is as follows:

(a) σR is updated using the scheme at I + 1/2; IMIN ≤ I ≤ I ∗ + 3
(b) σ is updated using the scheme at I + 1/2; I ∗ + 1 ≤ I ≤ IMAX − 1
(c) vR is updated using the scheme at I ; IMIN ≤ I ≤ I ∗ + 2
(d) v is updated using the scheme at I ; I ∗ + 3 ≤ I ≤ IMAX

(e) v(tm+1/2) = vR(tm+1/2) + vS(tm − τI ) at I ∗ ≤ I ≤ I ∗ + 2
(f) vR(tm+1/2) = v(tm+1/2) − vS(tm − τI ) at I ∗ + 3 ≤ I ≤ I ∗ + 5

Here τI denotes travel time of the injected wave from the spatial position I ∗ to the spatial
position I .

7.8 FD scheme for the anelastic functions for a smooth medium

For simplicity, we restrict our discussion here to a smooth medium. The contact of two
viscoelastic media will be addressed in Chapter 9. Recall the constitutive law in the
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velocity–stress formulation for a viscoelastic continuum with GMB-EK/GZB rheology,
Eqs. (3.125) and (3.118), in which we replaced the temporal derivative of strain by the
spatial derivative of the particle velocity:

∂

∂t
σ (t) = MU

[
∂v

∂x
−
∑n

l=1
Yl ξl(t)

]
(7.323)

∂

∂t
ξl(t) + ωl ξl(t) = ωl ∂v

∂x
, l = 1, . . . , n (7.324)

Additional to the elastic part with the unrelaxed modulusMU in Eq. (7.323) is the anelastic
part with the anelastic coefficients Yl of simple Maxwell bodies and anelastic functions
(memory variables) ξl (t). Each of the n anelastic functions satisfies the additional equation
(7.324). Recall that the summation convention does not apply to index l.

Whereas in the elastic medium we need to FD-approximate the elastic part of Eq. (7.323),
in the viscoelastic medium we also need an FD scheme for updating the anelastic functions.
Consider the (2,4) velocity–stress scheme in Paragraph 7.3.5.1.

The anelastic functions and their temporal derivatives can be approximated with 2nd-
order accuracy:

ξl(tm−1/2)
.= 1

2 [ξl(tm) + ξl(tm−1)], l = 1, . . . , n (7.325)

.
∂

∂t
ξl(t)|m−1/2 .= 1

�
[ξl(tm) − ξl(tm−1)], l = 1, . . . , n (7.326)

Using approximations (7.325) and (7.326) in Eq. (7.324) we obtain a scheme for updating
the anelastic functions:

ξl(tm)
.= 2ωl�

2 + ωl�
∂v

∂x

∣∣∣∣m−1/2

+ 2 − ωl�
2 + ωl�ξl(tm−1), l = 1, . . . , n (7.327)

The value of ξl(tm−1/2) needed in the stress–strain relation (7.323) can be obtained using
Eq. (7.325). This means that both ξl(tm) and ξl(tm−1) have to be kept in memory for each
spatial grid position at one time. It is, however, possible (Kristek and Moczo 2003) to
avoid the necessity of keeping both values in memory. Using approximation (7.325) in Eq.
(7.327) it is easy to eliminate ξl(tm−1) and obtain

ξl(tm−1/2)
.= − ωl�

2 − ωl�
∂v

∂x

∣∣∣∣m−1/2

+ 2

2 − ωl�ξl(tm), l = 1, . . . , n (7.328)

Note that the dependence of the function at time tm−1/2 on its value at time tm is only
apparent due to the approximation (7.325). Using relation (7.328) in (7.323) we obtain

∂

∂t
σ (t)

∣∣∣∣m−1/2

= M̃ ∂v

∂x

∣∣∣∣m−1/2

−
∑n

l=1
Ỹ Ml ξl(tm) (7.329)
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where

M̃ = MU
(
1 +∑n

l=1G1lY
M
l

)
, ỸMl = G2lMUY

M
l

G1l = ωl�

2 − ωl�, G2l = 2

2 − ωl�
(7.330)

The derived relations mean that first we calculate ξl (tm) using relation (7.327) and then we
apply the obtained values in relation (7.329). The temporal derivative of stress and spatial
derivative of the particle velocity in Eq. (7.329) are approximated as in Paragraph 7.3.5.1.
Then the resulting FD scheme replaces the second of Eqs. (7.186). Thus, the complete FD
scheme is then

V
m+1/2
I = V m−1/2

I +�b f |mI
+ bI �

h

[
9
8

(
T mI+1/2 − T mI−1/2

)− 1
24

(
T mI+3/2 − T mI−3/2

)]
(7.331)

T mI−1/2 = T m−1
I−1/2 + M̃I−1/2

�

h

[
9
8

(
V
m−1/2
I − Vm−1/2

I−1

)
− 1

24

(
V
m−1/2
I+1 − Vm−1/2

I−2

)]
−�

∑n

l=1
ỸMl;I−1/2 ξ

m
l;I−1/2 (7.332)

ξml;I−1/2 = 2 − ωl�
2 + ωl�ξ

m−1
l;I−1/2

+ 2ωl�

2 + ωl�
1

h

[
9
8

(
V
m−1/2
I − Vm−1/2

I−1

)
− 1

24

(
V
m−1/2
I+1 − Vm−1/2

I−2

)]
(7.333)



8

3D finite-difference schemes

Before we address particular aspects of the FD schemes, we briefly review the development
of the application and elaboration of the FDM in numerical modelling of seismic wave
propagation and earthquake motion. We also refer to recent reviews of FD modelling, e.g.,
Moczo et al. (2007a,b), Fichtner (2011), Robertsson and Blanch (2011) and Robertsson
et al. (2012). The reviews by Robertsson and his colleagues focus on exploration seismology
but they are also relevant for earthquake seismology. Although related to computational
electrodynamics, the extensive book by Taflove and Hagness (2005) is also a relevant
reference.

8.1 Formulations and grids

8.1.1 Displacement conventional-grid schemes

The pioneering studies of applications of the FDM to seismic wave propagation were
based on a strong displacement formulation and conventional grids. Representative studies
include articles by Alterman and Karal (1968), Alterman and Rotenberg (1969), Alterman
and Loewenthal (1970), Boore (1970, 1972a,b), Boore et al. (1971), Alford et al. (1974),
Ilan et al. (1975), Kelly et al. (1976) and Marfurt (1984). Efforts to improve the displacement
conventional-grid schemes (in brief, conventional schemes) continued until about the end
of the 1990s; examples include schemes by Kummer et al. (1987), Zahradnı́k (1995b),
Zahradnı́k and Priolo (1995) and Moczo et al. (1999). The last three schemes reached
reasonable levels of accuracy in modelling the planar free surface and material interfaces,
but they could not overcome the fundamental limitations of the conventional schemes.

Bamberger et al. (1980) analyzed grid dispersion and found that the ratio of the grid
S-wave phase velocity to the true S-wave velocity becomes infinite inside liquids for the
conventional schemes. Stephen (1983), based on numerical tests, pointed out instabilities of
the heterogeneous conventional FD schemes at a liquid/solid interface. Marfurt (1984) ana-
lyzed grid dispersion and concluded that in a homogeneous elastic medium the explicit FE
and FD schemes are comparable for Poisson’s ratio less than 0.3; the FE scheme is superior
to the FD for Poisson’s ratio between 0.3 and 0.45; and none of the schemes is economi-
cally attractive for Poisson’s ratio greater than 0.45. Moczo et al. (1999) demonstrated the
decreasing accuracy of synthetics with increasing P-wave to S-wave speed ratio (VP /VS).

166
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Moczo et al. (2010, 2011) explained why the conventional schemes have a problem with
large VP /VS (see Section 8.3). Let us finish this very brief overview of the traditional (his-
torical) displacement conventional-grid schemes with two important pioneering articles by
Frankel and Vidale (1992) and Frankel (1993), which started the important period of 3D
FD modelling of earthquake ground motion.

Being motivated by fundamental problems of the traditional (or historical) displace-
ment conventional-grid schemes as well as by the difficulty with which the staggered-grid
schemes handle complex geometries (e.g., free-surface topography), Kreiss, Petersson,
Sjögreen and their collaborators have been developing a systematic novel approach for solv-
ing the 2nd-order displacement-formulation equation of motion by the FDM. For example,
Nilsson et al. (2007) developed a (2,2) 3D displacement conventional-grid scheme based
on discretization satisfying a summation-by-parts principle. The summation-by-parts dis-
cretization guarantees stability of the scheme for allVP /VS values. Nilsson et al. proved that
the discrete energy is conserved by the scheme, for equations with variable coefficients on
a bounded domain with traction-free or Dirichlet boundary conditions. Appelö and Peters-
son (2009) generalized the summation-by-parts approach to curvilinear grids, allowing the
free surface boundary condition to be imposed along a realistic topography. More recently,
Sjögreen and Petersson (2012) generalized the approach by Nilsson et al. (2007) and devel-
oped a 2D (4,4) scheme for solving the 2nd-order displacement-formulation equation of
motion. Their spatial discretization satisfies the summation-by-parts principle and allows
for heterogeneous materials and traction-free boundary conditions. The essential element
in their generalization is the 4th-order accurate approximation of the 2nd spatial derivative
with a variable coefficient, e.g., ∂

∂x

(
μ(x) ∂u

∂x

)
, consistent with the approximation of the 2nd

mixed spatial derivative, e.g., ∂
∂x

(
μ(x) ∂u

∂y

)
, such that an energy estimate can be obtained.

Compared to the previous summation-by-parts approximations, they use one virtual point
outside the physical boundary. This makes it possible to enforce boundary conditions in a
point-wise manner and avoid the use of projections or penalty terms. The explicit 4th-order
accurate temporal discretization is energy conserving.

Kreiss and Petersson (2012) analyzed the (homogeneous medium) half-plane problem
of the 2nd-order displacement-formulation equation of motion subject to the traction-free
boundary condition. They developed a normal mode analysis using a modified equation
approach and analyzed the influence of truncation errors in a pth-order accurate numerical
approximation of the free surface boundary condition. They explained why the num-
ber of grid points per wavelength of the surface Rayleigh wave must be proportional to
(VP /VS)2/p to achieve a constant phase error in the numerical solution when VP /VS is very
large.

8.1.2 Velocity–stress staggered-grid schemes

Problems with instabilities and numerical dispersion produced by the mixed boundary con-
ditions in the conventional schemes led Madariaga (1974, 1976) to introduce the velocity–
stress staggered-grid (VS SG) scheme motivated by the staggered-grid scheme developed
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by Yee (1966) for solving Maxwell’s equations. Madariaga used the formulation for mod-
elling rupture propagation. Virieux and Madariaga (1982) further elaborated the VS SG
scheme for studying dynamic shear cracks. Virieux (1984) introduced the 2D (2,2) VS SG
scheme for modelling SH waves and Virieux (1986) presented the corresponding P-SV
scheme. Virieux (1986) found that the stability condition of his P-SV scheme as well as the
grid P-wave phase velocity is independent of Poisson’s ratio. The grid S-wave phase velo-
city depends on Poisson’s ratio (through VP /VS) but is rather insensitive to VP /VS , and its
behaviour does not degrade with increasing VP /VS . None of these properties is the case for
the conventional schemes. The staggered-grid schemes have become the dominant type of
schemes in the FD modelling of seismic wave propagation and earthquake motion. In order
to decrease the number of grid points per minimum wavelength and thus increase compu-
tational efficiency, Levander (1988) introduced the 4th-order approximation in space in his
2D P-SV (2,4) VS SG scheme. Graves (1993), Olsen (1994) and Pitarka et al. (1997) intro-
duced 3D (2,4) VS SG schemes, applied them to modelling of earthquake ground motion,
and significantly promoted the FD modelling of earthquake ground motion. Yomogida and
Etgen (1993) developed the (2,8) displacement–stress staggered-grid scheme and applied
it for modelling wave propagation in the Los Angeles basin for the 1988 Whittier Narrows
earthquake.

Igel et al. (1995) described the problems of the staggered-grid schemes in modelling
seismic wave propagation in anisotropic media. Recently, Lisitsa and Vishnevskiy (2010)
and Bernth and Chapman (2011) showed the generalization of the standard staggered grid
to the so-called Lebedev grid, which may be considered a natural choice for an anisotropic
medium.

8.1.3 Displacement–stress schemes on the grid staggered in space

In order to further reduce the memory requirements, Luo and Schuster (1990) suggested a
displacement–stress 2D P-SV scheme which they called a parsimonious scheme. Because
the scheme does not integrate stress in time, the stress-tensor components are only temporary
quantities and the scheme is staggered only in space. The displacement–stress scheme in 3D
needs only 75% of the memory needed by the velocity–stress scheme. Rodrigues (1993)
and Yomogida and Etgen (1993) developed (2,8) 3D displacement–stress schemes, and
Moczo et al. (2002) a (2,4) scheme with volume harmonic averaging of elastic moduli and
volume arithmetic averaging of density.

8.1.4 Velocity–stress partly-staggered-grid schemes

For imposing the fault boundary conditions in modelling rupture dynamics, Andrews
(1973) and independently Day (1977, 1982) introduced the partly-staggered grid. Magnier
et al. (1994) elaborated the partly-staggered-grid scheme in order to incorporate anisotropy –
a task not natural for staggered-grid schemes. Zhang (1997, 1999) presented his
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quadrangle-grid velocity–stress scheme which is, in fact, the partly-staggered-grid scheme.
Saenger and his colleagues (e.g., Saenger et al. 2000, Saenger and Bohlen 2004, Bohlen and
Saenger 2006) elaborated and considerably promoted the application of partly-staggered-
grid schemes. Saenger and his colleagues use the term ‘new rotated staggered grid’. In fact,
the grid in their articles was not new and the term ‘rotated’ reflects one feature of one partic-
ular partly-staggered-grid scheme, which is not substantial. The (2,2) displacement–stress
version of the partly-staggered-grid scheme is equivalent to the (2,2) FE scheme with
1-point Gauss integration (see Section 8.2). Consequently and inherently, it may have a
problem with the hourglass modes that have to be artificially suppressed.

8.1.5 Optimally accurate schemes

In the era of the staggered-grid schemes, Geller and Takeuchi (1995, 1998) and Takeuchi and
Geller (2000) made an important contribution to the theory of the FD schemes and developed
their optimally accurate FD schemes in application to the Galerkin-type weak form of
Strang and Fix (1973) and Geller and Ohminato (1994). In their schemes displacement is
the sole dependent variable, in contrast to the staggered-grid schemes. The clever idea of
Geller and Takeuchi (1995) was to minimize the error of the numerical solution first of all
at eigenfrequencies (or resonant frequencies), that is, at frequencies at which oscillatory
motion of a linear mechanical system or finite volume of elastic continuum is naturally most
amplified. Geller and Takeuchi (1995) used the 1st-order Born theory and a normal mode
expansion to obtain formal estimates of the relative error of the numerical solution and a
general criterion for what they named optimally accurate operators. The criterion requires
that the inner product of an eigenfunction and the net error of the discretized equation of
motion should be approximately equal to zero when the operand is the eigenfunction and the
frequency is equal to the corresponding eigenfrequency. The criterion can be used to derive
optimally accurate operators without knowing the actual values of the eigenfrequencies
and eigenfunctions. Geller and Takeuchi (1995) showed that in the case of a heterogeneous
medium the criterion is the logical extension of the criterion to minimize grid dispersion of
phase velocity for a homogeneous medium. Geller and Takeuchi (1998) used the criterion
to develop an optimally accurate 2nd-order FDTD scheme for the elastic 1D case. Takeuchi
and Geller (2000) then developed optimally accurate FDTD operators for the 2D and 3D
cases. Mizutani (2002) developed a scheme capable of accounting for an arbitrary position
of the material discontinuity in the grid.

Whereas optimally accurate FDTD schemes require at least twice the CPU time per grid
point and time step compared to 2nd-order staggered-grid FD schemes, they yield accuracy
improvements on the order of 10 (for 1D), 50 (for 2D), or 100 (for 3D). From this point of
view they are cost effective.

The optimization yields implicit schemes. Geller and Takeuchi (1998) applied the
predictor-corrector algorithm in order to avoid solving large systems of algebraic equa-
tions. Thus, the actual computational schemes are explicit.
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Kristek and Moczo (2006) numerically compared the 1D (2,2) conventional scheme, the
(2,4) staggered-grid scheme and the optimally accurate scheme. The results confirmed the
superior accuracy of the optimally accurate scheme with almost negligible grid dispersion.

Despite its superior accuracy, we do not apply the optimally accurate scheme for mod-
elling earthquake motion in surface local structures. This is because the conventional
scheme serves as a predictor. Consequently, the predictor is in media with large VP /VS so
inaccurate that the corrector is not capable to ‘correct’ the ‘predicted’ values.

In media with low VP /VS the scheme is probably the most accurate FD scheme.

8.1.6 Velocity–stress schemes on the collocated grid

The ‘ultimate’ grid for the velocity–stress schemes should be the collocated grid (also
nonstaggered or unstaggered) in which all particle-velocity and stress-tensor components
share each grid position. From this point of view, the collocated grid is a natural grid not
only for imposing boundary conditions (at the planar or nonplanar free surface, material
interface or dynamically rupturing fault) but also for anisotropic media. It is, however,
necessary to avoid the centred approximations of temporal and spatial derivatives. Their
use would cause the presence of odd–even decoupling in time and space. Zhang and Chen
(2006) and Zhang et al. (2012) therefore applied a MacCormack scheme in which the
centred approximation is split into forward and backward approximations. The original
(2,2) MacCormack scheme (MacCormack 1969) was extended to the (2,4) scheme by
Gottlieb and Turkel (1976). Bayliss et al. (1986) combined the scheme with the operator
splitting-time integration. Zhang and Chen (2006) and Zhang et al. (2012) developed a
(4,4) MacCormack-type scheme in which one-sided operators are alternately applied in the
multistage Runge–Kutta time integration algorithm. The applied one-sided approximations
were developed by Tam and Webb (1993) and Hixon (1997).

Here we do not review the development of other aspects of FD schemes. The devel-
opments are concisely characterized in the chapters on rheological models, free surfaces,
discontinuous grids, PML, earthquake source dynamics and in the following sections of
this chapter.

8.2 Schemes on staggered, partly-staggered, collocated and conventional grids

In this section we assume a smoothly and weakly heterogeneous isotropic elastic unbounded
medium. We briefly indicate the velocity–stress staggered-grid and partly-staggered-grid
schemes as well as the displacement conventional-grid scheme. For brevity, recall just the
equations for vx and σxx :

ρ
∂vx

∂t
= ∂σxx

∂x
+ ∂σxy
∂y

+ ∂σxz
∂z

+ fx
∂σxx

∂t
= (λ+ 2μ)

∂vx

∂x
+ μ∂vy

∂y
+ μ∂vz

∂z

(8.1)
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Figure 8.1 Grid cell of the staggered grid.

in the velocity–stress formulation and

ρ
∂2ux

∂t2
= ∂

∂x

[
(λ+ 2μ)

∂ux

∂x

]
+ ∂

∂y

(
μ
∂ux

∂y

)
+ ∂

∂z

(
μ
∂ux

∂z

)

+ ∂

∂x

(
λ
∂uy

∂y

)
+ ∂

∂x

(
λ
∂uz

∂z

)
+ ∂

∂y

(
μ
∂uy

∂x

)
+ ∂

∂z

(
μ
∂uz

∂x

)
+ fx (8.2)

in the displacement formulation. Denote the discrete grid values of the particle-velocity
components vx, vy, vz by VX, VY, VZ, respectively. Similarly denote the stress-tensor com-
ponents σxx, σxy, σzx by TXX,TXY,TZX.

8.2.1 (2,4) velocity–stress scheme on the staggered grid

Figure 8.1 shows the grid cell. We may approximate the first of Eqs. (8.1) at the time
level m and spatial grid position I,K + 1/2, L+ 1/2. In the staggered grid we have all
quantities exactly at the positions at which we need them for the most natural approximations
of derivatives. The spatial distribution is unambiguous, complementary and there is no
redundancy. This is the beauty of the staggered grid. The schemes for vx and σxx are

VX
m+1/2
I,K+1/2,L+1/2

= VXm−1/2
I,K+1/2,L+1/2 + �

ρI,K+1/2,L+1/2
f |mI,K+1/2,L+1/2

+ 1

ρI,K+1/2,L+1/2

�

h

[
9
8

(
TXXmI+1/2,K+1/2,L+1/2 − TXXmI−1/2,K+1/2,L+1/2

)
− 1

24
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Figure 8.2 Grid cell of the partly-staggered grid.

and
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(8.4)

On the other hand, we can immediately realize that it would be useful to have all particle-
velocity components at the same grid position because this is what we have from mea-
surements. It would also be useful to have all stress-tensor components at the same grid
position because this would ease the simulation of the traction-free condition at the free
surface. Finally, it would be useful to have all field variables at the same position for
imposing boundary conditions at internal interfaces and, of course, for modelling wave
propagation in anisotropic media. The mentioned aspects are partly addressed by schemes
on the partly-staggered grid.

8.2.2 (2,4) velocity–stress scheme on the partly-staggered grid

Figure 8.2 shows the grid cell. Consider first approximating the spatial derivative of σxx :

∂σxx

∂x

∣∣∣∣m
I

≈ 9
8

(
TXXmI+1/2 − TXXmI−1/2

)− 1
24

(
TXXmI+3/2 − TXXmI−3/2

)
(8.5)
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Because we do not have the TXX values along the grid line parallel with the x-axis and
going through the grid positions with indices (K, L), we approximate the derivative as an
arithmetic average of approximations (8.5) along four grid lines parallel with the x-axis and
going through the grid positions with indices (K − 1/2, L− 1/2), (K − 1/2, L+ 1/2),
(K + 1/2, L− 1/2) and (K + 1/2, L+ 1/2), respectively. Similarly, we approximate all
spatial derivatives. The resulting schemes are

VX
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and

TXXmI+1/2,K+1/2,L+1/2

= TXXm−1
I+1/2,K+1/2,L+1/2 + �

4h

{
(λ+ 2μ)I+1/2,K+1/2,L+1/2

×
[

9
8

(
VXm−1/2

I+1,K,L − VXm−1/2
I,K,L

)
− 1

24

(
VXm−1/2

I+2,K,L − VXm−1/2
I−1,K,L

)
+ 9

8

(
VXm−1/2

I+1,K,L+1 − VXm−1/2
I,K,L+1

)
− 1

24

(
VXm−1/2

I+2,K,L+1 − VXm−1/2
I−1,K,L+1

)
+ 9

8

(
VXm−1/2

I+1,K+1,L − VXm−1/2
I,K+1,L

)
− 1

24

(
VXm−1/2

I+2,K+1,L − VXm−1/2
I−1,K+1,L

)
+ 9

8

(
VXm−1/2

I+1,K+1,L+1 − VXm−1/2
I,K+1,L+1

)
− 1

24

(
VXm−1/2

I+2,K+1,L+1 − VXm−1/2
I−1,K+1,L+1

)]
+ λI+1/2,K+1/2,L+1/2

[
9
8

(
VYm−1/2

I,K+1,L − VYm−1/2
I,K,L

)
− 1

24

(
VYm−1/2

I,K+2,L − VYm−1/2
I,K−1,L

)
+ 9

8

(
VYm−1/2

I,K+1,L+1 − VYm−1/2
I,K,L+1

)
− 1

24

(
VYm−1/2

I,K+2,L+1 − VYm−1/2
I,K−1,L+1

)
+ 9

8

(
VYm−1/2

I+1,K+1,L − VYm−1/2
I+1,K,L

)
− 1

24

(
VYm−1/2

I+1,K+2,L − VYm−1/2
I+1,K−1,L

)
+ 9

8

(
VYm−1/2

I+1,K+1,L+1 − VYm−1/2
I+1,K,L+1

)
− 1

24

(
VYm−1/2

I+1,K+2,L+1 − VYm−1/2
I+1,K−1,L+1

)]
+ λI+1/2,K+1/2,L+1/2

[
9
8

(
VZm−1/2

I,K,L+1 − VZm−1/2
I,K,L

)
− 1

24

(
VZm−1/2

I,K,L+2 − VZm−1/2
I,K,L−1

)
+ 9

8

(
VZm−1/2

I,K+1,L+1 − VZm−1/2
I,K+1,L

)
− 1

24

(
VZm−1/2

I,K+1,L+2 − VZm−1/2
I,K+1,L−1

)
+ 9

8

(
VZm−1/2

I+1,K,L+1 − VZm−1/2
I+1,K,L

)
− 1

24

(
VZm−1/2

I+1,K,L+2 − VZm−1/2
I+1,K,L−1

)
+ 9

8

(
VZm−1/2

I+1,K+1,L+1 − VZm−1/2
I+1,K+1,L

)
− 1

24

(
VZm−1/2

I+1,K+1,L+2 − VZm−1/2
I+1,K+1,L−1

)]}
(8.7)

Clearly, one price for having all the stress-tensor components at one grid position and all
the particle-velocity components at another grid position is the more complicated scheme.
Compared to the staggered-grid scheme, the stencil is no larger in the direction of the
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spatial derivative but it is wider in the directions perpendicular to the direction of the spatial
derivative. The other price is not obvious. It is the principal possibility of hourglass (or
zero-energy) modes. These have to be suppressed, for example, by introducing artificial
attenuation.

The presence of hourglass modes can be easily understood based on the equivalence of
the (2,2) displacement–stress partly-staggered scheme with the standard (2,2) displacement
FE scheme with Gaussian 1-point integration – see Moczo et al. (2010, 2011).

Recall that the partly-staggered-grid schemes are also called rotated staggered-grid
schemes according to articles by Sänger and his colleagues. We prefer the term ‘partly-
staggered-grid schemes’ because the aspect of rotation in one particular scheme is not
the most substantial aspect and this type of scheme was developed earlier without any
rotation.

8.2.3 (4,4) velocity–stress scheme on the collocated grid

In the velocity–stress formulation in matrix form a vector of field variables is defined that
comprises all particle-velocity and stress-tensor components. The use of the collocated
grid makes it possible to have all nine field variables at each grid position. Application
of centred FD approximations leads to odd–even decoupling. The standard 2nd-order and
also 4th-order approximations (based on Taylor expansions) have large truncation errors
compared to the approximations on the staggered grid. Zhang and Chen (2006) and Zhang
et al. (2012) overcome these problems using a higher-order MacCormack scheme that uses
a combination of the (noncentred) one-sided approximations in the multistage Runge–Kutta
time-integration algorithm. The one-sided approximations are based on minimization of
the dispersion error. As we indicated in Chapter 7, the effective resulting stencil is relatively
long. Because the presentation of the 3D scheme is rather lengthy we refer to the article by
Zhang et al. (2012).

8.2.4 Displacement scheme on the conventional grid

In Subsection 7.3.1 we showed how to avoid the spatial differentiation of the elastic modulus
by using a mathematical trick suggested by Tikhonov and Samarskii. We could apply the
same trick also in 3D. Moczo et al. (1999) presented the 3D (2,2) displacement conventional
grid scheme as a generalization of the 2D scheme suggested by Zahradnı́k (1995b) and
Zahradnı́k and Priolo (1995); see also Moczo et al. (2007a). While reasonably accurate in
a heterogeneous medium the scheme has fundamental drawbacks: (1) its accuracy rapidly
decreases with increasing value of the P-wave to S-wave speed ratio; (2) it is unstable
at the solid–liquid interface; (3) it is computationally inefficient due to the (2,2) order
of approximation. As far as we know, a displacement scheme on the conventional grid
that would overcome all three problems has not been found. In the following section we
present two (2,4) displacement conventional-grid schemes, but only for the homogeneous
medium.
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Here, we merely point out the aspect that appears to be the key problem even in a
homogeneous medium. Consider, for example, the most straightforward 2nd-order approxi-
mations:

μ
∂2ux

∂y2

∣∣∣∣m
I,K,L

= μ1

h

[
1

h

(
UXmI,K+1,L − UXmI,K,L

)− 1

h

(
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)]

μ
∂2uy

∂y∂x

∣∣∣∣m
I,K,L

= μ 1

2h

[
1

2h

(
UYmI+1,K+1,L − UYmI+1,K−1,L

)− 1

2h

(
UYmI−1,K+1,L − UYmI−1,K−1,L

)]
(8.8)

In the case of the 2nd nonmixed derivative we first approximate the 1st derivatives at
I,K + 1/2, L and I,K − 1/2, L, each over the grid spacing h, and then we approximate
the derivative of the 1st derivative at I, K, L, again over h. In the case of the 2nd mixed
derivative we first approximate the x-derivative at I, K, L over 2h and then we approximate
the y-derivative of the x-derivative at I, K, L, again over 2h. Moczo et al. (2010, 2011) showed
that the inhomogeneity in approximating derivatives – once over h, the other time over 2h –
is the reason for the degrading accuracy of the standard-displacement conventional grid
with increasing P-wave to S-wave speed ratio. Note that in the velocity–stress (or possibly
displacement–stress) schemes on the staggered, partly-staggered and collocated grids there
is no inhomogeneity in approximating spatial derivatives.

In Section 8.1 we mentioned a novel approach based on the summation-by-parts principle
(e.g., Nilsson et al. 2007, Kreiss and Petersson 2012, Sjögreen and Petersson 2012). For
the recent (4,4) scheme we refer to the article by Sjögreen and Petersson (2012).

8.3 Accuracy of FD schemes with respect to P-wave to S-wave speed ratio:
analysis of local errors

A P-wave to S-wave speed ratio in surface sediments as large as 5 or more often has to
be accounted for in the numerical modelling of seismic motion in sedimentary basins and
valleys. Five is a common value in surface sediments, mainly under the water level, and 10,
though relatively large, certainly is not the maximum possible value in the unconsolidated
surface water-saturated sediments.

8.3.1 Equations and FD schemes

8.3.1.1 Equations

Consider an unbounded homogeneous perfectly elastic isotropic medium. The P-wave and
S-wave speeds are VP ≡ α ≡ [(λ+ 2μ)/ρ]1/2 and VS ≡ β ≡ (μ/ρ)1/2, respectively. Here
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ρ is density, λ and μ are Lamé elastic moduli. Define the P-wave to S-wave speed ratio
VP /VS or r:

r ≡ α/β (8.9)

Throughout the chapter, r and VP /VS , α and VP , and β and VS will be used interchangeably
for convenience. Consider the displacement–stress (DS) formulation of the equation of
motion, (2.28) and (2.23), and the displacement (D) formulation, (2.29). The latter may be
written as
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∂y2
− ∂2uy

∂y∂z

) (8.10)

8.3.1.2 FD schemes

The FD schemes differ from each other by the equation formulation, grid and order of
approximation. For conciseness we will use acronyms for the analyzed schemes: D indicates
the displacement formulation, DS the displacement–stress formulation; CG indicates the
conventional grid, PSG the partly-staggered grid, and SG the (spatially) staggered grid.
The first number in parentheses indicates the order of approximation in time, the second
number the order of approximation in space. The lower-case ‘a’ or ‘b’ indicates one of two
variants of the 4th-order approximation. The schemes included in the analysis are:

FD D CG (2,2) traditional FD displacement conventional grid, 2nd order in time, 2nd

order in space
FD DS PSG (2,2) FD displacement–stress partly-staggered grid, 2nd order in time, 2nd

order in space
FD DS SG (2,2) FD displacement–stress (spatially) staggered grid, 2nd order in time,

2nd order in space
FD D CG (2,4a) FD displacement conventional grid, 2nd order in time, 4th order in

space, variant a
FD D CG (2,4b) FD displacement conventional grid, 2nd order in time, 4th order in

space, variant b
FD DS SG (2,4) FD displacement–stress (spatially) staggered grid 2nd order in time,

4th order in space

FD D CG (2,2), FD D CG (2,4a), FD D CG (2,4b) FD D CG (2,2), the 2nd-order FD
scheme solving the strong-form equation of motion for displacement on the conventional
grid, is obtained if the derivatives in Eqs. (8.10) are replaced using standard 2nd-order
centred FD formulas approximating the 2nd nonmixed and mixed derivatives.
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On the conventional grid we can find several 4th-order approximations to the 2nd non-
mixed and mixed spatial derivatives. Here we consider two different schemes. FD D CG
(2,4a) is the scheme with the minimum possible equal coefficients of the leading terms of
the truncation errors for the mixed and nonmixed derivatives. FD D CG (2,4b) has the mini-
mum possible spatial stencil and a relatively large difference between values of coefficients
of the leading terms of the truncation errors for the mixed and nonmixed derivatives.

FD DS SG (2,2), FD DS SG (2,4) FD DS SG (2,2) is obtained in the following way: The
2nd temporal derivative in Eqs. (2.28) is replaced using the standard 2nd-order centred FD
formula (approximating the 2nd derivative). The 1st spatial derivatives of the stress-tensor
components in Eqs. (2.28) are replaced using the standard 2nd-order centred FD formula
(approximating the 1st derivative). Then all the discrete stress-tensor components on the
r.h.s. of the obtained schemes are replaced by their FD approximations. The approximations
are obtained from Eqs. (2.23) in which the 1st derivatives are replaced using the standard 2nd-
order centred FD formula (approximating the 1st derivative). In the resulting final scheme,
only displacement components appear. This is important to note, given the fact that the
scheme solves the DS formulation of the equation of motion on the spatially staggered grid.
Note that this type of scheme is also called the parsimonious scheme.

FD DS SG (2,4) is obtained in the same way except that 4th-order FD approximations
are used to replace the 1st spatial derivatives of the stress-tensor and displacement compo-
nents.

FD DS PSG (2,2) It is reasonable to compare this 2nd-order scheme solving the DS
formulation of the equation of motion on the partly-staggered grid with FD D CG (2,2)
and FD DS SG (2,2). The scheme is obtained in the same way as FD DS SG (2,2) except
that the FD approximations are more complicated. The complication is due to the fact that
the stress-tensor components are displaced from the displacement components by half-grid
spacing in all three Cartesian directions (Fig. 6.1). For example, in approximating the x-
derivative of the stress-tensor component at a grid position of the displacement component,
the required values of the stress-tensor components are obtained as arithmetic averages
of the values at four stress-tensor component grid positions in the corresponding yz-grid
planes.

We do not include the velocity–stress staggered-grid (VS SG) schemes. They differ from
the FD DS SG schemes only in approximating temporal derivatives. Moczo et al. (2010)
showed that the difference between the behaviours of the corresponding 2D schemes with
respect to the VP /VS ratio is negligible.

8.3.1.3 Unified representation of FD schemes

All schemes can be represented in a unified form. Let Umξ = Umξ (I,K,L) be a discrete
approximation to uξ (Ih,Kh,Lh,m�) = uξ (xI , yK, zL, tm) with ξ ∈ {x, y, z}, h being a
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Table 8.1 Grid positions and weight coefficients for the Dxx operators defined
by Eq. (8.12)

scheme
xxD  

jΔ  576 xx
jw  

0j =  1j =  2j =  3j =  0j =  1j =  2j =  3j =  
FD D CG (2,2)
xxD  0 1   -576 576   

FD DS SG (2,2)
xxD  0 1   -576 576   

FD D CG (2,4a)
xxD  0 1 2 3 -400 288 144 -32 

FD D CG (2,4b)
xxD  0 1 2  -720 768 -48  

FD DS SG (2,4)
xxD  0 1 2 3 -730 783 -54 1 

grid spacing in each of the three Cartesian directions and � a time step. Each numerical
scheme can be then written as (compare with Eqs. (8.10))

Um+1
x = 2Umx − Um−1

x +�2β2
{
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]}
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]−Dyz
[
Umy

]}

(8.11)

The schemes differ from each other by the difference operators Dξξ and Dξη; ξ, η ∈
{x, y, z} for approximating 2nd nonmixed and mixed spatial derivatives. For brevity we
explicitly show only Dxx and Dzx operators. The other operators are easily obtained by
even permutation of the Cartesian indices.

In the set of the considered schemes we can recognize two types of nonmixed operators.
The first type can be expressed as

Dxx [� (I,K,L)] = 1

h2

J∑
j=0

wxxj
[
�
(
I −�j,K,L

)+� (I +�j,K,L
)]

(8.12)

Here � represents a displacement component. According to Eq. (8.12), operators of dif-
ferent schemes may differ from each other by the number of grid positions at which
displacement components are used for the approximation and the weight coefficients wxxj
of the considered displacement component at those grid positions. The grid positions and
weight coefficients are given in Table 8.1.
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Table 8.2 Grid positions and weight coefficients for the Dzx
operators defined by Eq. (8.14)

scheme
zxD  

,j nΔ Δ  
zxw  

, 1j n =  , 2j n =  

FD D CG (2,2)
zxD  1  

1

4
 

FD DS SG (2,2)
zxD  1/2  1 

FD D CG (2,4a)
zxD  1 2 

256 321

32 4576

−
−

 

FD D CG (2,4b)
zxD  1 2 

240 241

24 0576

−
−

 

FD DS SG (2,4)
zxD  1/2 3/2 

729 271

27 1576

−
−

 

The second type, for FD DS PSG (2,2), can be expressed as

Dxx [� (I,K,L)] = 1

h2

L+1∑
l=L−1

K+1∑
k=K−1

αxxl−L+2,k−K+2D
FD D CG (2,2)
xx � (I, k, l)

αxxi,j = 1

16

⎡
⎣1 2 1

2 4 2
1 2 1

⎤
⎦ (8.13)

Similarly, there are two types of mixed operators. The first one is

Dzx [� (I,K,L)]

= 1

h2

N∑
n=1

N∑
j=1

wzxnj [�(I +�j,K,L+�n) −�(I +�j,K,L−�n)

−�(I −�j,K,L+�n) +�(I −�j,K,L−�n)] (8.14)

The grid positions and weight coefficients are given in Table 8.2.
The second type, for FD DS PSG (2,2), can be expressed as

Dzx [� (I,K,L)] = 1

h2

K+1∑
k=K−1

αzxk−K+2D
FD D CG (2,2)
zx � (I, k, L)

αzx1 = 1
4 , α

zx
2 = 1

2 , α
zx
3 = 1

4

(8.15)

8.3.1.4 Truncation errors of the discrete spatial operators

Table 8.3 shows the leading and first higher terms of the truncation errors of all operators
defined by Eqs. (8.12)–(8.15). We analyze them later.
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Table 8.3 The leading and 1st higher terms of the truncation errors of the nonmixed and
mixed spatial operators defined by Eqs. (8.12)–(8.15). (a) 2nd-order operators,

(b) 4th-order operators

(a)   Operator 
         truncation error 20160×  

(4,0,

FD

0)

D CG (

2

2

(6,0,0

,2)

) 416 5680
xx

h h

D

+Ψ Ψ
 

( )
( )

(1,0,3) (3,0,1) 21 1
2 2

(1,0,5) (3,0,3) (5,0,1) 43 10 3
16 16 16

FD D CG (2,2)

8

67 0

96

2
zx

h

h

D

Ψ + Ψ

Ψ + Ψ + Ψ+

 

( )
( )( )

(2,0,2) (4,0,0) (2,2,0)3 31
7 7 7

(6,0,0) (4,2,0) (4,0,2) (2,4,0) (2,2,2) (2,0,4)

FD DS PSG (2

1
1

,2)

2

07
42996

11760

2 15 15 15 45 15

xx

h

D

hΨ + Ψ Ψ

Ψ Ψ Ψ

+

+ + + +Ψ Ψ+ Ψ +

 

( )
( )( )

(1,0,3) (1,2,1) (3,0,1)32 2
7 7 7

(1,0,5) (1,2,3) (1,4,1) (3,0,3) (3,2

FD DS PSG (2,2)

2

4,1) (5,0,1)1
107

2996

11760

6 30 15 20 30 6

zx

h

D

hΨ Ψ + Ψ

Ψ Ψ Ψ

+

+ + + +Ψ Ψ+ Ψ +

 

(4,0

F

,

D D

0)

S SG (

2

2

(6,0 0 4

,2)

, )16 5680
xx

h h

D

+Ψ Ψ
 

( ) ( )(1,0,3) (3,0,1) 2 (1,0,5) (3,

FD DS SG

0,3) (5,0,1) 43 10 31 1
2 2 16

(2,2

16 16

)

5168 60
zx

h h

D

+Ψ + Ψ Ψ + Ψ + Ψ
 

(b)   Operator 
         truncation error 20160×  

( 6,0

F

,

D D

0)

CG (2

4

,4

( 8,0,0)

a)

6134 3004
xx

h h

D

−− Ψ Ψ
 

( ) ( )(1,0,5) (5,0,1) 4

FD D CG (2,4a

(1,0,7) (7,0,1) 61 1 1 1
2 2 2 2

)

1344 160
zx

h h

D

− Ψ + Ψ − Ψ + Ψ
 

( 6,0

F

,

D D

0)

CG (2

4

,4b)

( 8,0,0) 622 204
zx

h h

D

− Ψ − Ψ
 

( )
( )

(1,0,5) (3,0,3) (5,0,1) 46 5 6
17 17 17

(1,0,7) (3,0,5) (5,0,3) (7,0,1)7 74 4
22 2

FD D CG (2,4b)

6
2 22 22

1904

440

zx

h

D

h

− Ψ Ψ + Ψ

− Ψ Ψ Ψ

+

+ Ψ+ +

 

( 6,0,

FD

0)

DS SG

4

(2,4)

( 8,0,0)45
4

6891
xx

h h

D

− Ψ − Ψ
 

( ) ( )(1,0,5) (5,0,1) 4 (1,0,7) (7,0,1) 6451 1 1 1

FD DS SG

2

(2

2 4 2

,

2

4)

189
zx

h

D

h− Ψ + Ψ − Ψ + Ψ
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8.3.2 Local errors

With reference to Subsection 7.2.7, any one of the considered schemes may be symbolically
expressed in a unified form:

Um+1
ξ (I,K,L) = numerical scheme

{
Um−1, Um

}
(8.16)

or, equivalently,

Uξ (I,K,L, t +�) = numerical scheme {U (t −�) , U (t)} (8.17)

U (t −�) and U (t) represent displacement components at relevant grid positions around
(I,K,L) at times t −� and t, respectively, and ξ ∈ {x, y, z}. A numerical solution in one
time step may be then expressed as

UN
ξ (I,K,L, t +�) = numerical scheme

{
UE (t −�) , UE(t)

}
(8.18)

where the upper index N indicates the numerical solution, and the upper index E indicates
an exact value. If we know the exact value of displacement at any time, it is possible to
define a relative local error in amplitude (see Subsection 7.2.7) as

εRel
ampl =

(
�ref

�

)2 ∣∣∣∣AN − AE

AE

∣∣∣∣ (8.19)

withAN being the amplitude of the numerical solution (modulus of the displacement vector)
in one time step and AE the exact amplitude – both evaluated at time t +�. The value of
the reference time step �ref will be specified later.

