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Preface 
 
 
The primary goal of the presented text is to provide basics of the finite-difference 
method and its application to the numerical modeling of seismic wave propagation and 
earthquake motion. The text was written for participants of the Research and Training 
Workshop of the Marie Curie Research Training Network SPICE held in Venice, Italy, 
September 25 – October 2, 2004. It may be useful also for seismologists who are not 
familiar with the finite-difference method, or those who are interested in some 
particular topics explained and analyzed in the text. 

This introduction covers neither all aspects of the finite-difference method nor all 
applications of the method in seismology. It is focused primarily on the 1D problem. 
The 1D problem itself is not fully analyzed. The references probably do not include all 
relevant contributions, though we tried to include many of them. 

It is important to realize that the understanding of the 1D problem is just the 
beginning. It is, however, important and useful because it considerably helps in learning 
the full 3D problem. 

The text also contains a user’s guide to the FORTRAN 95 program package 1DFD 
which is intended as a training tool for beginners in development and application of the 
finite-difference method. Numerical examples – model configurations, input data, and 
results – are also included. 

Though the text is introductory, it includes some material which probably cannot be 
found elsewhere. 
 
We would like to stress at the very beginning that a user of the finite-difference method 
should understand basics of the method. Many computer codes based on the method 
almost always give some results but not necessarily results which are reasonable, 
sufficiently accurate or at the level of the state-of-the-art. 

The user of the finite-difference method and particularly of some available 
computer codes should not be misled by the user-friendly simplicity of the algorithm, 
code and input-data preparation. The ease in using a particular code cannot guarantee 
sufficient quality. 

Therefore, users of the finite-difference method should be aware of both, 
advantages and problems of the method. 
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Introduction 

 
 

A Brief Introduction 
 
The Earth’s interior is considerably laterally heterogeneous with complex geometry of 
the interfaces between different material layers and blocks as well as smoothly spatially 
varying material parameters inside the layers and blocks. Analytical methods do not 
provide solutions of the equation of motion (elastodynamic equation) for complex or 
sufficiently realistic models of the Earth’s interior. Therefore, approximate numerical 
methods have to be used. A numerical method transforms an original differential 
problem into a system of algebraic equations. In the numerical method, a continuous 
function in the differential equation has to be represented by a finite set of numbers. 
The set of numbers has to be stored in a computer memory. Each numerical method is 
specific in a way how it represents a solution using a finite set of numbers and how it 
approximates derivatives. 

In modeling seismic wave propagation and seismic motion, a numerical method 
should allow for heterogeneity of the medium (including material discontinuities and 
gradients), realistic attenuation (to account for attenuation), free-surface topography, 
and sufficient frequency range. In modeling the earthquake faulting, a numerical 
method should also allow for realistic geometry of the fault surface, heterogeneity of 
the initial stress, and friction law. At the same time, a numerical method has to be 
computationally efficient (efficient in terms of the computer memory and time). One 
can intuitively guess that there is hardly one single method which would be the best 
from the point of view of all the above requirements. The choice of the suitable 
numerical method should be, in general, a problem-dependent. 

The finite-difference method belongs to the so-called grid-point methods. In the 
grid-point methods a computational domain is covered by a space-time grid and each 
function is represented by its values at grid points. The space-time distribution of the 
grid points may be, in principle, arbitrary, but it significantly affects the accuracy of the 
approximation. Usually, no assumption is made about the values in-between the grid 
points. A derivative of a function is approximated by the so-called finite-difference 
formula which uses values of the function at a specified set of the grid points. 

It is useful to understand the basics of the finite-difference method even if one does 
not use the method to solve the differential equation. This is because the time-
dependence of the functions is often approximated by the finite-difference formulas 
also in other numerical methods. 
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Due to its definition, the finite-difference method is one of the most important 
numerical methods in seismology and certainly still dominant method in earthquake 
ground motion modeling. In particular, this is due to the fact, that, formally it is 
applicable to complex models, relatively accurate and computationally efficient. 
Moreover, it is relatively easy to encode. Because the finite-difference operators are 
local, the method enables parallelization. 

At the same time, many users, especially those who are not familiar with the 
method, overestimate the accuracy of the very simple finite-difference schemes because 
they are not aware of the properties and limitations of the method. Moreover, due to 
inherent limitations of the method, mainly the difficulty to implement boundary 
conditions, its application to complex models still requires much more elaboration. 

Many users decide for one of relatively many finite-difference schemes and 
corresponding computer codes simply because they find the code simpler for the use 
than other codes (for example in terms of the theory behind or simplicity of the model 
preparation). Some of them do not realize that friendly or simply looking features of the 
finite-difference scheme and the computer code may be far from the sufficiently 
accurate modeling for a given problem. 

If the finite-difference method is used as the black-box method, which, 
unfortunately, is not so unusual case, the method can give considerably inaccurate 
results. 
 
More detailed introduction into the finite-difference method as well as a systematic 
exposition of the method for solving different types of the differential problem can be 
found in the mathematical textbooks or the topic-oriented monographs as, for example, 
Forsythe and Wasow (1960), Isaacson and Keller (1966), Richtmyer and Morton 
(1967), Mitchell and Griffiths (1994), Morton and Mayers (1994), Durran (1999). 

An introductory text on the application of the FD method to the seismic wave 
propagation and seismic motion modeling can be found in Moczo (1998). 
 
In this text we will include only the time-domain finite-difference modeling. An 
alternative approach, the frequency-domain finite-difference modeling, has not become 
so widely used in seismology. 
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The Principle of the Finite-difference (FD) Method 

 
The application of the method to a particular differential problem includes the 
following steps: 
 

a.   Construction of a discrete finite-difference model of the problem: 
 - coverage of the computational domain by a space-time grid, 
 - approximations to derivatives, functions, initial and/or boundary condition - 
    all at the grid points, 
 - construction of a system of the finite-difference (i.e., algebraic) equations 
 
b.   Analysis of the finite-difference model: 
 - consistency and order of the approximation 
 - stability 
 - convergence 
 
c. Numerical computations 

 
 

Grid 
 
Consider a computational domain in the four-dimensional space of variables (x, y, z, t). 
Cover this space by a grid of discrete points 
 

     ( , , , )I K L mx y z t  
 

given by 
 

0Ix x I xΔ= +  ,   0Ky y K yΔ= +  ,   0Lz z L zΔ= +  ,   0mt t m tΔ= +  , 
 

, , 0, 1, 2, ...
0,1,2,...