In their analysis of the 2D 2nd-order FD and FE schemes, Moczo et al. (2010) also defined
the relative error in the direction of the displacement vector (or error in polarization or angle).
The 3D problem involves three displacement-vector components and two angles. This
considerably complicates the quantification of the polarization error and direct comparison
of their values with the values of the error in amplitude. It is therefore reasonable to define
the error in the vector difference as

εRel
vdiff =

(
�ref

�

)2 1

AE

[(
UN
x − UE

x

)2 + (
UN
y − UE

y

)2 + (
UN
z − UE

z

)2
]1/2

(8.20)

This absolute value of the vector difference between the numerically calculated displace-
ment vector and the exact displacement vector comprises errors in both amplitude and
polarization in one reasonable value. This value can be directly compared with the error in
amplitude.
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ϕ
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z
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δ
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u
k

Figure 8.3 Cartesian coordinate system, angles ϕ and δ for defining a direction of propagation,
displacement vector and displacement components of the plane S wave.

8.3.3 The exact and numerical values of displacement in a grid

Consider a harmonic plane S wave propagating in an unbounded homogeneous elastic
isotropic medium as the exact solution in definitions of the local errors. Assuming a har-
monic plane S wave polarized in a vertical plane determined by the z-axis and wavenumber
vector �k, the displacement components are

uξ (x, y, z, t ;ω;ϕ, δ) = AξEtExEyEz; ξ ∈ {x, y, z} (8.21)

where

Et = exp [−iωt]
Ex = exp [ikxx] Ey = exp

[
ikyy

]
Ez = exp [ikzz]

kx = k cosϕ sin δ ky = k sinϕ sin δ kz = k cos δ
Ax = A cos ϕ cos δ Ay = A sinϕ cos δ Az = −A sin δ

(8.22)

k = ω/β, 0 ≤ δ ≤ π, 0 ≤ ϕ ≤ 2π

ω is the angular frequency, k = |�k| is the wavenumber, δ is the angle between the positive
z-axis and the wavenumber vector �k (the direction of propagation), ϕ is the angle between
the positive x-axis and the vertical plane determined by the z-axis and wavenumber vector
�k; see Fig. 8.3. The restriction to the S wave is reasonable: numerical modelling of P-wave
propagation poses a minor problem if the modelling comprises both types of waves. We
will explain why this is so later. Note that the sign convention in Eqs. (8.22) is consistent
with that used by Moczo et al. (2011).

Recalling spatial sampling Nλ = λ/h, Eq. (7.34), wavenumber k may be expressed as

k = ω/β = 2π/(hNλ) (8.23)
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and

kxh = 2π

Nλ
cosϕ sin δ, kyh = 2π

Nλ
sinϕ sin δ, kzh = 2π

Nλ
cos δ (8.24)

ω = 2πβ/(hNλ) (8.25)

Considering the stability condition for any of the numerical schemes in the form � ≤
� (h, α, β) and the stability ratio p = �/�; 0 < p ≤ 1, the time step�may be expressed
as

� = p� (h, α, β) (8.26)

Without loss of generality, consider

xI = 0, yK = 0, zL = 0, tm = 0

and evaluate errors at

xI = 0, yK = 0, zL = 0, tm+1 = � (8.27)

The real exact displacement at this space–time grid position is, see Eqs. (8.21) and (8.22),

Re
{
uξ (0, 0, 0,�)

} = Aξ cos (ω�) (8.28)

and the exact amplitude is

AE = (
[Ax cos(ω�)]2 + [Ay cos(ω�)]2 + [Az cos(ω�)]2

)1/2 = A|cos(ω�)| (8.29)

The exact values of (complex) displacements entering the r.h.s. of schemes (8.11) are
evaluated as

Um−1
ξ (I,K,L) = uξ (0, 0, 0, t = −�;ω;ϕ, δ) = Aξ exp[+iω�]
Umξ (I,K,L) = uξ (0, 0, 0, t = 0;ω;ϕ, δ) = Aξ

Umξ (I +�I ,K +�K,L+�L) = uξ (h�I , h�K, h�L, t = 0;ω;ϕ, δ)
= Aξ exp[+ikxh�I ] exp[+ikyh�K ] exp[+ikzh�L]

(8.30)

The grid-index increments�I ,�K and�L depend on a numerical scheme. Quantities kxh,
kyh and kzh are given by Eq. (8.24).

According to Eqs. (8.11)–(8.15), each scheme effectively includes the second power
of quantity (β/h)�. Quantities ω�, (β/h)� and � entering the numerical schemes and
formulas for the errors are summarized in Table 8.4.
Um+1
x , Um+1

y and Um+1
z , evaluated at (I,K,L), are obtained using schemes (8.11). The

amplitude of the numerical solution is then

AN =
([

Re
{
Um+1
x

}]2 + [
Re
{
Um+1
y

}]2 + [
Re
{
Um+1
z

}]2
)1/2

(8.31)

In principle, any time step may be chosen as a reference time step�ref appearing in formulas
(7.104) and (8.20) for the errors. One reasonable choice is �ref = � for FD DS SG (2,4);
p = 0.9, Nλ = 6, r = 1.42. The reason for FD DS SG (2,4) will become clear later;Nλ = 6
is the most common choice for the spatial sampling in the numerical modelling of earthquake
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Table 8.4 Quantities entering the numerical schemes and formulas for the errors

 ω Δ  ( )hβ Δ  Δ  

FD D CG (2,2) ( )1/22

2 1

1

p

N rλ

π

+
 

( )1/221

p

r+
 

( )1/22

1

1

p

N rλ

λ
β+

 

FD DS PSG (2,2) 
2 1p

N rλ

π
 p

r
 

1p

N rλ

λ
β

 

FD DS SG (2,2) 
2 1 1

3

p

N rλ

π
 1 1

3
p

r
 

1 1

3

p

N rλ

λ
β

 

FD D CG (2,4a) 
FD D CG (2,4b) ( )1/22

2 1
0.7

1

p

N rλ

π

+
 

( )1/22
0.7

1

p

r+
 

( )1/22

1
0.7

1

p

N rλ

λ
β+

 

FD DS SG (2,4) 
2 6 1

7 3

p

N rλ

π
 6 1

7 3
p

r
 

6 1

7 3

p

N rλ

λ
β

 

motion in surface sedimentary basins using the 4th-order SG schemes, and r = 1.42 is taken
instead of the exact minimum value r = √

2.
The rightmost column in Table 8.4 includes the factor λ/(βNλ). It could be replaced by

h/β but in both cases the time steps include explicitly the S-wave speed β in addition to the
VP /VS ratio r. However, because the errors (7.104) and (8.20) include the ratio

(
�ref /�

)2
,

the explicit presence of λ and β is removed from the errors. Consequently, apart from the
absolute quantities ϕ and δ (angles determining the direction of propagation), errors εRel

ampl

and εRel
vdiff depend only on the relative dimensionless quantities Nλ, p and r.

8.3.4 Equivalent spatial sampling for the errors in amplitude and
the vector difference

Choose a reference maximum error as the maximum relative error in amplitude of
FD DS SG (2,4) for VP /VS = 10 andNλ = 6. This error is equal to 0.00112. An equivalent
spatial sampling Nequiv

λ may be defined as a value at which the maximum relative error (a
function of VP /VS) of a scheme is equal to the reference maximum error. The maximum
relative error is determined as the maximum of errors calculated for angles ϕ ∈ [0, 90]◦ and
δ ∈ [0, 90]◦ with angle increment of 0.5◦. Figure 8.4, left, shows the N equiv

λ (VP /VS) curves
based on the relative error in amplitude for the stability ratio p = 0.9. The solid lines are
used for the 4th-order schemes, the dashed lines for the 2nd-order schemes.

The curves for different values of the stability ratio differ from each other only negligibly.
Small differences can be seen only for the lowest values of r. At first sight we realize that
the equivalent spatial sampling ratios for FD DS SG (2,4), FD D CG (2,4a), FD DS SG (2,2)
and FD DS PSG (2,2) depend only slightly on VP /VS . On the other hand, the equivalent
spatial sampling ratios for FD D CG (2,4b) and FD D CG (2,2) considerably change with
increasing VP /VS . FD D CG (2,2) is the least accurate scheme. Figure 8.4, right, shows the
N

equiv
λ (VP /VS) curves based on the relative error in the vector difference. The equivalent
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Table 8.5 The N equiv
λ values for p = 0.9 and reference maximum error equal to 0.00112.

Boldface: schemes for which Nequiv
λ based on the relative error in amplitude only

negligibly varies with VP /VS

P SV V  FD DS 
SG (2,4) 

FD D 
CG (2,4a) 

FD DS 
SG (2,2) 

FD D 
CG (2,4b) 

FD DS 
PSG (2,2) 

FD D 
CG (2,2) 

equivNλ  based on the relative error in amplitude 

1.42 5.3 8.8 16.6 7.8 25.6 15.4 

5 5.9 9.7 17.7 14.0 26.9 75.4 

10 6.0 9.7 17.8 19.7 27.1 153.5 
equivNλ  based on the relative error in the vector difference 

1.42 5.3 8.8 16.6 7.8 25.6 15.4 

5 8.1 13.1 33.3 14.0 47.5 76.3 

10 11.5 18.7 67.3 19.8 97.5 162.1 

1.4 2 1.4 29876543 10

10

100
FD D CG (2,2)

FD DS SG (2,4)

FD D   CG (2,4a)

FD DS SG (2,2)
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3 654 987 10

eq
ui

va
le

nt
 s

am
pl

in
g

/ VSPV/ VSPV

Rel
amplε Rel

vdiffε

Figure 8.4 The N equiv
λ (VP /VS ) curves. The equivalent spatial sampling N equiv

λ is defined as the value
at which the maximum absolute value of the relative error of a scheme is equal to the reference
maximum error. The chosen reference maximum error, 0.00112, is equal to the maximum relative
error in amplitude of FD DS SG (2,4) for VP�VS = 10 and Nλ = 6. The left panel shows curves for
εRel

ampl, the right panel shows curves for εRel
vdiff .

spatial sampling ratios for each scheme increase with increasing VP /VS . Figure 8.4 clearly
shows that, in terms of the equivalent spatial sampling, FD DS SG (2,4) is more accurate
and more efficient than the other schemes. Table 8.5 lists the N equiv

λ values for p = 0.9 and
three values of VP /VS : 1.42, 5 and 10.
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8.3.5 Essential summary based on the numerical investigation

The relative local error in amplitude of FD DS SG (2,4), FD D CG (2,4a), FD DS SG (2,2)
and FD DS PSG (2,2) is almost independent of VP /VS . The error in the vector difference
increases with increasing VP /VS . This can be explained only by the dependence of the
polarization errors of all schemes on VP /VS . The dependence of the error in the vector
difference on VP /VS has to be accounted for by a proper spatial sampling.

FD D CG (2,2) is the most sensitive to VP /VS and requires considerably denser spatial
sampling than any other scheme ifVP /VS > 2. The maximum errors in the vector difference
of schemes FD DS SG (2,2) and FD DS PSG (2,2) increase with increasing VP /VS in the
same way but FD DS PSG (2,2) requires denser spatial sampling than FD DS SG (2,2) in
order to achieve the same accuracy. The maximum errors in the vector difference of all
4th-order schemes increase for VP /VS > 3 in the same way. Schemes FD D CG (2,4a) and
FD D CG (2,4b) require denser spatial sampling than FD DS SG (2,4) in order to achieve
the same accuracy. The 4th-order schemes are for VP /VS > 3 less sensitive to increasing
VP /VS than the 2nd-order schemes.

8.3.6 Interpretation of the errors

8.3.6.1 The S and P waves seen by the equation of motion

The equation of motion (8.10) in concise form reads

∂2ui

∂t2
= α2 ∂

2uj

∂xj ∂xi
+ β2

(
∂2ui

∂xj∂xj
− ∂2uj

∂xj∂xi

)
(8.32)

The S wave is solenoidal, that is, div �u = ∂uj
∂xj

= 0. Then, for the S wave,

∂2uj

∂xj ∂xi
= 0,

∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi
= 1

β2

∂2ui

∂t2
(8.33)

The P wave is irrotational, that is, rot �u=0 or εkji
∂ui
∂xj

= 0, where εkji is the Levi-Civita
symbol. Then, for the P wave,

∂2uj

∂xj ∂xi
= 1

α2

∂2ui

∂t2
,

∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi
= 0 (8.34)

8.3.6.2 The S and P waves seen by the FD scheme

A numerical scheme solving Eq. (8.32) can be written in the form

DA

{
∂2ui

∂t2

}
≈ α2DA

{
∂2uj

∂xj ∂xi

}
+ β2DA

{
∂2ui

∂xj∂xj
− ∂2uj

∂xj∂xi

}
(8.35)

where DA means a discrete approximation. Equation (8.35) is, in fact, a concise symbolic
form of Eqs. (8.11). With reference to Eq. (7.23), a discrete approximation to any operator
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in general can be expressed as a sum of the exact differential operator and a truncation error
(for which we will use symbol TrunErr). Equation (8.35) can be then written as

∂2ui

∂t2
+ TrunErr

{
∂2ui

∂t2

}
≈ α2

(
∂2uj

∂xj ∂xi
+ TrunErr

{
∂2uj

∂xj ∂xi

})

+β2

(
∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi
+ TrunErr

{
∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi

})
(8.36)

The harmonic plane S wave Considering the first of Eqs. (8.33), equality ∂2uSi
∂t2

= −ω2uSi ,
and the fact that each 2nd spatial derivative of a displacement-vector component is propor-
tional to −ω2uSi /β

2, Eq. (8.36) may be written as(
1 + error tSi

) (−ω2uSi
) ≈ α2

(
0 + error αSi

) (−ω2uSi
)
β−2 +

(
1 + error βSi

) (−ω2uSi
)

(8.37)

and eventually

uSi ≈
(
r2error αSi + 1 + error βSi − error tSi

)
uSi (8.38)

The double-index summation rule does not apply to index i in Eqs. (8.37)–(8.51).
The error terms

error αSi =
β2TrunErr

{
∂2uSj

∂xj∂xi

}

−ω2uSi
,

error βSi =
β2TrunErr

{
∂2uSi
∂x2
j

− ∂2uSj

∂xj ∂xi

}

−ω2uSi

(8.39)

do not depend on r, that is, VP /VS . However, the error term error tSi does depend on r:

error tSi =
TrunErr

{
∂2uSi
∂t2

}
−ω2uSi

= c1
1

r2
+ c2

1

r4
+ · · · (8.40)

Coefficients cl ; l = 1, 2, . . . do not depend on r. Note that the series in powers of 1/r2 is
due to the 2nd-order approximation to the 2nd temporal derivative. The squares of the time
step, �2, are expressed using 1/r2.

The harmonic plane P wave Considering the second of Eqs. (8.34), equality ∂2uPi
∂t2

=
−ω2uPi , and the fact that each 2nd spatial derivative of a displacement-vector component is
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proportional to −ω2uPi /α
2, Eq. (8.36) may be written as

(
1 + error tPi

) (−ω2uPi
) ≈ (

1 + error αPi
) (−ω2uPi

)+ β2
(

0 + error βPi

) (−ω2uPi
)/
α2

(8.41)

and eventually

uPi ≈
(

1 + error αPi + 1

r2
error βPi − error tPi

)
uPi (8.42)

Analogously to the error terms in Eqs. (8.39), error αPi and error βPi do not depend on r.
The dependence of error tPi on r is analogous to that of error tSi in Eq. (8.40).

Essential comparison of the P and S waves There is an important difference between
Eq. (8.38) for the S wave and Eq. (8.42) for the P wave: whereas r2error αSi increases with
increasing VP /VS , 1

r2 error βPi decreases with increasing VP /VS . This is why a large value
of VP /VS does not pose a problem for the P wave.

8.3.6.3 Structure of the errors in amplitude and vector difference

Because we restrict our further discussion to the S wave, in the following section we will
omit explicit indication of the S wave in the displacement-vector components and error
terms. Recall Eq. (8.35). The analyzed schemes differ from each other by the approximations
on the r.h.s. They share the same approximation to the 2nd time derivative:

DA

{
∂2ui

∂t2

}
≈ 1

�2

(
um+1
i − 2umi + um−1

i

)
(8.43)

Using Eq. (8.43) in Eq. (8.35) we can get the scheme for the numerical displacement
component at the time level m+ 1 in the form

Num+1
i = 2umi − um−1

i +�2

(
α2DA

{
∂2uj

∂xj ∂xi

}
+ β2DA

{
∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi

})
(8.44)

Recalling the concept of the local error, Eqs. (8.16)–(8.20), we distinguish the numerical
value, labelled N, on the l.h.s., from the exact values of the displacement components on the
r.h.s. (not labelled). Subtracting um+1

i from both sides of Eq. (8.44), dividing the equation
by �2, and using Eq. (8.43), we obtain

(
Num+1
i − um+1

i

) 1

�2
= −DA

{
∂2ui

∂t2

}
+ α2DA

{
∂2uj

∂xj ∂xi

}
+ β2DA

{
∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi

}
(8.45)
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Each of the discrete approximations on the r.h.s. can be replaced by the sum of the exact
operator and truncation error. Then,(

Num+1
i − um+1

i

) 1

�2
= −∂

2ui

∂t2
+ α2 ∂

2uj

∂xj ∂xi
+ β2

(
∂2ui

∂xj∂xj
− ∂2uj

∂xj∂xi

)

− TrunErr

{
∂2ui

∂t2

}
+ α2TrunErr

{
∂2uj

∂xj ∂xi

}

+β2TrunErr

{
∂2ui

∂xj∂xj
− ∂2uj

∂xj ∂xi

}
(8.46)

The sum of the first three terms on the r.h.s. is equal to zero, see Eq. (8.32), and thus

(
Num+1
i − um+1

i

) 1

�2
= −TrunErr

{
∂2ui

∂t2

}
+ α2TrunErr

{
∂2uj

∂xj ∂xi

}

+ β2TrunErr

{
∂2ui

∂xj ∂xj
− ∂2uj

∂xj ∂xi

}
(8.47)

Considering Eqs. (8.39) and (8.40)

(Num+1
i − um+1

i

) 1

�2
=
(

error tSi − r2error αSi − error βSi

)
ω2ui (8.48)

Referring to definition (8.20) of the error in the vector difference and Eq. (8.29), consider
an auxiliary error-component term

ε̃i,vdiff =
(

Num+1
i − um+1

i

)
AE

1

�2
=
(

error tSi − r2error αSi − error βSi

) ω2ui

|A cosω�| (8.49)

Referring now to definition (8.19) of the error in amplitude and Eq. (8.29), we rearrange
Eq. (8.49) and consider another auxiliary error-component term:

ε̃i,ampl =
Num+1
i

AE

1

�2
=
(

error tSi − r2error αSi − error βSi

) ω2ui

|A cosω�| + um+1
i

|A cosω�|
1

�2

(8.50)

Equations (8.21) and (8.22) imply um+1
i = ui (t +�) = exp [−iω�] ui(t) and, conse-

quently,

ε̃i,ampl =
Num+1
i

AE

1

�2
=
(

error tSi − r2error αSi − error βSi + exp [−iω�]
(ω�)2

)
ω2ui

|A cosω�|
(8.51)

Errors (7.104) and (8.20) can then be expressed as

εRel
ampl = (

�ref
)2
∣∣∣∣[ε̃2

x,ampl + ε̃2
y,ampl + ε̃2

z,ampl

]1/2
− 1

∣∣∣∣ (8.52)

εRel
vdiff = (

�ref
)2 [
ε̃2
x,vdiff + ε̃2

y,vdiff + ε̃2
z,vdiff

]1/2
(8.53)
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Table 8.6 Comparison of coefficients of the leading and 1st higher
terms of the truncation errors TrunErr {Dxx} and TrunErr {Dzx}.
(a) Schemes with the error in amplitude almost independent of

VP /VS . (b) Schemes with the error in amplitude dependent on VP /VS

2nd-order schemes 4th-order schemes 

 operator 
1

LT

HT

C
C  operator 

1

LT

HT

C
C  

(a) 

FD DS SG 2
xxD  

1 
1 

2

4

c

c
 FD DS SG 4

xxD  
1 
1 

4

6

d

d
 

FD DS SG 2
zxD  

2

4

c

c
 FD DS SG 4

zxD  
4

6

d

d
 

FD DS PSG 2
xxD  

1 
1 

2

4

7.0

53.5

c

c
 

FD D CG 4a
xxD

 1 
0.53 

4

6

7.1

26.7

d

d
 

FD DS PSG 2
zxD  

2

4

7.0

53.5

c

c
 

FD D CG 4a
zxD

 

4

6

7.1

14.2

d

d
 

(b) 

FD D CG 2
xxD  

  4 
16 

2

4

c

c
 FD D CG 4b

xxD  
  8.5 
22 

4

6

1.2

1.8

d

d
 

FD D CG 2
zxD  

2

4

4.0

16.0

c

c
 FD D CG 4b

zxD  
4

6

10.1

39.1

d

d
 

Difference between εRel
ampl and εRel

vdiff Obviously, the auxiliary error-component terms ε̃i,ampl

and ε̃i,vdiff do not quantitatively represent the entire values of εRel
ampl and εRel

vdiff , respectively.
They do, however, indicate where the difference between εRel

ampl and εRel
vdiff comes from.

The r.h.s of Eqs. (8.49) and (8.51) differ by the 4th term in the parentheses in Eq. (8.51).
The absolute value of this term is proportional to r2, see Table 8.4. The fact that εRel

ampl of
schemes FD DS SG (2,4), FD D CG (2,4a), FD DS SG (2,2) and FD DS PSG (2,2) is almost
independent of r is likely related to the interaction of the 2nd and 4th terms because they are
both proportional to r2.

8.3.6.4 Truncation errors of the discrete approximations to the 2nd nonmixed
and mixed spatial derivatives

It is interesting to look at the structure of the truncation errors of the 2nd-order and 4th-order
operators for the 2nd mixed and nonmixed derivatives. The errors are shown in Table 8.3.
Define ratios for each scheme:

CLT = coeff. of leading term of TrunErr {Dzx}
coeff. of leading term of TrunErr {Dxx}

CkHT = coeff. of k-th higher term of TrunErr {Dzx}
coeff. of k-th higher term of TrunErr {Dxx} ; k = 1, 2, 3, . . .

(8.54)
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CLT and C1HT are shown in Table 8.6. Table 8.6(a) includes the four schemes for which
εRel

ampl are almost independent of VP /VS ; Table 8.6(b) includes the other schemes. All the
four schemes in Table 8.6(a) have CLT = 1. Schemes FD DS SG (2,4), FD DS SG (2,2)
and FD DS PSG (2,2) also have CkHT = 1 (the table shows only the first one). On the other
hand, neither of the two schemes in Table 8.6(b) has CLT or C1HT equal to 1.

We denote by c2 and c4 the coefficients of the leading term and 1st higher term of
TrunErr {Dxx} or TrunErr {Dzx} of the 2nd-order FD DS SG (2,2) operators. The lower index
indicates the power of the grid spacing h. Similarly, denote by d4 and d6 the coefficients
of the leading term and 1st higher term of TrunErr {Dxx} or TrunErr {Dzx} of the 4th-order
FD DS SG (2,4) operators. Table 8.6 shows the corresponding coefficients of other 2nd-order
operators as multiples of c2 and c4. Similarly, coefficients of the other 4th-order operators
are shown as multiples of d4 and d6.

In general, for the schemes of the same order (either 2nd or 4th) for given CLT or C1HT ,
εRel

ampl and εRel
vdiff increase with increasing absolute values of coefficients of terms in the

truncation errors. This is seen well for FD DS SG (2,2) and FD DS PSG (2,2). CLT orC1HT

are the same but the coefficients of terms in the truncation errors are different. It is also
interesting to compare FD DS SG (2,4) and FD D CG (2,4a). Although they have different
C1HT , the ratio of the coefficients of the leading terms, which is 7.1, well quantifies the
difference in their errors (see Fig. 8.4).

8.3.7 Summary

The relative local error in amplitude, εRel
ampl, of schemes FD DS SG (2,4), FD D CG (2,4a),

FD DS SG (2,2) and FD DS PSG (2,2) is almost independent of VP /VS . The error in
the vector difference, εRel

vdiff , increases with increasing VP /VS . This can be explained by
the dependence of the polarization errors of all schemes on VP /VS . FD D CG (2,2) is the
most sensitive to increasing VP /VS and for VP /VS > 2 requires considerably denser spatial
sampling than any other scheme. The 4th-order schemes for VP /VS > 3 are less sensitive to
increasing VP /VS than the 2nd-order schemes. The maximum εRel

vdiff of all 4th-order schemes
increase with increasing VP /VS for VP /VS > 3 in the same way. FD D CG (2,4a) and FD D
CG (2,4b) require denser spatial sampling than FD DS SG (2,4) in order to achieve the
same accuracy.

FD DS SG (2,4), FD D CG (2,4a), FD DS SG (2,2) and FD DS PSG (2,2) with εRel
ampl almost

independent of VP /VS have the same coefficients of the leading terms of the truncation
errors of approximations to the 2nd mixed and nonmixed spatial derivatives. None of the
other schemes have those coefficients equal.

The general theoretical conclusion is that the homogeneity of the approximations to the
2nd mixed and nonmixed spatial derivatives in terms of the coefficients of the leading terms
of their truncation errors as well as the absolute values of the coefficients are key factors for
the behaviour of the numerical schemes with increasing VP /VS . The practical conclusion
for the existing schemes is that the dependence of εRel

vdiff on VP /VS should be accounted for
by a proper (sufficiently dense) spatial sampling.
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Comparison with the FE, spectral-element and discontinuous-Galerkin schemes can be
found in the article by Moczo et al. (2011).

8.4 Stability and grid dispersion of the VS SG (2,4) scheme

The VS formulation of the equation of motion may be written as

ρ
∂vi

∂t
= ∂σij

∂xj
,
∂σij

∂t
= λ∂vk

∂xk
δij + μ

(
∂vi

∂xj
+ ∂vj
∂xi

)
i, j, k ∈ {1, 2, 3}

(8.55)

Assume an unbounded homogeneous medium and

�mI,K,L = A� exp[i(ω̃m�− k̃xIh− k̃yKh− k̃zLh)] (8.56)

Here� denotes either vi or σij . For convenience we will use x1, x2, x3 or x, y, z interchange-
ably. The 2nd-order and 4th-order centred approximations of the 1st temporal derivative and
1st spatial derivatives with respect to x give

∂�

∂t

∣∣∣∣m
I,K,L

≈ 1

�

(
�
m+1/2
I,K,L −�m−1/2

I,K,L

)
= i 2

�
Sω�

m
I,K,L, Sω = sin

(
1
2 ω̃�

)
(8.57)

∂�

∂x

∣∣∣∣m
I,K,L

≈ 1

h

[
9
8

(
�mI+1/2,K,L −�mI−1/2,K,L

)
− 1

24

(
�mI+3/2,K,L −�mI−3/2,K,L

)]

= −i 2
h
Sx�

m
I,K,L, Sx = 9

8 sin
(

1
2 k̃xh

)− 1
24 sin

(
3
2 k̃xh

)
(8.58)

Considering ξ for any of x, y and z,

∂�

∂ξ

∣∣∣∣m
I,K,L

≈ −i 2
h
Sξ�

m
I,K,L

Sξ = 9
8 sin

(
1
2 k̃ξ h

)− 1
24 sin

(
3
2 k̃ξ h

)
, ξ ∈ {x, y, z}

(8.59)

The application of approximations (8.57) and (8.59) to nine equations (8.55) yields

−ρ h
�
Sωvx = Sxσxx + Syσxy + Szσxz

−ρ h
�
Sωvy = Syσyy + Szσyz + Sxσyx

−ρ h
�
Sωvz = Szσzz + Sxσzx + Syσzy

(8.60)
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− h
�
Sωσxx = λ (Sxvx + Syvy + Szvz

)+ 2μSxvx

− h
�
Sωσyy = λ (Sxvx + Syvy + Szvz

)+ 2μSyvy

− h
�
Sωσzz = λ (Sxvx + Syvy + Szvz

)+ 2μSzvz

− h
�
Sωσxy = μ (Syvx + Sxvy

)
− h
�
Sωσyz = μ (Szvy + Syvz

)
− h
�
Sωσzx = μ (Sxvz + Szvx)

(8.61)

Substituting the stress-tensor components in Eqs. (8.60) by the stress-tensor components
obtained from Eqs. (8.61) we obtain a system of three equations for three unknowns,
vx, vy, vz:

ρ
h2

�2
S2
ωvx = μ (S2

x + S2
y + S2

z

)
vx + (λ+ μ)

(
S2
xvx + SxSyvy + SxSzvz

)
ρ
h2

�2
S2
ωvy = μ (S2

x + S2
y + S2

z

)
vy + (λ+ μ)

(
S2
yvy + SySzvz + SySxvx

)
ρ
h2

�2
S2
ωvz = μ (S2

x + S2
y + S2

z

)
vz + (λ+ μ)

(
S2
z vz + SzSxvx + SzSyvy

)
(8.62)

We define auxiliary quantities:

� ≡ h2

�2
S2
ω, � ≡ S2

x + S2
y + S2

z , β2 ≡ μ

ρ
, χ2 ≡ λ+ μ

ρ
(8.63)

and rewrite system (8.62) in the form of a matrix equation:

�

⎡
⎣vxvy
vz

⎤
⎦ =

⎡
⎢⎣
χ2S2

x + β2� χ2SxSy χ2SxSz

χ2SySx χ2S2
y + β2� χ2SySz

χ2SzSx χ2SzSy χ2S2
z + β2�

⎤
⎥⎦
⎡
⎣vxvy
vz

⎤
⎦ (8.64)

Note that this equation is the same as that obtained by Moczo et al. (2000) for the 3D
displacement–stress (spatially) staggered-grid (2,4) scheme. Denote the matrix in Eq. (8.64)
by M, the unit matrix by 1, and rewrite the equation:

[M − �1]

⎡
⎣ vxvy
vz

⎤
⎦ =

⎡
⎣0

0
0

⎤
⎦ (8.65)

The matrix on the l.h.s. may be decomposed as

[M − �1] = χ2

⎡
⎣
⎡
⎣Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦
⎡
⎣Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦+ d1

⎤
⎦ (8.66)
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where

d = (
β2� − �)/χ 2 (8.67)

A nontrivial solution to Eq. (8.65) exists if Det [M − �1] = 0, which may be written as

χ 6Det

⎡
⎣
⎡
⎣Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦
⎡
⎣1 1 1

1 1 1
1 1 1

⎤
⎦
⎡
⎣Sx 0 0

0 Sy 0
0 0 Sz

⎤
⎦+ d1

⎤
⎦ = 0 (8.68)

and

Det

⎡
⎢⎣
S2
x + d SxSy SxSz

SxSy S2
y + d SySz

SxSz SySz S2
z + d

⎤
⎥⎦ = 0 (8.69)

from which we obtain

d2
(
S2
x + S2

y + S2
z

) = 0 (8.70)

Equation (8.70) is satisfied if

S2
x + S2

y + S2
z = 0 or d = 0 (8.71)

Consequently we obtain two dispersion relations for the 3D VS SG (2,4) scheme. Consid-
ering definitions (8.67), (8.63) and (8.57), Eqs. (8.71) imply

sin2
(

1
2 ω̃�

) = �2

h2
α2
(
S2
x + S2

y + S2
z

)
sin2

(
1
2 ω̃�

) = �2

h2
β2
(
S2
x + S2

y + S2
z

) (8.72)

where α2 = (λ+ 2μ) /ρ and β2 = μ/ρ are the squares of the P-wave and S-wave speeds,
respectively. Compare dispersion relations (8.72) with that in Table 7.4 for the 1D VS SG
(2,4) scheme. The two relations correspond to the possibility of two independent waves –
P and S waves. Similarly to the analysis in Subsection 7.3.5, we can obtain relations

� ≤ 6

7
√

3

h

α
, � ≤ 6

7
√

3

h

β
(8.73)

for P and S waves. If both types of waves propagate in the grid, the condition for the P
wave has to be taken as the joint stability condition because α > β. Defining the stability
ratio p,

p ≡ 7
√

3

6

α

h
� (8.74)

the condition for the time step may be written as

� = p 6

7
√

3

h

α
; 0 < p ≤ 1 (8.75)
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Denoting the grid P and S wave velocities by α̃ and β̃, respectively, and assuming physical
wavenumbers kα and kβ , in analogy with Eq. (7.222) we obtain from Eqs. (8.72) relations
for the normalized grid phase velocities:

α̃

α
= 2

αkα�
arcsin

[
�

h
α
(
S2
x + S2

y + S2
z

)1/2
]

β̃

β
= 2

βkβ�
arcsin

[
�

h
β
(
S2
x + S2

y + S2
z

)1/2
] (8.76)

in which we consider the same time step given by (8.75). Equation (8.75) implies

�

h
α = p 6

7
√

3
,
�

h
β = p

r

6

7
√

3
; r = α

β
(8.77)

Spatial samplings for P and S waves are

NPλ = λP /h, NSλ = λS/h, NPλ = rNSλ (8.78)

If both types of waves propagate in the grid, NSλ has to be adopted as the joint spatial
sampling because, at a given frequency, λP > λS . Because for both types of waves we
apply the same time step (for the P wave) and the same spatial sampling (for the S wave),
we obtain, in analogy with Eq. (7.226),

2

αkα�
= 2

βkβ�
= 7

√
3

6

rNSλ
πp

(8.79)

Using Eqs. (8.77) and (8.79) we may rewrite relations (8.76) in the form

α̃

α
= 7

√
3

6

rNSλ
πp

arcsin

[
p

6

7
√

3

(
S2
x + S2

y + S2
z

)1/2
]

β̃

β
= 7

√
3

6

rNSλ
πp

arcsin

[
p

r

6

7
√

3

(
S2
x + S2

y + S2
z

)1/2
] (8.80)

Recall that Sx, Sy, Sz are given by relation (8.59). For the P wave and the S wave we obtain,
respectively,

kxh = 2π

rNSλ
cosϕ sin δ, kyh = 2π

rNSλ
sinϕ sin δ, kzh = 2π

rNSλ
cos δ

kxh = 2π

NSλ
cosϕ sin δ, kyh = 2π

NSλ
sinϕ sin δ, kzh = 2π

NSλ
cos δ

(8.81)

where angles ϕ and δ determine the direction of propagation, as shown in Fig. 8.3. Note
again that the grid dispersion for the analyzed 3D VS SG (2,4) scheme is the same as the
grid dispersion of the 3D displacement–stress (spatially) staggered-grid (2,4) scheme – as
pointed out by Moczo et al. (2000), who explicitly analyzed the latter scheme.

The grid dispersion of P and S waves is illustrated in Fig. 8.5 and Fig. 8.6.
It is clear from the figures that, due to the larger wavelength of the P wave, propagation

of the P wave is modelled by the FD scheme much better than propagation of the S wave.
We can also see considerable grid-dispersion anisotropy of the S wave: grid dispersion is



8.4 Stability and grid dispersion of the VS SG (2,4) scheme 197
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Figure 8.5 Normalized grid phase velocity of the P wave propagating in the three distinct directions:
along a coordinate axis (δ = 90◦, ϕ = 0◦), coordinate-plane diagonal (δ = 45◦, ϕ = 0◦), and body
diagonal (δ = 54.74◦, ϕ = 45◦). The dispersion curves are shown for four values of the stability ratio
p and three values of r:

√
3, 3.317, 10 corresponding to values 0.25, 0.45, 0.495 of Poisson’s ratio,

σ = (2 − r2)/2(1 − r2).

strongest for a wave propagating along a coordinate axis and weakest for a wave propagating
along a body diagonal. This is due to the effective spatial sampling of the plane wave
propagating in the three directions. The densest effective sampling is just in the direction
of the body diagonal.

For a given direction of propagation, the S-wave dispersion curves for all values of r are
very close to each other for p = 0.1. This is understandable if we examine a limit of β̃/β
for p → 0. The second of Eqs. (8.80) implies

lim
p→0

β̃

β
= NSλ
π

(
S2
x + S2

y + S2
z

)1/2
(8.82)



198 3D finite-difference schemes

Figure 8.6 The same as Fig. 8.5 but for the S wave.

This explains why the dispersion curves (for a given direction of propagation) for p as low
as 0.1 are so close to each other regardless of the value of r.

For more details, including the grid dispersion of the group velocities, comparison of
the grid dispersion of the 2nd- and 4th-order schemes, as well as grid dispersion of the 3D
and 2D P-SV schemes, we refer to the article by Moczo et al. (2000).



9

Velocity–stress staggered-grid scheme for an
unbounded heterogeneous viscoelastic medium

9.1 FD modelling of a material interface

Models of the Earth’s interior and surface geological structures have to include layers/blocks
of different materials. Their contact, the material interface, is a material discontinuity
at which material parameters change discontinuously. Assuming a welded interface, the
boundary conditions are continuity of the displacement (or particle-velocity) and traction
vector. An apparently natural approach to using the FDM is to apply (a) an FD scheme
for the smoothly heterogeneous medium at grid points outside the discontinuity, (b) FD
schemes obtained by proper incorporation of the boundary conditions at grid points at or
near the interface. Such an approach has been called homogeneous. Boore (1972b) and
Kelly et al. (1976) pointed out that a homogeneous FD scheme is specific for a particular
problem. Whereas it is feasible for simple interface geometry, its application to curved
material discontinuities is difficult and therefore had been considered impractical. In any
case, the approach requires a stable and sufficiently accurate FD approximation of the
boundary conditions, which is not a trivial problem.

In the alternative heterogeneous approach, only one FD scheme is used for all interior
grid points (points not lying on the boundaries of a grid) no matter what their positions are
with respect to the material interface. The presence of the interface is accounted for only
by values of the effective material parameters assigned to grid positions. Therefore, the
heterogeneous approach has been much more popular since the beginning of the seventies.

Clearly, a heterogeneous FD scheme should approximate solutions of the equation of
motion and stress–strain relation valid for both the smoothly heterogeneous medium and
the interface. In fact, the majority of the heterogeneous schemes were developed for smooth
media and were only intuitively applied to media with material interfaces.

In their pioneering work, Alterman and Karal (1968) used the displacement FD scheme
and homogeneous approach for models with simple geometry of the material discon-
tinuities. They introduced the concept of fictitious grid points in order to approximate
boundary conditions on material discontinuities. Difficulties in application of the homo-
geneous approach to curved discontinuities led Boore (1972b) to his explicit continuous
stress method. Boore tried to include explicitly a stress-continuity condition on disconti-
nuities differently from the homogeneous and heterogeneous approaches. Due to the poor

199
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numerical properties of the method Boore (1972b) applied the heterogeneous approach in
his SH modelling. In order to follow variations of the torsion modulus and, at the same
time, to avoid the differentiation of the modulus, he used the mathematical trick given
by Tikhonov and Samarskii (see Subsection 7.3.1) and calculated effective grid moduli as
integral harmonic averages along a grid line between two neighbouring grid points. Ilan
et al. (1975) and Ilan and Loewenthal (1976) solved the P-SV problem on the horizontal and
vertical planar discontinuities with a homogeneous approach. Instead of the fictitious grid
points they used Taylor expansions of displacement to couple the equation of motion with
the boundary conditions. Kelly et al. (1976) presented their heterogeneous P-SV schemes
with simple intuitive averaging of material parameters. They compared the heterogeneous
and homogeneous formulations using numerical tests and showed unacceptable differences
between the two approaches in the case of the corner-edge model. Kummer and Behle
(1982) followed the approach of Ilan et al. (1975) and derived the 2nd-order SH schemes
for different types of grid points lying on a step-like polygonal interface between two
homogeneous blocks.

The breakthrough velocity–stress staggered-grid schemes introduced to seismic-wave
propagation modelling by Virieux (1984, 1986) were significant for modelling interfaces.
His 2D P-SV scheme did not suffer from stability problems caused by large VP /VS (or
Poisson’s ratio) values, which was the case for all displacement schemes on conventional
grids. Although Virieux did not describe determination of the material grid parameters in
his heterogeneous 2nd-order SH and P-SV velocity–stress schemes, his numerical results
were sufficiently accurate at the time. Virieux also discussed the discrepancy between the
homogeneous and heterogeneous formulations found by Kelly et al. (1976). He found it
difficult to explain the features of the homogeneous solution.

Fornberg (1988b) suggested using a boundary-conforming grid in order to avoid artificial
diffraction at a staircase interface. An attempt to incorporate internal boundary conditions
into a displacement FD scheme was made by Sochacki et al. (1991), who a priori assumed
validity of the equation of motion at the discontinuity and integrated it over a grid cell.
Then they FD-approximated the integrated equation of motion. Cunha (1993) developed
a modified staggered-grid scheme with short operators for computing derivatives of dis-
continuous material properties and long operators for computing derivatives of the field
variables. Zahradnı́k and Priolo (1995) explicitly pointed out the problem of justification of
the heterogeneous FD schemes and a heterogeneous formulation of the equation of motion.
Assuming discontinuous material parameters in the equation of motion, they obtained an
expression whose dominant term is equivalent to the traction continuity condition. Graves
(1996) intuitively suggested a formula for determination of effective material grid param-
eters in the 3D (2,4) VS SG scheme. Graves was probably the first to explicitly and clearly
explain the determination of the grid parameters in his scheme. Zhang and Symes (1998)
developed a 2D 4th-order full-stencil immersed interface technique to account for a curved
material discontinuity. In the first step, all grid points are solved using a standard FD
scheme. In the second step, each grid point whose stencil includes grid points from both
sides of the discontinuity is recalculated using the previous time step’s values with a special
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25-point scheme determined using local boundary conditions. Lombard and Piraux (2004)
presented an explicit simplified interface method for 2D velocity–stress modelling.