I K L
m

= ± ±
=

  

 
 
Here, xΔ , yΔ  and zΔ  are usually called grid spacings, and tΔ  is called time step 
since t usually represents time. If x, y and z are Cartesian coordinates, the corresponding 
spatial grid is a rectangular grid.  



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 4 

At the grid points a function ( , , , )u x y z t  is to be approximated by a grid function 
( , , , )I K L mU x y z t . A value of ( , , , )I K L mu x y z t  can be denoted by , ,

m
I K Lu  while 

approximation to , ,
m
I K Lu  can be denoted by , ,

m
I K LU . 

A spatial grid that is the most appropriate for the problem under consideration 
should be chosen. In many applications, the regular (uniform) rectangular grid with 
the grid spacings x y z hΔ Δ Δ= = =  is a natural and reasonable choice. Other types of 
grids, including non-uniform grids, for example, grids with a varying size of the grid 
spacing, discontinuous or combined grids with sudden change in size of the grid 
spacing, are used if they better accommodate geometry of the problem (e.g., shapes of 
material discontinuities) or if they simplify the finite-difference approximations to 
derivatives. We also recognize structured and unstructured grids. At a grid point of 
the structured grids we always know the neighboring grid points (for example, using 
some mathematical rule). At each grid point of the unstructured grid we need some 
additional information about the neighboring grid points. 
 
 

The FD Approximations to Derivatives 
 
Consider a function ( )Φ x  which has a  continuous first derivative. Then the following 
three expressions for the first derivative will give the same value of the derivative: 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

0 0
0 0

0 0
0 0

0 0
0 0

Φ ΦdΦ lim
d

Φ ΦdΦ lim
d

Φ ΦdΦ lim .
d 2

h

h

h

x h x
x

x h
x x h

x
x h

x h x h
x

x h

→

→

→

+ −
=

− −
=

+ − −
=

 (1) 

 
Because, however, in the finite-difference grid the size of h  is bounded by the size of 
the grid spacing (distance between two neighboring grid points in the x -direction in 
this case), the limits cannot be evaluated and a difference between the functional values 
at the grid points divided by the distance between the two points only approximates the 
value of the derivative. Obviously, in general, the three differences (finite differences or 
finite-difference formulas) will give different approximate values for the same 
derivative. Moreover, the use of a particular difference formula leads to a particular 
finite-difference (algebraic) equation. 
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While the two approximations, the so-called forward-difference formula 
 

 ( ) ( ) ( )0 0
0

Φ ΦdΦ
d

x h x
x

x h
+ −

=  (2) 

 
and the so-called backward-difference formula 
 

 ( ) ( ) ( )0 0
0

Φ ΦdΦ
d

x x h
x

x h
− −

=  (3) 

 
are the 1st -order approximations to the first derivative, the central-difference formula 
 

 ( ) ( ) ( )0 0
0

Φ ΦdΦ
d 2

x h x h
x

x h
+ − −

=  (4) 

 
is the 2nd-order approximation to the first derivative (because it is centered about the 
point at which the derivative is approximated). The three formulas can be easily 
obtained using Taylor expansions of functional values ( )0x hΦ +  and ( )0x hΦ −  about 
the point 0x . The order of approximation is determined by the truncation error 
(approximation error). For example, the 2nd-order approximation means that the leading 
term of the truncation error is proportional to 2h . 
 

It is possible to find higher-order approximations to derivatives. The procedure may 
be as follows (for example, Durran 1999): 

 
1. Choose the derivative (for example, the first derivative). 
 
2. Choose the grid points around the grid point at which the derivative is to be 
approximated (for example, 0x  - grid point at which the derivative is to be 
approximated, 0 0 0 02Δ , Δ , Δ , 2Δx x x x x x x x− − + +  - grid points you want to use to 
approximate the derivative). 
 
3. Choose the order of the approximation (for example, the 4th –order). 
In the chosen example, this means that the approximation should be 
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( )
( ) ( ) ( ) ( ) ( )

( )

0

0 0 0 0 0

4

Φ

Φ 2Δ Φ Δ Φ Φ Δ Φ 2Δ

Δ

x

a x x b x x c x d x x e x x

O x

′ =

+ + + + + − + −
⎡ ⎤+ ⎢ ⎥⎣ ⎦

 (5) 

 
with the unknown coefficients , , , ,a b c d e . The coefficients have to be determined so 
that the sum on the right-hand side eliminates all derivatives except the first derivative 
of function ( )Φ x . 
 
4. Write down a Taylor expansion for a point whose position differs from 0x  by 
increment h : 
 

 ( ) ( ) ( ) ( ) ( ) ( )
2 3 4

5
0 0 0 0 0 0Φ Φ Φ Φ Φ Φ

2 6 24
h h hx h x h x x x x O h⎡ ⎤′ ′′ ′′′ ′′′′+ = + + + + + ⎢ ⎥⎣ ⎦  . (6) 

 
 
5. Apply  2 , ,0, , 2x x x xΔ Δ Δ Δ− −  as values of h and construct a table 
 

 

0 1 2 3 4/ 2 / 6 / 24
2Δ 1 2 4 8 16
Δ 1 1 1 1 1
0 1 0 0 0 0
Δ 1 1 1 1 1
2Δ 1 2 4 8 16

coefficient valueof h h h h h h
a x
b x
c
d x
e x

− − −
− − −

 

 
6. Equate coefficients for equal powers of the argument increment and get equations 
for the unknown coefficients: 
 
 

 

0

1

2

3

4

: 0

: 2 2 1/Δ

/ 2 : 4 4 0

/ 6 : 8 8 0

/ 24 : 16 16 0

h a b c d e

h a b d e x

h a b d e

h a b d e

h a b d e

+ + + + =

+ − − =

+ + + =

+ − − =

+ + + =

 (7) 
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7. Solve the system of equations and get 
 

   1 2 2 10
12Δ 3Δ 3Δ 12Δ

a b c d e
x x x x

=− = = =− =  . (8) 

 
 
The finite-difference formula (5) can be written in the form 
 

  

( )

( ) ( ) ( ) ( )

( )

0

0 0 0 0

4

Φ

1 1 2Φ 2Δ Φ 2Δ Φ Δ Φ Δ
Δ 12 3

Δ

x

x x x x x x x x
x

O x

′ =
⎧ ⎫⎪ ⎪⎪ ⎪⎡ ⎤ ⎡ ⎤− + − − + + − −⎨ ⎬⎣ ⎦ ⎣ ⎦⎪ ⎪⎪ ⎪⎩ ⎭
⎡ ⎤+ ⎢ ⎥⎣ ⎦

 . (9) 

 
For higher-order FD approximations and FD approximations on arbitrary spaced grids 
see also Dablain (1986) and Fornberg (1988), respectively. 
 
 

Properties of the FD Equation 
 
The objective of the finite-difference method for solving an ordinary differential 
equation (ODE) or a partial differential equation (PDE) is to transform ODE or PDE 
into a finite-difference equation  (FDE, also FD scheme) or a system of FDE (i.e., to 
approximate ODE/PDE by FDE). 

The most important properties of the FDE are consistency, stability and 
convergence. These notions cover different aspects of the relation between the PDE and 
FDE, and the exact and numerical solutions of the PDE. 

First, consider the concept of consistency. Because the FDE is only an 
approximation to the PDE, the following property is required. 

An FDE is consistent with a PDE if the difference between the FDE and the PDE 
(i.e., the truncation error) vanishes as the sizes of the time step and spatial grid spacing 
go to zero independently. 

Note that no conditions on the time step and spatial grid spacing are required. The 
statement can be briefly written as        
 

0PDE FDE− →      if     Δ 0, 0t h→ →  .                                (10) 
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It may happen that the above condition is fulfilled only when certain relationship is 
satisfied between the size of the time step and the spatial grid spacing. We will say in 
such a case that the FDE is conditionally consistent. Obviously, if the truncation errors 
of the finite difference approximation to the exact derivatives in the PDE are known, 
then the proof of consistency is straightforward.  
 
Next, consider the concept of stability. If the exact solution of the PDE is unbounded, 
then the numerical solution must be unbounded too. If the exact solution of the PDE is 
bounded, it is reasonable to require that the numerical solution will be bounded too. 
Therefore, the concept of the stability can be defined as follows. 

An FDE is stable if it produces a bounded solution when the exact solution is 
bounded, and is unstable if it produces an unbounded solution when the exact 
solution is bounded. 

Briefly speaking, we know that the solution of the most physical problems is bounded. 
This can be proved analytically. Therefore, in such cases the solution of the FDE also 
must be bounded.  If the solution of the FDE is bounded for all values of the grid 
spacing, then the FDE is unconditionally stable.  If the solution of the FDE is bounded 
only for certain values of the grid spacing, then the FDE is conditionally stable.  The 
worst case is the last possibility: if the solution of the FDE is unbounded for all values 
of the grid spacing then the FDE is unconditionally unstable.   

The stability analysis can be performed only for a linear PDE. A nonlinear PDE 
must be first linearized locally. The FDE of the linearized PDE can be analyzed for 
stability. The most used method for the stability analysis is the von Neumann method. 

The last analyzed property of the FDE is the convergence. 
An FDE is convergent if the solution of the FDE approaches the exact solution of the 
PDE as the sizes of the time step and spatial grid spacing go to zero independently. 

Let us denote the solutions obtained by the PDE and FDE as uPDE   and uFDE , 
respectively. Then the convergence property can be expressed as   
 
 0PDE FDEu u− →      if     Δ 0, 0t h→ →  . (11) 
 
Note that consistency is property of the FDE. It relates the FDE to the PDE. The 
stability and convergence are properties of the numerical solution of the FDE. They 
relate to the method (scheme, algorithm) used to obtain the numerical solution. This is 
an important difference between the consistency on one hand, and the stability and 
convergence on the other. 

The proof of the convergence of an FDE solution is not a trivial problem, in 
general. Fortunately, the convergence is related to the consistency and the stability. It 
follows from Lax equivalence theorem that if the FDE is consistent and stable, then 
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the finite-difference method is convergent. Thus, the proof of the consistency and the 
stability is a sufficient condition for the convergence of an FDE solution. 

Further, we will use FD scheme instead of FDE. 
 
 

Explicit and Implicit FD Schemes 
 
In general, an FD scheme solving the equation of motion may be explicit or implicit. In 
the explicit schemes, the function (motion) at a given spatial grid point and time level is 
calculated only from the functional values (motion) at previous time levels and 
coefficients (material grid parameters). In the implicit schemes, the function at a given 
time level is calculated simultaneously at all spatial grid points from the functional 
values at previous time levels and coefficients using an inverse matrix. As pointed out, 
e.g., already by Kelly et al. (1976), the explicit schemes are computationally simpler. 
For example, all recent earthquake ground motion modeling studies use the explicit FD 
schemes. 
 
 

Homogeneous and Heterogeneous FD Schemes 
 
Motion in a smoothly heterogeneous elastic or viscoelastic continuum is governed by 
the equation of motion. The equation can be solved by a proper finite-difference 
scheme. 

As already mentioned, models of the Earth’s interior and surface geological 
structures have to include layers/blocks of different materials and thus also interfaces 
between them (that is, material discontinuities). If the medium contains a material 
discontinuity, i.e., an interface between two homogeneous or smoothly heterogeneous 
media, at which density and elastic moduli change discontinuously, the equation of 
motion still governs motion outside the discontinuity but boundary conditions apply at 
the discontinuity. Then a natural or, say, classical approach is to apply 

a) an FD scheme for the smoothly heterogeneous medium at grid points outside 
the material discontinuity, 
b) an FD scheme obtained by a proper discretization of the boundary conditions at 
grid points at or near the material discontinuity. 

Such an approach is called homogeneous. As already stressed by Boore (1972) and 
Kelly et al. (1976), a homogeneous FD scheme is specific for a particular problem. 
While it may be suitable for simple geometry of the material discontinuities, its 
application to complex models with curved material discontinuities is difficult and 
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therefore impractical. In any case, the approach requires stable and sufficiently accurate 
FD approximation to the boundary conditions which, in fact, is not a trivial problem.  