Equivalent medium consistent with the interface boundary conditions It seems that
many developers of the heterogeneous schemes were not aware of the work by Backus
(1962), Schoenberg and Muir (1989) and Muir et al. (1992), or they did not realize the
meaning of the work for the development of the heterogeneous schemes. Backus (1962)
investigated the long-wave equivalent of a finely layered medium. He showed that a homoge-
neous transversely isotropic medium described by five elastic coefficients is the long-wave
equivalent of a stack of homogeneous isotropic layers. The coefficients of the equivalent
medium are obtained by a proper averaging of the Lamé coefficients of the layers. The
averaging is consistent with boundary conditions at the interfaces between layers. Backus
also found the long-wave equivalent of a stack of transversely isotropic layers. Schoenberg
and Muir (1989) extended the Backus approach to arbitrary anisotropic layers and showed
how an equivalent, homogeneous, anisotropic medium can be constructed from the layered
medium. In other words, both Backus (1962) and Schoenberg and Muir (1989) found the
stress–strain relation for an averaged medium consistent with the interface boundary con-
ditions. Neither of them explicitly mentioned FD modelling. This was done by Muir et al.
(1992). They wrote:

How can we convert a continuous geological model into a form suitable for an FD grid? One common
way is to lay the FD grid down on the continuous geological model and use whatever elastic constants
happen to lie beneath each of the grid points. Unfortunately, this simple sampling scheme can cause
artefacts. For example, a smooth, gently sloping interface in the geological model translates into a
coarse staircase on sampling, with long horizontal runs punctuated by occasional vertical steps. These
artificial steps generate unwanted diffractions. Clearly, some other representation is called for, but
what works best for elastic tensors? The Schoenberg-Muir calculus (S-M) shows how to correctly
average a stack of flat elastic layers of arbitrary anisotropy.

Muir et al. treated the contents of each cell as a stack of layers that can be averaged
using the S-M calculus. Importantly, the average elastic coefficients account for the spatial
distribution of the original elastic coefficients (in other words, they account also for the
geometry of the contents).

Although Muir et al. explicitly addressed the problem of the representation of the true
medium in the FD grid, apparently, until the article by Moczo et al. (2002), the averaged
medium consistent with the interface boundary conditions did not impact the heterogeneous
FD modelling of earthquake motion.

Moczo et al. (2002) analyzed the 1D problem in a medium consisting of two halfspaces
and found a heterogeneous formulation of the equation of motion and Hooke’s law. They
also showed a simple rheological model of the 1D interface. They also analyzed the
3D problem and pointed out its relation to the staggered-grid schemes. Eventually, they
suggested a simplified approach for the (2,4) staggered-grid schemes: an effective grid
elastic modulus at the grid position of the stress-tensor component evaluated as a volume
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integral harmonic average of the modulus within a volume of the grid cell centred at
the grid position. Numerical tests confirmed that the scheme was more accurate than the
staggered-grid schemes presented earlier.

The error at the interface in conventional, staggered-grid and optimally accurate FD
modelling was numerically investigated by Kristek and Moczo (2006) and also Moczo
et al. (2007a). For an interesting insight into FD modelling and analysis of the interface
error we refer to the article by Lisitsa et al. (2010).

A perspective and powerful approach to effectively and efficiently represent medium
heterogeneity is being developed by Capdeville and his colleagues (e.g., Capdeville and
Marigo 2007, 2013; Capdeville et al. 2010a,b, 2013). The fundamental question in their
approach, called homogenization, is how a wave at a certain frequency sees (senses) the
medium heterogeneity. Capdeville and his colleagues show how to average (homogenize or
simplify or smooth) the medium in order to achieve a desired level of accuracy with respect
to the solution for the original, possibly small-scale heterogeneous, medium. It is likely
that the approach will considerably facilitate the computational efficiency of numerical
modelling.

9.2 Stress–strain relation at a material interface

Hooke’s law for a smooth isotropic medium Defining the stress vector, strain vector and
elasticity matrix,

�σ ≡ [
σxx, σyy, σzz, σxy, σyz, σzx

]T
, �ε ≡ [

εxx, εyy, εzz, εxy, εyz, εzx
]T

(9.1)

E ≡

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

λ+ 2μ λ λ 0 0 0
λ λ+ 2μ λ 0 0 0
λ λ λ+ 2μ 0 0 0
0 0 0 2μ 0 0
0 0 0 0 2μ 0
0 0 0 0 0 2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.2)

the stress–strain relation may be written in the matrix form

�σ = E �ε (9.3)

Boundary conditions at the welded material interface Consider surface S with normal
vector �ν defining the geometry of the material interface at which elastic moduli λ and μ
have a discontinuity of zero order. The welded-interface boundary conditions are continuity
of displacement and traction vectors across the surface at each point �η of surface S:

�u+ (�η) = �u− (�η) , �T + (�η; �ν) = �T − (�η; �ν) (9.4)
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9.2.1 Planar interface parallel to a coordinate plane

Consider the simplest possible situation – a planar interface parallel to the xy-coordinate
plane. The normal vector in this case is �v = (0, 0, 1). Continuity of displacement implies

ε+xx = ε−xx, ε+yy = ε−yy, ε+xy = ε−xy (9.5)

and continuity of traction implies

σ+
zx = σ−

zx, σ+
zy = σ−

zy, σ+
zz = σ−

zz (9.6)

Components σxx, σyy, σxy, εzx, εzy, εzz may be discontinuous across the interface.

Problem formulation If we want an FD scheme in the same form for a grid point away
from the interface and a grid point at the interface, we need Hooke’s law in the same form
for both types of grid points. This means that we need to find the stress–strain relation for
a point at the interface that would (a) be consistent with the boundary conditions, (b) have
the same form as Hooke’s law for a point away from the interface.

Having continuous and discontinuous stress-tensor and strain-tensor components at the
interface, it will be useful to rewrite Eqs. (9.1)–(9.3) in an alternative form.

Alternative form of Hooke’s law for a smooth isotropic medium Define the continuous
and discontinuous stress and strain vectors:

�σC ≡ [
σzx, σzy, σzz

]T
, �σD ≡ [

σxx, σyy, σxy
]T

(9.7)

�εC ≡ [
εxx, εyy, εxy

]T
, �εD ≡ [

εzx, εzy, εzz
]T

(9.8)

Then,

�σC = R �εD + P �εC, �σD = PT �εD + S �εC (9.9)

where

R =
⎡
⎣2μ 0 0

0 2μ 0
0 0 λ+ 2μ

⎤
⎦ , P =

⎡
⎣0 0 0

0 0 0
λ λ 0

⎤
⎦ , S =

⎡
⎣λ+ 2μ λ 0

λ λ+ 2μ 0
0 0 2μ

⎤
⎦ (9.10)

Defining the alternative stress and strain vectors:

�̃σ = [�σC, �σD]T , �̃ε = [�εD, �εC]T (9.11)

and the elasticity matrix:

Ẽ =
[

R P
PT S

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2μ 0 0 0 0 0
0 2μ 0 0 0 0
0 0 λ+ 2μ λ λ 0
0 0 λ λ+ 2μ λ 0
0 0 λ λ λ+ 2μ 0
0 0 0 0 0 2μ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.12)
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Hooke’s law may be written in the form of Eq. (9.3):

�̃σ = Ẽ �̃ε (9.13)

Hooke’s law for the interface Express discontinuous stress and strain vectors using the
continuous vectors. From Eqs. (9.9) we obtain

�εD = −R−1P �εC + R−1 �σC
�σD = (

S − PTR−1P
) �εC + PTR−1 �σC (9.14)

Denote

�1 ≡ −R−1P, �2 ≡ R−1

�3 ≡ S − PTR−1P, �4 ≡ PTR−1 (9.15)

Equations (9.14) then become

�εD = �1 �εC + �2 �σC
�σD = �3 �εC + �4 �σC (9.16)

Define an averaged function θA:

θA = 1
2 (θ+ + θ−) (9.17)

Consider now Eqs. (9.16) for both the + and − media in contact, and average the discon-
tinuous strain and stress vectors. We obtain

�εAD = �A1 �εC + �A2 �σC
�σAD = �A3 �εC + �A4 �σC

(9.18)

from which we express the stress vectors:

�σAC ≡ �σC = (
�A2
)−1 �εAD − (

�A2
)−1

�A1 �εC
�σAD = �A4

(
�A2
)−1 �εAD +

[
�A3 − �A4

(
�A2
)−1

�A1

]
�εC

(9.19)

It is easy to verify that

�A4
(
�A2
)−1 =

[
− (

�A2
)−1

�A1

]T
(9.20)

Define

R̄ ≡ (
�A2
)−1
, P̄ ≡ − (

�A2
)−1

�A1 , S̄ ≡ �A3 − �A4
(
�A2
)−1

�A1 (9.21)

Then Eqs. (9.19) may be written as

�σAC = R̄ �εAD + P̄ �εC
�σAD = P̄T �εAD + S̄ �εC

(9.22)

Considering �σAC ≡ �σC , �εAC ≡ �εC , defining the averaged stress and strain vectors (compare
with Eqs. (9.11)):

�̃σA = [�σAC , �σAD ]T , �̃εA = [�εAD, �εAC]T (9.23)
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and the elasticity matrix:

¯̃E =
[

R̄ P̄
P̄T S̄

]
=

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

2μH 0 0 0 0 0
0 2μH 0 0 0 0
0 0 (λ+ 2μ)H � � 0
0 0 � �+ 2μA � 0
0 0 � � �+ 2μA 0
0 0 0 0 0 2μA

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.24)

� =
(

λ

λ+ 2μ

)A
(λ+ 2μ)H

� =
[(

λ

λ+ 2μ

)A]2

(λ+ 2μ)H + 2

(
λ

λ+ 2μ
μ

)A (9.25)

Superscripts A and H indicate the arithmetic and harmonic averages, respectively. Equa-
tions (9.22) may be written in matrix form as

�̃σA = ¯̃E �̃εA (9.26)

Equation (9.26) means nothing less than the stress–strain relation for a point at the interface.
The stress–strain relation has the same form as Hooke’s law (9.13) and, importantly, is
consistent with the boundary conditions.

An important difference between matrices Ẽ and ¯̃E, or, in other words, the difference
between any of the two original smooth media and the averaged medium at the interface is
that matrix Ẽ for any of the two isotropic media in contact has only two independent nonzero
elements, whereas matrix ¯̃E has five independent nonzero elements and the averaged
medium is transversely isotropic with the axis of symmetry perpendicular to the interface.
This means that the exact heterogeneous formulation for a planar welded material interface
parallel with a coordinate plane increases the number of the elastic coefficients necessary
to describe the medium from two to five.

9.2.2 Planar interface in a general orientation

Consider now a more complicated configuration. Let the planar material interface be in a
general orientation in the Cartesian coordinate system. The normal vector to the interface,
�ν = (νx, νy, νz), has all components nonzero. Find a Cartesian coordinate system x ′y ′z′ in
which �ν is parallel to the z′ -axis. Then we can find matrix ¯̃E

′
with five independent nonzero

elements. If we then transform matrix ¯̃E
′
into the original coordinate system xyzwe obtain a

symmetric elasticity matrix that obviously may have all elements nonzero (though only five
of them are independent). All nonzero elements of the averaged elasticity matrix mean real
complications: (a) all strain-tensor components are needed to calculate each stress-tensor
component at a point of the interface; (b) 21 nonzero elastic coefficients are necessary at
the point.
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If the geometry of the interface is defined by a nonplanar smooth surface S, the surface
may locally be approximated by a planar surface tangential to surface S at a given point.

Algorithmically we have two possibilities: (1) calculate 21 nonzero elastic coefficients
for each grid point and store them in memory during the entire FD time integration; (2) store
only 2 + 2 elastic coefficients (two per medium in contact) and two angles (specifying the
orientation of an approximating tangential planar interface) for each grid point and calculate
the elasticity matrix at each time step at each grid point.

Obviously, the incorporation of the traction-continuity condition at the material interface
in the 3D problem is not a trivial task. Note that the above analysis is equivalent to the
application of the Schoenberg and Muir (1989) calculus applied to the special case of
one interface between two homogeneous media. See also Backus (1962) and Muir et al.
(1992).

Still we are not finished with the complications. Note that in the staggered grid we
do not have all strain-tensor components defined at each grid position of the stress-tensor
components. From this point of view, the staggered grid is not really well suited for
incorporation of the traction-continuity condition at the material interface.

9.2.3 Effective orthorhombic averaged medium

Rearrange matrix ¯̃E into matrix Ē, which corresponds to the stress and strain vectors in
their common structures given by Eqs. (9.1):

Ē =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

�+ 2μA � � 0 0 0
� �+ 2μA � 0 0 0
� � (λ+ 2μ)H 0 0 0
0 0 0 2μA 0 0
0 0 0 0 2μH 0
0 0 0 0 0 2μH

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(9.27)

Matrix Ē is symmetric with six diagonal and three off-diagonal elements. For the planar
interface parallel to the xy-plane only five of the nine elements are independent. Consider a
planar interface parallel to some other coordinate planes. The positions of the nine elements
will not change – this is due to the structure of the stress and strain vectors. The positions
of the five independent elements will, however, be different – due to the orientation of the
interface.

In other words, for any of three canonical orientations we need at each point six values –
five independent coefficients plus one index of orientation – in order to construct matrix Ē.

In general, we do not want to restrict the treatment of interfaces to one of three canonical
orientations. On the other hand, the general orientation requires 21 nonzero coefficients –
too many and inconsistent with the staggered distribution of the field variables. In this
situation a natural compromise suggests itself: nine independent coefficients – consistent
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with the above considerations on the interface orientation and consistent with the structure
of the staggered grid. Moreover, a stress-tensor component is determined by the same strain-
tensor components as in the isotropic medium. A medium described by nine coefficients is
a medium with orthorhombic anisotropy having three axes of symmetry that are identical
with the coordinate axes.

Problem formulation For a given grid point we need to find an elasticity matrix with
nine independent coefficients (that is, the elasticity matrix for the orthorhombic medium)
that accounts for heterogeneity of the medium inside the grid cell centred at the given grid
point. We assume that the heterogeneity may be due to one or more material interfaces or a
smooth variation of material parameters that can be approximated by thin layers. We may
call the coefficients sought the effective material coefficients.

The sought elasticity matrix has the form

Eort ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

 x λxy λzx 0 0 0
λxy  y λyz 0 0 0
λzx λyz  z 0 0 0
0 0 0 μxy 0 0
0 0 0 0 μyz 0
0 0 0 0 0 μzx

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(9.28)

The effective coefficients sought for the cell have to satisfy the following requirement:
if the cell contains only interface(s) parallel to one of the Cartesian planes, the effective
coefficients must describe a transversely isotropic medium.

We split the volume of a grid cell into homogeneous isotropic subcells of a uniform size.
Coefficients that satisfy all the imposed conditions are given by the following formulas:

 x = 1

h

(∫
x

[
Pyz (λ,μ)

]−1
dl

)−1

,  y = 1

h

(∫
y

[Pxz (λ,μ)]−1 dl

)−1

 z = 1

h

(∫
z

[
Pxy (λ,μ)

]−1
dl

)−1 (9.29)

μzx = h
(∫∫

zx

[∫
y

μ dl

]−1

dS

)−1

, μyz = h
(∫∫

yz

[∫
x

μ dl

]−1

dS

)−1

μxy = h
(∫∫

xy

[∫
z

μ dl

]−1

dS

)−1 (9.30)

λxz = h−1�xz(�y(λ,μ),Py(λ,μ))

λyz = h−1�yz(�x(λ,μ),Px(λ,μ))

λxy = h−1�xy(�z(λ,μ),Pz(λ,μ))

(9.31)
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Here,

Pξζ (λ,μ) =
[∫∫

ξζ

λ

λ+ 2μ
dS

]2 (∫∫
ξζ

1

λ+ 2μ
dS

)−1

+
∫∫

ξζ

(
λ+ 2μ− λ2

λ+ 2μ

)
dS

�ξζ (a, b) =
∫∫

ξζ

a

b
dS

(∫∫
ξζ

1

b
dS

)−1

(9.32)

The auxiliary parameters a and b stand for an appropriate �ξ (λ,μ) and Pξ (λ,μ), respec-
tively. The last two parameters are evaluated as

Pξ (λ,μ) =
[∫
ξ

λ

λ+ 2μ
dl

]2 (∫
ξ

1

λ+ 2μ
dl

)−1

+
∫
ξ

(
λ+ 2μ− λ2

λ+ 2μ

)
dl

�ξ (λ,μ) = Pξ (λ,μ) − 2
∫
ξ

μ dl

(9.33)

Note that the double subscript ξ, ζ indicates averaging over the ξζ -plane. The single
subscript ξ indicates averaging along the ξ -axis.

The effective elastic coefficients (moduli) have to be determined at the grid positions
of the stress-tensor components – according to the structures of vectors �σ and �ε given by
Eqs. (9.1) and matrix Eort given by Eq. (9.28). All x, y, z and λxy, λyz, λzx have to be
determined at the grid position that is shared by all the normal stress-tensor components.
Coefficient μxy has to be determined at the grid position of σxy , μyz at the grid position of
σyz, and μzx at the grid position of σzx .

Finally, the stress–strain relation for the orthorhombic averaged medium can be written
as

σxx =  xεxx + λxyεyy + λzxεzz
σyy = λxyεxx + yεyy + λyzεzz
σzz = λzxεxx + λyzεyy + zεzz
σxy = μxyεxy, σyz = μyzεyz, σzx = μzxεzx

(9.34)

9.2.4 Effective grid density

It was shown in the analysis of the 1D problem in Section 7.4 that the effective (average)
density representing the welded interface is the arithmetic average of densities in the
halfspaces. In 3D, at each position of the particle-velocity component (or displacement
component) an effective grid density is determined as a volume arithmetic average of
density within a volume of the grid cell centred at the grid position. The averaging applies
to both smoothly and discontinuously heterogeneous media. The averages are evaluated by
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numerical integration. Consider, for instance, the grid position of the vx at the grid point
I,K + 1/2, L+ 1/2. Then the effective density is evaluated as

ρAI,K+1/2,L+1/2 = 1

h3

∫ xI+1/2

xI−1/2

∫ yK+1

yK

∫ zL+1

zL

ρ dx dy dz (9.35)

with superscript A indicating the arithmetic averaging.

9.2.5 Simplified approach with harmonic averaging of elastic moduli: isotropic
averaged medium

The orthorhombic averaging is, as explained above, a simplification of the problem of the
stress–strain relation for a point at the material interface. The orthorhombic coefficients
obtained are approximately consistent with the traction-continuity condition at the material
interface. Numerical tests of accuracy are presented in Chapter 19.

Moczo et al. (2002) implemented an even more simplified approach that was motivated
by the 1D analysis, simplicity and a pragmatic desire to keep the structure, number of
operations and memory requirements of the standard (2,4) staggered-grid scheme. They
evaluated an effective grid elastic modulus at the grid position of the stress-tensor component
as a volume integral harmonic average of the modulus within a volume of the grid cell
centred at the grid position. For example, at the grid position of the normal stress-tensor
components:

κHI+1/2,K+1/2,L+1/2 =
[

1

h3

∫ xI+1

xI

∫ yK+1

yK

∫ zL+1

zL

1

κ
dx dy dz

]−1

μHI+1/2,K+1/2,L+1/2 =
[

1

h3

∫ xI+1

xI

∫ yK+1

yK

∫ zL+1

zL

1

μ
dx dy dz

]−1 (9.36)

They evaluated an effective density at each position of the particle-velocity component (or
displacement component) as a volume integral arithmetic average of the density within a
volume of the grid cell centred at the grid position – the averaging indicated by Eq. (9.35).
The averaging applies to both smoothly and discontinuously heterogeneous media and is
performed by numerical integration.

We may note that the harmonic averaging of κ and μ is formally consistent with the fol-
lowing assumptions: (a) continuity of a trace of the stress tensor, σxx + σyy + σzz = 3κεkk,
(b) continuity of deviatoric parts of the normal stress-tensor components, (c) continuity of
the shear stress-tensor components across the interface.

Moczo et al. (2002) numerically demonstrated the accuracy of the scheme with volume
harmonic averages of moduli and volume arithmetic averages of density for different
wavefield–medium configurations. In one of the examples, it is shown that the scheme is
capable of sensing the position of an interface within an FD cell, see Fig. 6 in their article.

Harmonic averaging and orthorhombic averaging are confronted with the exact solutions
in Chapter 19.
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9.3 Incorporation of realistic attenuation

9.3.1 Material interface in a viscoelastic medium

We do not have the stress–strain relation for the interface between two viscoelastic media
with GMB-EK/GZB rheology. Clearly, a rigorous analysis is more complicated than the
analysis for the interface between elastic media. Consequently, we have to apply an approx-
imate approach. Here, we follow the approach suggested by Kristek and Moczo (2003), see
also Moczo et al. (2007a), which has been shown to be numerically sufficiently accurate
by comparison with the discrete wavenumber method (Bouchon 1981, Coutant 1989; code
Axitra).

Consider the contact of two viscoelastic media with GMB-EK/GZB rheology. Assume
one and the same set of relaxation frequencies ωl ; l = 1, 2, . . . , n for both media. Each
medium is described by a real density ρ, elastic (unrelaxed) moduli (e.g., κ and μ ), and
corresponding viscoelastic (complex frequency-dependent) moduli. We need to determine
average (effective) density, elastic moduli and anelastic coefficients YM̄l ; l = 1, . . . , n (M̄
indicating any of the determined averaged moduli) for an averaged medium that would
represent the contact of two viscoelastic media.

The average density may be evaluated in the same way as in the case of elastic media.
Averaged viscoelastic moduli can be determined by numerical integration according to
relations (9.29)–(9.33) or (9.36) in which complex viscoelastic moduli in the frequency
domain are used instead of the real elastic moduli. The use of either (9.29)–(9.33) or
(9.36) depends on the need or choice of level of accuracy. From the averaged viscoelastic
moduli, the quality factors corresponding to these moduli can be determined at frequencies
ω̃k; k = 1, . . . , 2n− 1, using

QM̄ (ω̃k) = M̄real

M̄imag
; k = 1, 2, . . . , 2n− 1 (9.37)

Having valuesQM̄(ω̃k); k = 1, 2, . . . , 2n− 1, for each averaged modulus M̄ , we can apply
the least-square method to the system of equations (3.129):

Q−1
M̄

(ω̃k) =
∑n

l=1

ωlω̃k + ω2
l Q

−1
M̄

(ω̃k)

ω2
l + ω̃2

k

Y M̄l ; k = 1, 2, . . . , 2n− 1 (9.38)

to determine anelastic coefficients for each averaged modulus M̄ .
What remains to be determined are the unrelaxed (elastic) averaged moduli. The unre-

laxed modulus of any viscoelastic modulus is given by Eq. (3.20) and thus

M̄U = lim
ω→∞ M̄ (ω) (9.39)

Consequently, the averaging of the viscoelastic modulus gives, in the limit, the averaging
of the unrelaxed modulus. This means that the unrelaxed (elastic) modulus M̄U for an
averaged viscoelastic medium can be obtained in the same way as in a perfectly elastic
medium, e.g., using relations (9.29)–(9.33) or (9.36).
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If we do not directly know the viscoelastic moduli κ(ω) and μ(ω) (or λ(ω) and μ(ω))
for each of the two media in contact but, instead, we know the measured or estimated
Qα(ω) for the P wave and Qβ(ω) for the S wave, we have to proceed as follows. We
assume GMB-EK/GZB rheology for each medium as well as for the averaged medium.
For each of the two media we first determine Yαl and Y βl using Eqs. (3.139) and then Y κl
and Yμl (or Y λl and Yμl ) using Eqs. (3.140) or (3.142). Then, assuming known unrelaxed
moduli for each medium, we can determine the viscoelastic moduli using Eq. (3.126)
for each modulus. Then we can proceed with numerical averaging of the moduli in the
frequency domain, determination of the corresponding quality factors, and determination
of the anelastic coefficients as described before.

9.3.2 Scheme for the anelastic functions for an isotropic averaged medium

In Section 7.8 we presented the FD scheme for the anelastic functions for a 1D smooth
medium. Here we obtain the scheme in 3D in an analogous way. Recall the constitutive
law in the velocity–stress formulation for the viscoelastic continuum with GMB-EK/GZB
rheology, Eqs. (3.136) and (3.137):

∂

∂t
σij = κ ∂

∂t
εkkδij + 2μ

(
∂

∂t
εij − 1

3

∂

∂t
εkkδij

)
−
∑n

l=1

[
Y κl κξ

kk
l δij + 2Yμl μ

(
ξ
ij
l − 1

3ξ
kk
l δij

)] (9.40)

∂

∂t
ξ
ij
l (t) + ωlξ ijl (t) = ωl ∂

∂t
εij (t), l = 1, . . . , n (9.41)

Except for the superscripts in the anelastic coefficients, κ and μ are the unrelaxed (elastic)
moduli. Relation (9.40) can apply to either a smoothly heterogeneous viscoelastic medium
or isotropic averaged medium. For simplicity we do not use an overbar to distinguish the
averaged medium.

The anelastic functions and their temporal derivatives can be approximated with the
2nd-order accuracy:

ξ
ij
l (tm−1/2)

.= 1
2

[
ξ
ij
l (tm) + ξ ijl (tm−1)

]
, l = 1, . . . , n (9.42)

∂

∂t
ξ
ij
l (t)

∣∣∣∣m−1/2
.= 1

�

[
ξ
ij
l (tm) − ξ ijl (tm−1)

]
, l = 1, . . . , n (9.43)

Using approximations (9.42) and (9.43) in Eq. (9.41) we obtain a scheme for updating the
anelastic functions:

ξ
ij
l (tm)

.= 2ωl�

2 + ωl�
∂εij

∂t

∣∣∣∣m−1/2

+ 2 − ωl�
2 + ωl�ξ

ij
l (tm−1), l = 1, . . . , n (9.44)
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According to Eq. (9.42), both ξ ijl (tm) and ξ ijl (tm−1) have to be kept in memory for updating
ξ
ij
l (tm−1/2). To avoid this, we can use approximation (9.42) in Eq. (9.44) to eliminate
ξ
ij
l (tm−1) (Kristek and Moczo 2003):

ξ
ij
l (tm−1/2)

.= − ωl�

2 − ωl�
∂εij

∂t

∣∣∣∣m−1/2

+ 2

2 − ωl�ξ
ij
l (tm), l = 1, . . . , n (9.45)

Using Eq. (9.45) in Eq. (9.40) for time tm−1/2 we obtain
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3ξ
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l (tm)δij

)] (9.46)

where

κ̃ = κ (1 +∑n
l=1G1lY

κ
l

)
, μ̃ = μ (1 +∑n

l=1G1lY
μ
l

)
Ỹ κl = G2lκY

κ
l , Ỹ

μ
l = G2lμY

μ
l

G1l = ωl�

2 − ωl�, G2l = 2

2 − ωl�

(9.47)

The derived relations mean that first we calculate ξ ijl (tm) using relation (9.44) and then we
apply the obtained values in relation (9.46).

9.3.3 Scheme for anelastic functions for an orthorhombic averaged medium

Consider, for example, σxx for the elastic continuum given by the stress–strain relation
(9.34):

σxx =  xεxx + λxyεyy + λzxεzz (9.48)

In the velocity–stress formulation we need its temporal derivative:

∂σxx

∂t
=  x ∂εxx

∂t
+ λxy ∂εyy

∂t
+ λzx ∂εzz

∂t
(9.49)

The corresponding stress–strain relation for the viscoelastic continuum with GMB-EK/GZB
rheology is

∂σxx

∂t
=  x ∂εxx

∂t
+ λxy ∂εyy

∂t
+ λzx ∂εzz

∂t

−
∑n

l=1

[
Y
 x
l  xξ

xx
l + Yλxyl λxyξyyl + Yλzxl λzxξ zzl

]
(9.50)

The additional ordinary differential equations for the anelastic functions ξxxl , ξyyl and ξzzl
satisfy Eqs. (9.41). It is easy to derive the relation for ∂σxx

∂t

∣∣m−1/2
and also for the tempo-

ral derivatives of the other stress-tensor components similar to (9.46) using a procedure
analogous to that explained in the previous subsection.
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9.3.4 Coarse spatial distribution of anelastic functions

The GMB-EK/GZB rheology enables reasonably realistic modelling of attenuation. Its
incorporation, however, considerably increases the number of operations and variables/
parameters. Therefore Zeng (1996), and independently Day (1998) and Day and Bradley
(2001), introduced coarse spatial sampling of the anelastic functions and coefficients in
order to significantly reduce the increased memory requirements and also computational
time. In Day’s (1998) approach, one anelastic function ξ ijl for one relaxation frequency ωl
is distributed with a spatial period 2h. Then the number of relaxation frequencies is n = 8.
Considering, for example, location of the stress-tensor component σzx at the eight vertices
of a grid cube with edge h, only one of the eight anelastic functions ξ zxl is assigned to each
one of the eight vertices (ξzx1 is assigned to one position, ξzx2 to another position, and so
on). Then the total number of anelastic functions ξzxl ; l = 1, 2, . . . , 8 in the whole grid is
1
2MX · 1

2MY · 1
2MZ · 8 = MX ·MY ·MZ, whereMX,MY andMZ are the numbers of

grid cells in the three Cartesian directions, respectively. Because there are six independent
strain-tensor components, the total number of all anelastic functions in the whole grid is
MX ·MY ·MZ · 6. Since the anelastic coefficients YMl may be distributed in the same
coarse manner, the total number of anelastic coefficients in the grid isMX ·MY ·MZ · 9
in the case of an orthorhombic averaged medium. In the case of harmonic averaging of the
moduli, the number of anelastic coefficients is MX ·MY ·MZ · 5 in the staggered grid
or MX ·MY ·MZ · 2 in the conventional grid. This means that the additional memory
for a coarse distribution and eight relaxation frequencies is equivalent to the additional
memory required by just one relaxation mechanism (that is, one relaxation frequency)
without coarse sampling. Such a reduction of the memory requirements is significant.
Graves and Day (2003) analyzed the stability and accuracy of the scheme with coarse
spatial sampling and defined the effective modulus and quality factor necessary to achieve
sufficient accuracy, especially in the case of very lowQ.

In a structurally complex model there are material interfaces going through grid cells
in different orientations with respect to the coordinate system. In such a case and with
the originally suggested spatial sampling, it may happen that the medium from one side
of the material interface is characterized over one half of the whole considered frequency
range while the medium from the other side of the interface is characterized over the other
half of the considered frequency range. This means that the behaviours of the two media
in contact are described in two disjunctive frequency sub-intervals. Consequently, the two
media cannot physically interact.

The geometry of coarse spatial sampling shown by Day (1998) and Day and Bradley
(2001) is only one of several possible distributions. Keeping the same spatial period-
icity of the anelastic quantities, we can choose such a distribution in which division of a
grid cell into two parts characterized in two disjunctive frequency sub-intervals is always
avoided. However, with any type of geometric distribution the best possible situation would
be, for example, characterization of one medium in contact using relaxation frequencies
ω1, ω3, ω5, ω7 and characterization of the other medium in contact using ω2, ω4, ω6, ω8.
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Figure 9.1 Coarse spatial distribution of grid cells and anelastic functions. The number on a cell face
indicates the relaxation frequency of the anelastic functions localized in the cell. For example, grid
cell 1 contains ξxx1 , ξ

yy
1 , ξ

zz
1 , ξ

xy
1 , ξ

yz
1 , ξ

zx
1 . (Reproduced from Kristek and Moczo 2003)

This is much better than two disjunctive frequency sub-intervals, but still not sufficiently
satisfactory.

Summation in the anelastic parts of the stress–strain relation (9.40) or (9.46) includes
anelastic functions and coefficients at all relaxation frequencies ωl ; l = 1, 2, . . . , n. In
coarse spatial sampling, however, at any one grid position we have an anelastic function
only at one relaxation frequency. Still, it is possible to account for all the anelastic functions
and coefficients: the anelastic functions and coefficients from the neighbouring positions
are taken with properly weighting coefficients and averaged together at the grid point where
the stress-tensor component is to be evaluated.

Such averaging is possible with the material-independent anelastic functions introduced
by Kristek and Moczo (2003), see Subsection 3.3.10. This is because averaging of the
material-independent anelastic functions does not introduce additional unjustified averaging
of the material properties. Note that this would be the case with the original material-
dependent anelastic functions introduced by Day and Minster (1984), Emmerich and Korn
(1987), Carcione et al. (1988a,b) and Robertsson et al. (1994).

Kristek and Moczo (2003) also suggested an alternative coarse spatial distribution of
the anelastic functions that requires only n = 4 relaxation frequencies, keeping the same
memory requirements as in the approach by Day (1998) and Day and Bradley (2001). The
distribution is shown in Fig. 9.1. Kristek and Moczo (2003) numerically demonstrated the
accuracy of their FD scheme with the material-independent anelastic functions and a new
coarse distribution of the anelastic functions by comparison with the discrete wavenumber
method (Bouchon 1981, Coutant 1989; code Axitra).
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9.3.5 VS SG (2,4) scheme for a heterogeneous viscoelastic medium

For brevity we show only the scheme for the x-component of the particle velocity, the
xx-component of the stress tensor, and the xx anelastic function, that is, for vx , σxx and
ξxxl . Schemes for the other components are analogous. Denote the discrete grid values of
the particle velocity components vx, vy, vz by VX,VY, VZ, respectively. Similarly denote
the stress-tensor components σxx, σxy, σzx by TXX,TXY,TZX. For other quantities we use
the same symbols as in the corresponding equations. The schemes for vx and σxx are then
(compare with the 1D schemes (7.331)–(7.333))

VX
m+1/2
I,K+1/2,L+1/2 = VXm−1/2

I,K+1/2,L+1/2 + �

ρ̄I,K+1/2,L+1/2
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+ 1

ρ̄I,K+1/2,L+1/2

�

h

[
9
8

(
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)
− 1

24

(
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The scheme for ξxxl corresponding to Eq. (9.44) is

ξxx;m
l;I+1/2,K+1/2,L+1/2 = 2 − ωl�

2 + ωl� ξ
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)]
(9.53)

Here, the effective grid density ρ̄I,K+1/2,L+1/2 is the volume arithmetic average of density
given by Eq. (9.35). The effective grid material coefficients depend on the assumed type of
medium.

Isotropic averaged medium

M̃XXI+1/2,K+1/2,L+1/2 = κ̃HI+1/2,K+1/2,L+1/2 + 4
3 μ̃
H
I+1/2,K+1/2,L+1/2

M̃XYI+1/2,K+1/2,L+1/2 = κ̃HI+1/2,K+1/2,L+1/2 − 2
3 μ̃
H
I+1/2,K+1/2,L+1/2

M̃ZXI+1/2,K+1/2,L+1/2 = M̃XYI+1/2,K+1/2,L+1/2

(9.54)

and

ỸMXX
l;I+1/2,K+1/2,L+1/2 = Ỹ κl;I+1/2,K+1/2,L+1/2 + 4

3 Ỹ
μ
l;I+1/2,K+1/2,L+1/2

ỸMXY
l;I+1/2,K+1/2,L+1/2 = Ỹ κl;I+1/2,K+1/2,L+1/2 − 2

3 Ỹ
μ
l;I+1/2,K+1/2,L+1/2

Ỹ MZXl;I+1/2,K+1/2,L+1/2 = ỸMXY
l;I+1/2,K+1/2,L+1/2

(9.55)

Here κ̃, μ̃, Ỹ κl , Ỹ
μ
l are determined according to Eqs. (9.47). (Note that, for simplicity, the

overbar ¯ is not used in Eqs. (9.47) to indicate that the moduli are the averaged moduli.)

Orthorhombic averaged medium

M̃XXI+1/2,K+1/2,L+1/2 =  ̃x;I+1/2,K+1/2,L+1/2

M̃XYI+1/2,K+1/2,L+1/2 = λ̃xy;I+1/2,K+1/2,L+1/2

M̃ZXI+1/2,K+1/2,L+1/2 = λ̃zx;I+1/2,K+1/2,L+1/2

(9.56)

and

ỸMXX
l;I+1/2,K+1/2,L+1/2 = Ỹ  xl;I+1/2,K+1/2,L+1/2

ỸMXY
l;I+1/2,K+1/2,L+1/2 = Ỹ λxyl;I+1/2,K+1/2,L+1/2

ỸMZX
l;I+1/2,K+1/2,L+1/2 = Ỹ λzxl;I+1/2,K+1/2,L+1/2

(9.57)

where tilde � indicates that coefficients  ̃x , λ̃xy , λ̃zx , Ỹ
 x
l , Ỹ

λxy
l , Ỹ λzxl are determined in

analogy with Eqs. (9.47).
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Schemes for a free surface

The free surface was briefly introduced in Subsection 2.5.1 and Section 7.5. The 1D FD
schemes for modelling the free surface based on the stress-imaging technique and adjusted
FD approximations were presented in Subsections 7.5.1 and 7.5.2, respectively. Recall the
boundary conditions. Considering a free surface S with normal vector �n and traction vector
�T (�n), the traction-free condition at S, �T (�n) = 0, implies

σijnj = 0 (10.1)

10.1 Planar free surface

If surface S is planar and perpendicular to the z-axis, �n = (0, 0,−1) and Eq. (10.1) implies

σiz = 0; i ∈ {x, y, z} (10.2)

It is significantly simpler to implement the traction-free condition (10.2) than condition
(10.1) in an FD scheme. This is why FD modelling of a planar free surface is reasonably
feasible whereas FD modelling of free-surface topography still poses a major challenge.

As mentioned in Chapter 7, we have two principal possibilities for calculating particle
velocity at and near the free surface. The first approach: apply the scheme for the interior
grid points assuming virtual values of stress, particle velocity and material parameters
outside the medium. The second approach: apply one-sided schemes that do not need any
virtual values outside the medium. The advantage of the first approach is the use of one
and the same scheme at any grid point. Its disadvantage is the need to define virtual values
reasonably outside the medium. The disadvantage of the second approach is the use of
different schemes for different grid positions at and near the free surface.

The first approach leads to the so-called vacuum formalism, medium taper or imaging
method. The vacuum formalism applies zero moduli above the free surface. The vacuum for-
malism may yield a good level of accuracy in the conventional-grid displacement schemes
for low values of the P-wave to S-wave speed ratio as shown by Zahradnı́k and Priolo (1995)
in 2D and Moczo et al. (1999) in 3D, for example. Graves (1996) and other authors did
not find the vacuum formalism satisfactory in staggered-grid modelling. A density taper
was used by Frankel and Leith (1992) in their displacement conventional-grid scheme.

217
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Levander (1988) suggested using virtual values of the stress-tensor components above the
free surface and applying the antisymmetry condition for the stress-tensor components
about the free surface. He applied the approach to his 2D (2,4) VS SG scheme. Levander’s
technique may reasonably be called the stress-imaging technique. Rodrigues (1993) devel-
oped a 3D eighth-order staggered-grid displacement–stress scheme and used stress imaging
with the normal stress-tensor components at the free surface. He found that it is necessary to
take 10 to 15 grid points per shortest wavelength to avoid significant numerical dispersion.
Therefore, he combined the stress-imaging technique with a vertically refined grid near
the free surface and achieved good accuracy. Graves (1996) applied stress imaging with
the normal stress-tensor components at the free surface in his 3D (2,4) VS SG modelling.
Graves gave a clear explanation of the treatment of the stress-tensor and particle-velocity
components at and above the free surface. Robertsson (1996) summarized three possibili-
ties for treating the particle-velocity values at grid positions above the free surface required
by the (2,4) VS SG scheme. (1) The values are calculated using the 2nd-order approxima-
tions to the boundary condition and imaged stress tensor components (e.g., Levander 1988,
Graves 1996, Kristek et al. 2002). (2) The values are mirrored as symmetric values with
respect to the free surface (e.g., Crase 1990, Rodrigues and Mora 1993). (3) Robertsson
(1996) assumed zero values. Gottschämmer and Olsen (2001) compared a formulation
with horizontal particle-velocity components (and normal stress-tensor components) at the
free surface with a formulation with the vertical particle-velocity component at the free
surface in the 3D (2,4) VS SG scheme in a homogeneous halfspace. They concluded with a
recommendation to use the formulation with the vertical particle-velocity component at the
free surface and to apply averaging across the free surface in order to obtain values of the
horizontal components at the free surface. The comparison was performed for the common
spatial sampling that was shown by Kristek et al. (2002) to be insufficient.

Applying the second approach, Kristek et al. (2002) and Moczo et al. (2004a) developed
a 4th-order scheme with adjusted FD approximations and demonstrated its better accuracy
compared to stress imaging.

10.1.1 Stress imaging in the (2,4) VS SG scheme

As mentioned before, in the staggered grid there are two obvious options for localizing
the planar free surface. (a) The free surface coincides with the grid plane with positions
vx, vy, σxx, σyy, σzz, σxy . Because the horizontal components of the particle velocity are at
the free surface we may call this option, for brevity, the H formulation or configuration. (b)
The free surface coincides with the grid plane with positions vz, σyz, σzx . We indicate this
formulation by letter W.

The antisymmetry

σzx(−z) = −σzx(z), σyz(−z) = −σyz(z), σzz(−z) = −σzz(z) (10.3)

ensures the free-surface condition (10.2).
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Figure 10.1 Left: a surface FD grid cell, position of the free surface, and virtual field quantities above
the free surface in the H formulation of the standard stress-imaging technique. Right: the same for
the W formulation.