In the alternative heterogeneous approach only one FD scheme is used for all 
interior grid points (points not lying on boundaries of a grid), no matter what their 
positions are with respect to the material discontinuity. The presence of the material 
discontinuity is accounted for only by values of elastic moduli and density. Therefore, 
the heterogeneous approach has been much more popular since the beginning of 
seventies. There are, however, two fundamental questions in the heterogeneous 
approach: 

1) Is the heterogeneous approach justified? In other words, is it possible to find a 
heterogeneous formulation of the equation of motion, that is, the same form of the 
equation both for a point outside the material discontinuity and for a point at the 
material discontinuity? 
2) How should values be of the material parameters at grid points at and near the 
discontinuity determined? Strictly speaking, this question has sense only if there 
is a positive answer to the first question. 

Because recent seismology has to address structurally as realistic models of the Earth’s 
interior as possible, the problem of the heterogeneous FD schemes is of the 
fundamental importance. Surprisingly, it has not been addressed correspondingly until 
very recently. We will review the history of development in this respect later. 
 
 

Formulations of the Equations, Grids and FD Schemes 
 
The equation of motion and Hooke’s law (the stress-strain relation, constitutive law) 
together with the initial and/or boundary conditions fully describe a problem of seismic 
wave propagation and motion. If we keep the equation of motion separately from 
Hooke’s law, we can speak of the displacement-stress formulation. If we use particle 
velocity in the equation of motion, keep Hooke’s law, and add the definition of the 
particle velocity, we get the displacement-velocity-stress formulation. If we apply 
time derivative to Hooke’s law (instead of adding the particle-velocity definition), we 
have the velocity-stress formulation. In the fourth alternative we eliminate the stress-
tensor components by inserting Hooke’s law into the equation of motion. We obtain 
displacement formulation – the only one of the four with the second spatial derivatives. 

The most natural choice of the FD grid for the displacement formulation is the 
conventional grid in which all displacement and body-force components are located at 
each grid point. The most natural choice for the three other formulations is the 
staggered grid in which each displacement/particle-velocity component and each shear 
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stress-tensor component has its own grid position. The only but easily understandable 
exception is the same grid position for the three diagonal stress-tensor components. 

There are particular applications, e.g. anisotropic media or source dynamics, in 
which different grid positions for different stress-tensor components pose a 
considerable problem. Therefore, a partly-staggered grid has been also used. In this 
type of grid all displacement components share the same grid position and all the stress-
tensor components share some other grid position. 

The conventional grid had been used for more than ten years (for example, 
Alterman and Karal 1968, Kelly et al. 1976, and many others). The conventional-grid 
displacement FD schemes had problems with instabilities and grid dispersion in media 
with high Poisson’s ratio. The staggered grid was introduced by Madariaga (1976) who 
used it for the dynamic modeling of the earthquake rupture. A major progress in 
modeling of seismic wave propagation was done by Virieux (1984, 1986) who applied 
the staggered grid to the wave propagation problem. Bayliss et al. (1986) and Levander 
(1988) introduced the 4th-order staggered-grid FD schemes which are in 2D four times 
and in 3D eight times less memory requiring than the 2nd-order schemes. The staggered-
grid FD schemes have become the dominant type of schemes in the 3D FD modeling of 
seismic wave propagation and earthquake motion – for example Olsen and Schuster 
(1992), Graves (1993), Rodrigues (1993), Yomogida and Etgen (1993),  

Luo and Schuster (1990) suggested a parsimonious staggered-grid FD scheme for 
the P-SV wave, that is, the displacement-stress FD scheme. The displacement-stress 
scheme in 3D needs only 75% of the memory required by the velocity-stress FD 
scheme because the stress-tensor components are temporary quantities which are not 
stored in core memory. The displacement-stress FD scheme was then used by 
Rodrigues (1993), and Yomogida and Etgen (1993) who used the 8th-order 
approximation in space. Ohminato and Chouet (1997) applied the 2nd-order while 
Moczo et al. (2000, 2002) the 4th-order approximations. 

Saenger et al. (2000) and Saenger and Bohlen (2004) have recently promoted the 
use of the partly-staggered grid to account for heterogeneity and anisotropy. They 
called the grid rotated staggered grid because they obtained the FD spatial operator by 
the rotation of the standard staggered-grid operator. The term ‘rotated staggered grid’ 
can be a little bit misleading. If we assume one spatial grid position for the stress tensor 
and other position for the displacement vector, it is possible to find a variety of FD 
schemes - depending on the order of approximation. Only in one particular case the 
spatial FD operator can be obtained by the rotation of the standard staggered-grid 
operator, though it is also easy to obtain it without explicit consideration of the rotation.  

In seismology, the partly-staggered grid was probably first used by Andrews (1973) 
in his traction-at-split-node method for the fault rupture. Magnier et al. (1994) used the 
same grid as Andrews (1973) to develop an alternative (to the standard staggered-grid) 
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FD approximation to the spatial derivatives. Their intention was to solve limitations of 
the staggered grid FD schemes in the anisotropic media. Later, Zhang (1997) used the 
partly-staggered grid in his 2D velocity-stress FD modeling. 

While the reason to use the partly-staggered grid for the anisotropic media is 
obvious (all stress-tensor components located at the same grid position), the application 
of the grid to heterogeneous media requires more elaboration. 

Cruz-Atienza and Virieux (2004) applied an FD scheme for the partly-staggered 
grid to a problem of rupture propagation in 2D. 

 
The rectangular grid with a varying size of the grid spacings was first used by 

Boore (1970) in the 1D case. Mikumo and Miyatake (1987) used a grid with varying 
size of the grid spacing in the 3D case in a homogeneous medium. Moczo (1989), and 
Moczo and Bard (1993) applied the grid to the SH case in the laterally heterogeneous 
medium. The use of the spatial grid with varying size of the grid spacing in 3D was 
then promoted by Pitarka (1999) in the 4th-order staggered-grid velocity-stress 
modeling, and by Opršal and Zahradník (1999) in the 2nd-order conventional-grid 
displacement formulation. 

Jastram and Behle (1992), Falk et al. (1996), Moczo et al. (1996), Robertsson and 
Holliger (1997), Kristek et al. (1999), Aoi and Fujiwara (1999), and Hayashi et al. 
(2001) introduced discontinuous grids. A clever approach to combine two grids with 
different size of grid spacings was presented by Wang et al. (2001). 