The H formulation: vx, v y, σ xx, σ yy, σ zz, σ x y at the free surface For the discrete
grid values of the particle velocity components vx, vy, vz we use symbols VX, VY,
VZ, respectively. Similarly, for the discrete grid values of the stress-tensor components
σxx, σyy, σzz, σxy, σyz, σzx we use symbols TXX, TYY, TZZ, TXY, TYZ, TZX. Figure 10.1(left)
shows which quantities are needed above the free surface for the (2,4) VS SG scheme. Here,
we concisely summarize the explicit application of the boundary conditions, imaged values
of the stress-tensor components, and computed values of the displacement components:

TZZ(0) = 0.
TXX(0) is obtained from the 4th-order approximation of the temporal derivative of the

stress–strain relation for σxx in which ∂vz
∂z

is replaced by ∂vx
∂x

and ∂vy
∂y

according to
condition σzz(0) = 0 and the temporal derivative of the stress–strain relation for σzz.

TYY(0) – analogously using the relation for σyy .
TZX (−h/2) = −TZX (h/2) ,TYZ (−h/2) = −TYZ (h/2).
TZZ (−h) = −TZZ (h).
TZX (−3h/2) = −TZX (3h/2) ,TYZ (−3h/2) = −TYZ (3h/2).
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VX(0) is obtained from the 4th-order approximation of the equation for vx in which ∂σzx
∂z

is obtained using imaged σzx values.
VY(0) – analogously using vy ,

∂σyz
∂z

and σyz.
VZ (−h/2) is obtained from the 2nd-order approximation of condition σzz(0) = 0 and

the temporal derivative of the stress–strain relation for σzz.
VX (−h) is obtained from the 2nd-order approximation of σzx (−h/2) = −σzx (h/2) and

the temporal derivative of the stress–strain relation for σzx .
VY (−h) – analogously using σyz.

The treatment of the other quantities is the same as in the case of the interior grid points.

The W formulation: v z, σ yz, σ zx at the free surface Figure 10.1(right) shows which
quantities are needed above the free surface for the (2,4) VS SG scheme. The formulation
may be summarized as follows:

TZX(0) = 0,TYZ(0) = 0.
TZZ(−h/2) = −TZZ(h/2).
TZX(−h) = −TZX(h),TYZ(−h) = −TYZ(h).
TZZ(−3h/2) = −TZZ(3h/2).
VZ(0) is obtained from the 4th-order approximation of the equation for vz in which ∂σzz

∂z

is obtained using imaged σzz values.
VX(−h/2) is obtained from the 2nd-order approximation of the condition σzx(0) = 0 and

the temporal derivative of the stress–strain relation for σzx .
VY(−h/2) – analogously using σyz(0) = 0 and σyz.
VZ(−h) is obtained from the 2nd-order approximation of σzz(−h/2) = −σzz(h/2) and

the temporal derivative of the stress–strain relation for σzz.

Treatment of the other quantities is the same as in the case of the interior grid points.

Comparison of the H and W formulations Although the principle is the same for both
formulations, there are differences indicating possibly different numerical results. The
implementation differences are summarized in Table 10.1.

Kristek et al. (2002) performed extensive numerical tests of both formulations against
the discrete-wavenumber (DWN) method (Bouchon 1981, Coutant 1989; code Axitra).
The numerical investigations showed that the W formulation is a little more accu-
rate (indicated by the numbers in Table 10.1). However, the difference may be con-
sidered negligible with respect to the fact that both formulations need at least twice
as many grid spacings per minimum wavelength compared to the scheme for the inte-
rior grid points if Rayleigh surface waves are to be propagated without significant grid
dispersion.

Rodrigues (1993) used a grid that was refined only in the vertical direction and only down
to a necessary depth in his eighth-order displacement–stress scheme. In his implementation,
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Table 10.1 Comparison of two formulations of the stress-imaging technique

H formulation W formulation 

At the free surface 

1 directly prescribed stress-tensor component 
  

2 particle-velocity components calculated using 
4 imaged stress-tensor components 

2 directly prescribed stress-tensor component 
  

1 particle-velocity components calculated using 
2 imaged stress-tensor components 

Needed above the free surface 

5 imaged stress-tensor components 
  

3 particle-velocity components calculated using 
the 2nd-order scheme 

4 imaged stress-tensor components 
  

3 particle-velocity components calculated using 
the 2nd-order scheme 

the normal stress-tensor components are located at the free surface, which corresponds to
the H formulation. Kristek et al. (2002) elaborated the W formulation of the Rodrigues
approach and found it significantly more accurate than the original implementation of the
stress-imaging technique on the uniform grid. The disadvantage of the Rodrigues approach
is that it needs a three times smaller time step.

10.1.2 Adjusted FD approximations in the (2,4) VS SG scheme

The use of either at least twice finer spatial sampling or a three times smaller time step con-
siderably degrades the efficiency of the (2,4) VS SG scheme inside the medium. Therefore
Kristek et al. (2002) and Moczo et al. (2004a) developed the adjusted FD approximation
(AFDA) technique.

The zero values of σzz are prescribed at the free surface in the H formulation or,
alternatively, the zero values of σyz and σzx are prescribed at the free surface in the W
formulation. One-sided FD approximations are used to calculate the z derivatives at the
grid points at the free surface and depths of h/2 and h. The approximations use only values
in the medium, that is, no values are assumed above the free surface.

Kristek et al. (2002) showed that whereas the H formulation gives slightly better phases,
the W formulation gives better amplitudes. They concluded with a recommendation to use
the W formulation (W-AFDA) for earthquake ground motion modelling. Therefore, we
present here only W-AFDA in which the particle-velocity component vz and the stress-
tensor components σzx and σyz are located at the free surface.

The calculation of the stress-tensor and particle-velocity components in W-AFDA can
be summarized as follows:

Direct application of the boundary condition:

TZX(0) = 0,TYZ(0) = 0.
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4th-order approximations of the z derivative:

The following 4th-order approximations of the 1st derivative with respect to the z -coordinate
are used in calculations of the stress-tensor and particle-velocity vector components:
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Depending on the particular configuration,�may stand for particle-velocity or stress-tensor
components and z0 for 0, h/2 or h.

(a) Calculation of the stress-tensor components:

TXX(h�2) is obtained from the 4th-order approximation of the temporal derivative of
the stress–strain relation for σxx ;

∂vz
∂z

is approximated using Eq. (10.5).
TYY(h�2) and TZZ(h/2) – analogous to TXX(h/2).
TZX(h) is obtained from the 4th-order approximation of the temporal derivative of the

stress–strain relation for σzx ;
∂vx
∂z

is approximated using Eq. (10.6) in which ∂vx
∂z

(0)

is replaced by ∂vz
∂x

(0) due to condition σzx(0) = 0.
TYZ(h) is obtained from the 4th-order approximation of the temporal derivative of the

stress–strain relation for σyz;
∂vy
∂z

is approximated using Eq. (10.6) in which ∂vy
∂z

(0)

is replaced by ∂vz
∂y

(0) due to condition σyz(0) = 0.

(b) Calculation of the particle-velocity components:

VZ(0) is obtained from the 4th-order approximation of the equation for vz;
∂σzz
∂z

is
approximated using Eq. (10.4) in which condition σzz(0) = 0 is used.

VX(h�2) is obtained from the 4th-order approximation of the equation for vx ;
∂σzx
∂z

is
approximated using Eq. (10.5).

VY(h�2) is obtained from the 4th-order approximation of the equation for vy ;
∂σyz
∂z

is
approximated using Eq. (10.5).

VZ(h) is obtained from the 4th-order approximation of the equation for vz;
∂σzz
∂z

is
approximated using Eq. (10.7) in which condition σzz(0) = 0 is used.
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The corresponding effective grid material parameters are evaluated as integral averages
in the half grid-cell volumes; that is, the upper half of the volume located above the free
surface is not taken into account. For example,

ρAI+1/2,K+1/2,0 = 2

h3

∫ xI+1

xI

∫ yK+1

yK

∫ z1/2

z0

ρ dx dy dz (10.8)

10.2 Free-surface topography

Implementation of the traction-free condition at a nonplanar surface has been one of the
most difficult tasks and persisting challenges in FD modelling of seismic wave propagation
and earthquake motion. The nonplanar free surface was addressed in the pioneering years
of FDM in seismology by, e.g., Alterman and Rotenberg (1969), Alterman and Loewenthal
(1970), Boore (1972a,b), Loewenthal and Alterman (1972), Munasinghe and Farnell (1973),
Alterman and Nathaniel (1975), Ilan et al. (1975), Ilan and Loewenthal (1976). All the
authors treated simple types of free-surface topography: e.g., one-quarter and three-quarter
planes (90◦ and 270◦ vertices), a (0–180)◦ wedge, a vertical step discontinuity. Ilan (1977)
and Jih et al. (1988) addressed an arbitrary polygonal free surface. The developed techniques
were for 2D problems: SH (anti-plane horizontally polarized S waves in the vertical plane)
or P-SV (in-plane P and vertically polarized S waves in the vertical plane). Whereas
apparently the SH modelling did not pose a problem, the P-SV modelling faced problems
with stability and limitations in terms of the free-surface geometry and the P-wave to S-
wave speed ratio (VP /VS) due to conversion between the P and S waves. Mainly due to
the problem in the case of large VP /VS , further development was mostly related to the
velocity–stress or displacement–stress staggered-grid schemes, e.g., Hestholm and Ruud
(1994, 1998, 2002), Pitarka and Irikura (1996), Robertsson (1996), Ohminato and Chouet
(1997), Robertsson and Holliger (1997), Hestholm (1999), Hestholm et al. (1999), Hayashi
et al. (2001).

A particular implementation of the traction-free condition at a nonplanar surface very
much depends on the medium (e.g., elastic, viscoelastic with realistic attenuation), formu-
lation of the equation of motion and stress–strain relation (e.g., strong-form displacement,
displacement–stress or velocity–stress), grid geometry (e.g., Cartesian, curvilinear), grid
type (conventional, collocated, staggered, partly-staggered), free-surface geometry (e.g.,
staircase, smooth), and dimensionality (2D, 3D). The mentioned aspects are reflected in
a large variety of developed approaches and techniques. Correspondingly, we could fol-
low alternative hierarchies in order to structure an overview of the recent approaches and
techniques.

In the numerical modelling of seismic wave propagation and earthquake motion in
surface local sedimentary structures it is important that the technique is at least stable and
sufficiently accurate in sediments with the P-wave to S-wave speed ratio equal to 5 and
even larger. We say ‘at least’ because these requirements should still go together with
computational efficiency. Considering the three criteria (stability, VP /VS , efficiency), there
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is still a need for further elaboration and development – despite significant progress in
recent years.

Note that in the case of large VP /VS it is not just about the stability. It is also about the
accuracy (see Section 8.3).

Here we restrict our discussion to a brief and simplified overview and point out the
recent articles that we consider the most relevant.

We may recognize three basic strategies for treating a nonplanar free surface in FD
modelling of seismic wave propagation and earthquake motion:

– FD schemes on Cartesian grids,
– FD schemes on curvilinear (conforming or boundary-conforming) grids,
– hybrid schemes combining an FD scheme with a method in which the implementation

of the traction-free condition is considerably easier than in the FDM.

FD schemes on Cartesian grids Apparently, the easiest approach is based on using a
staircase approximation of the true surface. Examples of the approach are the techniques
developed by Pitarka and Irikura (1996), Robertsson (1996), Ohminato and Chouet (1997),
Robertsson and Holliger (1997), Hayashi et al. (2001). We may also mention the schemes
by Opršal and Zahradnı́k (1999) and Pérez-Ruiz et al. (2005) but with a comment on their
principal limitation for the lowest values of VP /VS .

Muir et al. (1992) demonstrated noticeable artificial diffraction generated at the grid-
related steps of the internal material interfaces. Clearly, the steps of the staircase free surface
can produce even stronger artificial diffraction. Artificial diffraction may be masked in
the complex wavefield, which can also include true physical diffraction. Artificial step-
related diffraction is considerably more visible on the differential seismograms. Artificial
diffraction may be reduced within a limited frequency range by using relatively small
spatial grid spacing. Numerical experience shows that with a staircase free surface it is
necessary to apply a considerably finer grid compared to the grid that would be sufficient
for the major part of the computational domain. Spatial oversampling of the wavefield can
be circumvented by grid refinement in the vicinity of the free surface (Robertsson and
Holliger 1997, Hayashi et al. 2001). In any case, artificial diffraction cannot be removed, it
can only be reduced.

The problems with step-related artificial diffraction can be avoided using the immersed-
interface (or embedded-boundary) approach, e.g., Kreiss and Petersson (2006), Lombard
et al. (2008). Kreiss and Petersson considered the scalar 2nd-order wave equation without
attenuation in 2D. Lombard and his colleagues also treated the 2D elastic problem but for
the 1st-order hyperbolic system in the velocity–stress formulation, which is considerably
more relevant for media with large VP /VS .

Lombard et al. (2008) considered the velocity–stress formulation on the collocated grid
in which all particle-velocity and stress-tensor components share the same grid position
(Lombard et al. used the term ‘single-grid scheme’). They formulated the task as follows:
treat the smooth arbitrarily shaped boundaries as simply as the straight boundaries; make the
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accuracy independent of the boundary position in the grid; maintain stability for long runs.
They showed that the requirements can be met by applying an explicit approach involving
fictitious values of the solution in the vacuum. The calculation of the fictitious values
is based on the boundary conditions and compatibility conditions satisfied by successive
spatial derivatives of the solution, up to a given order depending on the spatial accuracy of
the integration scheme. The traction-free conditions can be designed with arbitrary order
of accuracy without numerical instabilities. Ten grid points per minimum S wavelength
yields highly accurate results up to a propagation distance of 50 wavelengths. A logical
but noticeable feature of the method is its capability of sub-cell resolution. Lombard et al.
pointed out the possibility of instabilities in the case of using a staggered grid and long-time
integration.

The immersed-interface method needs further elaboration in order to include hetero-
geneity of the medium, realistic attenuation and extension to 3D.

FD schemes on the curvilinear grids Curvilinear grids can align with the surface topog-
raphy and naturally avoid artificial step-related diffraction. This idea attracted Hestholm
and Ruud (1994, 1998, 2002), Hestholm (1999, 2003), Hestholm et al. (1999), Ruud and
Hestholm (2001), Zhang and Chen (2006), Appelö and Petersson (2009), Tarrass et al.
(2011), Lan and Zhang (2011), Zhang et al. (2012) and other researchers in their efforts
to implement free-surface topography in seismic modelling. Appelö and Petersson (2009)
considered a 2D displacement formulation (2nd-order hyperbolic equations) in a perfectly
elastic medium. Lan and Zhang (2011) extended the approach by Appelö and Peters-
son to the 3D problem in a perfectly elastic transversally isotropic medium. Other authors
considered the velocity–stress formulation. Hestholm and Ruud (2002) presented an imple-
mentation of the free-surface condition at a nonplanar surface for a viscoelastic medium in
the 3D velocity–stress scheme on a staggered grid.

An interesting and innovative approach was presented by Zhang and Chen (2006) for 2D
and by Zhang et al. (2012) for 3D free-surface topography. They used the velocity–stress
formulation on the collocated grid. This is an important aspect for applying the traction-free
condition. The authors transform the irregular surface in physical space into a ‘flat’ surface
in computational space using a boundary-conforming grid. The grid is a general curvilinear
grid (not the vertical stretching grid as in previous approaches by other authors). The
free-surface conditions are implemented at this ‘flat’ surface by traction imaging. Traction
imaging is logical since in the case of a nonplanar surface no single stress-tensor component
is zero at the free surface. They re-write the velocity–stress equations as velocity–stress–
traction equations (Eqs. 39–41 in their article) for the curvilinear grid, set the traction
to zero at the surface and apply antisymmetric imaging of the traction components with
respect to the free surface. In the velocity–stress–traction equations, derivatives with respect
to the coordinate perpendicular to the free surface in computational space involve only
tractions normal to the free surface – not the stress components. This is what the authors
consider to be the main reason for the stability and accuracy of their modelling of the free
surface.
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Zhang et al. (2012) avoided the odd–even decoupling oscillations associated with centred
FD approximations on the collocated grid: they applied the optimized DRP MacCormack
scheme, which alternately uses forward and backward difference operators in the Runge–
Kutta time stepping method (see the 1D scheme in Subsection 7.3.6). The scheme is
4th-order accurate in dispersion error. However, as pointed out by the authors, their traction
imaging at a nonplanar free surface is not restricted to the particular FD scheme they
used. Zhang et al. (2012) presented a numerical test for smooth 3D topography – the
Gaussian-shaped hill.

Although numerical tests for an unbounded medium with large VP /VS confirmed the
very good level of accuracy of the scheme (testing within the EuroseisTest Verification and
Validation Project, CEA France), it is still desirable to test the accuracy with respect to
VP /VS in the presence of the nonplanar free surface. The FD scheme developed by Zhang
et al. (2012) should also be generalized for a viscoelastic medium with realistic attenuation.

Hybrid schemes Implementation of the traction-free condition is natural (though not nec-
essarily more accurate) in the FEM. Moczo et al. (1997) combined a 2nd-order conventional
FD scheme with a 2nd-order FEM for 2D viscoelastic P-SV modelling of seismic motion
in near-surface sedimentary/topographic structures. Galis et al. (2008) developed a hybrid
numerical method for a 3D viscoelastic heterogeneous medium with a nonplanar free sur-
face. The method is based on a combination of the (2,4) VS SG FD scheme, covering
a major part of the computational domain, with the (2,2) FEM, which can be applied to
one or several relatively small subdomains. The FD and FE parts causally communicate
at each time level in the FD–FE transition zone consisting of the FE Dirichlet boundary,
FD–FE averaging zone and FD Dirichlet zone. The FE part can include the nonplanar free
surface and/or a dynamically rupturing fault. The (2,2) FE method is limited in its accuracy
for large VP /VS (see Moczo et al. 2010, 2011). Therefore, if the FE part were to include
sediments with large VP /VS , the FE mesh should be sufficiently fine.

A possible hybrid combination of the FDM with other methods (e.g., meshless moving
least-square method) might be explored.
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Discontinuous spatial grid

11.1 Overview of approaches

The main advantage of a uniform grid is the algorithmical simplicity of the FD scheme.
The main disadvantage of a uniform grid covering a strongly heterogeneous medium is
the relatively large number of grid points and consequently the large number of algebraic
operations. Typically, wave speeds in surface sediment structures are smaller than wave
speeds beneath sediments, especially in a rock basement. If the minimum wave speed in the
upper part of a computational model is smaller than that in the lower part of the model, it
may be advantageous to use a combination of a finer grid (the grid spacing h) and a coarser
grid (the grid spacingH > h). The finer grid may cover the upper part whereas the coarser,
the lower part of the model. The total number of grid points in such a discontinuous spatial
grid can be significantly smaller than that in a uniform grid. Therefore, numerical and
especially FD modellers have made numerous efforts to implement discontinuous grids.

Before we introduce and explain the discontinuous grids, let us mention a simpler
approach to reduce the number of grid points. Boore (1970) was the first to use a rectangular
grid with varying size of grid spacings to model Love wave propagation. Mikumo and
Miyatake (1987) applied varying grid spacing in the 3D case in a homogeneous medium.
Moczo (1989) applied a grid with varying spacing to the 2D SH problem in a laterally
heterogeneous medium. Pitarka (1999) developed 4th-order approximations of the 1st spatial
derivative on the staggered grid with varying grid spacing, assuming simple functional
dependence of a field variable on the spatial coordinate. His 3D velocity–stress scheme
assumes variations of the grid spacings in all three coordinate directions. Grids of varying
spacing do not reach the efficiency of discontinuous grids. Our limited numerical experience
indicates a possible sensitivity of the simulated wavefield to variation in the size of the grid
spacing, e.g., in the case of strong surface waves.

Jastram and Behle (1992) introduced a discontinuous grid with an arbitrary integer ratio
of the coarser-grid spacing H to the finer-grid spacing h (that is H/h = 2, 3, . . .) for their
2D acoustic, conventional-grid FD scheme. In order to calculate pressure at the missing
positions in the coarser grid near the contact with the finer grid, they used trigonomet-
ric interpolation in the horizontal direction. Jastram and Tessmer (1994) generalized the
concept for the 2D P-SV elastic displacement–stress staggered-grid scheme. They applied
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trigonometric interpolation to the displacement and stress-tensor components. Ratio H/h
could be an odd number. Wang and Schuster (1996) extended the approach by Jastram
and Tessmer (1994) to 3D and an axisymmetric 4th-order scheme. Moczo et al. (1996)
avoided interpolation of displacements at missing grid positions by using an adjusted FD
approximation at the contact of the H/h = 2 discontinuous grid for their 2nd-order 2D
SH elastic, conventional-grid scheme. Kristek et al. (1999) applied linear interpolation in a
horizontal grid plane at the missing grid positions in theH/h = 3 discontinuous grid for the
3D 4th-order, viscoelastic, displacement–stress staggered-grid scheme. Aoi and Fujiwara
(1999) used an H/h = 3 discontinuous grid for the 3D 2nd-order viscoelastic, velocity–
stress staggered-grid (VS SG) scheme. They applied linear interpolation in a horizontal
grid plane. Wang et al. (2001) developed a variable-grid method for the staggered-grid
viscoelastic scheme that allows for H/h = 2, 3. They applied 3D interpolation in the
wavenumber domain. Moczo et al. (2007a) used an H/h = 3, 5, 7 . . . discontinuous grid
for the 3D 4th-order, viscoelastic, VS SG scheme.

Wang and Takenaka (2001) applied interpolation in the wavenumber domain in their
H/h = 2 discontinuous grid for the 2D P-SV elastic, conventional-grid Fourier pseudo-
spectral scheme. Hayashi et al. (2001) used an H/h = 3 discontinuous grid for the 2D
P-SV 4th-order, viscoelastic, VS SG scheme.

The concept of a discontinuous grid was applied atypically by Robertsson and Holliger
(1997) and Moczo et al. (1997). Robertsson and Holliger (1997) used an H/h = 2 dis-
continuous grid in order to accommodate the free-surface topography in the 3D VS SG
scheme because their approach requires finer spatial discretization of the nonplanar free
surface compared to the underlying interior. They applied linear interpolation in the vertical
direction and sinc interpolation in the horizontal direction. Moczo et al. (1997) used FEs
as the contact zone between the h and 2h FD grids for the 2D P-SV viscoelastic displace-
ment conventional-grid scheme. A combination of fine and coarser grids was presented by
Zhang (2004a,b) in his stress-grid scheme. Liu and Luan (2013) developed a mesh grad-
ing approach for high-velocity contrast media by utilizing matching unstructured fine and
coarse grids. RatioH/h can be an arbitrary odd number. The key feature of this approach is
the construction of investigated lumps on the material interface. No overlapping (transition)
zone is needed.

Kang and Baag (2004a) presented a combination of the spatially discontinuous grid with
a locally varying time step for the 2D and 3D higher-order VS SG. Kang and Baag (2004b)
further increased the computational efficiency by elaborating a discontinuous grid with a
laterally localized finer grid with a locally varying time step.

It is worth mentioning the approach by Chaljub et al. (2003), who implemented a
discontinuous spherical grid in their spectral-element modelling of elastic wave propagation
in a solid–fluid sphere using the so-called mortar method. At the contact of the finer and
coarser grids, two neighbouring elements do not share an entire edge or entire face. Kopriva
(1989) elaborated nonmatching (i.e., spatially different) pseudo-spectral grids. His approach
is close to the methodology of the nonmatching mortar spectral-element grids. Collino et al.
(2006) used an interesting conservative space–time mesh refinement for the FDTD solution
of Maxwell’s equations.
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All the approaches differing from each other in the H/h ratio and the method of
interpolating values at the missing grid positions in the coarser grid indicate the importance
of the discontinuous grid for efficient modelling.

An FD modeller could guess: the larger the grid ratio H/h, the larger the possibility
of inaccuracy and, mainly, instability with an increasing number of time levels due to
numerical noise generated at the contact of the grids. The noise generation and eventual
instability cannot be simply correlated with the grid ratio because they may strongly depend
on the material and wavefield heterogeneity. The potential complication with instability has
only rarely been explicitly addressed. Among the rare exceptions, De Lilla (1997) pointed
out that as the grid ratio increases the numerical inaccuracy due to the change of the grid
spacing may increase. Hayashi et al. (2001) explicitly said that H/h = 3 is better for
stability and accuracy compared to higher ratios. In order to reduce instability, they apply
certain averaging or weighting to the replacement of the coarse-grid components within
the fine grid field. Their procedure enables them to have computation stable during several
thousands time steps. Wang et al. (2001) claimed that they have overcome a possible
instability by a 3D interpolation scheme in the wavenumber domain.

Kristek et al. (2010) developed a stable algorithm for the discontinuous velocity–stress
staggered grid with an arbitrary odd value of H/h. The algorithm is explained in detail in
the following sections. Zhang et al. (2013b) applied and extended the concept by Kristek
et al. (2010) for the collocated grid. Whereas Kristek et al. (2010) found the Lanczos filter
appropriate for ensuring stability in the staggered grid, Zhang et al. (2013b) found the
Gaussian filter better for the collocated grid.

11.2 Two basic problems and general considerations

There are two basic problems to be solved: (1) The very obvious one is that of the missing
grid points – the reason for interpolation. This problem was addressed in all the published
articles. (2) The other, and apparently not so obvious, problem is how to update the particle
velocity and stress at those grid points of the coarser grid that coincide with the grid points
of the finer grid. Kristek et al. (2010) showed that, in fact, this is a substantial problem.

The structure of the staggered grid (Fig. 6.1) implies that the most natural grid ratioH/h
of a discontinuous grid is an odd number, H/h = 3 being the simplest case. Consider, for
example, a grid position of σxz. For calculating it we need ∂vz/∂x. In the given grid the
nearest grid positions of vz are at distances 0.5h to the left and to the right from the position
of σxz. If we omit these two nearest positions, the next available positions of vz are at
distances 1.5h to the left and to the right from the considered position of σxz. This gives a
grid spacing of H = 3h between two positions of vz in the coarser grid.

Consider a hypothetical situation with a horizontal material interface between an upper
medium with smaller shear-wave speed and a lower medium with larger shear-wave speed.
Would a finer grid ending and a coarser grid starting just at the material interface be a
good solution? No: the 4th-order interior FD formula would require interpolated values at
distances of 0.5h and 1.5h from the interface in the medium with larger wave speed. Such
an interpolation would lead to considerable inaccuracy. Neither would the alternative with
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the 4th-order one-sided approximations (spatial extent of 3.5h in the vertical direction) in
the upper medium be a good solution because a one-sided approximation is, in fact, an
equivalent of extrapolation. A centred approximation should be better. This means placing
the boundary of the finer grid in the medium with the larger wave speed. The finer and
coarser grids then overlap in the medium with the larger wave speed. The finer and coarser
grid should reasonably overlap even if there is no material interface and, instead, the wave
speed smoothly increases.

The definition of the boundary of the finer grid and the overlapping zone depends on
solving the two basic problems.

11.3 Velocity–stress discontinuous staggered grid

The vertical grid plane of the spatial VS discontinuous staggered grid is outlined in Fig. 11.1.
Whereas this plane contains σxx, σyy, σzz and σxz, an analogous grid plane, displaced by
H/2 in the y-direction, contains σxy and σyz. Clearly, there are also vertical grid planes with
the finer-grid positions only. Figure 11.1 shows the simplest possible configuration with the
grid ratioH/h = 3. Importantly,H/h can be an arbitrary odd number:H/h = 3, 5, 7, . . .
Circles indicate the interior grid positions of the finer grid. The particle-velocity and stress-
tensor components at these positions are updated using the interior 4th-order FD scheme for
the finer grid. The boundary of the finer grid is made up of one grid row of cells indicated by
grey circles. The diamonds indicate grid positions at which values have to be interpolated
because these values are necessary for updating values at the grey-circle positions. Squares
indicate interior grid positions of the coarser grid. The particle-velocity and stress-tensor
components at these positions are updated using the interior 4th-order FD scheme for the
coarser grid. Squares with inscribed circles indicate boundary positions of the coarser grid.

11.3.1 Calculation of the field variables at the boundary of the finer grid
in the overlapping zone

The overlapping zone and thus also the boundary of the finer grid is placed in the medium
with the larger S-wave speed. Consider some minimum wavelength in the faster medium
that is to be propagated sufficiently accurately in the grid. Assume that the grid spacing h
of the finer grid sufficiently oversamples this minimum wavelength. Then the updating of
the field values at the finer-grid boundary (grey circles) with the interior 2nd-order scheme
should be sufficiently accurate. The scheme obviously also requires the field values at the
diamond positions. These values are obtained by interpolation. The bilinear interpolation
(e.g., Press et al. 2007) is applied to vz, σxz and σyz at one horizontal grid plane of the
diamond grid positions.

Clearly, the application of the 2nd-order interior scheme to the finer-grid boundary
significantly reduces the spatial extent of the interpolation – the interpolation is applied
within one grid plane. The 4th-order scheme would need interpolation at three grid planes.
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Figure 11.1 Vertical xz-grid plane in the simplest case of a spatially discontinuous velocity–stress
staggered grid. The boundaries of the grid are not shown.

11.3.2 Calculation of the field variables at the boundary of the coarser grid
in the overlapping zone

Consider the minimum wavelengths that can propagate in the overlapping zone placed
in the medium with the larger wave speed. The theoretically minimum wavelength in
the finer grid is λN (h) = 2h. The theoretically minimum wavelength in the coarser
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grid is λN (H ) = 2H = (H/h) λN (h). Thus we have

0 < λN (h) < λN (H ) (11.1)

Therefore, the wavelengths larger than λN (h) but smaller than λN (H ) present, in general,
in the finer grid cannot, in principle, propagate from the finer grid into the coarser grid. In
the computation, the wavefield from the finer grid enters the coarser grid through the field
values at the grid positions indicated by squares with inscribed circles. Then it is clear that
we cannot simply take the finer-grid field values at those grid positions for updating the
field values at the internal grid positions of the coarser grid (indicated by squares). The
finer-grid field values at the positions indicated by squares with inscribed circles have to be
downsampled before they are used for updating the field values at the internal grid positions
of the coarser grid.

Probably the best option is to apply the Lanczos downsampling filter (e.g., Duchon 1979,
Turkowski and Gabriel 1990). For brevity and simplicity of the mathematical expressions
we can denote the grid ratio as

n = H/h (11.2)

The Lanczos filter can be expressed as

wL
kl = A sinc

(
π
k

n

)
sinc

(
π
l

n

)
sinc

(
π

√
k2 + l2
2n

)
; |k| ≤ 2n, |l| ≤ 2n (11.3)

The scaling factor A is determined by the condition

∑2n

k=−2n

∑2n

l=−2n
wL
kl = 1 (11.4)

Then the filtered value of a field variable � at the grid position (I, J ) of the finer grid,
�̃(I, J ), is obtained as

�̃(I, J ) =
∑2n

k=−2n

∑2n

l=−2n
wL
kl�(I + k, J + l) (11.5)

Because the filtered values only enter the FD approximations of the spatial derivatives in
the vertical direction, the filtration is applied in a horizontal grid plane.

Thus, we work with two field values at each grid position indicated by squares with
inscribed circles. One is the finer-grid value�(I, J ). The other is �̃(I, J ) and it is obtained
by application of the Lanczos downsampling filter – using Eq. (11.5). It is this value that has
to be used for updating the coarser-grid field values at the positions indicated by squares.

It is important to note that the concept of application of the Lanczos downsampling filter
is general – it is in no way restricted to the VS SG formulation. We may also note that the
algorithm would be exactly the same if grid positions of the particle-velocity components
were positions of the displacement components.
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11.3.3 Calculation of the field variables at the nonreflecting boundary

At the boundary of the grid, the overlapping zone is in contact with the nonreflecting
boundary of the grid. Because in our grid we interpolate only vz of the three particle-velocity
components, vz has to be at the leftmost/rightmost/rearmost/frontmost grid positions. In
other words, the outer boundary of the grid goes through the grid positions of σxx, σyy, σzz.
The bilinear interpolation (e.g., Press et al. 2007) requires values at certain grid positions
around the interpolated position. If some of those positions are not available, which is the
case near the outer boundary of the grid, it is necessary to apply an extrapolation instead of
interpolation.

It follows from Eq. (11.5) that the downsampling can be applied at a grid position
if the field values at n neighbouring grid positions from each side are available. Such
a neighbourhood is not available for the coarser-grid positions near the grid boundary.
Consequently, the finer-grid field values at those positions have to be taken for updating
the field values at the internal grid positions of the coarser grid (positions indicated by
squares). We have not observed the effects of those direct finer-grid field values taken from
the relatively very small number of such grid positions. If the nonreflecting boundary is
placed inside a perfectly matched layer, a potential effect (if any) is likely to be sufficiently
eliminated.
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Perfectly matched layer

The perfectly matched layer (PML) is probably the most efficient method to prevent
reflections of seismic waves at artificial boundaries of the computational region, that is, at
boundaries of the discrete spatial grid. In Section 7.6 we explained the PML in its simplest
form – for 1D problems.

The PML was introduced by Bérenger (1994) for absorbing electromagnetic waves.
Chew and Liu (1996), Hastings et al. (1996), Collino and Tsogka (2001), and Zeng et al.
(2001) introduced the PML into modelling of elastic wave propagation. The importance of
the PML for numerical modelling of seismic wave propagation was then soon recognized
by Festa and Nielsen (2003), Komatitsch and Tromp (2003), Marcinkovich and Olsen
(2003) and Wang and Tang (2003). The elaboration of the PML then continued intensively:
e.g., Basu and Chopra (2004), Festa and Vilotte (2005), Festa et al. (2005), Ma and Liu
(2006), Drossaert and Giannopoulos (2007a,b), Komatitsch and Martin (2007), Moczo et al.
(2007b), Gao and Zhang (2008), Martin et al. (2008a,b), Meza-Fajardo and Papageorgiou
(2008, 2012), Basu (2009), Martin and Komatitsch (2009), Zhang and Shen (2010) and
Zhang and Gao (2011). For a comprehensive review of the development of PML theory
and its applications to the numerical modelling of seismic wave propagation we refer
to the articles on the convolutional PML improved at grazing incidence for elastic wave
propagation and viscoelastic wave propagation by Komatitsch and Martin (2007) and Martin
and Komatitsch (2009), respectively.

Zhang and Shen (2010) implemented the PML in the 4th-order velocity–stress FD scheme
on the collocated grid. Zhang et al. (2013a) generalized the approach by Zhang and Shen
(2010) by adapting it to the curvilinear collocated grid. Zhang et al. (2013a) also provide a
concise review of PML development.

Let us also mention the nearly perfectly matched layer (NPML) introduced for electro-
magnetic waves by Cummer (2003). The NPML uses fewer auxiliary variables and fewer
ordinary differential equations compared to the PML. We refer to articles by Chen et al.
(2010), Chen (2011) and Chen and Zhao (2011).

Different formulations of the PML have been developed. They are termed split or unsplit
and classical or convolutional. They may differ also in the form of the stretching factor.
Komatitsch and Martin (2007) made a point about the limitation of the classical split in
the case of grazing incidence. The convolutional PML (C-PML) technique improves the

234
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accuracy of the discrete PML at grazing incidence. The advantage of the unsplit formulation
is that it does not require the split parts of the particle-velocity vector components and stress-
tensor components, and, consequently, does not increase the number of dependent variables.
In the following sections we explain the basic formulations and relations between them.

12.1 Split formulation of the PML

Directional decomposition of the wavefield Directional decompositions of the divergence
of the stress tensor and of the stress tensor itself at a point are the key aspects of the split
PML formulation. The equation of motion may be written as

ρ
∂2ux

∂t2
= ∂σxx

∂x
+∂σyx
∂y

+∂σzx
∂z

= ϕxx +ϕyx +ϕzx

ρ
∂2uy

∂t2
= ∂σxy

∂x
+∂σyy
∂y

+∂σzy
∂z

= ϕxy +ϕyy +ϕzy

ρ
∂2uz

∂t2
= ∂σxz

∂x
+∂σyz
∂y

+∂σzz
∂z

= ϕxz +ϕyz +ϕzz

(12.1)

Kristek et al. (2009) show that ϕji is a body force acting at a point and causing at that point a
motion polarized in the i-th direction and having a tendency to propagate from that point in
the j-th direction. Equations (12.1) show directional decompositions of the divergence of the
stress tensor at a point. The decompositions are determined by the directions of the spatial
derivatives. Hooke’s law, Eq. (2.23), may be interpreted analogously: M ∂ui

∂xj
(M being an

appropriate modulus) means that part of the stress-tensor component at a point which has
a tendency to propagate from that point in the j-th direction. Clearly, the decomposition
applies also to the velocity–stress formulation.

For brevity and conciseness we indicate the spatial and temporal derivatives as

ϕi,j ≡ ∂ϕi

∂xj
, ϕ̇i ≡ ∂ϕi

∂t
(12.2)

Velocity–stress formulation Consider further the velocity–stress formulation of the equa-
tion of motion (2.31) without the body-force term and with Hooke’s law in the form (2.16):

ρv̇i = σji,j , σ̇ij = cijklvk,l (12.3)

Letp, q, r ∈ {x, y, z} andp denote a coordinate direction perpendicular to a planar interface
between the interior region and the PML, and q, r directions perpendicular to direction p.
Decomposition of the particle velocity and stress tensor,

v̇i = v̇pi + v̇qri , σ̇ij = σ̇ pij + σ̇ qrij (12.4)

yields the equation of motion and Hooke’s law in the forms

ρv̇
p
i = σji,j δjp, σ̇

p
ij = cijklvk,lδlp (12.5)

ρv̇
qr
i = σji,j (1 − δjp), σ̇

qr
ij = cijklvk,l(1 − δlp) (12.6)
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An application of the Fourier transform to Eqs. (12.5) gives

iωρvpi = σji,j δjp, iωσpij = cijklvk,lδlp (12.7)

For brevity, we use the same symbols for the quantities in the frequency and time domains.
Replace the spatial differentiation with respect to xp in Eqs. (12.7) by the spatial differen-
tiation with respect to x̃p,

∂

∂x̃p
= 1

s

∂

∂xp
(12.8)

Here s is the stretching factor:

s = γ + �

α + iω
(12.9)

and γ ,� and α, being in general functions of xp, define the PML medium profile. Equations
(12.7) become

s iωρvpi = σji,j δjp, s iωσpij = cijklvk,lδlp (12.10)

or

iωρvpi = 1

s
σji,j δjp, iωσpij = 1

s
cijklvk,lδlp (12.11)

We may recognize the L-split formulation based on Eqs. (12.10) and the R-split formulation
based on Eqs. (12.11).

L-split A substitution of s in Eqs. (12.10) according to Eq. (12.9) leads to

ρ

(
iω + �

γ
− �
γ

α

α + iω

)
v
p
i = 1

γ
σji,j δjp (12.12)

(
iω + �

γ
− �
γ

α

α + iω

)
σ
p
ij = 1

γ
cijklvk,lδlp (12.13)

Define

η
p
i (ω) = ρ�

γ

α

α + iω
v
p
i , ξ

p
ij (ω) = �

γ

α

α + iω
σ
p
ij (12.14)

Then Eqs. (12.12) and (12.13) become

ρ

(
iω + �

γ

)
v
p
i = 1

γ
σji,j δjp + ηpi (ω) (12.15)(

iω + �
γ

)
σ
p
ij = 1

γ
cijklvk,lδlp + ξpij (ω) (12.16)

In order to remove the imaginary unit from the denominator in Eqs. (12.14) we rewrite
them:

(α + iω) ηpi (ω) = ρ α�
γ
v
p
i , (α + iω) ξpij (ω) = α�

γ
σ
p
ij (12.17)
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An application of the inverse Fourier transform to Eqs. (12.15)–(12.17) yields

ρv̇
p
i + ρ�

γ
v
p
i = 1

γ
σji,j δjp + ηpi (12.18)

σ̇
p
ij + �

γ
σ
p
ij = 1

γ
cijklvk,lδlp + ξpij (12.19)

η̇
p
i + αηpi = ρ α�

γ
v
p
i , ξ̇

p
ij + αξpij = α�

γ
σ
p
ij (12.20)

Here, ηpi and ξpij are functions of time. Clearly, ηpi and ξpij are additional variables (memory
variables) obeying ordinary differential equations (12.20). They are introduced in order to
avoid a direct calculation of the convolutions that would otherwise appear in Eqs. (12.18)
and (12.19). Equations (12.4), (12.6) and (12.18)–(12.20) make up the final system to be
solved.

Consider the special choice of γ = 1 and α = 0. Then the stretching factor is

s = 1 + �

iω
(12.21)

and Eqs. (12.18)–(12.20) reduce to the well-known split PML formulation:

ρv̇
p
i + ρ�vpi = σji,j δjp (12.22)

σ̇
p
ij +�σpij = cijklvk,lδlp (12.23)

Note that in this special case we could, in fact, directly apply the damping terms proportional
to vpi andσpij in Eqs. (12.5). An application of the Fourier transform to the modified equations
would reveal that the addition of the damping terms is equivalent to replacement of the
differentiation with respect to xp by the differentiation with respect to x̃p.

R-split Substituting the definition of the stretching factor s, Eq. (12.9), into Eqs. (12.11)
we obtain

iωρvpi =
(

1

γ
− b

a + iω

)
σji,j δjp (12.24)

iωσpij =
(

1

γ
− b

a + iω

)
cijklvk,lδlp (12.25)

where

a = α +�/γ , b = �/γ 2 (12.26)

Define

θ
p
i (ω) = −b

a + iω
σji,j δjp, ζ

p
ij (ω) = −b

a + iω
cijklvk,lδlp (12.27)
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Then,

iωρvpi = 1

γ
σji,j δjp + θpi (ω) (12.28)

iωσpij = 1

γ
cijklvk,lδlp + ζ pij (ω) (12.29)

In order to remove the imaginary unit from the denominator in Eqs. (12.27) we rewrite
them:

iωθpi (ω) + aθpi (ω) = −bσji,j δjp
iωζpij (ω) + aζpij (ω) = −bcijklvk,lδlp

(12.30)

An application of the inverse Fourier transform to Eqs. (12.28)–(12.30) yields

ρv̇
p
i = 1

γ
σji,j δjp + θpi (12.31)

σ̇
p
ij = 1

γ
cijklvk,lδlp + ζpij (12.32)

θ̇
p
i + aθpi = −bσji,j δjp, ζ̇

p
ij + aζpij = −bcijklvk,lδlp (12.33)

Here, θpi and ζpij are functions of time. Similarly to the L-split case, θpi and ζpij are additional
(memory) variables.