In fact, the concept of the discontinuous grid is not restricted to the spatial grid. 
Falk et al. (1998) and Tessmer (2000) introduced a combined grid whose one part is 
solved using a smaller time step and the other by a larger time step. Kang and Baag 
(2004a,b) combined the concepts of spatial discontinuous grid and variable time step. 
They developed an efficient velocity-stress 2D and 3D velocity-stress FD schemes in 
which smaller time step is used in the finer spatial grid and larger time step in the three 
times coarser spatial grid. The proportionality of the time step to the grid spacing is due 
to the overlapping of the two grids in medium with a higher speed. An advantage of the 
approach by Kang and Baag (2004a,b) is that a finer grid can cover a rectangular region 
which may have a planar free surface. This makes it possible to efficiently model 
sedimentary basins or other localized surface soft inclusions. 
 
Let us at least briefly mention the approach of Geller and his co-workers although it 
deserves, in fact, a special chapter. Geller and Takeuchi (1995) developed a general 
criterion for optimally accurate numerical operators. The criterion was a basis for an 
optimally accurate time-domain FD scheme for 1D problem presented by Geller and 
Takeuchi (1998). Takeuchi and Geller (2000) then developed optimally accurate time-
domain FD operators for 2D and 3D problems. 
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1D Elastic Problem 
 
 

Coordinate System and Basic Quantities 
 
Although we start with the 1D problem here, we can specify a 3D coordinate system. In 
most cases a Cartesian coordinate system 1 2 3( , , )x x x  is used, possibly with the 1x -axis 
horizontal and positive to the right, and the 3x -axis positive downward. Let ( )ixρ ; 
{ }1, 2,3i ∈  be density, ( )ixκ  bulk modulus, and ( )ixμ  shear modulus. Alternatively, 

moduli ( )ixλ  and ( )ixμ  may be used. Let ( , )iu x t  be displacement vector, t time, 

( , )if x t  body force per unit volume, ( , )i j kx tτ ; { }, , 1, 2,3i j k ∈  stress-tensor, and 

( , )i j kx tε ; { }, , 1, 2,3i j k ∈  strain-tensors. (Further, 1 2 3, ,x x x  and  , ,x y z  will be used 
interchangeably; similarly, 1, 2, 3 and , ,x y z  in the subscripts of the stress-tensor 
components.) Here we use τ  for the stress. In the chapter on viscoelastic medium we 
will use σ  instead. 
 
 

Equation of Motion and Hooke’s Law 
 
Consider a perfectly elastic isotropic medium with density ρ  and Lamè’s elastic 
coefficients μ  and λ  being continuous functions of x . Then a plane wave propagation 
in the x-direction is described by the equation of motion and Hooke’s law in the 
 
displacement-stress formulation 
 
 , , ,x xd f C dρ τ τ= + =  (12) 
 
where either ( ),d x t  is the x-component of the displacement ( ),0,0u d , ( ),x tτ  the xx-

component of the stress tensor, ( ),f x t  the x-component of the body force per unit 

volume ( ),0,0f f  and ( ) ( ) ( )2C x x xλ μ= +  in the case of P wave, or ( ),d x t  is the 

y-component of the displacement ( )0, ,0u d , ( ),x tτ  the xy-component of the stress 

tensor, ( ),f x t  the y-component of the body force per unit volume ( )0, ,0f f  and 
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( ) ( )C x xμ=  in the case of the SH wave (since the coordinate system can always be 
rotated so that the S wave could be the SH wave). The dot above the symbol means the 
time derivative. The subscript  x in ,xτ  and ,xd  means the spatial derivative. 

As already indicated, the two equations (12) can be called the displacement-stress 
formulation of the equation of motion and the stress-strain relation. In developing a FD 
scheme for some problems it may be more advantageous to use one of the alternative 
formulations: 
 
displacement-velocity-stress formulation 
 
 , , , ,x xf d C dρυ τ υ τ= + = =  (13) 

 
velocity-stress formulation 
 
 , , ,x xf Cρυ τ τ υ= + =  (14) 

 
displacement formulation 
 
 ( ), ,x xd C d fρ = +  (15) 

 
with υ  denoting the particle velocity. 
 
 

Velocity-stress FD Schemes 
 
Equations (12) - (15) can be solved by the finite-difference method. Let h  and tΔ  be 
the grid spacing and time step. Let m

ID , m
IV , m

IT  and m
IF  be the discrete 

approximations to ( ),m
Id d Ih m tΔ= , ( ),m

I Ih m tυ υ Δ= , ( ),m
I Ih m tτ τ Δ=  and 

( ),m
If f Ih m tΔ= . 

Consider first the velocity-stress formulation (14) and omit for simplicity the body-
force term: 

   1 , , ,x xCυ τ τ υ
ρ

= =  . (16) 
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Here we closely follow the example given by Aki and Richards (1980). In addition to 
the example, we will also explain the von Neumann’s method of the stability analysis. 

Denoting also ( )I Ihρ ρ=  and ( )IC C Ih= , using the forward difference formula 
for the time derivative and the central difference formula for the spatial derivative we 
can approximate equations (16) by the following FD scheme: 
 

  ( ) ( )1
1 1

1 1 1
2

m m m m
I I I I

I
V V T T

t hρΔ
+

+ −− = −  , (17) 

 

   ( ) ( )1
1 1

1 1
2

m m m m
I I I I IT T C V V

t hΔ
+

+ −− = −  . (18) 

 
It is easy to check consistency of the scheme in the homogeneous medium. Check, for 
example, equation (17). Consider FD and differential operators 
 

 

   ( ) ( )1
1 1

1 1 1
2

m m m m
I I I I

I
L

t h
υ υ τ τ

ρΔ Δ
+

+ −= − − −  , 

 

    1( , ) , ( , )x
I

L Ih m t Ih m tυ τ
ρ

Δ Δ= −  . 

 

Substituting Taylor’s expansions for 1m
Iυ
+ , m

Iυ , 1
m
Iτ +  and 1

m
Iτ −  about ( , )Ih m tΔ  in LΔ  

we get 

       21( , ) , ( , ) ( ) ( )x
I

L Ih m t Ih m t O t O hυ τ
ρΔ Δ Δ Δ= − + +  

and 
2( ) ( ) 0L L O t O hΔ Δ− = − − →       when     , 0h tΔ →  . 