Looking at Eqs. (12.6) and (12.31)–(12.33) we can realize that it is possible to sum the
first of Eqs. (12.6) and Eq. (12.31) as well as the second of Eqs. (12.6) and Eq. (12.32). We
obtain

ρv̇i = 1

γ
σji ,j δjp + θpi + σji,j

(
1 − δjp

)
(12.34)

σ̇ij = 1

γ
cijklvk,lδlp + ζ pij + cijklvk,l

(
1 − δlp

)
(12.35)

Thus, Eqs. (12.33)–(12.35) make the final system of equations to be solved.
In the special case with γ = 1 and α = 0 both parameters a and b are equal to �. Note,

however, that Eqs. (12.31)–(12.35) do not change. This means that the R-split formulation
remains convolutional even in the case of the special form of the stretching factor.

12.2 Unsplit formulation of the PML

Here we manipulate directly with the entire equation of motion and Hooke’s law for the
unsplit field variables. Application of the Fourier transform to the equations yields

iωρvi = σji,j , iωσij = cijklvk,l (12.36)
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Replacement of the spatial differentiations with respect to xp by differentiations with respect
to x̃p yields

iωρvi =
(

1

γ
− b

a + iω

)
σji,j δjp + σji,j (1 − δjp) (12.37)

iωσij =
(

1

γ
− b

a + iω

)
cijklvk,lδlp + cijklvk,l

(
1 − δlp

)
(12.38)

Substitution of variables θpi and ζpij , defined by Eqs. (12.27), in Eqs. (12.37) and (12.38),
respectively, and a subsequent application of the inverse Fourier transform yield

ρv̇i = 1

γ
σji,j δjp + θpi + σji,j

(
1 − δjp

)
(12.39)

σ̇ij = 1

γ
cijklvk,lδlp + ζ pij + cijklvk,l

(
1 − δlp

)
(12.40)

Clearly, the memory variables θpi and ζpij satisfy differential equations (12.33). Equations
(12.39) and (12.40) are the same as Eqs. (12.34) and (12.35). In other words, we see that
the unsplit formulation leads to the same final equations as the R-split case of the split
formulation.

Note that the presented unsplit formulation is equivalent to that introduced by Komatitsch
and Martin (2007).

12.3 Summary of the formulations

Table 12.1 summarizes the formulations and their relations. For conciseness the table lists
only the equations for particle velocity. It is clear that the general form of the stretching
factor s given by Eq. (12.9) naturally implies the memory variables in both the split and
unsplit formulations if a direct calculation of the convolutional terms is to be avoided. In
the case of the L-split formulation and special choice of the stretching factor, given by Eq.
(12.21), the resulting equations reduce to the well-known equations with a simple damping
term – Eqs. (12.22) and (12.23). The case of the R-split formulation eventually leads to
equations identical with those obtained straightforwardly in the unsplit formulation.

12.4 Time discretization of the unsplit formulation

The memory variable θpi and its temporal derivative may be approximated as

θ
p,m
i ≈ 1

2

(
θ
p,m+ 1

2
i + θp,m− 1

2
i

)
, θ̇

p,m
i ≈ 1

�

(
θ
p,m+ 1

2
i − θp,m− 1

2
i

)
(12.41)
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Table 12.1 PML formulations and their relations

Application of approximations (12.41) to Eq. (12.33) yields

θ
p,m+ 1

2
i ≈ 2 − a�

2 + a�θ
p,m− 1

2
i − 2b�

2 + a�σ
m
ji,j δjp (12.42)

If we relate Eq. (12.39) to the time level m, we need θp,mi . Using Eqs. (12.41) and (12.42)
we obtain

θ
p,m
i ≈ 2

2 + a�θ
p,m− 1

2
i − b�

2 + a�σ
m
ji,j δjp (12.43)

Using (12.43) we can rewrite Eq. (12.39) for the particle velocity:

ρv̇mi =
(

1

γ
− b�

2 + a�
)
σmji,j δjp + 2

2 + a�θ
p,m− 1

2
i + σmji,j (1 − δjp) (12.44)
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Substituting a and b from Eq. (12.26) in Eqs. (12.42) and (12.44), and approximating v̇mi
by the central-difference formula we can obtain the final form of the equation of motion
and additional equations for the memory variables:

v
m+ 1

2
i ≈ vm− 1

2
i + �

ρ

[
1

γ

(
1 − ��

2γ + (αγ +�)�

)
σmji,j δjp

+ 2γ

2γ + (αγ +�)�
θ
p,m− 1

2
i + σmji,j

(
1 − δjp

)]
(12.45)

θ
p,m+ 1

2
i ≈ 2γ − (αγ +�)�

2γ + (αγ +�)�
θ
p,m− 1

2
i

− 1

γ

2��

2γ + (αγ +�)�
σmji,j δjp (12.46)

It is not necessary to show the analogous derivation of the time discretization for the
constitutive relation (12.40). The final system of equations is

σm+1
ij ≈ σmij +�

[(
1

γ
− ��

2γ + (αγ +�)�

)
cijklv

m+ 1
2

k,l δlp

+ 2γ

2γ + (αγ +�)�
ζ
p,m
ij + cijklvm+ 1

2
k,l (1 − δlp)

]
(12.47)

ζ
p,m+1
ij ≈ 2γ − (αγ +�)�

2γ + (αγ +�)�
ζ
p,m
ij

− 1

γ

2��

2γ + (αγ +�)�
cijklv

m+ 1
2

k,l δlp (12.48)

Equations (12.45)–(12.48) represent discretization that is an alternative to that developed
by Komatitsch and Martin (2007). Their discretization can be written in a form similar to
Eqs. (12.45)–(12.48), see Kristek et al. (2009). The difference between our discretization
and the discretization by Komatitsch and Martin (2007) is in the coefficients. This is due
to different time integrations of Eqs. (12.33). The integration chosen by Komatitsch and
Martin (2007) would be the exact integration of Eqs. (12.33) if b = 0. If b 	= 0, which is
the case, both discretizations are 2nd-order accurate in time.

Kristek et al. (2009) numerically demonstrated the efficiency of the scheme based on
Eqs. (12.45)–(12.48).

Finally, note that a rigid boundary can be prescribed at the border of PML.
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Simulation of the kinematic sources

The basics of kinematic wavefield excitation in 1D were briefly introduced in Section 7.7.

13.1 Wavefield decomposition

Alterman and Karal (1968) introduced wavefield decomposition in order to avoid a point-
source singularity. The total wavefield is decomposed into the wavefield produced by the
source and the residual (or scattered) wavefield. The principle of wavefield decomposition
is, in general, an efficient tool for ‘injecting’ an analytical source wavefield into the grid. By
(a) distinguishing separate grid field variables for the source, residual and total wavefields,
(b) prescribing just the source wavefield, and (c) calculating the residual and total wavefields
we do not violate physical causality. In Subsection 7.7.2 we show the detailed algorithms in
the cases of the 1D (2,2) and (2,4) velocity–stress staggered-grid schemes. It is clear from
the algorithms that the grid field variables of the residual and total wavefields overlap only
in the algorithmically minimum zone. Generalization of the algorithms to 3D is trivial.

The wavefield-decomposition technique has been applied by many modellers in a vari-
ety of FD schemes and geometrical configurations, e.g., Kelly et al. (1976), Vidale and
Helmberger (1987), Levander (1988), Moczo (1989), Robertsson and Chapman (2000).

Wavefield decomposition has been advantageously applied in hybrid approaches com-
bining different numerical methods, e.g., Fäh (1992), Fäh et al. (1993), Zahradnı́k (1995a),
Robertsson et al. (1996), Zahradnı́k and Moczo (1996), Moczo et al. (1997).

Closely related to the Alterman and Karal (1968) approach is the generalized and
sophisticated method developed by Takeuchi and Geller (2003) for implementing a source
at an arbitrary location in the grid.

The general theory of wavefield decomposition, formulation of the general boundary
condition and extensive references can be found in the article by Opršal et al. (2009).

13.2 Body-force term

The use of the body-force term was introduced by Aboudi (1971), Yomogida and Etgen
(1993) and Frankel (1993) for the displacement conventional schemes, and by Graves
(1996) for the velocity–stress staggered-grid schemes.
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Figure 13.1 Illustration of simulation of the (y, x) couple acting at the grid point (I, K, L) of the
conventional grid.

Conventional grid We want to simulate a point double-couple source using the body-force
term in the equation of motion. This means simulation of a system of force couples (p, q)
with strength Mpq acting at a grid point. Consider, for example, an (y, x) couple acting
at the grid point (I,K,L); see Fig. 13.1. The body-force term in the equation of motion
corresponding to this couple, that is, fy , can be approximated as

fy ≈ 1

h3

1

2h
Myx(t)

(
δIIR δKKRδLLR − δIILδKKLδLLL

)
(13.1)

where 2h is the arm length and 1/h3 normalizes the force to the unit volume, and δmn
denotes the Kronecker delta.

In general, assuming the body-force couples acting at the grid point (I,K,L) in the
conventional grid, we obtain for the discrete approximations to the body forces:

FxI+1,K,L = −FxI−1,K,L = 1

2h4
Mxx (t)

F
y
I+1,K,L = −FyI−1,K,L = 1

2h4
Myx (t)

FzI+1,K,L = −FzI−1,K,L = 1

2h4
Mzx (t)

FxI,K+1,L = −FxI,K−1,L = 1

2h4
Mxy (t)

F
y
I,K+1,L = −FyI,K−1,L = 1

2h4
Myy (t)

FzI,K+1,L = −FzI,K−1,L = 1

2h4
Mzy (t)

FxI,K,L+1 = −FxI,K,L−1 = 1

2h4
Mxz (t)

F
y
I,K,L+1 = −FyI,K,L−1 = 1

2h4
Myz (t)

FzI,K,L+1 = −FzI,K,L−1 = 1

2h4
Mzz (t)

(13.2)

In the case of tangential slip the moment tensorMpq(t) is given by Eq. (4.31). For simplicity
we do not indicate the time-level index.
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Staggered grid A complication in comparison with the conventional grid is due to the
different positions of the particle–velocity components in the grid. We assume a double-
couple point source acting at the grid point (I + 1/2,K + 1/2, L+ 1/2) – the grid position
of the normal stress-tensor components. We need, in the simplest approximation, 30 grid
body-force terms:

FxI+1,K+1/2,L+1/2 = −FxI,K+1/2,L+1/2 = 1

h4
Mxx (t)

F xI+1,K+3/2,L+1/2 = −FxI+1,K−1/2,L+1/2 = 1

4h4
Mxy (t)

FxI,K+3/2,L+1/2 = −FxI,K−1/2,L+1/2 = 1

4h4
Mxy (t)

FxI+1,K+1/2,L+3/2 = −FxI+1,K+1/2,L−1/2 = 1

4h4
Mxz (t)

FxI,K+1/2,L+3/2 = −FxI,K+1/2,L−1/2 = 1

4h4
Mxz (t)

(13.3)
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(13.4)

FzI+1/2,K+1/2,L+1 = −FzI+1/2,K+1/2,L = 1

h4
Mzz (t)

FzI+3/2,K+1/2,L+1 = −FzI−1/2,K+1/2,L+1 = 1

4h4
Mzx (t)

F zI+3/2,K+1/2,L = −FzI−1/2,K+1/2,L = 1

4h4
Mzx (t)

FzI+1/2,K+3/2,L+1 = −FzI+1/2,K−1/2,L+1 = 1

4h4
Mzy (t)

F zI+1/2,K+3/2,L = −FzI+1/2,K−1/2,L = 1

4h4
Mzy (t)

(13.5)
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13.3 Incremental stress

Another possibility is to add an incremental stress �σ (t) at the grid position of the stress.
The use of an incremental stress was introduced by Virieux (1986), Coutant et al. (1995),
Olsen et al. (1995a; they used the moment tensor itself instead of the temporal derivative of
the moment tensor) and later used by Pitarka (1999) and others. Compared to the direct use
of the body-force term, the approach is simpler. For a double-couple point source acting at
one point the corresponding assignment may be

TXXI+1/2,K+1/2,L+1/2 = TXXI+1/2,K+1/2,L+1/2 − �

h3

∂Mxx

∂t

TYYI+1/2,K+1/2,L+1/2 = TYYI+1/2,K+1/2,L+1/2 − �

h3

∂Myy

∂t

TZZI+1/2,K+1/2,L+1/2 = TZZI+1/2,K+1/2,L+1/2 − �

h3

∂Mzz

∂t

TXYI,K,L+1/2 = TXYI,K,L+1/2 − �

h3

∂Mxy

∂t

TYZI+1/2,K,L = TYZI+1/2,K,L − �

h3

∂Myz

∂t

TZXI,K+1/2,L = TZXI,K+1/2,L − �

h3

∂Mzx

∂t

(13.6)

Strictly speaking, it is clear that the point position of the point double-couple source is
smeared over the grid cell with the grid position of the normal stress-tensor components at
(I + 1/2,K + 1/2, L+ 1/2). It follows from the representation theorem that the temporal
derivative of the moment tensor has to be used in the velocity–stress scheme. In the case
of the displacement–stress scheme the moment tensor itself is used and the time step does
not appear in the equations.
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Simulation of dynamic rupture propagation

The discontinuity of the displacement vector and the particle-velocity vector together with
the friction law poses a nontrivial boundary condition. Whereas a semi-analytical boundary-
integral equation method (e.g., Das 1980, Andrews 1985, Cochard and Madariaga 1994,
Aochi et al. 2000, Lapusta et al. 2000, Lapusta and Rice 2003, Day et al. 2005) is perhaps the
most accurate method to account for the fault boundary conditions, especially on nonplanar
faults (e.g., Aochi and Fukuyama 2002), its application is limited because it cannot include
heterogeneity and nonlinearity (e.g., viscoplasticity) of the medium. Therefore, the fault
boundary conditions have been implemented in different formulations of many numerical
methods that can account for material heterogeneity, e.g., FDM (e.g., Andrews 1973,
1976a,b, 1999, Madariaga 1976, Day 1977, 1982, Miyatake 1980, Madariaga et al. 1998,
Nielsen et al. 2000, Cruz-Atienza and Virieux 2004, Day et al. 2005, Dalguer and Day
2006, 2007, Moczo et al. 2007a, Rojas et al. 2008, 2009, Ely et al. 2009, Kozdon et al. 2011,
2013, Zhang et al. 2011, 2013c), FEM (e.g., Archuleta 1976, Archuleta and Frazier 1978,
Oglesby et al. 1998, 2000, Oglesby 1999, Aagaard et al. 2001, Anderson et al. 2003, Duan
and Oglesby 2006, Ma and Archuleta 2006, Ma 2008, Ma et al. 2008, Templeton and Rice
2008, Viesca et al. 2008, Barall 2009, Galis et al. 2010), spectral-element method (e.g.,
Ampuero 2002, 2008, Festa 2004, Chaljub et al. 2007, Kaneko et al. 2008), finite-volume
method (e.g., Benjemaa et al. 2007) or discontinuous Galerkin method (e.g., de la Puente
et al. 2009, Pelties et al. 2012, Tago et al. 2012).

A brief review of the FD implementations can be found in Moczo et al. (2007b). Here we
just mention recent approaches. Rojas et al. (2008, 2009) implemented a traction-at-split-
node (TSN) approach in the 2D FD scheme based on mimetic operators. They used one-
sided FD operators to achieve consistent 4th-order accuracy at the grid points on the fault and
grid points away from the fault. Ely et al. (2009) implemented the TSN method to simulate
spontaneous rupture propagation on planar and nonplanar faults in a 3D medium using the
generalized 2nd-order FDM of support operators. Kozdon et al. (2011, 2013) implemented
spontaneous rupture propagation on nonplanar faults in the summation-by-parts FDM for
the 2D anti-plane problem. For imposing frictional boundary conditions they used the 4th-
order simultaneous approximation term (SAT). With this approach the boundary values
are not directly prescribed. Instead, a penalty term is used to penalize operators for not
satisfying the boundary conditions. The approach yields a strictly stable scheme and with
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Figure 14.1 Fault surface and the normal vector �n.

a carefully chosen penalty parameter and a high level of accuracy. Zhang et al. (2011,
2013c) implemented the TSN method for spontaneous rupture propagation on nonplanar
faults in the 3D curved-grid FD scheme. The FD scheme is a high-order MacCormack
scheme on a collocated curved grid.

14.1 Traction-at-split-node method

Probably the most efficient method of incorporating the fault boundary conditions for
simulating dynamic rupture propagation in the FD and FE methods is the traction-at-split-
node (TSN) method. The TSN method was developed independently by Andrews (1973,
1976a,b, 1999) and Day (1977, 1982); see also Day et al. (2005).

Consider a fault as the contact of two halfspaces, H+ and H−. The fault is represented
by the split nodes. A split node consists of two partial nodes p.n.+ and p.n.−, which makes
it possible to represent the discontinuity in displacement and particle velocity on the fault.
The partial nodes p.n.+ and p.n.− belong to halfspaces H+ and H−, respectively (see
Fig. 14.1). A partial node is characterized by quantities related to the relevant halfspace
(e.g., seismic wave speeds, density, displacements, particle velocities or forces). Since the
partial nodes are characterized by different displacements, the split node may experience
a relative motion along the fault. A couple of the partial nodes share the fault-related
quantities (e.g., slip, slip rate, coefficients of friction). Consider a normal vector �n oriented
from halfspace H− to halfspace H+ as shown in Fig. 14.1.

Due to deformation of halfspace H− and possibly due to external forces acting in
halfspace H−, the partial node p.n.− with massM− is accelerated by force �F−. Similarly,
the partial node p.n.+ is accelerated by force �F+:

�a− =
�F−

M− , �a+ =
�F+

M+ (14.1)

The acceleration of the partial nodes is affected only by the forces acting in halfspaces.
Therefore Eqs. (14.1) are, in fact, describing the motion of the partial nodes as if they were
at the free surfaces – there is no interaction between the partial nodes.

In order to simulate the fault, the halfspaces (and partial nodes) have to be coupled.
The coupling can be accomplished by the constraint traction �T c acting at the contact of the
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halfspaces. The constraint traction represents the contact force with which halfspace H+

acts upon halfspaceH−. The constraint traction is the only traction acting at the contact or,
in other words, it is the total traction (see Eq. (4.3)). We recall that the initial traction �T 0

represents the state of traction at the moment when rupture nucleates – it does not contribute
to the acceleration. Therefore the constraint force at the partial node p.n.− is determined
only by the traction variation � �T (t) ≡ �T c(t) − �T 0:

�Fc,−(t) = �Fc(t) = A� �T (t) = A( �T c(t) − �T 0) (14.2)

Here A denotes the area represented by the split node. The acceleration of the partial node
p.n.− is contributed by force �F− due to deformation in halfspaceH− and by the constraint
force �F c,−(t):

�a−(t) = 1

M− [ �F−(t) + �Fc,−(t)] = 1

M− [ �F−(t) + A( �T c(t) − �T 0)] (14.3)

Similarly, the constraint force acting on p.n.+ and the acceleration of p.n.+ are

�Fc,+(t) = − �F c(t) = −A� �T (t) = −A( �T c(t) − �T 0) (14.4)

�a+(t) = 1

M+ [ �F+(t) + �Fc,+(t)] = 1

M+ [ �F+(t) − A( �T c(t) − �T 0)] (14.5)

We can approximate the time derivative by the 2nd-order central FD formula to obtain the
particle velocity at partial nodes:

�v− (t + 1
2�t

) ≈ �v− (t − 1
2�t

)+ �t

M− [ �F−(t) + A( �T c(t) − �T 0)]

�v+ (t + 1
2�t

) ≈ �v+ (t − 1
2�t

)+ �t

M+ [ �F+(t) − A( �T c(t) − �T 0)]

(14.6)

Recall the definition of the slip rate, Eq. (4.2),

�̇s = �v+ − �v− (14.7)

Using Eqs. (14.6) in (14.7) we obtain for the slip rate

�̇s (t + 1
2�t

) ≈ �̇s (t − 1
2�t

)+�tB
[
M− �F+(t) −M+ �F−(t)

A (M− +M+)
− ( �T c(t) − �T 0)

]
(14.8)

where

B = AM
− +M+

M−M+ (14.9)

Now find a constraint traction that ensures that a couple of the partial nodes move
together. We mention two approaches – one by Andrews, the other by Day. Andrews
requires zero differential acceleration. Assume an initial condition with zero slip rate.
Then the requirement ensures that the partial nodes move together. For slipping nodes,
however, the requirement itself is not sufficient for rupture arrest. Day requires zero slip
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rate. This condition is sufficient for both the rupture onset and arrest. We explain only Day’s
approach.

Denote the constraint traction ensuring zero slip rate as �T ct (t). Note that, because �T ct (t)
has to be evaluated at each time level at each node on the fault and compared with the
frictional strength, it is called the trial traction. The question is, how to time condition
�̇s = 0. The traction is defined at time t while the slip rate is defined at t +�t/2. If �̇s (t) = 0
is required, the traction acts for the time interval from t −�t/2 to t +�t/2. If the nodes
were slipping at previous times then this approach can reverse slipping. This results in the
traction driving slip rather than opposing it and thus in violating the energy balance (Day
2005, personal communication). Therefore,

�̇s (t + 1
2�t

) = 0 (14.10)

must be required. Applying (14.10) in (14.8) we obtain the trial traction:

�T ct (t) ≈ �T 0 +
M−M+
�t

�̇s (t − 1
2�t

)+M− �F+(t) −M+ �F−(t)

A (M− +M+)
(14.11)

Traction �T ct (t) fully compensates the current forces at the contact due to deformation of
halfspacesH− andH+ as well as due to the relative motion of the partial nodes. The current
strength of the contact, S(t), is determined by the friction (see Eq. (4.5)). Therefore, if the
amplitude of the shear (tangential) component of �T ct (t) is smaller than the fault strength,
�T ct (t) is equal to the traction acting at the contact and consequently there is no slip:∣∣ �T ctsh (t)

∣∣ ≤ S(t) : �T c(t) = �T ct (t) ⇒ �̇s (t + 1
2�t

) = 0 (14.12)

The contact cannot support a load larger than the current fault strength. Therefore, if
| �T ctsh (t)| is larger than the fault strength the constraint traction is determined by friction:
�T csh(t) = �T fsh(t). The difference between �T ct (t) and �T f (t) results in a nonzero slip rate:∣∣ �T ctsh (t)

∣∣ > S(t) : �T c(t) = �T f (t) ⇒ �̇s (t + 1
2�t

) 	= 0 (14.13)

Because we assume no opening of the contact or penetration of the material at the contact
(see Eq. (4.6)), the normal component of �T f (t) is determined by �T ct (t):

�T fn (t) = �T ctn (t) (14.14)

Consequently, the normal component of the slip-rate remains zero.
In principle we can use Eq. (14.8) to obtain the slip rate, but it is advantageous to express

�̇s(t +�t/2) using �T ct (t). First, assume �̇s (t +�t/2) 	= 0 for �T csh(t) = �T fsh(t) in Eq. (14.8).
Then assume �̇s (t +�t/2) = 0 for �T csh(t) = �T ctsh (t) in Eq. (14.8):

�̇ssh
(
t + 1

2�t
) ≈ �̇ssh

(
t − 1

2�t
)+�tB

[
M− �F+

sh(t) −M+ �F−
sh(t)

A(M− +M+)
− ( �T fsh(t) − �T 0

sh

)]

0 ≈ �̇ssh
(
t − 1

2�t
)+�tB

[
M− �F+

sh(t) −M+ �F−
sh(t)

A(M− +M+)
− ( �T ctsh (t) − �T 0

sh

)] (14.15)
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By subtracting the second equation from the first we obtain the formula for the slip rate:

�̇ssh
(
t + 1

2�t
) ≈ �tB[ �T ctsh (t) − �T fsh(t)

]
(14.16)

We can express the frictional traction �T fsh(t) as

�T fsh(t) = S(t) �ϒ(t) (14.17)

Vector �ϒ(t) has to be obtained from the requirement that friction opposes slipping. Recall
the colinearity condition (4.8) and its explanation in relation to the slip-rate direction. We
may write

�T fsh(t) = S(t)
�̇ssh(t)∣∣�̇ssh(t)∣∣ (14.18)

According to Day (2005, personal communication) the procedure of finding the trial traction
�T ct (t) using condition (14.10) and the direction of the frictional traction �T fsh(t) using �̇ssh(t)
can cause, in some rare cases, large oscillations of the rake direction just around the time
of rupture arrest. Day avoids the problem by modifying the colinearity condition:

�T fsh(t) = S(t)
�̇ssh
(
t + 1

2�t
)∣∣�̇ssh (t + 1

2�t
)∣∣ (14.19)

Using Eq. (14.16) in (14.19) we obtain

�T fsh(t) = S(t)

S(t) + ∣∣ �T ctsh (t) − �T fsh(t)
∣∣ �T ctsh (t) (14.20)

This means that the shear component of the frictional traction �T fsh(t) has the same direction
as the shear component of the trial traction �T ctsh (t). Therefore, see Eq. (14.17),

�ϒ(t) =
�T ctsh (t)∣∣ �T ctsh (t)

∣∣ (14.21)

Now we can rewrite relations (14.13) in more detail:∣∣ �T ctsh (t)
∣∣ > S(t) : �T cn (t) = �T ctn (t) ⇒ �̇sn

(
t + 1

2�t
) = 0

�T csh(t) = S(t)
�T ctsh (t)∣∣ �T ctsh (t)

∣∣ ⇒ �̇ssh
(
t + 1

2�t
) = �tB[ �T ctsh (t) − �T fsh(t)

] (14.22)

The TSN method explained here may be used if the time-stepping algorithm is explicit
and the force applied to one node accelerates only that node during one time iteration. Note
that Tago et al. (2012) developed a TSN method for the discontinuous Galerkin method
which is more general in that velocity and traction changes at nodes of the interface elements
are coupled, and the coupled TSN equations are solved numerically by the predictor-
corrector method.
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The accuracy of the TSN method depends heavily on the accuracy of the calculation of
the body forces �F+ and �F−. These forces are computed for each time level assuming zero
tangential traction.

Note on discretization of rupture-dynamics problems For accurate and reliable results
of numerical simulations of rupture propagation, proper discretization of the problem is
necessary. Spatial sampling obtained from sampling criteria for wave propagation problems
is not sufficient for correctly resolving rupture propagation. We have to properly resolve
the breakdown zone as well as characteristic length scales on the fault (characterizing
topography of the fault and heterogeneities).

Day et al. (2005) derived two estimates of breakdown-zone width assuming linear slip-
weakening: an approximation at zero speed,�0, and an approximation at large propagation
distance, �. For correct resolution, �0 for mode III (anti-plane mode) is more important
because it is always smaller than �0 for mode II (in-plane mode):

�III
0 = 9π

32
μ

Dc

τs − τd (14.23)

The breakdown zone shrinks as the rupture propagates. It is possible to find an analytical
form of the estimate of breakdown-zone width at distance L only for mode III:

�III (L) = �III
0

2L0/L

1 + (L0/L)2 , L0 = 1

π
μDc

τs − τd
(τ0 − τd )2

(14.24)

At the same distance �III will be smaller than �II. However, the rupture may propagate
to a larger distance in the in-plane direction and therefore, eventually, the breakdown-zone
width near the end of the fault may be smaller in the in-plane direction than at the end of
the fault in the anti-plane direction. An analytical solution for �II is not available (see Day
et al. 2005 for the procedure to obtain a numerical solution).

According to Day et al. (2005),�III
0 has to be resolved by more than one spatial sampling.

Otherwise it is likely that the solution will be too oscillatory and consequently it may lead
to rupture arrest. Of course, better resolution is necessary to achieve reasonable accuracy.
Day et al. (2005) found that their DFM (2nd-order in space and time) achieved stability
of the solution when the minimum breakdown-zone width in the in-plane direction was
resolved by 3.3 grid spacings, and the median of the breakdown-zone width was resolved by
4.4 grid spacings. Although the estimates were derived assuming homogeneous conditions
and, moreover, the spatial sampling is method dependent, the estimates may serve as a good
starting point.

Let us note (Day 2013, personal communication) that, in addition to resolution of the
breakdown zone, it is necessary that the grid spacing h be small enough to resolve any
length scales λ related to the fault (e.g., length scales of heterogeneities or geometry of the
fault), that is,

h < λ (14.25)
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Moreover, the solution can be considered reliable if the slip is smaller than the length scales
on the fault, that is,

|�s| < λ (14.26)

If this condition is not satisfied, then slip will juxtapose misfitting geometrical and material
features. Note that the method will provide a solution even if condition Eq. (14.26) is
not satisfied. However, such a solution cannot be considered a valid solution for obvious
reasons.

14.2 Implementation of TSN in the staggered-grid scheme

The TSN method for simulation of rupture propagation on an earthquake fault was explained
in Section 14.1. As mentioned there, the method was developed independently by Andrews
(1973, 1976a,b, 1999) and Day (1977, 1982). Andrews implemented his TSN formulation
in an FD scheme in which spatial differentiation is equivalent to the FEM. Day implemented
his slightly different formulation of the TSN method in the 2nd-order partly-staggered FD
scheme. Both Andrews and Day applied the TSN method to investigate the dynamics of
earthquake rupture propagation.

Day et al. (2005) compared the TSN method with the boundary-integral method and
found a very good level of agreement. Dalguer and Day (2006) compared the TSN method
with the thick-fault method of Madariaga et al. (1998) and the stress-glut method pre-
sented by Andrews (1999). Using extensive numerical tests they demonstrated the superior
accuracy of the TSN method compared to the thick-fault and stress-glut methods.

Dalguer and Day (2007) implemented the TSN method in the (2,4) VS SG FD scheme.
The fault plane is represented by the grid plane of the split nodes for the normal stress-tensor
components, the corresponding shear stress-tensor component (σxy), and two fault-parallel
components of the particle velocity (vx and vy). Dalguer and Day applied the 4th-order
centred approximation to spatial derivatives at grid points at distances 3h/2 and more from
the fault plane. At grid points at distances h and h/2 from the fault plane they applied
the 2nd-order centred approximation. Finally, at grid points on the fault plane, Dalguer and
Day applied the 1st-order one-sided approximation for spatial derivatives in the direction
perpendicular to the fault plane and the 2nd-order centred approximation for derivatives in
the directions parallel to the fault plane.

Dalguer and Day performed numerical tests of their implementation (they termed it
SGSN – staggered-grid split node) against a partly-staggered implementation of the TSN
method (Day 1977, 1982) and a boundary-integral method, and found it satisfactorily
accurate, with convergence rates similar to those of the two latter methods.

Kristek et al. (2006) and Moczo et al. (2007a) presented three different implementa-
tions of the TSN method in the VS SG scheme. In the first one they applied the 4th-order
approximation to the spatial derivatives away from the fault plane, and the 2nd-order approx-
imations at grid positions close to and on the fault plane. In the second implementation they
applied the 4th-order approximation to the spatial derivatives away from the fault, 2nd-order
approximations at grid positions close to the fault, and 4th-order approximations on the
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Figure 14.2 Configuration of the fault plane in the staggered grid. The fault is represented by a
horizontal grid plane of split nodes.

fault plane. In the third implementation they applied the 4th-order approximations to the
spatial derivatives everywhere.

Here we describe the first implementation. The geometrical configuration of the horizon-
tal fault plane and spatially staggered grid is shown in Fig. 14.2. Because the fault plane is
represented as a contact of the ‘–’ and ‘+’ fault surfaces, the corresponding horizontal grid
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plane with spatial index LF + 1/2 is split into two grid planes. Assuming shear faulting,
we have to distinguish the ‘–’ and ‘+’ values of the horizontal components of the particle
velocity, v±

x and v±
y , two normal stress-tensor components, σ±

xx and σ±
yy , and one shear

stress-tensor component, σ±
xy , which become discontinuous when slip on the fault occurs.

For conciseness, in the following we will partly or fully omit grid indices if the omission
will not cause misunderstanding. Basically, we will show or comment only those parts of
the algorithm that are modified or different compared to the (2,4) VS SG scheme for interior
grid points for a medium without a faulting surface. The notation is relatively close to that
of Dalguer and Day (2007).

Grid points at distances 3h/2 from the fault plane Spatial derivatives at L = LF +
1/2 ± 3/2 in the z-direction (fault-normal) are approximated using the standard 4th-order
formula in which the ‘–’ or ‘+’ values on the fault are taken:

∂ϕ

∂z
≈ D(1−4)

z ϕ = 1

h

[
9
8 (ϕL+1/2 − ϕL−1/2) − 1

24 (ϕ−
L+3/2 − ϕ+

L−3/2)
]

(14.27)

Here, ϕ ∈ {vx, vy, σzz } and +/− applies in correspondence to +/− in the grid index L,
that is,

if L = LF + 1/2 − 3/2, the rightmost term is (ϕ−
LF+1/2 − ϕLF+1/2−6/2)

if L = LF + 1/2 + 3/2, the rightmost term is (ϕLF+1/2+6/2 − ϕ+
LF+1/2)

Equation (14.27) also defines the spatial operator D(1−4)
z . Later we will also use symbol

D(1−2)
z for the 2nd-order centred approximation; see Eqs. (7.197) and (7.198).

Grid points at distances h from the fault plane All spatial derivatives at grid points at
L = LF + 1/2 ± 1 are approximated by the 2nd-order centred FD formula.

Grid points at distances h/2 from the fault plane All spatial derivatives at grid points at
L = LF + 1/2 ± 1/2 are approximated by the 2nd-order centred FD formula. For deriva-
tives in the z-direction appropriate values are taken:

∂ϕ

∂z
≈ D(1−2)

z ϕ = 1

h
(ϕ−
L+1/2 − ϕ+

L−1/2) (14.28)

with +/− applied in correspondence to +/− in the grid index L.

Split nodes on the fault plane The grid index in the z-direction for the split nodes is
L = LF + 1/2. The centred 2nd-order approximation is used for the spatial derivatives of
the +/− functions in the x- and y-directions. An adjusted 2nd-order approximation is used
for the spatial derivative of the shear stress-tensor components σzx and σzy in the z-direction:(

∂σzγ

∂z

)±
≈ 1

h

[∓ 8
3

(
Tγ − T 0

γ

)± 3σzγ,L±1/2 ∓ 1
3σzγ,L±3/2

]
(14.29)
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Tγ and T 0
γ are the components of the constraint and initial tractions on the fault and

γ ∈ {x, y}. Then approximations of the equations of motion for v±
x and v±

y are

ρ± 1

�t

[
v±,m+1/2
γ − v±,m−1/2

γ

] = [
D(1−2)
x σ±,m

xγ +D(1−2)
y σ±,m

yγ

]+
(
∂σzγ

∂z

)±,m
(14.30)

Here ( ∂σzγ
∂z

)± is defined by Eq. (14.29). The slip rate at time level m+ 1/2 is

ṡm+1/2
γ = v+,m+1/2

γ − v−,m+1/2
γ (14.31)

Then slip is obtained from

sm+1
γ = smγ +�tṡm+1/2

γ (14.32)

A value of the constraint traction �T c on the fault obtained under the condition of �̇sm+1/2 = 0
defines the trial traction. For simplicity of notation here, let �T ct denote the shear component
of the trial traction, see Eqs. (14.12) and (14.22). The boundary conditions on the fault are
enforced by

T cγ = T ctγ ; |T ct | ≤ S

T cγ =
�T ct

| �T ct |S;
∣∣ �T ct ∣∣ > S (14.33)

In evaluation of the trial traction at grid positions of the particle-velocity components, the
missing components of the trial traction are obtained by interpolation:∣∣ �T ctI,K+1/2

∣∣2 = [
T ctx,I,K+1/2

]2 + [
1
4

(
T cty,I+1/2,K + T cty,I−1/2,K + T cty,I+1/2,K+1 + T cty,I−1/2,K+1

)]2

(14.34)

and ∣∣ �T ctI+1/2,K

∣∣2 = [
1
4

(
T ctx,I,K+1/2 + T ctx,I+1,K+1/2 + T ctx,I,K−1/2 + T ctx,I+1,K−1/2

)]2
+ [
T cty,I+1/2,K

]2
(14.35)

The missing components of the slip rate in the evaluation of the slip-path length are
interpolated analogously.

Finally, the approximations for the temporal derivatives of the stress-tensor components
are

σ̇±
xy ≈ μ (D(1−2)

y v±
x +D(1−2)

x v±
y

)
(14.36)

σ̇±
γ γ ≈ λ±

[
D(1−2)
x v±

x +D(1−2)
y v±

y +
(
∂vz

∂z

)±]
+ 2μ±D(1−2)

γ v±
γ (14.37)
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and

σ̇±
zz ≈ λ±

[
D(1−2)
x v±

x +D(1−2)
y v±

y +
(
∂vz

∂z

)±]
+ 2μ±

(
∂vz

∂z

)±
(14.38)

where the adjusted 2nd-order approximation is used for the z-derivative:(
∂vz

∂z

)±
≈ 1

h

[∓ 8
3vz ± 3vz,L±1/2 ∓ 1

3vz,L±3/2
]

(14.39)

Values of the continuous z-component of the particle velocity on the fault,

vz = vz,I+1/2,K+1/2,LF+1/2 (14.40)

are determined from the 2nd-order approximation to the boundary condition:(
σ̇+
zz = σ̇−

zz

)
LF+1/2

(14.41)

The algorithms of the second and third implementations are relatively more complicated
and we will not detail them here. For a numerical comparison of the three implementations
see Moczo et al. (2007a), Section 11.3.

We did not introduce any artificial damping in the FD schemes. Dalguer and Day
(2007) introduced viscous damping into the equations of motion in order to suppress short-
wavelength oscillations arising from the numerical dispersion characteristic for a low-
order FD approximation. Alternatively, the oscillations can be reduced using the adaptive
smoothing algorithm, see Section 17.3.

14.3 Initiation of spontaneous rupture propagation

Numerical simulations of rupture propagation under the linear slip-weakening friction law
require artificial procedures to initiate spontaneous rupture propagation. A frequently used
technique is based on imposing stress asperity. The effects of this artificial initiation depend
on the geometry and size of the asperity, the spatial distribution of the stress in and around
the asperity, and a maximum overstress value. It is necessary to understand and minimize
the effects of artificial initiation on the subsequent spontaneous rupture propagation.

Numerical and analytical studies show that the size of the asperity should be chosen
as small as possible. If an initiation zone is too small, rupture will not propagate or will
terminate spontaneously at a finite distance from the nucleation region. On the other hand,
if the initiation zone is too large it may strongly affect rupture propagation. Criteria for
estimating the minimum size have been proposed for 2D in-plane and anti-plane rupture
modes (Andrews 1976a,b, Campillo and Ionescu 1997, Favreau et al. 1999, Uenishi and
Rice 2003) and for 3D (Day 1982, Uenishi and Rice 2004). Other studies (e.g., Galis et al.
2010, Bizzarri 2010) suggest that these estimates do not provide general rules for designing
3D simulations.

A variety of geometries/shapes of the initiation zone have been used for 3D dynamic
rupture simulations. A square initiation patch has frequently been chosen (e.g., Harris et al.
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2009). Uenishi and Rice (2004), Dunham (2007), Galis et al. (2010) and Bizzarri (2010)
suggested an elliptical initiation zone, while Ripperger et al. (2007) tested arbitrarily shaped
initiation regions.

Within the stress asperity the initial stress is chosen larger than the static stress. The
overstress (difference between the initial stress and static stress) inside the asperity is
assumed small, usually not larger than 1% over the static stress. Note that quantifying of
the overstress by a percentage of the static stress does not lead to proper scaling of the
overstress with the stress drop and strength excess. For example, two configurations with
equal stress drops and strength excesses but with different initial stresses should provide the
same results. Consider overstress quantified as a percentage of the static stress. Assumption
of the same percentage in both configurations then leads to different overstresses in MPa
(because initial stress and consequently also static stress are different in the configurations)
which eventually leads to different results. Therefore, it is reasonable to quantify the
overstress independently of the initial stress – by percentage of the stress drop, strength
excess or difference between the static and dynamic stresses.

Most published studies that use stress-asperity parameterization for rupture initiation
assume a stress discontinuity at the asperity edge: the asperity stress suddenly drops to
the level of the initial background stress. Two recent studies applied a smooth spatial
distribution of stress in and around the asperity (Galis et al. 2010, Bizzarri 2010).

Recently, Bizzarri (2010) tested different rupture initiation techniques, and showed that
(a) forced rupture propagation with a proper rupture velocity leads to a gradual transition
from imposed initiation to spontaneous rupture propagation, (b) an elliptical stress asperity
with smooth stress is a valid alternative to forced rupture-propagation initiation. Bizzarri
(2010) did not address the size of the initiation zone or overstress value.

Galis et al. (2014) performed extensive numerical simulations of 3D rupture propagation
governed by the linear slip-weakening friction law (see Subsection 4.1.2). They considered
square, elliptical and circular shapes of the initiation zone with constant overstress, 0.5% of
τs − τ0, and values of the strength parameter S = (τs − τ0)/(τ0 − τd ) from 0.1 to 2.0. They
found that the area of the initiation zone, for given values of S and overstress, determines
whether the rupture will spontaneously propagate or not regardless of the particular shape of
the initiation zone; see Fig. 14.3. The transition between propagating and non-propagating
ruptures can be approximated by the curve

Ainit = 1.75S2.81 + 3.82 (14.42)

Here Ainit = A/L2
fric is the dimensionless area of the initiation zone determined by area A

of the initiation zone in metres and parameter Lfric = μDc/(τs − τd ) proposed by Dunham
(2007).