 
Similarly we could check consistency of equation (18). 

The FD scheme given by equations (17) and (18) is consistent with the differential 
equations (16). The scheme is 1st-order accurate in time and 2nd-order accurate in space. 

Let us check now stability of the scheme. Assume V and T in the form 
 
 exp ( )m

IT A i m t i k I hω Δ= − +  (19) 
and 
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 exp ( )m
IV B i m t i k I hω Δ= − +  (20) 

 
and investigate their propagation in the grid. Substitute equations (19) and (20) into the 
FD equations (17) and (18): 
 

[ ]exp ( ) 1 2 sin
2 I

tB i t A i k h
h

ω
ρ
Δ

Δ− − =  , 

[ ]exp ( ) 1 2 sin
2
IC tA i t B i kh
h

ω Δ
Δ− − =  . 

 
Eliminating B and A gives 
 

  [ ]
2

2 2exp ( ) 1 (sin )I

I

C ti t k h
h

ω
ρ

Δ
Δ

⎛ ⎞⎟⎜− − = − ⎟⎜ ⎟⎟⎜⎝ ⎠
 , 

1 2

exp ( ) 1 sinI

I

C ti t i k h
h

ω
ρ

Δ
Δ

⎛ ⎞⎟⎜ ⎟− = ± ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 , 

1 2

exp ( ) 1 sin 1I

I

C ti t i k h
h

ω
ρ

Δ
Δ

⎛ ⎞⎟⎜ ⎟− = ± >⎜ ⎟⎜ ⎟⎜⎝ ⎠
 . 

 
It follows from the inequality that ω  is complex. This means that the assumed solution 
grows exponentially with time. In other words, the FD scheme given by equations (17) 
and (18) is unstable. 

 
Try now to approximate υ  and τ  in equations (16) by the central-difference 

formula. We obtain 
 

 ( ) ( )1 1
1 1

1 1 1
2 2

m m m m
I I I I

I
V V T T

t hρΔ
+ −

+ −− = −  (21) 

and 

  ( ) ( )1 1
1 1

1 1
2 2

m m m m
I I I I IT T C V V

t hΔ
+ −

+ −− = −  . (22) 

 
The spatial positions of the particle velocity and stress are illustrated in Figure 1. 
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 Figure 1.  Conventional spatial grid for the velocity-stress FD scheme (21)-(22); 
 positions of the particle velocity V  and stress T . 

 
 
Substitute equations (19) and (20) into the FD equations (21) and (22), and obtain 
 

2
2 2

1 2

2 sin 2 sin

2 sin 2 sin

(sin ) (sin )

sin sin .

I

I

I

I

I

I

ti B t A i k h
h

C ti A t B i k h
h

C tt kh
h

C tt kh
h

ω
ρ

ω

ω
ρ

ω
ρ

Δ
Δ

Δ
Δ

Δ
Δ

Δ
Δ

− =

− =

⎛ ⎞⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠

⎛ ⎞⎟⎜ ⎟= ± ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 

 

Assume now that 
1 2

1I

I

C t
hρ
Δ⎛ ⎞⎟⎜ ⎟ ≤⎜ ⎟⎜ ⎟⎜⎝ ⎠

. 

Then 
      sin 1tωΔ ≤  
 
and consequently ω  is real. This means that the assumed solutions (19) and (20) do not 
grow with time. The FD scheme given by equations (21) and (22) is stable under 
condition 
 

  
I

ht
c

Δ ≤  (23) 

,  V T  

h

1−I I 1+I

h
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where 

                   
1 2

I
I

I

Cc
ρ

⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 . 

 
Condition (23) is called the stability condition. 

The FD scheme given by equations (21) and (22) is the velocity-stress FD scheme 
on a conventional grid. In view of the common FD schemes and the scheme’s 
properties such a scheme is not the most natural and certainly not the best – as it will be 
clear from the further exposition. 

Try now to use the central-difference formula over smaller grid distances - h and 
tΔ  instead of 2h and 2 tΔ , respectively. We get first 

 

   ( ) ( )1 2 1 2
1 2 1 2

1 1 1m m m m
I II I

I
V V T T

t hρΔ
+ −

+ −− = −  . (24) 

 
The approximation leads to the staggered-grid FD scheme: the grid position for T is 
shifted with respect to the grid position for V by 2h  in space and by 2tΔ  in time. 
Then equation (24) implies 
 

   ( ) ( )1 2 1 21
1 2 1 2 1 2 1

1 1 m mm m
I I I IIT T C V V

t hΔ
− −−

+ + + +− = −  . (25) 

 
The spatial positions of the particle velocity and stress are illustrated in Figure 2. 
 
The differencing over twice smaller grid distances implies that the leading term of the 
approximation error is now four times smaller than that in the scheme given by 
equations (21) and (22). In this case the stability analysis gives the relation 
 

  
1 2

1 2sin sin
2 2

I

I

Ct t k h
h

ω
ρ

Δ Δ+⎛ ⎞⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
 . (26) 

 
This means that the stability condition is the same as for the scheme given by equations 
(21) and (22). 

The physical meaning of the stability condition (23) is clear: The time step cannot 
be larger than the time necessary for any disturbance to propagate over the distance h. 
 
 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 19

 

 
 
 
 Figure 2.  Staggered spatial grid for the velocity-stress FD scheme (24)-(25); 
 positions of the particle velocity V  and stress T . 

 
 
Investigate now equation (26) since it gives the relation between ω  and k (angular 

frequency and wavenumber). Assume tΔ  and  h  small enough for the approximations 
 

        sin
2 2

t tω ωΔ Δ=     ,    sin
2 2

k h k h=  . 

 
Then it follows from (26) that 
 

   
1 2

1 2
0

I

I

C
c

k
ω

ρ
+⎛ ⎞⎟⎜ ⎟= =⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

 . (27) 

 
This means that for a small time step Δt and grid spacing h, equation (26) determines a 
correct local value of the phase velocity. The question is how small h should be in order 
to justify the approximate relation (27). Obviously h has to be related to a wavelength 
for which approximation (27) should be valid. 

Using 2k π λ=  we get from (26) relations for the actual grid phase and group 
velocities: 
 

            0arcsin singrid h t hc c
k t h h
ω λ π

π λ
Δ

Δ
⎛ ⎞⎟⎜= = ⎟⎜ ⎟⎟⎜⎝ ⎠

 , 

 

2h  

V  

1 2−I  

2h  2h  

I 1 2+I  1+I  

T
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0

1 22

0

cos

1 sin

grid
g

hc
v

k t hc
h

π
∂ω λ
∂ π

λ
Δ

= =
⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜− ⎟⎜⎢ ⎥⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

 . 

 
Assuming a homogeneous medium with phase velocity 0c , it is easy to see the 

dependence of gridc  and grid
gv  on a spatial sampling ratio h λ  and stability ratio 

0c t hΔ , i. e., the so-called grid dispersion, by plotting both velocities normalized by 

0c  as it is illustrated  in Figure 3. 

It is clear from Figure 3 that gridc  and grid
gv  are close to the true phase and group 

velocities if 0.1h λ<  . This means that at least 10 grid spacings h should be used to 
sample the wavelength  λ   in order to avoid the grid dispersion of the phase and group 
velocities for the wavelength λ . Relation 
 

 
10

h λ<  (28) 

 
may be called a spatial sampling criterion. Let minv  be a minimum velocity in a 
medium. Then, if we want to have our finite-difference computation sufficiently 
accurate up to the frequency acf , the grid spacing h has to satisfy the sampling 

criterion 

  
10

min

ac

vh
f

<  . (29) 

 
It is important to remind that the above sampling criterion has been obtained for the FD 
scheme which is just 2nd-order accurate in space. Approximation of spatial derivatives 
by a 4th-order FD formula would lead to a less severe sampling criterion – requiring 
approximately only five or six grid spacings per wavelength. 

Of course, the above considerations about the spatial sampling are not rigorous. The 
reason is obvious. If the grid velocity for some value of the spatial sampling ratio 
differs from the true velocity in the physical medium, the effect of the difference on the 
wave propagation is cumulative - it is proportional to the distance the wave has 
traveled. As a consequence, one has to quantitatively analyze the grid dispersion and 
determine a proper value of the spatial sampling ratio according to the travel distance 
that is to be included in simulation and a desired/necessary level of accuracy in terms of 
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 Figure 3.  Grid-dispersion curves for the velocity-stress FD scheme (24)-(25). 

h 

h 
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the grid dispersion. The above ‘visually guessed’ values are typical for recent 
earthquake ground motion modeling. 

For a detailed analysis of stability and grid dispersion in 2D and 3D cases see, for 
example, papers by Crase et al. (1992), Igel et al. (1995), Moczo et al. (2000). 
 
 

Von Neumann‘s Analysis of Stability 
 

The way we investigated the stability of the FD schemes in the previous section is 
acceptable but does not give a possibility to quantify a measure of (in)stability. This is 
possible with the von Neumann’s method. Because the stability is the key concept we 
will illustrate the von Neumann’s method on three examples: 

a. The unstable velocity-stress FD scheme on a conventional grid given by 
equations (17) and (18), 

b.  The stable velocity-stress FD scheme on a conventional grid given by equations 
(21) and (22), 

c. The stable velocity-stress FD scheme on a staggered grid given by equations 
(24) and (25). 

The method investigates the local stability – stability at one grid point. Von Neumann’s 
method assumes representation of a discrete solution at a time Δm t  and spatial point 
I h  by a finite Fourier series and examination of the stability of a Fourier component. 
The solution is stable if and only if each Fourier component is stable. The analysis is 
applicable to linear FDE with constant coefficients. A periodicity of the spatial domain 
is assumed for the finite Fourier series but the analysis can give a useful result even if 
this condition is not met. 
 
 
Example a. Recall the FD scheme (17)-(18): 
 

 
( ) ( )

( ) ( )

1
1 1

1
1 1

1 1 1
Δ 2
1 1 .
Δ 2

m m m m
I I I I

I

m m m m
I I I I I

V V T T
t ρ h

T T C V V
t h

+
+ −

+
+ −

− = −

− = −
 (30) 

 
Assume 

 
( )
( )

exp Δ

exp Δ .

m
I
m

I

V A i ωm t k I h

T B i ωm t k I h

= − +

= − +
 (31) 
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Equations (30) yield an explicit FD scheme for the unknown quantities 1m
IV +  and 

1m
IT + . In Von Neumann’s analysis we have to express unknown quantities using the 

known ones. From equations (31) we have 
 

 
( ) ( )( )1 1 exp exp

2 sin

m m m
I I I

m
I

T T T ikh ikh

T i kh

+ −− = − −

=
 (32) 

and, similarly, 
 

 1 1 2 sinm m m
I I IV V V i kh+ −− =  . (33) 

 
Inserting equations (32) and (33) into equations (30) gives 
 

 

1

1

1 Δ sin

Δ sin

m m m
I I I

I

m m m
I I I I

tV V T i kh
ρ h

tT T C V i kh
h

+

+

= +

= +
 

which may be rewritten as 
 

 
1

1

1 Δ

Δ

m m m
I I I

I
m m m

I I I I

V V i S T
ρ

T T C i S V

+

+

= +

= +
 (34) 

where 
 

  ΔΔ , sint S kh
h

= =  . (35) 

Define vector m
IU  

 
m

Im
I m

I

V

T

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

U  (36) 

 
and matrix G  

  
1 Δ /
Δ 1

I

I

i S ρ
C i S
⎡ ⎤
⎢ ⎥= ⎢ ⎥⎣ ⎦

G  . (37) 
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Then equations (34) may be written in the matrix form 
 
  1m m

I I
+ =U GU  . (38) 

 
G  is an amplification factor. It is determined by the form of the FD scheme. Because 
we deal with the FD scheme with constant coefficients, the amplification factor does 
not change with time. We can write 
 
  1 1 0m m

I I
+ +=U G U  . (39) 

 
Because 
 
 11 1 0 0mm m

I I I
++ += ≤U G U G U  

 
the discrete solution will be bounded if 
 
  1≤G . (40) 
 
Here,  means a norm of a matrix. Equation (40) is the sufficient condition for 
stability of the FD scheme (34). The von Neumann necessary condition of stability can 
be formulated using an absolute value of eigenvalues 1 2Λ , Λ  of the matrix G : 
 
  1,2max 1j jΛ= ≤  . 