Galis et al. (2014) also presented the analytical formula derived using theoretical argu-
ments:

A′
init = (3π )3

211

τ0 − τd
τi − τ0

(τs − τd )2

(τ0 − τd )4μ
2D2

c (14.43)
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Figure 14.3 Search for the minimal size of the initiation zone that generates spontaneous rupture
propagation. Each dot represents one numerical simulation. Black dots: simulations when rupture
did not propagate spontaneously. Grey dots: simulations when rupture propagated spontaneously.
Large dots were used for approximating the delimiting boundary by curve. Right bottom panel shows
comparison of approximation of the numerical results, (14.42), with the theoretical estimate, (14.43).
Simulations were performed using the FEM (Chapter 16) with h = 50 m.

Here τi is the initial traction inside the initiation zone. This theoretical estimate is in
very good agreement with numerical results (see Fig. 14.3) for values S > ∼0.25. The
assumptions/approximations used for the derivation are not valid for very low values of
S. This is a reason for the worse agreement between numerical results and theoretical
estimates for values of S < ∼0.25. They also found theoretical estimates which are in
excellent agreement with the numerical results. See Galis et al. (2014) for more details.

Galis et al. (2014) also investigated the effects of the overstress value. First they con-
sidered a fixed size of the initiation zone. They found indications that the use of over-
stress values much larger than the minimum overstress leading to spontaneous propagation
strongly affects rupture propagation, particularly in the case with large values of S. They
also searched for the minimal overstress that ensures spontaneous rupture propagation
for different sizes of the initiation zone. They observed that the adjusted overstress value
is a good way to minimize the size of the initiation zone without introducing numerical
artefacts.
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Preparation of computations and a
computational algorithm

(1) Input data
� spatial distribution of

� P-wave and S-wave speeds
� density
� quality factorsQP andQS (orQκ andQμ)

� source and receiver positions
� type of source, source-time function

(2) Determination of computational parameters
� grid spacing from the maximum frequency up to which the simulation should be

accurate at a desired level (the size of the computational domain relates to the
minimum frequency)

� time step from stability condition
� number of time levels
� parameters of PML

(3) Building computational model
� coverage of the computational domain with a discontinuous grid
� calculation of effective material grid parameters

(4) Algorithm of the computer code
� reading input control parameters
� reading computational model (grid model)
� reading source-time function and source parameters
� time loop (for determined number of time levels)

� calculation of strain rates from particle velocities
� inside model
� in PML
� near and at the free surface

� update of anelastic functions from strain rates
� update of stresses from strain rates and anelastic functions

259
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� update of particle velocities
� inside model
� in PML
� near and at the free surface

� application of source
� storing seismograms and/or snapshots

(5) Post-processing of the simulated motion (for example, low-pass or band-pass filtration)

It is necessary to perform numerical simulations for at least two different discretizations,
e.g., for two sizes of the spatial grid spacing, in order to check the sensitivity of the simulated
motion with respect to the computational parameters.



Part III
Finite-element method and hybrid

finite-difference–finite-element method





16

Finite-element method

Detailed expositions of the FEM and its application to a variety of problems can be found
in books such as those by Strang and Fix (1988), Zienkiewicz and Taylor (1989), Ottosen
and Petersson (1992), Belytschko et al. (2000), Hughes (2000), Felippa (2005) and Reddy
(2006).

The purpose of this chapter is to briefly introduce the basics of the FEM and explain our
efficient implementation based on the global restoring-force vector with significantly lower
memory requirements as compared to the requirements of the global stiffness matrix. We
also use so-called e-invariants for efficient computation of the restoring-force vector. The
chapter will provide a basis for later expositions of FE modelling of rupture propagation
and the hybrid FD–FE method.

Unlike most chapters on the FDM, here we indicate the spatial and temporal derivatives,
respectively, as

ϕi,j ≡ ∂ϕi

∂xj
, ϕ̇i ≡ ∂ϕi

∂t
(16.1)

We choose this notation in order to have the equations in a concise form.

16.1 Weak form of the equation of motion

Consider a domain �̄ = � ∪ �, where� is an interior and � its boundary. We assume that
boundary � can be decomposed into two parts, �D and �N , without overlapping, that is,
�D ∩ �N = ∅ (see Fig. 16.1). We assume a prescribed displacement vector at boundary �D
and prescribed traction at boundary �N . Recall the strong-form equation of motion (2.7):

ρüi = σij,j + fi (16.2)

and boundary condition (2.8) at �N :

σij (�x) nj (�x) = hi ; �x ∈ �N (16.3)

where �n(�x) is an outer normal. Here we also consider the boundary condition at �D:

ui (�x, t) = gi (�x, t) ; �x ∈ �D (16.4)

263



264 Finite-element method

Figure 16.1 Domain �̄ is formed by the interior � and the boundary �. The Dirichlet boundary
condition is considered on the part �D and the Neumann boundary condition is considered on the
part �N ; �n is outer normal at boundary �N .

In Chapter 2 we showed the weak-form equation of motion. We did not, however,
consider boundary conditions. Here we use an alternative approach that is more suitable
for deriving the FEM.

Consider a weighting function w – an arbitrary function satisfying two conditions:

w (�x) = 0; �x ∈ �D (16.5)

∫
�

(w,x)
2 dx <∞ (16.6)

The first condition for w is due to the boundary condition (16.4). The second one will
be explained later. We can multiply Eqs. (16.2) and (16.3) by the weighting function w,
integrate them over domain � and its boundary �N , respectively, and then sum them up.
We obtain ∫

�

w(ρüi − fi)d�−
∫
�

wσij,j d�+
∫
�N

w(σij nj − hi)d� = 0 (16.7)

Note that the integral of the boundary condition (16.4) multiplied by weighting function w
is zero due to condition (16.5).

Rewrite the second term in Eq. (16.7):

wσij,j = (wσij ),j −w,j σij (16.8)

Rearrange and integrate Eq. (16.8) over the domain �:∫
�

(
wσij

)
,j d� =

∫
�

w,j σij d�+
∫
�

wσij,j d� (16.9)

Using Gauss’s divergence theorem we convert the integral on the l.h.s. of Eq. (16.9) to a
surface integral: ∫

�

(wσij ),j d� =
∫
�

wσijnjd� =
∫
�N

wσij njd� (16.10)
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where we used the property (16.5) of the weighting functionw. Now we can use Eqs. (16.9)
and (16.10) to express the second term of Eq. (16.7):∫

�

wσij,j d� =
∫
�N

wσijnjd� −
∫
�

w,j σij d� (16.11)

Eventually, using Eq. (16.11) we rewrite Eq. (16.7):∫
�

w (ρüi − fi) d�+
∫
�

w,j σij d�−
∫
�N

whid� = 0 (16.12)

For the equation to be meaningful the integrals must be well defined. That imposes condi-
tions on solution ui . Moreover, the solution ui has to satisfy the boundary condition (16.4).
The conditions on solution ui of Eq. (16.12) are weaker than of the strong-form Eq. (16.2).
For example, the weak form allows solutions ui to be piece-wise linear functions. The
piece-wise linear functions cannot be solutions of the strong-form equation because the
derivatives are not well defined. Therefore Eq. (16.12) is called the weak form of the equa-
tion of motion. Note that Eq. (16.12) has to be satisfied for an arbitrary weighting function
w. Consequently, Eq. (16.12) represents, in fact, three infinite sets of equations (one set
for each component of solution). To solve Eq. (16.12) in practical applications we have to
consider only a finite set of weighting functions.

16.2 Discrete weak form of the equation of motion for an element

We can imagine an element as a domain with a simple geometric shape with nodes in the
vertices, e.g., tetrahedron, hexahedron or pyramid. In the next section we define the element
using shape functions. Assume an element with n nodes. Assign numbers or indices to nodes
so that each node can be referred to by a number from a set ν ≡ {1, . . . , n}. Then we can
define a set νD ⊂ ν as a set of indices of nodes on boundary �D at which the displacement
vector is prescribed. Similarly, we can define a complementary set ν\νD as a set of the free
nodes at which the displacement vector is not prescribed. Correspondingly, nD denotes the
number of the nodes with prescribed displacement and n− nD denotes the number of the
free nodes.

Now recall the weak form of the equation of motion (16.12). Further, we assume one
and the same set of weighting functions for all three components of displacement.

We can define a finite set of the weighting functions S̃w as

S̃w ≡ {sl|l ∈ ν\νD} (16.13)

This means that the weighting functions are from a finite set of n− nD functions, sl , defined
only for nodes not lying on boundary �D. No weighting functions are defined for nodes on
boundary �D . Note that functions from S̃w are zero on �D – in accordance with (16.5).

In general, we can consider the solution approximated by a linear combination of shape
functions, which may be different from weighting functions. Here, we limit the discussion
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to the Bubnov–Galerkin approach only. Following the Bubnov–Galerkin approach, the
shape functions are chosen to be the same as the weighting functions whenever possible.
Therefore, we use the terms weighting and shape functions interchangeably. Then the most
straightforward choice for approximating the solution would be a linear combination of the
functions from S̃w:

ui (�x, t) ≈
∑

k∈ν\νD
sk(�x)UIik(t) (16.14)

HereUIik(t) are time-dependent coefficients of the linear interpolation. However, the approx-
imate solution in this form does not satisfy the boundary condition (16.4) because the shape
functions, introduced in (16.13), are zero at �D . Therefore, we have to add a new term to
the solution, which will ensure the satisfaction of the boundary condition. Define a new set
of functions

S̃ ≡ {sl |l ∈ νD} (16.15)

which are nonzero at �D . Using these new functions and new coefficients Gik(t) we can
modify the form of the approximate solution,

ui (�x, t) ≈
∑

k∈ν\νD
sk(�x)UIik(t) +

∑
k∈νD

sk(�x)Gik(t) (16.16)

where

sk

{∈ S̃w if k ∈ ν\νD
∈ S̃ if k ∈ νD

(16.17)

and

UIik(�x) = 0; �x ∈ �D, Gik(�x) = 0; �x /∈ �D (16.18)

At the boundary, the first term of (16.16) vanishes and only the second one remains.
Therefore we can write

ui(�x, t) = gi(�x, t) ≈
∑

k∈νD
sk(�x)Gik(t); �x ∈ �D (16.19)

We see that the added shape functions ensure the (approximate) satisfaction of the boundary
condition.

We can simplify Eq. (16.16) by introducing a set of shape functions S that include
additional functions:

S ≡ S̃w ∪ S̃ = {sl |l ∈ ν} (16.20)

Then we can introduce coefficients Uik as

Uik ≡ UIik +Gik (16.21)

and rewrite (16.16):

ui(�x, t) ≈
∑

k∈ν sk(�x)Uik(t); sk ∈ S (16.22)
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We can also extend the set of weighting functions. The extended set of weighting
functions Sw includes zero functions for nodes on boundary �D and shape functions for all
other nodes. Let

ŝl

{≡ sl, l ∈ ν\νD
≡ 0, l ∈ νD

(16.23)

Then,

Sw ≡ {ŝl |l ∈ ν} (16.24)

We illustrate function sets S̃w, Sw , S̃ and S using a simple example. Consider the 2D
quadrilateral element with four nodes in the vertices. Denote them 1, 2, 3 and 4. Assume a
prescribed displacement at node 3. Then set S̃w , defined by (16.13), will be S̃w = {s1, s2, s4}.
The s3 is missing. Set S̃, defined by Eq. (16.15), will be S̃ = {s3}. Then, according to (16.20)
and (16.24), S = {s1, s2, s3, s4} and Sw = {s1, s2, 0, s4}, respectively.

Assuming the finite set of weighting functions (16.24) and assuming the approximate
solution (16.22), we can rewrite the weak-form equation (16.12):∫

�

wk
(
ρslÜil − fi

)
d�+

∫
�

wk,jσij d�−
∫
�N

wkhid� = 0 (16.25)

Here k, l ∈ ν, wk ∈ Sw and sl ∈ S. We obtain three finite sets of n− nD equations for
n− nD unknown coefficients Uil (the l.h.s. will be zero for k ∈ νD). This is a discrete
or Galerkin weak form. Note that the Galerkin form includes the boundary conditions at
�D . Note also that the stress tensor σij implicitly depends on the spatial derivatives of
displacement and consequently on the spatial derivatives of the shape functions. Condition
(16.6) thus guarantees the existence of the second integral on the l.h.s. of (16.25).

Before we continue with the derivation of a matrix form of Eq. (16.25) we define the
shape functions.

16.3 Shape functions

The properties of a final FE scheme very much depend on the choice of shape functions. To
obtain the converging scheme the shape functions must be smooth inside an element, con-
tinuous at boundaries between elements, and complete. The first two conditions guarantee
that the integrals in the discrete weak form, Eq. (16.25), are well defined. The second con-
dition may be physically interpreted as the requirement of displacement continuity across
elements. According to the third condition, the shape functions must be able to exactly
represent linear polynomials inside the element. This may be physically interpreted as the
requirement of exact representation of the constant-strain state inside an element.

So far we have considered only one element. Next we consider the whole domain �
covered by elements without holes and overlapping.

In general, the shape functions may be defined in the whole domain. In the case of a large
number of elements and nodes this approach is very expensive because it leads to functions
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(a) (b)

x

y

2 2[ , ]x y1 1[ , ]x y

3 3[ , ]x y4 4[ , ]x y

ξ

η[ 1, 1]− + [ 1, 1]+ +

[ 1, 1]− − [ 1, 1]+ −
1 2

4 3

Figure 16.2 Transformation from the local to the physical coordinates in 2D. Left: a reference element
�ref in the local coordinates (ξ, η). Right: an element in the physical coordinates (x, y).

of very high order. It is better to use shape functions defined per element. In this case we
can use low-order functions and still have a reasonable approximation of the solution in
the whole domain. For simplicity, consider a 1D example. Consider linear shape functions
per element. In such a case the solution in one element will be approximated by a linear
function (see Eq. (16.22)). If we cover the whole domain with more elements, the solution
in the domain will be approximated by a piece-wise linear function.

In addition to the local shape functions, it may be useful to transform elements from
the physical coordinates (x, y, z) into the local coordinates (ξ, η, ζ ), and define the shape
functions in the local coordinates. Consequently, the shape functions for all elements will
have the same form in the local coordinates. This means that for a given type of element
we have to derive the shape functions only once. For simplicity, we first derive and present
the shape functions for a quadrilateral element in 2D and then for a hexahedral element
in 3D.

Assume a reference element �ref as a square element in the local coordinate system
(ξ, η) as shown in Fig. 16.2. The nodes are at positions

�ξ ≡ (−1, 1, 1,−1) , �η ≡ (−1,−1, 1, 1) (16.26)

We need to define four shape functions for set S. These functions are used to approximate
the solution ui (�x, t). We can find them by solving the system of equations

sk(ξl, ηl) = δkl ; k, l = 1, 2, 3, 4 (16.27)

where δkl is the Kronecker delta. The system consists of four equations for each shape
function. Therefore, to make system (16.27) uniquely solvable, the shape functions must
have four parameters. We will consider shape functions in the form

sk(ξ, η) = akξ + bkη + ckξη + dk, k = 1, 2, 3, 4 (16.28)

After solving the system (16.27) for shape functions in the form (16.28) the shape functions
can be written as

s1(ξ, η) = 1
4 (1 − ξ )(1 − η), s2(ξ, η) = 1

4 (1 + ξ )(1 − η)

s3(ξ, η) = 1
4 (1 + ξ )(1 + η), s4(ξ, η) = 1

4 (1 − ξ )(1 + η)
(16.29)
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These functions are called bilinear because for fixed η we obtain a linear function of
ξ , and vice versa, for fixed ξ we obtain a linear function of η. Note that the consequence
of using shape functions satisfying the system of equations (16.27) is that coefficient Uil
represents the i-th component of displacement at node l.

The formation of the function set Sw is also straightforward. This set contains only
those shape functions from set S that are not associated with nodes on boundary �D. The
functions from S associated with nodes at �D are replaced with zeros, as indicated by
Eq. (16.23). Moreover, the functions from Sw have to be zero at �D. This condition is
implicitly satisfied for the shape functions in Sw as a consequence of Eq. (16.27).

For practical use of the shape functions in the local coordinates we need a transformation
from the local to the physical coordinates. In general, if a function is given at the nodes of
an element, we can use shape functions to interpolate the function in the element. We can
use this approach to express the transformation from the local to the physical coordinates
as

x = xksk(ξ, η), y = yksk (ξ, η) (16.30)

where xk and yk are the x- and y-positions of the nodes in the physical coordinates. We can
use the local coordinates if the transformation is unique for the element. The transformation
(16.30) exists and is unique if the element in the physical coordinates has the shape of a
convex quadrilateral, that is, if each of the inner angles is smaller than 180°, and the way
of numbering the nodes in the global and local coordinates is the same. Figure 16.3a shows
an element in the local coordinates with the nodes numbered counterclockwise. Figure
16.3b shows the case of a well-shaped element with correct numbering and, consequently,
with a unique transformation. Figure 16.3c illustrates a nonunique transformation due to
a different numbering order in the local and physical coordinates. The nonunique trans-
formation in Fig. 16.3d is due to an element with the inner angle at node 4 larger than
180°.

Earlier we mentioned conditions for the shape functions. We now check whether the
shape functions (16.29) satisfy all conditions. The shape functions (16.29) are obviously
smooth and continuous inside an element. Is the solution approximated using the shape
functions (16.29) continuous across two elements? Consider the situation in Fig. 16.4.
A solution in two quadrilateral elements is approximated by bilinear functions in each
element. The solution is defined at nodes regardless of which element we are looking at.
Therefore, we have to check only the behaviour of the shape functions at the contact of
the elements, between nodes 2 and 5. Due to bilinearity, the solution on the edge of the
element is a linear function uniquely defined by solution at nodes 2 and 5. Consequently,
the linear function at the contact of two elements is the same for both elements and the
solution is continuous across the elements. This is true for any two quadrilateral elements
with bilinear shape functions. The last of the requirements was exact representation of the
constant strain or, in other words, exact representation of linear polynomials. Consider the
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Figure 16.3 Example of transformations from the local to the physical coordinates in 2D: (a) reference
element in the local coordinates, (b) unique transformation to a convex quadrilateral, (c) nonunique
transformation caused by wrong node numbering, (d) nonunique transformation to a nonconvex
quadrilateral.

linear function f (x, y) = ax + by + c. The values of this function at nodes of the element
will be

F1 = ax1 + by1 + c, F2 = ax2 + by2 + c
F3 = ax3 + by3 + c, F4 = ax4 + by4 + c

(16.31)

We use shape functions (16.29) to approximate function f (x, y) in one element:

f (x, y) ≈ s1F1 + s2F2 + s3F3 + s4F4 (16.32)
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Figure 16.4 Proof of the continuity of the displacement on the contact of two quadrilateral elements
with bilinear shape functions.

After using (16.31) in (16.32), and rearranging terms on the r.h.s. with respect to coefficients
a, b and c we obtain

f (x, y) ≈ a
∑4

k=1
skxk + b

∑4

k=1
skyk + c

∑4

k=1
sk (16.33)

Considering (16.30), the first sum is equal to x and the second sum is equal to y. It remains
to be shown that the last sum equals 1. This is straightforward if we use the definition of
the shape functions (16.29). We can rewrite Eq. (16.33) as

f (x, y) ≈ ax + by + c (16.34)

and we see that the linear function f (x, y) is exactly represented by the shape functions.
Now we can easily extend the 2D quadrilateral element into a 3D hexahedral element.

We assume a reference element,�ref , as a cube in the local coordinates (ξ, η, ζ ), Fig. 16.5.
The nodes are at positions

�ξ ≡ (−1, 1, 1,−1,−1, 1, 1,−1)

�η ≡ (−1,−1, 1, 1,−1,−1, 1, 1)

�ζ ≡ (−1,−1,−1,−1, 1, 1, 1, 1)

(16.35)
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Figure 16.5 Transformation from the local to the physical coordinates in 3D. Left: a reference element
�ref in the local coordinates (ξ, η, ζ ). Right: an element in the physical coordinates (x, y, z).

Consider trilinear functions:

sk(ξ, η, ζ ) = akξ + bkη + ckζ + dkξη + ekηζ + fkξζ + gkξηζ + hk (16.36)

A linear function for ξ can be obtained from the trilinear function by fixing two remaining
variables η and ζ . Solving system (16.27) for k, l = 1, 2, . . . , 8 gives eight shape functions,
which can be written as

sk(ξ, η, ζ ) = 1
8 (1 + ξkξ )(1 + ηkη)(1 + ζkζ ); k = 1, 2, . . . , 8 (16.37)

where ξk , ηk and ζk are components of vectors �ξ , �η and �ζ defined in Eq. (16.35). The
transformation of the physical coordinates can be defined analogously with (16.30):

x = xksk(ξ, η, ζ ), y = yksk(ξ, η, ζ ), z = zksk(ξ, η, ζ ) (16.38)

Similarly to the 2D case, the element in the local coordinates may be used only if transfor-
mation (16.38) exists and is unique. This means that the element has to have the shape of a
convex hexahedron and the nodes in the physical and local coordinates must be numbered
in the same way.

We do not address the satisfaction of the requirements in the 3D case as it is just a simple
and straightforward extension of what we have shown in 2D.

In the following sections we will use the abbreviation HEX8 to denote the hexahedral
element with eight nodes and trilinear shape functions.
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16.4 FE scheme for an element using the local restoring-force vector

In the previous section we discussed the shape functions and decided to use local shape
functions in the local coordinates (ξ, η, ζ ). Incorporating the transformation of coordinates
and integration over the reference element �ref , we can rewrite Eq. (16.25):∫

�ref
wkρslÜil det J d�−

∫
�ref
wkfi det J d�

+
∫
�ref
wk,jσij det J d�−

∫
�ref
N

wkhi det J d� = 0; k, l ∈ ν (16.39)

Here J is Jacobian of the transformation from local to physical coordinates:

J =

⎛
⎜⎜⎝
x,ξ x,η x,ζ

y,ξ y,η y,ζ

z,ξ z,η z,ζ

⎞
⎟⎟⎠ (16.40)

where x, y and z are determined by Eq. (16.38). The set of Eqs. (16.39) may be written in a
more readable and concise matrix form. For this we modify terms in Eq. (16.39) separately.

Vectors of the shape functions Define the vector of the shape functions s,

s ≡ (s1, s2, . . . , sn)
T (16.41)

with s1, s2, . . . , sn given by Eq. (16.37). Recall that n denotes the number of nodes in the
element. Similarly to Sw , vector sw can be defined by replacing the shape functions in s
related to the nodes on boundary �D with zeros.

Local load-force vector Using vector sw we can rewrite the second term in Eq. (16.39):

fi ≡
∫
�ref

swfi det J d� (16.42)

Each of vectors fi has n components. The fik component (the k-component of vector fi)
represents the i-component of force acting at node k. Then we can define the local load-force
vector fe:

fe ≡ (
fTx , f

T
y , f

T
z

)T
(16.43)

The vector fe has 3n components. Note that here we used the adjective ‘local’ because the
vector is defined for the element, not because it is expressed in the local coordinates.

Local boundary-condition vector Using vector sw we can rewrite the fourth term in
Eq. (16.39):

bi ≡
∫
�ref
N

swhi det J d� (16.44)
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Each of the bi vectors has n components. The bik component (the k-component of vector
bi) represents the i-component of force acting at node k due to traction hi acting at �ref

N .
Then we can define the local boundary-condition vector be:

be ≡ (bTx ,b
T
y ,b

T
z )T (16.45)

The vector be has 3n components.

Local mass matrix Now we focus on the first term in Eq. (16.39). Recall that Üil is
constant in space (being a function of time) and therefore we can rewrite the term:∫

�ref

wkρslÜil det J d� =
∫
�ref

wkρsl det J d�Üil (16.46)

Define a local mass matrix me as

me ≡

⎛
⎜⎜⎝

m̃e 0 0

0 m̃e 0

0 0 m̃e

⎞
⎟⎟⎠ (16.47)

with matrices m̃e defined as

m̃e ≡
∫
�ref

swρsT det J d� (16.48)

The dimensions of m̃e and the local mass matrix me are n× n and 3n× 3n, respectively.
We define also a local vector of discrete displacements ue as

ue ≡
[(

uex
)T
,
(
uey
)T
,
(
uez
)T ]T

(16.49)

where

uei ≡ (Ui1, Ui2, . . . , Uin)
T (16.50)

As mentioned before,Uil represents the i-component of displacement at node l. The dimen-
sions of vectors uei are n× 1, dimensions of the local discrete-displacement vector are
3n× 1. Using the local mass matrix and discrete-displacement vector we can rewrite terms
in (16.46) in matrix-vector notation:∫

�ref
wkρsl det J d�Üil → meüe (16.51)

Local restoring-force vector for an elastic isotropic medium The FE formulation with
the concept of restoring forces at nodes considerably reduces memory requirements com-
pared to the FE formulation with the global stiffness matrix. Our formulation and imple-
mentation is based on the outline of the formulation presented by Archuleta (1976, and
personal communication) who refers to Frazier and Petersen (1974).
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Consider the third term in Eq. (16.39):∫
�ref
wk,jσij det J d� (16.52)

For i = x we can rewrite the integral as∫
�ref

wk,jσij det J d�
i=x=
∫
�ref

(wk,xσxx + wk,yσxy + wk,zσxz) det J d� (16.53)

and using the vector of shape functions sw as

rx ≡
∫
�ref

(
sw,x σxx + sw,y σxy + sw,z σxz

)
det J d� (16.54)

The dimension of vector rx is n× 1.
Analogously we can proceed with i = y and i = z and define vectors ry and rz, respec-

tively,

ry ≡
∫
�ref

(
sw,x σyx + sw,y σyy + sw,z σyz

)
det J d� (16.55)

rz ≡
∫
�ref

(
sw,x σzx + sw,y σzy + sw,z σzz

)
det J d� (16.56)

Then the local restoring-force vector is

re ≡ (
rTx , r

T
y , r

T
z

)T
(16.57)

The dimension of vector re is 3n× 1. The reik component of the vector represents the
i-component of force acting at node k as a consequence of the elastic forces acting in the
element. The elastic forces are a reaction to the current deformation of the element. They
try to get the element back into a state of equilibrium or, in other words, they try to restore
the element.

We need to express the stress-tensor components in Eqs. (16.54)–(16.56). For the elastic
isotropic medium they are given by Hooke’s law, Eq. (2.23):

σij = λuk,kδij + μ(ui,j + uj,i) (16.58)

For Hooke’s law we need derivatives of the approximate solution. Using vectors of the
shape functions s and discrete displacements ui we rewrite Eq. (16.22):

ui (�x, t) ≈
∑
k∈ν
sk (�x)Uik(t) = sT · uei (16.59)

Spatial derivatives apply only to s because vectors uei are only functions of time. In general,
we can write the derivatives of displacement as

ui,j = s,Tj · uei (16.60)
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Here we need derivatives with respect to the physical coordinates (x, y, z) but our shape
functions are defined for the local coordinates (ξ, η, ζ ). Applying the chain rule leads to

s,x = s,ξ ξ,x + s,η η,x +s,ζ ζ,x

s,y = s,ξ ξ,y + s,η η,y +s,ζ ζ,y

s,z = s,ξ ξ,z+ s,η η,z+s,ζ ζ,z

(16.61)

The inverse Jacobian of transformation (16.38) is

J−1 =

⎛
⎜⎜⎝
ξ,x ξ,y ξ,z

η,x η,y η,z

ζ,x ζ,y η,z

⎞
⎟⎟⎠ (16.62)

By comparing Eqs. (16.62) and (16.61) we see that we can use the corresponding compo-
nents of the inverse Jacobian to express derivatives of the local coordinates (ξ, η, ζ ) with
respect to the physical coordinates (x, y, z) needed in Eq. (16.61).

Note on computation of integrals To construct the local quantities we have to compute
volume or surface integrals. For example, in the case of the local restoring-force vector
we have to compute integrals (16.54)–(16.56). In general, numerical integration is used for
the HEX8 elements. To choose the correct order of numerical integration, one must analyze
the functions that are to be integrated. Gaussian integration is the most efficient integration
in terms of the lowest number of integration points needed to achieve the desired precision.
Therefore, 8-point (2 points in each direction) Gaussian integration is usually used for the
HEX8 elements. This integration is exact for up to cubic polynomials and therefore it is
considered an exact integration for the undeformed elements (‘exact’ here means that the
error is caused only by a discrete representation of numbers). In the case of the deformed
elements we may need to increase the order of integration due to the more complicated
form of det J. However, in general, the more deformed the element we use, the larger will
be the systematic error.

Sometimes it is reasonable to use integration with lower accuracy than what is required
for the exact integration. This may be due to higher efficiency (lower accuracy of integration
may mean fewer integration points and consequently fewer operations) or due to different
properties of the final scheme. For better efficiency, 1-point Gaussian integration is often
used with the HEX8 elements (e.g., Ma and Liu 2006). However, note that the scheme based
on the 1-point Gaussian integration has to be used with algorithms for reducing hourglass
modes. Otherwise it will provide unusable results. See Chapter 17 for an example of the
reduced integration.
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Local restoring-force vector for an isotropic medium with realistic attenuation Here
we will address the implementation of realistic attenuation based on the rheology of GMB-
EK/GZB into the FEM. The general procedure is the same as for the elastic case, the
difference is only in the type of stress–strain relation adopted.

In Chapter 3 we derived stress–strain relations for a 3D viscoelastic continuum using
the GMB-EK/GZB. Recall the stress–strain relation, Eq. (3.134):

σij = κεkkδij + 2μ
(
εij − 1

3εkkδij
)−

∑nl

l=1

[
Y κl κζ

kk
l δij + 2Yμl μ

(
ζ
ij
l − 1

3ζ
kk
l δij

)]
(16.63)

where κ and μ are the unrelaxed bulk and shear modulus, respectively, Yκl and Yμl are
corresponding anelastic coefficients, defined by Eqs. (3.140), and ζ ijl are anelastic functions
defined by the differential equation, see Eq. (3.135):

ζ̇
ij
l + ωlζ ijl = ωlεij (16.64)

Recall that indices i, j and k are spatial indices and therefore i, j, k ∈ {1, 2, 3}. Index l
is related to the relaxation frequencies and therefore l ∈ {1, 2, . . . , nl}. The summation
convention does not apply to index l. We can rewrite the stress–strain relation (16.63) in a
form more suitable for implementation in the FEM:

σij = σEij −
∑nl

l=1
σAlij (16.65)

Here σEij and σAlij denote the elastic and anelastic parts, respectively. The anelastic parts
may be defined by

σAlxx = Y+ζ xxl + Y−ζ yyl + Y−ζ zzl

σAlyy = Y−ζ xxl + Y+ζ yyl + Y−ζ zzl

σAlzz = Y−ζ xxl + Y−ζ yyl + Y+ζ zzl

σAlxy = 2μYμl ζ
xy
l

σAlyz = 2μYμl ζ
yz
l

σAlxz = 2μYμl ζ
xz
l

(16.66)

where Y+ = κY κl + 4
3μY

μ
l and Y− = κY κl − 2

3μY
μ
l . The anelastic functions are obtained

from Eq. (16.64) as follows (Kristek and Moczo 2003). The temporal derivative of ζ ijl (t) is
approximated by the 2nd-order central difference formula. Function ζ ijl (t) itself is approxi-
mated as the arithmetic average:

ζ
ij
l (t) = 1

2

[
ζ
ij
l (t − 1

2�t) + ζ ijl
(
t + 1

2�t
)]

(16.67)

Finally, we obtain the recurrent formula:

ζ
ij
l

(
t + 1

2�t
) = 2ωl�tεij (t) + (2 − ωl�t) ζ ijl

(
t − 1

2�t
)

2 + ωl�t (16.68)
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We use (16.68) to obtain ζ ijl
(
t + 1

2�t
)

and then (16.67) to obtain ζ ijl (t). (Compare with
the algorithm for the velocity–stress staggered-grid scheme in Section 7.8.)

As we have already discussed, numerical integration is used to compute the local
restoring-force vector. This implies that anelastic functions are required at all integra-
tion points. Moreover, the recurrent formula (16.68) implies that the anelastic functions
have to be stored in computer memory. That would cause drastic memory requirements
and consequently the computations for a viscoelastic medium would be impossible for
many realistic problems. To reduce the memory requirements down to a feasible level we
evaluate the anelastic functions only at the centre of the element. This can be interpreted as
considering the constant strain in an element for calculating the anelastic functions using
Eq. (16.68).

Matrix form of the discrete weak-form equation of motion for an element Using the
local load-force vector fe, Eq. (16.43), local boundary-condition vector be, Eq. (16.45),
local mass matrix me, Eq. (16.47), discrete-displacement vector ue, Eq. (16.49), and local
restoring-force vector re, Eq. (16.57), we can rewrite Eqs. (16.39) in a matrix form:

meüe = re + be + fe (16.69)

16.5 FE scheme for the whole domain using the global restoring-force vector

Now we have derived equations for the element, we can look again at the whole domain�.
The whole domain must be covered by elements without holes and overlapping. Naturally,
most of the nodes will be shared between two or more elements. In general, the elements
may have different shapes and/or different numbers of nodes as long as the requirement of
displacement continuity across elements is satisfied.

Global and local indexing of nodes, and indexing of the elements Each node in an
element is indexed locally (within the element) by a number from 1 to n. Because the local
numbering is not unique in the whole mesh of elements covering the domain, a unique global
indexing of nodes is necessary. In the global indexing, each node in the mesh is assigned
a unique number from 1 to N. Similarly, each element is assigned a unique number from
1 to Ne. Moreover, the local node index and the element index uniquely determine the
global node index. Note, however, that we cannot uniquely determine a local index from
the global one if the node is shared by two or more elements. Figure 16.6 illustrates the
local and global indexing in an example of the 1D elements.

Global mass matrix, global restoring-force vector and global load-force vector We
define the global restoring-force vector with the same structure as the local restoring-force
vector:

R = (
RTx ,R

T
y ,R

T
z

)T
(16.70)
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Figure 16.6 Example in 1D of the local and global numbering of nodes as well as the numbering of
elements. Here we assume three elements: Ne = 3, with two nodes per element; n = 2, which is four
nodes in total; and N = 4.

Here, vectors Rx , Ry and Rz haveN components, and vector R has 3N components. Denote
the i-component of the restoring force acting at the node with the global number J as RiJ .
This component is a sum of all restoring-force contributions at node J from all elements
sharing node J . Assume a node with the global number J that belongs to elements e1, e2, e3

and e4. Node J has local numbers n1, n2, n3 and n4, respectively. Then the corresponding
component of R is

RiJ = re1
in1

+ re2
in2

+ re3
in3

+ re4
in4

(16.71)

The same approach is used to construct the global load-force vector

F = (
FTx ,F

T
y ,F

T
z

)T
(16.72)

and the global boundary-condition vector:

B = (
BTx ,B

T
y ,B

T
z

)T
(16.73)

In the case of the global vector B we also apply the requirement of traction continuity across
elements. Then the force contributions between elements cancel out and only contributions
from the traction vector hi acting at boundary �N of the domain remain.

The global mass matrix is created considering the inertial forces. Due to the matrix
structure, the process is formally more complicated than for vectors. We define the global
discrete-displacement vector:

U ≡ (
UTx ,U

T
y ,U

T
z

)T
(16.74)

Each node is assigned one displacement – no matter how many elements share the node.
We need to create auxiliary matrices Me. We start with the local mass matrix me; we add
zero columns and rows to it until matrix Me has elements of me only in columns and rows
corresponding to the global indices of nodes in element e. This way we createNe matrices,
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one for each element. Each matrix Me has dimensions 3N × 3N (that is, dimensions of the
global mass matrix). Now we can define the global inertial force:

F̃ ≡
∑Ne

e=1
MeU (16.75)

Because the global vector of displacements does not change between elements, we can take
it out of the sum and eventually define the global mass matrix:

M ≡
∑Ne

e=1
Me (16.76)

Due to the blocky structure of the local mass matrices, the global mass matrix also has
blocky structure:

M =

⎛
⎜⎜⎝

M̃ 0 0

0 M̃ 0

0 0 M̃

⎞
⎟⎟⎠ (16.77)

with sub-matrices having dimensions N ×N . Element M̃IJ of sub-matrix M̃ is a sum of
all contributions from the local mass sub-matrices m̃e corresponding to nodes I and J. Only
one element is considered from one sub-matrix – the one from the row corresponding to
the global node I and column corresponding to the global node J . Of course, in practical
applications, the construction of the auxiliary matrices Me is useless and we can directly
create the global mass matrix using the relations explained in this paragraph.

Using the global quantities we can write the global system of equations as

MÜ = R + B + F (16.78)

In general it is a system of 3N equations. If there is no Dirichlet boundary (�D), the
system is well defined and is solvable – we have 3N equations for 3N unknowns. Assume,
however, boundary�D withND nodes (displacements prescribed at these nodes). Recall the
definition of the components of vector U, Eqs. (16.18) and (16.21). Due to the prescribed
displacements the number of unknowns is 3 (N −ND). The vector of the shape functions sw

was defined so that the components corresponding to the nodes at�D are zero. Consequently,
there are zero rows in the global mass matrix as well as zeros in the corresponding row
in the global-force vector and boundary-condition vector. This means that the number of
independent equations is only 3 (N −ND) – the same as the number of unknowns. Thus,
system (16.78) is uniquely solvable also in the case of nodes at the boundary �D .

Time integration System (16.78) is a system of partial differential equations. To solve the
system we approximate the 2nd time derivative by the central FD formula:

Ü(t) ≈ U (t −�t) − 2U(t) + U (t +�t)
(�t)2 (16.79)
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Using Eqs. (16.79) and (16.78) we obtain the explicit scheme

U(m+1) = (�t)2 M−1
(
R(m) + F(m) + B(m)

)+ 2U(m) − U(m−1) (16.80)

where m indicates the time level; the time level m corresponds to time tm = t0 +m�t . For
simulating seismic wave propagation we can assume the initial conditions

U(−1) = 0, U(0) = 0 (16.81)

Scheme (16.80) is conditionally stable. The stability condition for an undeformed, that is
cubic, element is (e.g., Serón et al. 1989)

�t ≤ h

αmax
(16.82)

where h is the element edge length and αmax is the maximum P-wave speed. Note that if
the mesh contains elements with different sizes, the stability condition has to be evaluated
locally. For that we can modify the stability condition as

�t ≤ min

{
h1

α1
,
h2

α2
, . . . ,

hNe

αNe

}
(16.83)

where h1, h2, . . . , hNe are the minimum edge lengths of elements and α1, α2, . . . , αNe are
maximum P-wave speeds inside each element.

Lumped mass matrix To solve the system of Eqs. (16.80) we need the inverse of the
mass matrix, M−1. The mass matrix M is sparse; for example, in the case of the HEX8
elements the mass matrix has N ×N elements (taking into account that for the x, y and
z displacement components the mass matrix has the same values) but only approximately
27 ×N nonzero elements. Unfortunately, the inverse mass matrix is no longer sparse and
we would need to store the whole mass matrix. This would mean very large memory
requirements as well as a large number of operations to actually find the inverse of such a
large matrix. The situation is much easier with a diagonal mass matrix. The inverse of the
diagonal mass matrix is also diagonal. Therefore, the mass matrix M is usually replaced or
approximated by the diagonal lumped mass matrix ML. The elements of ML are defined
as

ML
II ≡

∑N

J=1
MIJ , ML

IJ ≡ 0 if I 	= J (16.84)

From the physical point of view, the approximation means that the mass of an element is
concentrated at the nodes. For example, assume a lumped mass matrix and a force acting
at one node. At this node we would see a change in displacement after the first time update
but displacements at the other nodes would remain unchanged. They will sense the acting
force only through deformation of the element caused by the displacement at the first node.
Consequently, displacements at the other nodes would change after two updates. Consider
now the same example but with a full mass matrix. In this case the nonzero nondiagonal
elements of the mass matrix would be responsible for the reaction of the other nodes in the
element during the first update.
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Even though the lumped mass matrix seems to change the physics dramatically, in many
practical applications the approach usually works well. However, there are situations when
it is not so – see Chapter 17 for an example.

16.6 Efficient computation of the restoring-force vector

To minimize the computational requirements one can use special coordinates for updating
the restoring-force vector proposed by Balažovjech and Halada (2006) and Moczo et al.
(2007a) for a 2D quadrilateral element. The description of an element in the standard
coordinates (local or physical) also contains information about the position/location of the
element. But the position/location is not needed for computation of the restoring force,
because the restoring force depends only on the deformation of the element. Therefore
Balažovjech and Halada proposed parameterizing the element using new local coordinates.
They called them e-invariants. The benefit of using e-invariants comes from the fact that the
shape functions expressed in these local coordinates have a very simple form. Consequently,
the number of operations required to update the restoring force is significantly lower than
in the case of the standard shape functions.

Here we show and briefly comment on the final expressions of the approach for the
restoring-force computation in 3D (Balažovjech, personal communication). Recall the
definition of the local restoring-force vector, Eq. (16.54). Consider only the element without
nodes at boundary �D . In such a case sw = s and we can write

rx ≡
∫
�m

(
s,x σxx + s,y σxy + s,z σxz

)
det J d� (16.85)

We can do so analogously also for the y- and z-components.
Define a transformation matrix:

T ≡

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1

−1 1 1 −1 −1 1 1 −1

−1 −1 1 1 −1 −1 1 1

−1 −1 −1 −1 1 1 1 1

1 −1 1 −1 1 −1 1 −1

1 1 −1 −1 −1 −1 1 1

1 −1 −1 1 −1 1 1 −1

−1 1 −1 1 1 −1 1 −1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(16.86)

The shape functions for the reference element can be then expressed using matrix T:

s(inv) ≡ T s = (1, ξ, η, ζ, ξη, ηζ, ξζ, ξηζ )T (16.87)
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(compare with the standard shape functions defined by Eq. (16.37)). Matrix T has the
property

I = 1
8 TTT (16.88)

where I is the unit matrix.
To compute the stresses needed in Eq. (16.85) we need to know the spatial derivatives

of displacement. Using (16.88) we express the spatial derivatives of displacement:

uei ,j = s,Tj · uei = s,Tj · ( 1
8 TTT

) · uei = 1
8 s,(inv)T

j · u(inv)
i (16.89)

Using (16.88) we can rewrite the restoring force (16.85) in this form:

rx ≡ 1
8 TT

∫
�m

(
s(inv),x σxx + s(inv),y σxy + s(inv),z σxz

)
det Jd� (16.90)

We can obtain the Jacobian for Eq. (16.90) from definition (16.40). We just have to
replace the expressions for coordinates x, y, z. We can express the physical coordinates
from Eq. (16.38) using the approach indicated in Eq. (16.89). We obtain

x = 1
8 s(inv)Tx(inv), y = 1

8 s(inv)Ty(inv), z = 1
8 s(inv)Tz(inv) (16.91)

where

x(inv) = T

⎛
⎜⎜⎜⎝
x1

x2
...
xn

⎞
⎟⎟⎟⎠ , y(inv) = T

⎛
⎜⎜⎜⎝
y1

y2
...
yn

⎞
⎟⎟⎟⎠ , z(inv) = T

⎛
⎜⎜⎜⎝
z1

z2
...
zn

⎞
⎟⎟⎟⎠ (16.92)

16.7 Comparison of formulations with the restoring force and stiffness matrix

Compare the formulation with the restoring force (the one we use) with a common formu-
lation based on the stiffness matrix K. The relation between the stiffness matrix and the
restoring force may be written as

R = −K U (16.93)

Matrix K is very sparse. Consider a mesh of the HEX8 elements. The total number of
elements in the matrix K is 3N × 3N whereas the number of the nonzero elements is
approximately 3N × 81. Storing only the nonzero elements clearly is more feasible than
storing all elements. However, considering the tens of millions of nodes in relatively modest
3D numerical modelling, we easily realize that even the latter number of nonzero elements
poses a serious problem. The restoring-force vector has only 3N elements – we need to
store 81 times fewer elements compared to storing the nonzero elements in the stiffness
matrix.

On the other hand, the stiffness matrix does not change with time – it is enough to
calculate it once at the beginning of simulation. The restoring force has to be updated
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at each time level. This means that the restoring force reduces memory requirements but
increases the number of algebraic operations.

Note that the stiffness matrix is time independent only if material parameters are
time independent. Nonlinear (e.g., elastoplastic) behaviour of a medium implies a time-
dependent stiffness matrix. The matrix has to be updated at each time level and the stiffness-
matrix formulation means both large memory and computational time requirements.

16.8 Essential summary of the FEM implementation

Use of the restoring-force concept significantly reduces the memory requirements compared
to the commonly used global stiffness matrix. The need to calculate the restoring forces at
each time level, however, increases the number of operations and thus the computational
time. This increase can be significantly reduced by the use of e-invariants. Consequently,
the combination of the restoring forces and e-invariants represents a memory-efficient
implementation of the FEM.



17

Traction-at-split-node modelling of dynamic
rupture propagation

This chapter is devoted to implementation of the TSN method for modelling dynamic
rupture propagation in the FE algorithm. There are different implementations of dynamic
models in the FEM. Archuleta (1976) and Archuleta and Frazier (1978) published one
of the first implementations. Their rupture propagation was not spontaneous because the
rupture speed was prescribed but the evolution of traction was calculated. Day (1977)
implemented his version of the TSN in the standard FE algorithm. Later Andrews (1999)
implemented his version of the TSN in the FD algorithm with spatial differentiation equiv-
alent to the FEM. The method was, however, limited to a homogeneous medium and ‘brick’
elements. Oglesby (1999) implemented an algorithm for spontaneous rupture propagation
into Dyna2D (Whirley et al. 1992) and Dyna3D (Whirley and Engelmann 1993) codes.
Because of the nature of the codes, Oglesby’s approach was based on elastic and frictional
forces. But, in fact, it was equivalent to Andrews’ version of the TSN.

17.1 Implementation of TSN in the FEM

Here we explain the TSN implementation in the FEM described in Chapter 16. We recall
that the TSN explained in Chapter 14 may be used with numerical methods with an explicit
time-stepping algorithm and if the force applied at one node accelerates only that node
during one time iteration. These requirements are satisfied with the explicit scheme (16.80)
with the lumped mass matrix (16.84). As we explained in Chapter 16, we use the lumped
mass matrix for practical reasons.

In a TSN the fault surface is covered by split nodes whereas the rest of the domain is
covered by normal nodes. Recall that a split node consists of two partial nodes – p.n.+

and p.n.−. The partial node p.n.+ belongs only to halfspace H+ whereas p.n.− belongs
only to halfspace H−. A partial node is characterized by quantities related to the relevant
halfspace (e.g., seismic wave speeds, density, displacements, particle velocities or forces). A
couple of the partial nodes share the fault-related quantities (e.g., slip, slip rate, coefficients
of friction). This imposes additional constraints in creating the global system of the FE
equations from the local ones. We have to ensure that the restoring force at the partial node
p.n.− is only due to deformation in halfspace H− and, similarly, the restoring force at the
partial node p.n.+ is only due to deformation of the halfspace H+. Analogously, we have

285
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to ensure that mass M− is only due to the density distribution in halfspace H− and mass
M+ is only due to the density distribution in halfspace H+. In other words, if there is no
interaction between the partial nodes p.n.+ and p.n.−, the partial nodes should behave as
nodes at a free surface.

The first step in the TSN algorithm is to compute the trial traction �T ct . Recall
Eq. (14.11):

�T ct (t) ≈ �T 0 +
M−M+

�t
�̇s
(
t − �t

2

)
+M− �F+(t) −M+ �F−(t)

A (M− +M+)
(17.1)

Forces �F+ and �F− are components of the global restoring-force vector corresponding to
the partial nodes p.n.+ and p.n.−, respectively.

Vector �T ct can be decomposed into the normal and shear (tangential) components:

�T ctn (t) = [ �T ct (t) · �n] �n
�T ctsh (t) = �T ct (t) − �T ctn (t)

(17.2)

To evaluate the fault strength S(t) according to the linear slip-weakening friction law (4.11),
we need the slip path l defined by (4.10). The slip path at time t can be approximated:

l(t) ≈ l(t −�t) +�t |�̇s(t −�t/2)| (17.3)

The total traction on the fault, �T c(t), and the slip rate are determined by Eqs. (14.12),
(14.22) and (14.16):∣∣ �T ctsh (t)

∣∣ ≤ S(t): �T c(t) = �T ct (t) ⇒ �̇s (t + 1
2�t

) = 0∣∣ �T ctsh (t)
∣∣ > S(t): �T cn (t) = �T ctn (t) ⇒ �̇sn

(
t + 1

2�t
) = 0

�T csh(t) = S(t)
�T ctsh (t)∣∣ �T ctsh (t)

∣∣ ⇒ �̇ssh
(
t + 1

2�t
) ≈ �t B[ �T ctsh (t) − �T fsh(t)

](17.4)

The updated slip-rate value is then used to obtain the displacements at the partial nodes
p.n.+ and p.n.−. The velocity of the centroid of two partial nodes is

�vcent
(
t + 1

2�t
) = �vcent

(
t − 1

2�t
)+�t

�F+(t) + �F−(t)

M+ +M− (17.5)

The slip rate, that is, the differential velocity between two partial nodes, is distributed
between the partial nodes according to their masses:

�v− (t + 1
2�t

) = �vcent
(
t + 1

2�t
)−�tM

+�̇s (t + 1
2�t

)
M+ +M− (17.6)

�v+ (t + 1
2�t

) = �vcent
(
t + 1

2�t
)+�tM

−�̇s (t + 1
2�t

)
M+ +M− (17.7)
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The displacements at the partial nodes are then

�u−(t +�t) = �u−(t) +�t �v−(t + 1
2�t) (17.8)

�u+(t +�t) = �u+(t) +�t �v+(t + 1
2�t) (17.9)

The problem with integration: why the 8-point Gaussian integration does not work
As we explained in Chapter 16, numerical integration is used to compute the restoring-
force vector or mass matrix. Because of its accuracy and efficiency, the 8-point Gaussian
integration is usually used with the HEX8 element with trilinear shape functions. We also
recall that for practical reasons the lumped mass matrix, Eq. (16.84), is usually used instead
of the fully integrated mass matrix. However, our numerical tests showed that 8-point
Gaussian integration does not produce the correct solution for rupture propagation with the
TSN implementation. To explain this behaviour we have to look at the integration in detail.

A nondiagonal mass matrix is a consequence of the properties of the shape functions
and locations of integration points. The integration points for 8-point Gaussian integration
are located inside an element where all shape functions are nonzero. Therefore, matrix
m̃e, Eq. (16.48), consists of only nonzero elements and consequently the mass matrix is
nondiagonal.

As we briefly mentioned in Chapter 16, we can use other integration schemes. For some
applications it may be advantageous to use schemes with lower-order accuracy than what
is required, also known as reduced integration. Sometimes, however, reduced integration
may lead to solutions polluted by oscillations (also known as hourglass modes, zero-energy
modes or spurious zero-energy modes). If the solution is not affected by the oscillations,
it may be considered a reasonable solution (e.g., Ottosen and Petersson 1992, Zienkiewicz
and Taylor 1989).

We can use, for example, the 8-point Lobatto integration. This integration is accurate
only for linear functions (compare with the accuracy of 8-point Gaussian integration). The
integration points for 8-point Lobatto integration are located at nodes, where always one
shape function equals 1 and all others equal 0. Therefore, the mass matrix computed by 8-
point Lobatto integration is naturally diagonal. Moreover, it can be shown that it is the same
as the lumped mass matrix. Our numerical tests showed that 8-point Lobatto integration
produces a solution close to the reference solution also for rupture propagation with the
TSN implementation.

The use of 8-point Gauss integration with the lumped mass matrix is the equivalent of
using 8-point Lobatto integration to compute the mass matrix and using 8-point Gaussian
integration to compute the restoring force. Therefore, we conjecture that the combination
of different integration schemes used for integrating the mass matrix and restoring force is
the reason why 8-point Gaussian integration does not produce the correct solution with the
TSN implementation.

Intuitively we can expect that the integration scheme may affect the stability of the
final scheme. The stability of the HEX8 elements with reduced integration was analyzed
by Hughes (2000), who refers to Flanagan and Belytschko (1981). For a ‘brick’ element
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with size hx in the x-direction, hy in the y-direction and hz in the z-direction the stability
condition is

�t ≤
(
αmax

√
h−2
x + h−2

y + h−2
z

)−1

(17.10)

For a cube element with h = hx = hy = hz the condition simplifies:

�t ≤ h√
3αmax

(17.11)

Comparing Eqs. (17.11) and (16.82) we see that the time step is smaller if reduced integra-
tion is applied.

For completeness, we should explain why 8-point Gaussian integration with the lumped
mass matrix works for kinematic sources. In our approach, the kinematic point source
is implemented using body forces. Our numerical tests showed that 8-point Gaussian
integration with the lumped mass matrix produces large errors and opposite polarization of
displacements at the nodes next to nodes at which the force is applied. This error is spatially
very localized and strongly vanishes with distance. Moreover, the kinematic sources have
time evolution prescribed a priori and therefore this localized error does not affect the
source. In the case of the dynamic model the error appears in the neighbourhood of the
partial node and reaches its maximum value at nodes next to the partial node. Therefore,
the deformation of halfspaces and consequently also computation of forces �F+ and �F− is
affected. In the case of the dynamic model the interaction between the radiated wavefield
and rupture propagation is crucial. Therefore, the error affects the evolution of the rupture.
Consequently, the radiated wavefield is also affected and the error is no longer local.

17.2 Spurious high-frequency oscillations of the slip rate

Despite the superior properties of the TSN method, the slip-rate time histories obtained using
the TSN very often contain spurious high-frequency oscillations. We briefly summarize
possible reasons leading to these oscillations following Galis et al. (2010).

For a given initial stress and material parameters on a fault, it is the friction law that
controls initiation, propagation and healing of rupture. First, consider Coulomb friction;
that is, a very simple friction law with an instantaneous change of traction from the static
to the dynamic value (Fig. 17.1a). The stress is discontinuous at the crack tip. This implies
an infinitely large slip rate at the crack tip. The slip-rate value then rapidly decreases with
time. The narrow pulse of the slip rate with infinite peak value implies an infinitely broad
spectrum and thus also very high frequencies.

Next, consider a linear slip-weakening friction law (Fig. 17.1b). The gradual decrease
of stress (during finite time and slip) removes the infinite value of the slip rate at the crack
tip. Naturally, the steeper is the decrease of the stress in the friction law, the steeper is the
increase of the slip rate and, consequently, the broader is the spectrum of the shear-stress
and slip-rate variations generated by the slipping point. The spectrum of the slip rate is
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Figure 17.1 Coulomb friction law (a) and linear slip-weakening friction law (b). Here τ0 is initial
traction, τs static traction and τd dynamic traction.

also discussed by Kaneko et al. (2008) and de la Puente et al. (2009). Note that in the
limiting case of an infinite slope the slip-weakening friction law becomes the Coulomb
friction law.

The gradual decrease of the stress at a slipping point implies the existence of a breakdown
zone – the spatial zone on the fault plane behind the crack tip where the shear stress decreases
from its static to its dynamic value.

Thus, a possibly broad-spectrum slip-rate and stress variations generated by each slipping
point as well as the spatial breakdown zone have to be properly discretized in a numerical
method in order to avoid the effect of numerical grid dispersion at higher frequencies and
to properly capture the stress changes in the breakdown zone.

The wave propagation problems are linear. Therefore, it is relatively easy to correctly
treat high frequencies in the discrete model. The effect of numerical grid dispersion may
become considerable/visible for wavelengths sampled by less than a certain number of
samples. Therefore, the size of the spatial grid spacing determines how accurately high
frequencies are propagated by a grid. Moreover, because of the linear character of the
wave propagation problem, it is possible to apply a-posteriori filtration to remove the high
frequencies as long as the high-frequency content did not affect (due to the accuracy of
number representation or not-a-number values) the content at lower frequencies.

In the rupture propagation problems, the effect of numerical grid dispersion may become
more dramatic due to nonlinear coupling between the shear stress and slip rate. In the TSN
method a slip-rate increment at each time level is calculated from the difference between
the trial traction �T ct and frictional traction at a point of the fault, Eq. (17.4). Whereas the
frictional traction itself does not suffer from oscillations (because it is determined by the
friction law), �T ct is not smooth in time, reflecting the presence of high-frequency stress
variations inaccurately propagated by the grid. The inaccurately determined slip-rate incre-
ment is used in calculation of the slip rate in the next time level – thus causing oscillations
of the slip rate, which in turn affects the value of the trial traction.
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Thus, for a given friction law (for a given steepness of the stress decrease) and order
of approximation in the applied numerical method, it is the size of the spatial grid spacing
that determines how accurately high frequencies are propagated by the grid and how large
are the high-frequency oscillations of the slip rate. In most practical applications the spatial
sampling will probably not be fine enough to prevent visible spurious oscillations in the
low-order approximation numerical method.

If the high-frequency content does not affect the development and propagation of rupture,
it is possible to apply a-posteriori filtration to remove the oscillations. However, because
of the nonlinear character of rupture propagation we cannot, in general, a-priori assume
that the high-frequency content would not change the development and propagation of
rupture. Therefore, a-posteriori filtration cannot serve as a systematic tool for reducing the
oscillations. If the high frequencies affect rupture propagation, then the only possibility
is to utilize run-time methods to suppress the high-frequency oscillations. In the next
section we discuss three different methods to suppress the oscillations, including a-posteriori
filtration.

17.3 Approaches to suppress high-frequency oscillations

17.3.1 Adaptive smoothing

In this section we present an adaptive smoothing algorithm for suppressing/reducing spu-
rious high-frequency oscillations of the slip-rate time histories in the FE–TSN modelling
of dynamic rupture with slip-dependent friction laws proposed by Galis et al. (2010).

As outlined in Section 17.2, in the TSN method a slip-rate increment at each time level is
calculated from the difference between the trial traction �T ct and frictional traction. The trial
traction is not smooth due to the high-frequency stress variations inaccurately propagated
by the grid. To suppress or reduce these oscillations we can spatially smooth �T ct . There are
different ways to spatially smooth �T ct . In the algorithm proposed by Galis et al. (2010) it
is possible to control when and how to apply smoothing.

If the smoothing is applied to the entire fault it removes high frequencies also from the
rupture front. Consequently, it affects rupture propagation. Therefore, we should apply the
smoothing only behind the rupture front. Then the question is, how to identify the rupture
front. The best results were obtained with the so-called 9-point threshold criterion, that is,
the smoothing is applied when the slip rate is larger than 0 m/s simultaneously at a node
and at eight neighboring nodes (assuming a regular mesh of the HEX8 elements).

Once the threshold criterion for the application of smoothing is satisfied, we apply
the smoothing. The smoothing is defined as a weighted average of the original �T ct and
Gaussian-filtered �T ct . Let p be the averaging parameter and 0 ≤ p ≤ 1. Assume a regular
mesh of nodes on the fault plane such that we can refer to the nodes on the fault plane using
indices (i, j ). Then the smoothed traction at point (i, j ) can be defined as

�T ct (i, j ) ≡
∑i+1

k=i−1

∑j+1

l=j−1
wkl �T ct (k, l) (17.12)
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Figure 17.2 Scheme of the effective weighting coefficients in the adaptive smoothing algorithm for
calculation of the trial traction at grid position (i, j) on the fault plane. The averaging parameter
p ∈ 〈0, 1〉 and may vary with time. (Modified from Galis et al. 2010)

where

w ≡
⎛
⎝p/16 p/8 p/16
p/8 1 − 3p/4 p/8
p/16 p/8 p/16

⎞
⎠ (17.13)

Note that for p = 0 and p = 1 the matrix of the weight coefficients w becomes

w0 =
⎛
⎝0 0 0

0 1 0
0 0 0

⎞
⎠ , w1 =

⎛
⎝1/16 1/8 1/16

1/8 1/4 1/8
1/16 1/8 1/16

⎞
⎠ (17.14)

respectively. Also note that w1 is identical to the coefficients of the Gaussian filter. The
coefficients are illustrated in Fig. 17.2.

The values of the parameters were calibrated using extensive numerical tests. One of the
key requirements was the minimal impact of the smoothing on rupture propagation speed.
The other key requirement was, naturally, the efficiency in suppressing high-frequency
oscillations. The numerical tests showed that better results were obtained when smoothing
was applied gradually behind the rupture front. In looking for the smoothing algorithm
and values of parameters we chose a configuration with sub-Rayleigh rupture speed and
one discretization. Afterwards, we tested the best algorithm and parameters also for other
discretizations and a configuration with super-shear rupture propagation speeds.

Based on the performed numerical tests, we define adaptive smoothing as follows: p
varies linearly from 0 for no slip to pmax = 0.4 when slip reaches the critical distance. For
larger slip p remains constant. The numerical tests demonstrated that adaptive smoothing
is capable of significantly reducing high-frequency oscillations without affecting rupture
propagation speed. Efficiency of the adaptive smoothing is illustrated in Fig. 17.3.
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Figure 17.3 Illustration of the efficiency of the adaptive smoothing algorithm (ASA) in suppression
of high-frequency oscillations. Here τ0 is initial traction, τs static traction and τd dynamic traction.
(Modified from Galis et al. 2010)

Note that the smoothing is applied only behind the rupture front and gradually in order to
minimize the impact on rupture propagation speed. Therefore, the efficiency of suppressing
high-frequency oscillations is lower near the rupture front, that is, at the beginning of the
slip-rate curves.

Importantly, the adaptive smoothing algorithm is general in the sense that it enables
tuning options – modified values of the smoothing parameters. Other values may prove
more efficient for some particular configurations. This has to be numerically tested. Other
parameter values would be found if the smoothness of the slip-rate curve were a more
important criterion than the rupture propagation speed.

Galis et al. (2010) assumed a uniform grid on the fault. This allowed using the same
weighting coefficients in the averaging formula at all grid points. In principle it should not
be a problem to determine weighting coefficients for a nonuniform grid.

17.3.2 Kelvin–Voigt damping

Day (1982), Day and Ely (2002), Day et al. (2005) and Dalguer and Day (2007) applied
an added artificial Kelvin–Voigt viscosity in their implementations of the TSN method
to regularize the numerical solution and suppress the spurious oscillations. Kelvin–Voigt
damping may be considered artificial in the sense that it is not intended to simulate realistic
attenuation. It is used because it suppresses the high frequencies of the solution that cannot
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be accurately computed by the grid. For implementing Kelvin–Voigt damping, Day and his
colleagues considered the stress–strain relation in the form

σij = λ∂uk
∂xk
δij + μ

(
∂ui

∂xj
+ ∂uj
∂xi

)
+ η̄�t

[
λ
∂u̇k

∂xk
δij + μ

(
∂u̇i

∂xj
+ ∂u̇j
∂xi

)]
(17.15)

where η̄ is a damping parameter and u̇ is the particle velocity. Day (1982), Day and Ely
(2002) and Day et al. (2005) applied Kelvin–Voigt damping in the DFM (discrete fault
model) implementation of TSN, that is, in their FD scheme on the partly-staggered grid.
This scheme suffers from the so-called hourglass modes (zero-energy modes). Kelvin–
Voigt damping helps in suppressing these modes. Therefore, the damping was applied in
the whole grid. For this approach a preferred value of damping is η̄ ∼ 0.1 (Day et al. 2005).
Dalguer and Day (2007) applied Kelvin–Voigt damping in their SGSN method (staggered-
grid split-node FD implementation of TSN). The staggered-grid FD scheme does not suffer
from hourglass modes. Therefore, artificial damping was applied only to the fault surface
to suppress spurious high-frequency oscillations. The corresponding damping parameter
η̄s is therefore not equivalent to parameter η̄. Dalguer and Day numerically examined
the sensitivity of the solution with respect to η̄s . They found that although their method
converges even with no artificial damping applied, the application of damping with proper
values of η̄s greatly accelerates the convergence. Artificial damping reduces the rupture
time error and spurious oscillations in the slip-rate time histories if a proper value of the
damping parameter is used. However, the peak slip-rate misfit increases with damping
(having a minimum if no damping is applied). They concluded that the preferred value of
the damping parameter is η̄s ∼ 0.3, but the optimal value is likely problem dependent.

17.3.3 A-posteriori filtration

If spurious high-frequency oscillations appeared in numerical simulations of rupture prop-
agation, were not sufficiently reduced or suppressed by artificial damping or adaptive
smoothing, and did not unphysically affect development and propagation of rupture, it
is possible and reasonable to apply a-posteriori filtration to the simulated slip-rate time
histories. Kristekova et al. (2012) quantitatively compared three methods of a-posteriori
filtration – low-pass filtering, discrete-wavelet denoising, empirical-mode-decomposition
denoising – and adaptive smoothing. They used a set of slip-rate time histories simulated
by the 3D FEM–TSN on a planar fault. The simulated slip-rate histories were obtained
with a cubic mesh and four discretizations (25 m, 50 m, 100 m and 150 m); see Galis et al.
(2010). The smooth reference slip-rate time history was obtained by a careful iterative
and adjusted denoising of the slip-rate simulated using the finest (technically possible)
discretization (25 m). The efficiency of the smoothing methods was evaluated using time–
frequency analysis and time–frequency misfit criteria (Kristekova et al. 2006, 2009) based
on the continuous wavelet transform. The time–frequency tools were capable of clearly
indicating distortions caused by spurious oscillations and/or by a-posteriori filtration.
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The main conclusion of the investigation by Kristekova et al. (2012) is that the safest
way to reduce/suppress the oscillations is to apply a method that reduces the oscillations
during numerical simulation of rupture propagation, e.g., adaptive smoothing. The adaptive
smoothing algorithm does not distort the slip-rate and considerably reduces oscillations.
Slight oscillations can remain in the tail. They can be safely removed a posteriori if
necessary.

The result of application of low-pass filtering is very sensitive to the choice of corner
frequency. Determination of the optimal corner frequency can be problematic even using
the Fourier spectrum of the slip-rate time history. It is considerably better to determine
it using the time–frequency representation of the slip-rate history. A proper filter should
be selected for each slip-rate history separately, taking into account the character of both
the slip-rate history and oscillations. Application of the same filter to many different slip-
rate time histories can lead to considerable distortions of some of them. Considering all
the mentioned aspects, low-pass filtering can give good results but only with carefully
determined parameters of the filter.

Discrete-wavelet denoising (e.g., Donoho 1995) can reduce spurious high-frequency
oscillations, but if the oscillations overlap with the main slip-rate peak the discrete-wavelet
denoising is not as efficient as other methods in the vicinity of the peak and behind it.

Empirical-mode-decomposition denoising (e.g., Flandrin et al. 2004) is efficient and
sufficiently accurate in the vicinity of the slip-rate peak. Some small oscillations can
remain in the tail; if necessary it is easy to suppress them by additional filtering. The
main advantage of empirical-mode-decomposition denoising is that it is an adaptive data-
driven method and therefore it can be applied automatically (in the simplest version even
without determining parameters of denoising). This property makes the method suitable
for processing large data sets of different slip-rate time histories.
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Hybrid finite-difference–finite-element method

The FEM more easily incorporates boundary conditions at the free surface compared to the
FDM. This is true for a planar free surface as well as for free-surface topography. Therefore,
the FEM is better suited for simulating the traction-free condition and rupture propagation
than the FDM. On the other hand, an FD scheme can computationally be considerably
more efficient for modelling seismic wave propagation, for instance, if the seismic waves
produced by a dynamically rupturing fault are to be propagated away from the fault. It is
therefore natural to think of a hybrid combination of the two methods if we want to include
both a dynamic earthquake source and wave propagation in a complex heterogeneous
medium. Moczo et al. (1997) combined the (2,2) conventional displacement FD scheme
with the (2,2) standard FE scheme for 2D viscoelastic P-SV modelling of seismic motion
in near-surface sedimentary/topographic structures. Ma et al. (2004) combined the (2,4)
velocity–stress staggered-grid (VS SG) scheme with the (2,2) standard FE scheme for 2D
elastic P-SV modelling.

In this chapter we explain the hybrid method developed by Galis et al. (2008). This
hybrid method combines the (2,2) standard FE scheme with the (2,4) VS SG scheme for
3D viscoelastic modelling.

18.1 Computational domain

As already pointed out, the main idea of the hybrid combination of the two methods is
to achieve efficient numerical simulations for important realistic problem configurations.
Such configurations may include free-surface topography and material heterogeneity as
well as a dynamically rupturing fault. Correspondingly, a computational domain of the
hybrid FD–FE method may include one or more FE regions that would cover those parts of
the model where the free-surface topography or fault has to be considered. To achieve better
efficiency, the FE regions should be as small as possible compared to the FD region, which
should cover a major part of the whole computational domain. The computational domain is
schematically illustrated in Fig. 18.1. It is crucial that the FE regions causally communicate
at each time level with the FD region. The FD–FE communication is explained in detail in
the following sections.
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FE region

FD region

Fault plane

Figure 18.1 Illustration of the computational domain. The FE region can cover the part of the model
with free-surface topography (left) or a dynamically rupturing surface (right). The rest of the domain
is covered with the FD grid. One computational domain can, in principle, include several FE regions.

18.2 Principle of the FD–FE causal communication

At each time level: (1) the wavefields in the FE region(s) and FD regions are updated
independently by the FE and FD schemes, respectively; (2) the FE region(s) and FD region
causally communicate (exchange appropriate values) within the FD–FE transition zone.
Given the structures of both schemes, the transition zone has to consist of several grid
(mesh) surfaces at which the FD and FE regions overlap.

In the FD–FE transition zone the size of the grid spacing in the FE grid is twice as
small as that in the FD grid. Away from the transition zone the size of an element can,
in principle, vary. The twice-smaller FE grid spacing is algorithmically the most natural
option because any other ratio between the FD and FE grid spacings would make the
schemes for updating in the transition zone much more complicated and it is likely that it
would produce more numerical noise. Intuitively, at a rough estimate, such a choice seems
reasonable given the 2nd- and 4th-order approximations of spatial derivatives in the FE and
FD schemes, respectively. Strictly speaking, however, the spatial sampling does not simply
scale with the approximation order. For example, an increase in the approximation order
by two does not mean that a twice-larger grid spacing can be used. This is additionally
and independently supported by results obtained by Kristek and Moczo (2006). They
indicated by their numerical investigations for the 1D problem that the 4th-order staggered-
grid scheme requires denser spatial sampling than that usually used by many users, who
consider it approximately twice as coarse as that in the 2nd-order conventional schemes.
This indicates that if we apply proper sampling in the FD region, the FE region should be
over-sampled. But in many applications this will cause no problems, because the modelling
of the free-surface topography or dynamic rupture propagation requires denser spatial
sampling compared to that usually used for wave propagation.
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Figure 18.2 Illustration of the FD–FE transition zone used in hybrid modelling for causal FD–FE
communication at each time level. For simplicity, only one vertical grid plane is shown. hFD is the
spatial grid spacing in the FD grid. hFE is the spatial grid spacing in the uniform part of the FE grid in
and near the transition zone; the rest of the FE grid can be nonuniform. Note that no special symbol
is used to indicate the positions of the displacement vector in the FE grid. Each intersection of the
grid lines in the FE region is a position of all the components of the displacement vector.

18.3 Smooth transition zone with FD–FE averaging

The shape and size of the transition zone are basically determined by the FD schemes
for updating the particle-velocity and stress-tensor components. The transition zone is
illustrated in Fig. 18.2. The figure shows an example of a vertical cross-section of a
particular transition zone. The zone consists of the FE Dirichlet boundary, the FD–FE
averaging zone, and the FD Dirichlet zone. It is clear that the FE Dirichlet boundary for
the 2nd-order displacement FE scheme consists of a single staircase grid surface that has to
go through the grid points of the FD staggered grid. At the same time, a finite-thickness
Dirichlet zone is necessary for the 4th-order velocity–stress staggered-grid FD scheme.

Note that causal FD–FE communication is formally possible even without the averaging
zone. However, our numerical tests (Galis et al. 2008) clearly show that the averaging
zone significantly improves results – even a one-grid-spacing thick averaging zone makes
a significant difference in the numerical behaviour of the transition zone.

The local thickness and staircase shape of the FD Dirichlet zone are determined by
the following requirement: the particle velocity at the FD grid points located at the grid
interface between the averaging zone and the FD Dirichlet zone should be calculated using
the 4th-order velocity–stress staggered-grid FD scheme for an interior grid point. This is
possible if relevant stress-tensor components are available. The FD Dirichlet zone has to
include those stress-tensor components. In principle, those stress-tensor components could
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be calculated using the FE scheme, but a special algorithm would be necessary because the
stresses are not defined at the FE nodes. Therefore, it is algorithmically more efficient to
update those stress-tensor components from the particle velocities using the FD scheme.
This widens the width of the FD Dirichlet zone.

The algorithm of the FD–FE hybrid method can be summarized in the following steps.
For brevity we use U for any displacement component, U̇ for any particle-velocity com-
ponent, and T for any stress-tensor component. Subscripts FD and FE refer to the corre-
sponding grids. The lower-case m denotes a time level.

(1) Displacements UFE (m+ 1) are updated at the grid points of the interior FE region (the
FE grid points excluding the FE Dirichlet boundary).

(2) Stress-tensor componentsT (m) are updated at the grid points of the FD region including
the stress-tensor grid positions inside the FD Dirichlet zone.

(3) Particle velocities U̇FD(m+ 1
2 ) are updated at the grid points of the interior FD region

including the dashed line (Fig. 18.2) between the averaging zone and FD Dirichlet
zone.

(4) Particle velocities U̇FD(m+ 1
2 ) within the FD Dirichlet zone (at the grid points indicated

by the double squares and circles in Fig. 18.2) are updated using the FE displacement
values at the same grid points:

U̇FD
(
m+ 1

2

) = UFE (m+ 1) − UFE (m)

�t
(18.1)

(5) Particle velocities U̇FD
(
m+ 1

2

)
in the averaging zone, including the dashed line

between the averaging and FD Dirichlet zones, are replaced by values obtained by
weighted averaging of the FE particle velocities and U̇FD

(
m+ 1

2

)
:

U̇wFD

(
m+ 1

2

) = wUFE (m+ 1) − UFE (m)

�t
+ (1 − w) U̇FD

(
m+ 1

2

)
(18.2)

where w = 1 at the dashed line between the averaging and FD Dirichlet zones, and
w = 0 at the FE Dirichlet boundary. The weighting coefficient linearly changes between
the two values over the averaging zone.

(6) Displacements UFE (m+ 1) in the averaging zone, including the dashed line between
the averaging and FD Dirichlet zones, are replaced by averaged values UwFE(m+ 1):

U̇wFE

(
m+ 1

2

) = w U̇FE
(
m+ 1

2

)+ (1 − w) U̇FD

(
m+ 1

2

)
UwFE (m+ 1) = UFE (m) +�t U̇FE

(
m+ 1

2

) (18.3)

(7) Displacements UFE (m+ 1) are updated at the FE Dirichlet boundary using the FE
displacements and FD particle velocities at the same grid points:

UFE (m+ 1) = UFE (m) +�t U̇FD
(
m+ 1

2

)
(18.4)
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Recall that the FE Dirichlet boundary consists of a single staircase grid surface that
goes through the grid points of the FD staggered grid. A grid position of the FD staggered
grid is the position of either just one particle-velocity component or one shear stress-tensor
component or three normal stress-tensor components or no field variable. The symbolic
Eqs. (18.3) and (18.4) require all the particle-velocity components at a given grid position.
Consequently, an interpolation of the missing particle-velocity components is necessary.
We refer to Fig. 4 and Eqs. (33)–(41) in the article by Galis et al. (2008) for the possible
spatial configurations of the grid positions at which interpolations are necessary and the
interpolation formulas.

Galis et al. (2008) performed extensive numerical tests of the behaviour of the FD–FE
transition zone. They found no evidence of instabilities in practically sufficiently long time
windows. The averaging zone is crucial for accuracy. The FD–FE transition zone without
the averaging zone produces slight but evident numerical noise.

They also found that simulating dynamic rupture needs a sufficient distance (at least
nine FE grid spacings) between the FD–FE transition zone and the fault. For smaller
distances the FD–FE transition zone slightly affects the rupture propagation. The FD–FE
transition zone is stable and provides sufficiently accurate results also in the case of a
material interface intersecting the transition zone.

Based on extensive numerical tests, Galis et al. (2008) concluded that the hybrid FD–FE
method is stable, converging and sufficiently accurate.

18.4 Illustrative numerical simulations using hybrid FD–FE method

Galis et al. (2008) illustrated the hybrid FD–FE method by simulating two hypothetical
earthquakes near Grenoble, France. One was the thrust event beneath Grenoble, the other
was a strike-slip event in the Belledonne Massif. They were inspired by a previous study by
Cotton et al. (1998), who considered point sources. Galis et al. (2008) used finite sources
with dynamic rupture propagation with a linear-slip weakening friction law. A continuous
increase of the static and dynamic coefficients of friction was used to restrict rupture to an
area approximately 4 km × 2 km in order to produce an Mw = 5.3 event. The parameters
inside this area were constant, except in the initiation zone. Even though both faults were
planar, application of the hybrid method was advantageous due to the higher accuracy of
the FEM for dynamic rupture propagation.

The structure of the sediment–bedrock interface together with the positions of the faults
for both events is shown in Fig. 18.3. The horizontal fault is located at a depth of 5 km.
The top of the vertical fault is at a depth of approximately 1.5 km and the ruptured area
reaches a depth of approximately 3.5 km. The fault is located in the FE box and the rest
of the computational domain is covered by the FD grid. Because the FE box is relatively
small in comparison to the size of the whole domain, the hybrid FD–FE simulations are
significantly more efficient compared to simulations in which only the FE modelling is
applied to the whole domain. The simulations are accurate up to approximately 7.6 Hz in
the bedrock and up to approximately 0.7 Hz near the free surface in the sediments.
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Figure 18.3 The structure of the sediment–bedrock interface together with the positions of the faults
(light grey rectangles) for both considered events. The greyscale indicates the sediment thickness.
For both events the fault is located in the FE box (dark grey box) and the rest of the computational
domain is covered by the FD grid. Projections of the fault and FE box onto the free surface are also
indicated. (Modified from Galis et al. 2008)

The results of the simulations of the two events are illustrated in Fig. 18.4 and Fig. 18.5.
Snapshots indicate complex wavefields inside the sediments due to the geometrically com-
plicated sediment–bedrock interface. At the same time, the space–time variation of the
motion in the valley due to the thrust event considerably differs from that due to the strike-
slip event. Clearly, this is a consequence of different geometrical configurations of the
valley structure and the rupturing fault. To better illustrate the possibility of the hybrid
method, Galis et al. (2008) also simulated a strike-slip event with a fault dipping 85° NE.
The small change in the dipping angle was chosen because such a small change would be a
major problem for the staggered-grid FD scheme on a uniform Cartesian grid. Figure 18.6
illustrates the differences in the maxima of the absolute values of the vertical component
of the particle acceleration at the free surface.

18.5 Potential improvement of the hybrid FD–FE method

Galis et al. (2008) used hexahedral elements in the whole FE mesh. Compared to tetrahedral
elements, usually a smaller number of hexahedral elements is needed to cover the same
volume. Therefore, the hexahedral elements are usually considered as more efficient than
the tetrahedral elements. On the other hand, it is much more complicated to generate a mesh
from hexahedral than tetrahedral elements for complex configurations. Therefore, from a
practical point of view, the choice of tetrahedral elements in the FE mesh may be more
appropriate for structurally complex configurations.

Moczo et al. (1997) used triangular elements inside the FE mesh and square elements
inside the overlapping FD–FE zone to obtain stable and accurate results in their 2D hybrid
FD–FE method. We may expect similar limitations in the 3D case as well – cubic elements
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Figure 18.4 Sequence of snapshots of the absolute value of the horizontal component of particle
velocity at the free surface for a simulated thrust earthquake beneath the Grenoble valley. (Modified
from Galis et al. 2008)
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Figure 18.5 Sequence of snapshots of the absolute value of the horizontal component of particle
velocity at the free surface for a simulated strike-slip earthquake near the Grenoble valley. (Modified
from Galis et al. 2008)
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Figure 18.6 Spatial distribution of the maximum of the absolute value of the vertical component of
acceleration (PVA) at the free surface for vertical- and dipping-fault events. (Modified from Galis
et al. 2008)

might be necessary inside the FD–FE transition zone in order to get stable and accurate
results. In contrast with 2D, in 3D it is not possible to directly connect the tetrahedral and
hexahedral elements due to the requirement of continuity of displacement across elements.
A widely used approach in FE modelling in engineering and physics is the use of a transition
layer of pyramidal elements between the hexahedral elements in the transition zone and
the tetrahedral elements inside the FE region (e.g., Zgainski et al. 1996, Owen and Saigal
2001, Bluck and Walker 2008). Because the FD–FE transition zone remains the same as
in the case of a purely hexahedral mesh, the inclusion of a transition layer of pyramidal
elements should not affect the numerical behaviour of the FD–FE transition zone itself.
Careful tests would be necessary to check the behaviour of the transition from hexahedral
to tetrahedral elements in applications to seismic wave propagation.

Although tetrahedral elements are considered less efficient than hexahedral elements,
the use of tetrahedral elements inside the FE region may yield a more efficient FD–FE
hybrid method because the FE region covered by tetrahedral elements may be smaller for
complex configurations than in the case of a purely hexahedral mesh.
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Modelling of earthquake motion: Mygdonian basin

19.1 Modelling of earthquake motion and real earthquakes by the FDM

Methodological simplicity, easy implementation, computational efficiency and sufficient
accuracy are the primary reasons why the FDM has been applied in numerical modelling of
real earthquakes and for earthquake motion prediction. Each of the four named aspects or
characteristics of FD modelling is, in fact, a very relative concept and should be classified
with sufficient care, especially the aspect of accuracy, which certainly is not a default prop-
erty of any FD scheme. The historic truth, however, is that the four aspects led seismologists
to apply FD modelling in relatively complex structure–wavefield configurations. The FDM
has probably been the dominant numerical method in earthquake ground motion modelling.
We believe that it has the potential to be one of the key methods also in the future.

Let us mention first the pioneering 2D numerical-modelling studies of earthquake ground
motion using the FDM – Boore et al. (1971) and Boore (1972a). The significance of the
method for 3D modelling of earthquakes, earthquake ground motion and site effects is
documented by numerous studies and articles: e.g., Frankel and Vidale (1992), Frankel
(1993), Graves (1993, 1998), Yomogida and Etgen (1993), Olsen (1994, 2000), Olsen et al.
(1995a,b, 1997, 2003, 2006, 2008), Olsen and Archuleta (1996), Pitarka et al. (1997,
1998, 2004), Graves et al. (1998, 2008), Sato et al. (1998, 1999), Wald and Graves (1998),
Shapiro et al. (2000), Peyrat et al. (2001), Harris et al. (2002), Aochi and Madariaga (2003),
Liu et al. (2006), Aagaard et al. (2008a,b), Harmsen et al. (2008), Lee et al. (2008a), Frankel
et al. (2009), Fukuyama et al. (2009), Pulido and Dalguer (2009), Wang et al. (2009), Bielak
et al. (2010), Chaljub et al. (2010), Chavez et al. (2010, 2011), Ely et al. (2010), Graves
and Pitarka (2010), Hartzell et al. (2010), Iwaki and Iwata (2010), Kim et al. (2010),
Macpherson et al. (2010), Mai et al. (2010), Mena et al. (2010), Peyrat and Favreau (2010),
Skarlatoudis et al. (2010), Aochi et al. (2011), Graves and Aagaard (2011), Roten et al.
(2011), Day et al. (2012), Nakamura et al. (2012), Imperatori and Mai (2013), Maeda
et al. (2013).

Some of the listed 3D FD studies had a major impact on earthquake ground motion
analysis and modelling. As this book is mainly about the methodology of FD modelling, it
is fair to say that not all the applied schemes and codes had state-of-the-art methodology for
reaching maximum possible accuracy implemented at the time of application. Moreover,
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not all FD schemes had been sufficiently verified and analyzed for accuracy before they
were applied.

Verification In general, the verification of a numerical method may be defined as
the demonstration of the consistency of the numerical method with the original
mathematical-physical problem defined by the controlling equation, constitutive law,
and initial and boundary conditions. Quantitative analysis of accuracy should be part
of the verification. Once the method has been verified and analyzed for accuracy it
should be confronted with observations – it should be validated.

Validation In general, the validation may be defined as the demonstration of the capability
of the theoretical model (i.e., the mathematical-physical model and its numerical
approximation) to predict/reproduce observations.

Strictly speaking, the verification is easier than the validation. The verification itself,
however, is not as easy as many would expect. This is clear from the SCEC (Southern
California Earthquake Center) code comparative exercise (Day et al. 2003 and also Bielak
et al. 2010) as well as from the E2VP (Euroseistest Verification and Validation Project).

If in validation ‘the observations’ mean seismic records (or full seismic waveforms) in
the finite-frequency range up to several Hz, then the validation is still a major challenge
for the future. Having in mind deterministic and probabilistic seismic hazard analysis, the
goal and meaning of the validation can be defined in a (relatively) narrower, weaker sense
in order to validate the tested methods for practical application.

19.2 Mygdonian basin near Thessaloniki, Greece

19.2.1 Why the Mygdonian basin? – the E2VP

The first numerical simulations of site effects appeared in the late sixties (1D) and sev-
enties (2D: e.g., FE, FD, boundary-element, Aki-Larner methods), together with the first
instrumental estimates through site-to-reference spectral ratios. This immediately initiated
a debate on whether (a) numerical simulations were reliable and (b) site effects were robust
enough (i.e., repeatable within an acceptable variability range) from one event to the other.
In order to answer these questions, the first ‘blind test’ was organized in the late eight-
ies for two sites, Turkey Flat (Parkfield area, central California) and the Ashigara valley
(Kanagawa Prefecture, south-west of Tokyo, Japan) to investigate the ability of numerical
simulations to predict the actually observed characteristics of ground motion amplification.
The conjunction of several factors, i.e., significant local and regional earthquake activity,
a typical sedimentary basin, the occurrence of the destructive Stivos earthquake (Mw 6.5,
June 20, 1978, 23:03 local time; the largest earthquake near Thessaloniki since 1932), and
the feedback from the Turkey Flat and Ashigara valley experiments, caused a number of
Greek and European scientists led by Kyriazis Pitilakis and Pierre-Yves Bard to promote
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the idea of establishing a test site in the Mygdonian basin for experimental and theoretical
investigations of site effects. Their efforts were finally successful and, since starting in 1994,
the Mygdonian basin has become the object of focused research in many international and
Greek projects (e.g., EUROSEIS-TEST, EUROSEIS-MOD, EUROSEIS-RISK, ISMOD,
ITSAK-GR, among many others; see http://euroseisdb.civil.auth.gr). In 2008, a new project
funded by CEA (Commissariat à l’énergie atomique et aux énergies alternatives, Cadarache,
France) and ILL (Institut Laue Langevin, Grenoble, France) was launched under the super-
vision of Fabrice Hollender, in close cooperation with ISTerre (Institut des Sciences de
la Terre, Joseph Fourier University, Grenoble, France; Pierre-Yves Bard and Emmanuel
Chaljub), AUTH (Aristotle University of Thessaloniki, Greece; Kyriazis Pitilakis and Maria
Manakou) and ITSAK (Institute of Engineering Seismology and Earthquake Engineering,
Thessaloniki, Greece; Nikolaos Theodoulidis and Alexandros Savvaidis). The objective of
this Euroseistest Verification and Validation Project (E2VP) was to evaluate the accuracy
and reliability of the existing methods for numerical modelling/prediction of earthquake
ground motion at real sites. A major effort was focused on 3D linear viscoelastic modelling,
another on 2D nonlinear modelling. The 3D linear viscoelastic modelling included both
verification and validation components. Numerical teams from Europe, the USA, Japan
and China were invited to participate. From the original 18 teams intending to participate,
eight teams contributed to the 3D modelling over the whole duration and four teams were
able to reach a very satisfactory level of agreement for the most complex 3D viscoelastic
models (one team applied its FD scheme; one team, a Fourier pseudo-spectral scheme; and
two teams, independent implementations of the spectral-element method). Surprisingly, the
balance between the original intentions and competitive results is very similar to that of
the ESG (Effects of Surface Geology) 2006 Grenoble valley comparative exercise (Chaljub
et al. 2010). Note that in E2VP one team using the discontinuous Galerkin method was
able to reach very good agreement with the four teams in the purely elastic case. Another
team, using an arbitrary high order derivative–discontinuous Galerkin method, and capable
of joining the four teams, retired for a non-scientific reason.

19.2.2 The realistic model and implied challenges

The Mygdonian basin, an elongated tectonic graben located approximately 30 km ENE of
the city of Thessaloniki (Fig. 19.1), is one of the major threats for the city, as witnessed by
the 1978 Stivos earthquake, which occurred on one of the fault branches shaping the graben.
A realistic 3D seismic model of the Mygdonian sedimentary basin has been developed with
more than a decade of focused seismological, geophysical and geotechnical investigations
by Greek seismologists and their international collaborators (e.g., Raptakis et al. 1998,
2000, 2005; Pitilakis et al. 1999, 2011, 2013; Chávez-Garcı́a et al. 2000, Makra et al. 2001,
2005; Manakou 2007; Manakou et al. 2007, 2010). Two variant 3D viscoelastic models
were adopted for E2VP (Hollender et al. 2010). The geometry of the basin is indicated in
Fig. 19.2, the material parameters in Table 19.1.

http://euroseisdb.civil.auth.gr
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GREECE

Athens

Thessaloniki

Figure 19.1 Location of the Mygdonian basin near the city of Thessaloniki, Greece.
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Table 19.1 Material parameters of two variants of the Mygdonian basin model in E2VP

 
 

Layer 

3D model with
homogeneous layers 

3D model with
constant-gradient layers 

 
 

Qκ  

 SV  PV  ρ  
SQ  

 

SV  PV  ρ  
SQ  

 (m/s) (m/s) (kg/m3) (m/s) (m/s) (kg/m3) 

1 200 1500 2100 20 200-250 1500-1600 2100 20-25 ∞  

2 350 1800 2200 35 250-500 1600-2200 2100-2130 25-50 ∞  

3 650 2500 2200 65 500-900 2200-2800 2130-2250 50-90 ∞  

Bedrock 2600 4500 2600 260 2600 4500 2600 260 ∞  

690000 695000 700000

4500000

4505000

4510000
0

690000 695000 700000 690000 695000 700000

Layer 1 Layer 2 Layer 3

70 m 0 160 m 0 420 m

TST TST TST

Figure 19.2 Geometry of a 3D model of the Mygdonian basin. Left: interface between the uppermost
and middle sedimentary layers; middle: interface between the middle and bottom sedimentary layers;
right: interface between the bottom sedimentary layer and bedrock. TST is the abbreviation for the
location of a local seismic station.

The model with homogeneous sediment layers can be characterized by

� complicated geometry of the internal interfaces in sediments and the sediment–bedrock
interface,

� relatively low VS in layer 1,
� large VS contrast between sediments and bedrock ranging from 4 to 13,
� large VP /VS in layer 1 (7.5) and layer 2 (>5).

These characteristics indicate that the numerical modelling of seismic motion is far from
trivial, especially as modelling was considered for frequencies up to 4 Hz. The model
with constant-gradient layers is free of (zero-order) discontinuities of material parameters
themselves inside the sediments – only the first spatial derivatives of the material parameters
are discontinuous at the interfaces between layers. The absence of zero-order discontinuities
makes the gradient model easier for numerical modelling of wave propagation. Because
exact solutions for the two variant models do not exist, it is reasonable to verify the
capability of a numerical-modelling method using simplified (canonical) models – prior



312 Modelling of earthquake motion: Mygdonian basin

Table 19.2 Parameters of the elastic models Can2 and Can3. H denotes thickness.

 Can2 Can3 

H  SV  PV  ρ  SV  PV  ρ  

(m) (m/s) (m/s) (kg/m3) (m/s) (m/s) (kg/m3) 

17.3 200 1500 2100 200-250 1500-1600 2100 

72.5 350 1800 2200 250-500 1600-2200 2100-2130 

115.6 650 2500 2200 500-900 2200-2800 2130-2250 

inf. 2600 4500 2600 2600 4500 2600 
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Figure 19.3 S-wave speed as a function of depth. Left: model Can2; right: model Can3.

to the numerical simulation for the available realistic complex models. The canonical
models should enable testing of the method for crucial aspects associated with the realistic
models.

19.2.3 Comparative modelling for stringent canonical models

Six canonical models, Can0 – Can5, were designed for testing in E2VP, which can also be
used for testing new numerical schemes in difficult conditions. Complete descriptions are
available at www.sismowine.org. Here we focus on Can2 – Can4.

Can2 – 1D structure consisting of three horizontal homogeneous elastic isotropic layers
over a halfspace, 3D wavefield generated by a single vertical force at the free surface
and a point double-couple source at 3 km depth in the halfspace. The model repre-
sents the vertical profile beneath the TST seismic station in the Mygdonian basin.
Table 19.2 shows the parameters of the model, the VS profile is illustrated in
Fig. 19.3 (left). The numerical simulations are performed for frequencies up to
4 Hz.

http://www.sismowine.org
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The right-handed Cartesian coordinate system is considered with x positive north, y positive
east, z positive downward. The single vertical force �f = (0, 0, s) (positive downward) at
the free surface is at the origin of the coordinate system (0, 0, 0). The force time history
is s(t) = 5 · 1011 D(t) where D(t) is a band-pass filtered Dirac delta function. The point
double-couple (DC) acts at (0, 0, 3000) m, strike is 22.5°, dip 90°, rake 0°, scalar seismic
moment 1018 N m, and the moment time history is the time integral of D(t).

Figure 19.4 shows the vertical component of the particle velocity at a receiver (2828.4,
2828.4, 0) m at the free surface at the xy grid diagonal at a distance of 4000 m. Note that
the wavelengths at 1 and 4 Hz in the uppermost layer with VS = 200 m/s are 200 and 50 m,
respectively. Given the vertical point force at the surface, strong surface Rayleigh waves
(consisting mainly of the fundamental and first higher modes) are developed along the xy
grid diagonal. In the four panels we show four different FD solutions obtained by the (2,4)
velocity–stress staggered-grid scheme using grid spacing h = 5 m. The solutions differ
from each other by the effective grid elastic moduli and density (see Section 9.1), that is,
by discrete material representation:

LOC – local (point) values of the elastic moduli and density,
ARI – volume arithmetic averages of the elastic moduli and volume arithmetic averages

of the density evaluated using numerical integration over a grid cell centred at the
grid position of the elastic modulus or density,

HAR – volume harmonic averages of the elastic moduli and volume arithmetic averages
of density evaluated using numerical integration over a grid cell centred at the grid
position of the elastic modulus or density; see Subsection 9.2.5,

ORT – volume effective coefficients corresponding to the orthorhombic averaged
medium; see Subsection 9.2.3.

The LOC, ARI and HAR types of material representation are isotropic whereas the ORT
type is anisotropic. Note a very important aspect of the FD modelling: the material interfaces
do not coincide with a grid plane in the two applied grids. In other words, the material
interfaces go through the interior of the grid cells. The geometry of the interfaces is
accounted for solely by evaluating effective grid material parameters.

The FD seismogram in each panel is shown together with the reference solution obtained
by Emmanuel Chaljub using the DWN codes – Axitra (Bouchon 1981, Coutant 1989) for
the deep DC source and a code developed by Yoshiaki Hisada (Hisada 1994, 1995) for the
surface force. The level of agreement between the FD and DWN seismograms in phase
and amplitude is quantified using the time–frequency phase and envelope goodness-of-fit
(GOF) criteria, respectively; see Appendix. We use here the positive-valued goodness-of-fit
instead of the time–frequency misfit criteria due to restriction to the greyscale figure.

As expected (based on our numerical experience), the LOC material representation
yields the worst result – the smallest GOF values, especially for Rayleigh waves. The
ARI representation yields a very good result. This is because the material interfaces are
horizontal and the dominant wave group, the Rayleigh waves, propagates in the horizontal
direction. A more detailed examination of the body-wave group (in the time window
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Figure 19.4 FD (grey) and DWN (black) seismograms for Can2. The FD seismograms are obtained
for h = 5 m using four different material representations – LOC, ARI, HAR and ORT. The level
of agreement between the FD and DWN seismograms in phase and amplitude is quantified using
the time–frequency phase and envelope goodness-of-fit criteria, respectively. Phase and envelope
GOF = 10 mean that the compared seismograms are the same.

of 1–9 s) using the locally normalized time–frequency misfit would show that ARI is worse
than HAR and ORT. This is because the body-wave group is generated by the deep DC
source in the halfspace. Note that the ARI representation yields considerably worse results
(compared to HAR and ORT) as soon as waves do not propagate along an interface. Let
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Figure 19.5 The same as Fig. 19.4 but for h = 10 m.

us also note that in the case of a model consisting of horizontal planar layers one can
use, for instance, the very accurate DWN method instead of the FD method. The ORT
representation yields better results than the HAR does.

Figure 19.5 is analogous to Fig. 19.4. It shows FD solutions obtained with the coarser
spatial grid, h = 10 m. The level of agreement between the FD and DWN seismograms is
considerably smaller due to coarse spatial discretization, especially at higher frequencies.
Note that h = 10 m corresponds to five grid spacings per wavelength at 4 Hz in a medium



316 Modelling of earthquake motion: Mygdonian basin

4 8 12 16 20 24 28 32 s

1

2

3
4

1

2

3
4

fr
eq

ue
nc

y
[H

z]
fr

eq
ue

nc
y

[H
z]

-10

10

4 8 12 16 20 24 28 32 s

envelope GOF

phase GOF

vertical component of the particle velocity

FD solution DWN solution
0 5 10

ORTHAR

Figure 19.6 Seismograms and GOFs for Can3: as for Fig. 19.4 but only for the HAR and ORT
representations.

with an S-wave speed of 200 m. The results for h = 5 m and h = 10 m strongly indicate that
it is necessary to perform numerical simulations for at least two different discretizations,
for example, for two sizes of the spatial grid spacing, in order to assess the sensitivity of
the simulated motion with respect to the computational parameters.

Can3 – modification of Can2: vertical constant gradients of material parameters in
the layers. Table 19.2 shows parameters of the model, the VS profile is illustrated
in Fig. 19.3 (right). The numerical simulations are performed for frequencies up
to 4 Hz. Figure 19.6 shows a simple comparison of the FD solutions for h = 5 m
and the material representations HAR and ORT with the DWN solution obtained
by Emmanuel Chaljub. It is clear that the difference between the HAR and ORT
representations is smaller than in Can2. This is because Can3 does not have zero-
order material interfaces in the sediments.

Can4 – 2D structure representing a simplified NS profile of the Mygdonian basin going
through the TST seismic station; 3D wavefield generated by the point double-couple
source (as in Can2 and Can3) at a depth of 3000 m, halfway between the northern and
southern margins of the basin. The geometry of the structure is shown in Fig. 19.7, the
material parameters are the same as in Can2. The wedge-type northern margin of the
basin makes the modelling very difficult. It is not obvious how to determine what is
a sufficient discretization and how to effectively represent the complex heterogeneity
at the basin edge. Because there is no exact solution for the model, Florent De
Martin developed a spectral-element mesh that follows all material interfaces, and
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Figure 19.7 Geometry of the 2D structure in the Can4 problem.

the minimum size of the element at the northern edge is only 0.5 m. Such a fine
discretization is necessary for SEM in order to reach sufficient accuracy in the
wedge-type northern margin. This is because one has to ‘follow’ the discontinuities
in an SEM in order to get sufficient accuracy. The spectral-element (SE) simulation
performed by the code written by De Martin took 40 days on a 128 core cluster.
Though only relative and indicative, in practice all this means that the obtained
solution can be considered a sufficiently accurate reference for our FD solutions that
use a uniform grid in which the material interfaces go through the interiors of the grid
cells. Recall that the geometry of the interfaces is accounted for solely by evaluating
effective grid material parameters. Figure 19.8 compares our FD solutions at one
receiver close to the northern edge and one receiver close to the southern edge of the
basin (both receivers and the point source are in one vertical plane) with the reference
SE solution obtained by Florent De Martin. Three FD solutions are obtained with
h = 5 m, using the ARI, HAR and ORT representations.

The conclusions for the three representations are:

� The ORT representation yields FD seismograms that are in excellent agreement with the
SE reference solutions at both receivers.

� The HAR representation yields FD seismograms that are in excellent agreement with
the SE reference solution at receiver R1. The motion at R2 is dominated by surface
waves generated at both the northern and southern edges and propagating along the
horizontal interfaces. The latter fact likely causes the difference between the FD and SE
seismograms at receiver R2 after 16 s.

� The ARI representation yields results worse than those obtained with the HAR and ORT
representations at receiver R1. At receiver R2 the ARI representation yields results no
worse than those obtained with the HAR representation.
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Figure 19.8 (a) FD (grey) and SE (black) seismograms for Can4. The FD seismograms are obtained
for h = 5 m using three different material representations – ARI, HAR and ORT. (b), (c) and (d)
differ from (a) by the receiver or the component of the particle velocity – as indicated directly in the
figure.

Each of the three FD simulations took approximately 28 hours on 256 cores. This is an
example of the computational efficiency of FD modelling with proper material parameter-
ization.

The main conclusion is: The ORT representation gives excellent results for both R1 and
R2 configurations. The HAR representation gives comparable results if the wavefield is not
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Figure 19.8 (continued)

dominated by surface waves propagating along horizontal material interfaces. There is no
reason to use the ARI representation.

Complete comparison of simulations by the (2,4) velocity–stress staggered-grid scheme
(Kristek and Moczo), (4,4) velocity–stress collocated-grid scheme (Z. Zhang, W. Zhang
and Chen), spectral-element method (Chaljub and De Martin), and Fourier pseudo-spectral
method (Klin and Priolo) is the subject of a journal article.
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Figure 19.8 (continued)

19.2.4 Modelling for the realistic three-layered viscoelastic model

Here we illustratively compare the FD ORT simulation (h = 5 m) with the SE simula-
tion obtained by Emmanuel Chaljub using the SPECFEM3D code developed by Dimitri
Komatitsch and Jeroen Tromp (e.g., Komatitsch and Tromp 1999, Tromp et al. 2008, Peter
et al. 2011).

The model was described in Subsection 19.2.2. The wavefield is generated by a double-
couple source beneath TST at a depth of 3 km.
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Figure 19.8 (continued)

The model for the SE simulation is discretized with a conforming, unstructured mesh of
elements: the surface elements are 50 m in horizontal size at the surface and are coarsened
twice with depth to reach 200 m. The vertical sizes of the elements are chosen following
two simple rules: to respect a minimum number of gridpoints per local wavelength and to
follow the interfaces in sediments as much as possible. The latter constraint is critical for
accuracy in modelling surface waves. The mesh is built on a simple layer-cake strategy: the
basin interfaces are extended to flat interfaces when one gets close to the basin edge and
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Figure 19.9 The FD ORT and SE seismograms for the realistic 3D viscoelastic model, TST station.

each modified layer is filled with the same number of elements in the vertical direction. The
resulting numerical representation of the interfaces is not uniform: it is optimized within
the central part of the basin but not close to the edges. The smallest (vertical) element size
is found in the first layer of the model and equals 2.5 m.

The SE simulation does not serve as a reference solution at the same level of accuracy as
the SE solution for Can4, and the visual comparison of the FD ORT and SE seismograms
in Fig. 19.9 is illustrative.

Recall that all the numerical solutions presented and mentioned in this chapter together
with detailed descriptions of the computational models are available at www.sismowine.
org.

Finally, let us note that we do not present simulations for real local earthquakes. At
the time of preparation of the book, the numerical simulations in E2VP had not reached a
satisfactory level of agreement with records. Additional investigations strongly indicated
the possibility that the available structural model should be improved.

19.2.5 Lessons learned from ESG 2006 and E2VP

The ESG 2006 comparative exercise (Chaljub et al. 2010) and numerous detailed compara-
tive analyses performed in E2VP lead to conclusions important for the practical application
of numerical methods in predicting earthquake ground motion at a site of interest:

Methodological – general
� There is no single numerical-modelling method that can be considered the best –

in terms of accuracy and computational efficiency – for all structure–wavefield
configurations important for predicting earthquake ground motion in surface local
structures.

� Apparently and intuitively ‘small’ or ‘insignificant’ differences in the discrete
representation of spatial variations in material parameters can cause considerable

http://www.sismowine.org
http://www.sismowine.org
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inaccuracies and consequently discrepancies in predictions obtained by different
methods.

� Sufficiently accurate and computationally efficient methods for implementing con-
tinuous and discontinuous material heterogeneity (consistent with the interface
boundary condition), realistic attenuation (no simpler than that corresponding to
the GZB/GMB-EK rheology), a nonreflecting boundary (no less efficient than
PML) and free-surface conditions prove to be the key elements of a reasonably
accurate numerical simulation.

Methodological – FD method
� The commonly used name of ‘finite-difference method’ in numerical modelling

of earthquake ground motion may represent one of a large variety of FD schemes
and codes. Surprisingly, not all FD schemes used for simulations and publications
are at the state-of-the-art level: the available methods and techniques for represent-
ing spatial material heterogeneity, realistic attenuation, large VP /VS , free surface
and nonreflecting boundaries of the grid are not implemented in some frequently
applied codes.

Practical
� The numerical-simulation methods and the corresponding computer codes are not

yet in a ‘press-button’ mode; the codes should never be applied as black-box tools,
that is, without sufficient methodological knowledge of the method and the code.

� At least two different but comparably accurate, verified and state-of-the-art meth-
ods should be applied in order to obtain reliable numerical prediction of earthquake
ground motion at a site of interest.

� Material interfaces should not be artificially introduced in the computational model;
their presence can have a strong impact on the locally induced surface waves.

� It is necessary to perform numerical simulations for at least two different dis-
cretizations, e.g., for two sizes of the spatial grid spacing or element, in order to
assess the sensitivity of the simulated motion with respect to the computational
parameters.



Concluding remarks: search for the best scheme

We have mentioned several times that no single numerical-modelling method developed
so far is better than other methods for all important configurations of the medium and
wavefield. Being better for a particular problem configuration means:

– either being more accurate at some level of computational efficiency (quantified in terms
of requirements on computer time and memory)

– or being more computationally efficient at an optional level of accuracy.

A method or scheme applicable to a wider class of medium–wavefield configurations
is not necessarily the most efficient method for some important configurations to which
other (possibly less universal) methods are applicable. In fact, the less universal method
might be considerably more efficient for some configurations at the same level of accu-
racy. The importance of computational efficiency increases with complexity of the model
and maximum frequency up to which the numerical modelling should be sufficiently
accurate.

In view of what we have just said about the numerical methods in general, can one
particular FD scheme be better than other schemes for all important problem configurations?
It is not easy to answer in a rigorous and comprehensive manner – especially at the present
state of development and elaboration of the FD schemes, which certainly is far from what
is in principle possible. It is, however, very likely that what we said about all numerical-
modelling methods is also true about all possible FD schemes.

We may, however, think of properties of a hypothetical best FD scheme for a certain
class of important problems. The best scheme should be consistent with the mathematical-
physical problem with an optional level of accuracy (e.g., with an optional and the same
order of accuracy in space and time), stable, and computationally efficient.

Particular properties of the best FD scheme for modelling earthquake motions should
include:

– stability at a
� free surface (planar and nonplanar),
� contact of the free surface with internal material interface,
� contact of the free surface with the PML,
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� contact of the internal material interface and the PML
� liquid–solid interface (if a water layer is an important part of model),

– optional level of accuracy
� for any value of the P-wave to S-wave speed ratio, that is VP /VS ∈ (

√
2,∞), or,

equivalently, for any value of Poisson’s ratio, that is σ ∈ (0, 0.5),
� in a medium with strong gradient of material parameters,
� in a medium with strong contrast of material parameters at an internal interface,
� in a medium with material interfaces not coinciding with grid planes or grid lines,
� at and near the free surface (planar and nonplanar),
� in an attenuative medium,
� at and near a rupturing fault (planar and nonplanar),
� of implementation of a kinematic source,

– computational efficiency in terms of
� relatively low memory,
� relatively short computational time.

Can all particle-velocity and stress-tensor components at each grid position of a curvilin-
ear grid, relatively small stencils for approximating derivatives, and a proper effective grid
representation of material properties or some other ingredients make it possible to achieve
better schemes? Recent intensive effort to develop new, more accurate and more efficient
schemes indicates several strategies. The future will show which of them will make it pos-
sible to apply the FD method further and better than before in earthquake ground motion
modelling and prediction.





Appendix A

Time–frequency misfit and goodness-of-fit criteria
for quantitative comparison of time signals

In the process of development and verification of a numerical method for calculation of
seismic wave propagation it is necessary to quantitatively compare a numerically simulated
signal with a reference or exact solution. In the process of validation of the numerical
method it is necessary to quantitatively compare a numerically simulated signal with a
seismic record. Comparison of two recorded signals significantly helps in the analysis and
interpretation of the process under investigation. The quantitative misfit and goodness-of-fit
criteria introduced by Kristekova et al. (2006, 2009) are summarized and explained in this
appendix.

A.1 Characterization of a signal

Here we restrict our discussion to basic concepts and relations for characterizing a signal
necessary in the further exposition.

A.1.1 Simplest characteristics

Consider the simplest case of a monochromatic signal:

sm(t) = A cos(2πf t + φ) (A.1)

where t is time, A is amplitude, φ is phase and f is frequency. Signal characteristics A, φ
and f are unambiguously defined and very easy to interpret. If a signal is more complicated,
the notion of amplitude, phase and frequency may be not so obvious. For example, when
A = A(t), and f = f (t) and φ = φ(t) in the argument of the cosine function, the amplitude
and phase are ambiguous.

The analytical signal (e.g., Flandrin 1999) enables us to develop proper unambiguous
characteristics. The analytical signal s̃(t) with respect to signal s(t) is

s̃(t) = s(t) + iH {s(t)} (A.2)

where H {s(t)} is the Hilbert transform of signal s(t). Relations

A(t) = |s̃(t)|, φ(t) = Arg[s̃(t)] (A.3)

and

f (t) = 1

2π

dArg[s̃(t)]

dt
(A.4)
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define the envelope, phase and (so-called instantaneous) frequency of the signal at time t .
Although these quantities are unambiguous, in fact they represent just averaged values. For
example, Qian (2002) suggests using the term ‘mean instantaneous frequency’ instead of
the instantaneous frequency. The narrower is the spectral content at time t , the better is the
estimate of the dominant amplitude, phase and frequency by Eqs. (A.3) and (A.4).

Clearly, the analytical signal cannot be used for determining the three basic characteris-
tics of a signal if its spectral content is complicated and changes with time.

A.1.2 Time–frequency decomposition

The instantaneous spectral content or time evolution at any frequency of a signal, and
hence the time evolution of the spectral content of the signal, can be obtained using the
time–frequency (TF) representation of the signal. The TF representation can be calculated
using, for example, the continuous wavelet transform (CWT). The CWT of signal s(t) is
defined by

CWT(a,b){s(t)} = 1√|a|
∫ ∞

−∞
s(t)ψ∗

(
t − b
a

)
dt (A.5)

with a being the scale parameter, b the translational parameter, andψ the analyzing wavelet.
The asterisk denotes the complex conjugate function. The scale parameter a is inversely
proportional to frequency f . Consider an analyzing wavelet with a spectrum that has zero
amplitudes at negative frequencies. Such a wavelet is an analytical signal and is called the
progressive wavelet. A Morlet wavelet

ψ(t) = π−1/4 exp(iω0t) exp(−t2/2) (A.6)

with ω0 = 6s−1, is a proper choice for a wide class of signals and problems, and can be
considered as a progressive wavelet. The TF representation of signal s(t) based on the
CWT, W (t, f ), can be then defined by choosing a relation between the scale parameter a
and frequency f . Assume

a = ω0/2πf (A.7)

Then,

W (t, f ) ≡ CWT(a,b){s(t)} =
√

2π |f |
ω0

∫ ∞

−∞
s(τ )ψ∗

(
2πf

τ − t
ω0

)
dτ (A.8)

W 2(t, f ) represents the energy distribution (energy density) of the signal in the TF plane.
See, for example, the monographs by Daubechies (1992) and Holschneider (1995) for
comprehensive expositions of the CWT and Morlet wavelet. The useful properties of the
CWT for the TF analysis of complicated seismic records have been demonstrated by, for
example, Kristekova et al. (2008) and others. Their analysis of seismic records led to
identification of a sequence of relatively weak explosions.

Having determined the TF representation, an envelope A(t, f ) and phase φ(t, f ) at a
given point of the TF plane can be defined:

A(t, f ) = |W (t, f )|, φ(t, f ) = Arg[W (t, f )] (A.9)
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Holschneider (1995) showed that ifW (t, f ) is defined using the CWT with the progressive
wavelet, envelope A(t, f ) and phase φ(t, f ) are consistent with those defined using the
analytical signal.

Note that the TF representation obtained using the CWT is more suitable for the analysis
of complicated nonstationary signals than the TF representation obtained using the win-
dowed Fourier transform. This is because the CWT is not limited by the fixed TF resolution
as it is in the case of the windowed Fourier transform.

A.2 Comparison of signals

A.2.1 TF envelope and phase differences

Consider a signal s(t) and a reference signal sr(t). Given Eqs. (A.8) and (A.9) it is clear
that

�A(t, f ) = A(t, f ) − Ar(t, f ) = |W (t, f )| − |Wr(t, f )| (A.10)

defines the difference between the envelopes of signals s(t) and sr(t) at each (t, f ) point.
Similarly,

�φ(t, f ) = φ(t, f ) − φr(t, f ) = Arg[W (t, f )] − Arg[Wr(t, f )] (A.11)

defines the difference between two phases at each (t, f ) point.
The envelope difference �A(t, f ) is a local difference that can attain any value. The

local phase difference needs some explanation. A little complication comes from the fact
that Arg[ξ ] always gives the phase of the complex variable ξ in the range of (−π, π]. If, say,
two phases are 170π/180 and −160π/180, Eq. (A.11) formally gives 330π/180 instead
of the correct value −30π/180. It is clear that definition (A.11) would need an additional
condition to treat similar situations. Instead, however, we can avoid the additional condition
by using the following equivalent definition:

�φ(t, f ) = Arg

[
W (t, f )

Wr(t, f )

]
(A.12)

Relation (A.12) always gives the local phase difference in the range of (−π, π ].

A.2.2 Locally normalized and globally normalized criteria

Having the local envelope and phase differences at the (t, f ) point, we can define a variety
of TF misfit criteria to quantitatively compare the entire signals, their important parts or
characteristics of the signals.

Locally normalized criteria In some problems it is important to investigate relatively
small parts of the signal – no matter how large the amplitudes of those parts are with
respect to the maximum amplitude of the entire signal. In other cases one may be interested
in a detailed TF anatomy of the disagreement between two entire signals including small-
amplitude parts. For comparing two signals in such situations we need to define local misfit
criteria – criteria whose values for one (t, f ) point would depend only on the characteristics
at that (t, f ) point.

Consider how to define a local TF misfit criterion for the envelope. It is clear that such a
criterion should quantify the relative difference between two envelopes at the (t, f ) point.
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Consequently,�A(t, f ) given by Eq. (A.10) should be normalized byAr(t, f ). At the same
time, due to its nature, the phase difference (A.12) itself provides the proper quantification
for the local TF phase misfit criterion. We can choose, however, the range (−1, 1] instead
of (−π, π ] : we can divide the phase difference (A.12) by π .

The preceding considerations can be taken as arguments and a basis for defining the
locally normalized TF misfit criteria:

TFEMLOC(t, f ) = �A(t, f )

Ar(t, f )
(A.13)

and

TFPMLOC(t, f ) = �φ(t, f )

π
(A.14)

TFEMLOC is the locally normalized TF envelope misfit criterion, TFPMLOC is the locally
normalized TF phase misfit criterion.

Globally normalized criteria In another class of problems it may be reasonable to give
the largest weights to local envelope/phase differences for those parts of the signals in
which the envelope of the reference signal reaches the largest values. For example, it may
be reasonable to require that the envelope misfit be equal to the local envelope difference
�A(t, f ) just at that (t, f ) point at which envelopeAr(t, f ) of the reference signal reaches
its maximum, maxt,f {Ar(t, f )}. At the other (t, f ) points with the envelope smaller than
maxt,f {Ar(t, f )} such a misfit could be proportional to the ratio between Ar(t, f ) and
maxt,f {Ar(t, f )}. Consequently, we can define the globally normalized criteria by

TFEMGLOB(t, f ) = Ar(t, f )

maxt,f {Ar(t, f )}TFEMLOC(t, f )

= �A(t, f )

maxt,f {Ar(t, f )} (A.15)

TFPMGLOB(t, f ) = Ar(t, f )

maxt,f {Ar(t, f )}TFPMLOC(t, f )

= Ar(t, f )

maxt,f {Ar(t, f )}
�φ(t, f )

π
(A.16)

Note that it is the normalization by maxt,f {Ar(t, f )} at each (t, f ) point that makes the
criteria globally normalized.

Clearly, the values of the globally normalized TF misfit criteria account for both the
envelope/phase difference at a (t, f ) point and the significance of the envelope at that point
with respect to the maximum envelope of the reference signal. In this sense they quantify
an overall level of disagreement between two signals. We apply global normalization in
the definition of TF misfits when we are not much interested in the detailed anatomy of the
signals and misfits in those parts of the signal where its amplitudes are too small compared
to the maximum amplitude of the reference signal.

A.3 Comparison of three-component signals

The above considerations on the locally and globally normalized misfit criteria for one-
component signals can be extended also to the misfits for three-component signals.
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A.3.1 TF misfit criteria

The case: one signal being a reference If the amplitudes of one component of the ref-
erence signal are significantly smaller than the amplitudes of two other components (e.g.,
a common situation with polarized particle motion), the only reasonable choice for global
normalization is to take the maximum TF envelope value from all three components of
the reference signal. This choice naturally quantifies the misfits with respect to meaningful
values of the three-component reference signal. It also prevents obtaining too large misfits
due to possible division by very small envelope values corresponding to insignificant ampli-
tudes of the signal components. Clearly, this choice is reasonable also if the amplitudes of
all three components are comparable.

A formal definition of one local normalization factor for all three components would
clearly contradict the local character of a misfit criterion. Therefore, each component has
to be treated as a ‘one-component’ signal if one is interested in the detailed anatomy of the
TF misfit.

Now we can define a set of misfit criteria for the three-component signals when one of
them can be considered a reference. The locally normalized and globally normalized TF
envelope misfits TFEMREF

LOC,i(t, f ) and TFEMREF
GLOB,i(t, f ) characterize how the envelopes of

two signals differ at each (t, f ) point. Similarly, TFPMREF
LOC,i(t, f ) and TFPMREF

GLOB,i(t, f )
characterize how the phases of two signals differ at each (t, f ) point.

Projections of the TF misfits onto the time domain give the time-dependent envelope
and phase misfits TEMREF

LOC,i(t), TEMREF
GLOB,i(t), TPMREF

LOC,i(t) and TPMREF
GLOB,i(t). Projections

of the TF misfits onto the frequency domain give the frequency-dependent envelope and
phase misfits FEMREF

LOC,i(f ), FEMREF
GLOB,i(f ), FPMREF

LOC,i(f ) and FPMREF
GLOB,i(f ).

Finally, it is often very useful to have single-valued envelope and phase misfits EMREF
LOC,i,

EMREF
GLOB,i, PMREF

LOC,i and PMREF
GLOB,i. All the misfits are summarized in Table A.1. The envelope

and phase misfits can attain any value in the range (−∞,∞) and (−1, 1), respectively.

The case: no signal being a reference The misfit criteria for this case can be defined,
in fact, formally in the same way as criteria in the case with a reference signal. The only
question is, which of the two signals should be formally taken as a reference? The reasonable
way is to find a maximum envelope for each of the two signals. Then the signal with the
smaller maximum can be chosen as a reference signal. In the case of the globally normalized
criteria for the three-component signals the maximum is taken from all components. In the
case of the locally normalized criteria the reference signal should be chosen separately for
each component.

Note that the evaluation of the TF misfits themselves does not give us a reason to prefer
the smaller of the two maxima. Our choice comes from the possible link to the goodness-
of-fit criteria developed by Anderson (2004). We take the smaller maximum consistently
with the Anderson criteria.

A.3.2 TF goodness-of-fit criteria

The envelope TF misfits quantify and characterize how much two envelopes differ from
each other. Correspondingly, the envelope misfit can attain any value within the range
of (−∞,∞), with 0 meaning the agreement. While formally applicable to any level of
disagreement, clearly, the envelope misfits are most useful for comparing relatively close
envelopes.
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Table A.1 TF misfit criteria for three-component signals assuming one of them as a
reference signal

However, in practice it is often necessary to compare signals whose envelopes differ
considerably. Comparison of real records with synthetics in some problems can be a good
example. In such a case it is reasonable to look for the level of agreement rather than details
of disagreement. The goodness-of-fit criteria provide a suitable tool for this.

The goodness-of-fit criteria approach a zero value with an increasing level of disagree-
ment. On the other hand, some finite value is chosen to quantify the agreement.

The TF envelope goodness-of-fit criteria can be introduced on the basis of the TF
envelope misfits:

TFEG(t, f ) = A exp{−|TFEM(t, f )|k}
TEG(t) = A exp{−|TEM(t)|k}

FEG(f ) = A exp{−|FEM(f )|k}
EG = A exp{−|EM|k}
A > 0, k > 0

(A.17)
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Table A.2 Locally and globally normalized TF misfit criteria for three-component
signals, none being a reference

Here, factor A quantifies the agreement between two envelopes in terms of the chosen
envelope misfit: The envelope goodness-of-fit criterion is equal to A if the envelope misfit
is equal to 0. Choice of the exponent k determines sensitivity of the goodness-of-fit value
with respect to the misfit value.

Similarly, we can define the TF phase goodness-of-fit criteria as the goodness-of-fit
equivalents to the TF phase misfit criteria (Table A.2):

TFPG(t, f ) = A(1 − |TFPM(t, f )|k)
TPG(t) = A(1 − |TPM(t)|k)

FPG(f ) = A(1 − |FPM(f )|k)
PG = A(1 − |PM|k)

(A.18)
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Table A.3 Discrete goodness-of-fit values against the
misfit values

Misfit
Envelope 

Misfit
Phase 

Goodness-of-Fit
Numerical value       Verbal value 

± 0.00 ± 0.0 10

excellent± 0.11 ± 0.1 9

± 0.22 ± 0.2 8

good± 0.36 ± 0.3 7

± 0.51 ± 0.4 6

fair± 0.69 ± 0.5 5

± 0.92 ± 0.6 4

poor

± 1.20 ± 0.7 3

± 1.61 ± 0.8 2

± 2.30 ± 0.9 1

±   ± 1.0 0

Table A.3 shows the discrete goodness-of-fit values against the misfit values for A = 10
and k = 1 that we consider a practically reasonable choice for a wide class of problems.
Consistently with Anderson (2004), the fourth column of the table assigns possible verbal
levels to the goodness-of-fit numerical values.

The TF goodness-of-fits and verbal levels given in Table A.3 can be reasonably applied
to an analysis of the level of agreement between earthquake records and simulations, and
possibly also to some other problems. Note, however, that the mapping between the TF
misfits and TF goodness-of-fits, and eventually also the choice of the verbal classification,
may be easily adjusted for a specific comparative analysis by modifying the range of the
goodness-of-fit criteria [0, A], exponent k, and the verbal classification.

The concept of TF misfits is general and makes it possible to define properly tuned
criteria for comparing time signals.
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Appelö, D., N. A. Petersson 2009. A stable finite difference method for the elastic wave
equation on complex geometries with free surfaces. Commun. Comput. Phys. 5, 84–
107.

Archuleta, R. J. 1976. Experimental and numerical three-dimensional simulations of strike-
slip earthquakes. PhD Thesis. University of California, San Diego.

Archuleta, R. J., G. A. Frazier 1978. Three-dimensional numerical simulations of dynamic
faulting in a half-space. Bull. Seism. Soc. Am. 68, 541–572.

Assimaki, D., W. Li, J. Steidl, J. Schmedes 2008. Quantifying nonlinearity susceptibility
via site-response modeling uncertainty at three sites in the Los Angeles basin. Bull.
Seism. Soc. Am. 98, 2364–2390.



References 337

Backus, G. E. 1962. Long-wave elastic anisotropy produced by horizontal layering. J.
Geophys. Res. 67, 4427–4440.
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Boltzmann’s principle, 25
boundary
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embedded, 224
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constitutive law
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constitutive parameters, 64
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dispersion relation, 100
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equivalent medium, 201
error

local, 83
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ESG 2006, 322
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force couple, 65, 243
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von Neumann, 95

mode
hourglass, 276, 293
mode II (in-plane), 251
mode III (anti-plane), 251

modulus
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P-wave to S-wave speed, 166, 175, 223, 325
stability, 109, 184

representation theorem, 65
reversal point, 46, 50
rupture propagation, 17, 58
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dissipative, 103
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optimally accurate, 94
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activating, 54
tensor, 8

stress
activating, 50
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yield, 22
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Green, 65
of elastic moduli, 65
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time

sampling, 105
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frictional, 60
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total, 60
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Turkey Flat, 308

unconditionally
stable, 94
unstable, 94
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