 
Λ  is an eigenvalue of  the matrix G  if and only if the characteristic equation 
 
 [ ]det Λ 0− =G 1  (41) 
 
is satisfied. From equation (41) we get 
 

 ( )2 2 2 21 Λ Δ 0I

I

Ci S
ρ

− − =  

and 

    
1/ 2

1 Λ Δ I

I

Ci S
ρ

⎛ ⎞⎟⎜ ⎟− = ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 . 
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Then the eigenvalues of the matrix G  are 
 

  
1/ 2

1 2
ΔΛ , 1 sinI

I

Cti kh
h ρ

⎛ ⎞⎛ ⎞ ⎟⎜⎟⎜ ⎟= ± ⎜⎟⎜ ⎟⎟⎟⎜⎜ ⎟⎜⎝ ⎠⎝ ⎠
 . (42) 

 

It is clear from the equation that for any Δt
h

 there is 1 2, 1Λ >  . This means that FD 

scheme (30) is unconditionally unstable. 
 
 
Example b. Recall the FD scheme (21)-(22): 
 

 
( ) ( )

( ) ( )

1 1
1 1

1 1
1 1

1 1 1
2Δ 2
1 1 .

2Δ 2

m m m m
I I I I

I

m m m m
I I I I I

V V T T
t ρ h

T T C V V
t h

+ −
+ −

+ −
+ −

− = −

− = −
 (43) 

 
Assuming again m

IV  and m
IT  in the forms given by equations (31) we can substitute the 

right-hand sides of equations (43) by the expressions given by equations (32) and (33). 
We get 

 
1 1

1 1

1 Δ 2

Δ 2

m m m
I I I

I
m m m

I I I I

V V i S T
ρ

T T C i S V

+ −

+ −

= +

= +
 (44) 

 
with  Δ  and S  given by equations (35). Comparing equations (44) with equations (34) 
we can see that now the two unknown quantities 1m

IV +  and 1m
IT +  depend on four 

known quantities 1m
IV − , m

IV , 1m
IT −  and m

IT . In order to get a convenient matrix form as 
that in equation (38) we can consider two additional equations 
 
   m m

I IV V=     and    m m
I IT T=   . 

 
We can consider the following system of equations: 
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1 1

1 1

1 Δ 2

Δ 2

.

m m m
I I I

I
m m

I I
m m m

I I I I
m m

I I

V V i S T
ρ

V V

T T C i S V

T T

+ −

+ −

= +

=

= +

=

 (45) 

 
Define vector m

IU  

 
1

1

m
I
m

Im
I m

I
m

I

V

V

T

T

−

−

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥

= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

U  (46) 

 
and matrix G  
 

   

10 1 Δ 2 0

1 0 0 0
Δ 2 0 0 1
0 0 1 0

I

I

i S
ρ

C i S

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥= ⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

G  . (47) 

 
Then system of equations can be written in the matrix form 
 
   1m m

I I
+ =U GU  . (48) 

 
Similarly to the case of the equation (38) for the FDE (30) we get the characteristic 
equation 

  2 2 2 2 41 2Λ 4Δ Λ Λ 0I

I

C S
ρ

− + + =  . (49) 

 
Denoting 

 2 2Δ I

I

Ca S
ρ

=  (50) 

and 
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 2Ζ Λ=  (51) 
 
we can rewrite the above equation in the form 
 

( ) 21 4 2 Ζ Ζ 0a+ − + =  
from which we get 
 

     ( ) ( )1/ 22
1 2, 1 2 2Z a a a= − ± −  . (52) 

 
If  0 1a< ≤   then  1 2Ζ , 1≤  . Referring to equation (50) we see that the necessary 
condition of stability of the scheme (45) is 
 

  2 2Δ 1I

I

C S
ρ

≤  . 

  
Substituting Δ  and S  from equations (35) we get for the time step Δt  condition, that 
is, the stability condition 

  
1/ 2

Δ I

I

ρt h
C

⎛ ⎞⎟⎜ ⎟≤ ⎜ ⎟⎜ ⎟⎜⎝ ⎠
 . (53) 

 
The FD scheme (43) is conditionally stable. 
 
 
Example c.  Recall the FD scheme (24) and (25): 
 

 
( ) ( )

( ) ( )

1/ 2 1/ 2
1/ 2 1/ 2

1 1/ 2 1/ 2
1/ 2 1/ 2 1/ 2 1

1 1 1

1 1 .

m m m m
I I I i

I

m m m m
I I I I I

V V T T
t h

T T C V V
t h

ρΔ

Δ

+ −
+ −

+ + +
+ + + +

− = −

− = −
 (54) 

 
Let again m

IV  and  m
IT   have the form given by (31). Then we get 
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1/ 2 1/ 2

1/ 2 1/ 2 1/ 2
1 1/ 2

2 sin
2

2 sin .
2

m m m
I I I

m m m
I I I

khT T T i

khV V V i

+ −

+ + +
− +

− =

− =
 

 
Applying these equation to (54) we get 
 

 

1/ 2 1/ 2

1 1/ 2
1/ 2 1/ 2 1/ 2 1/ 2

1 2 sin
2

2 sin .
2

m m m
I I I

I

m m m
I I I I

t khV V T i
h
t khT T C V i

h

ρ
Δ

Δ

+ −

+ +
+ + + +

= +

= +
 (55) 

 
Because von Neumann’s analysis investigates the amplification factor of a function 
(scalar, vector or tensor) at the same grid point, we have to express the value of the 
particle velocity and stress at one grid point. This means that we have to reformulate the 
second equation of  (55) as follows 
 

 1/ 2 1/ 2 2 sin
2

m m m
I I I I

t khT T C V i
h
Δ+ −= +  . 

 
Again, as in the previous case, the two unknown quantities 1 2m

IV +  and  1 2m
IT +  depend 

on four known quantities m
IV , 1 2m

IV − , m
IT  and 1 2m

IT − . For the correct matrix 
representation, consider the following system of equations: 
 

 

1/ 2 1/ 2

1/ 2 1/ 2

1 2 sin
2

2 sin
2

.

m m m
I I I

I
m m

I I

m m m
I I I I

m m
I I

t khV V T i
h

V V
t khT T C V i

h
T T

ρ
Δ

Δ

+ −

+ −

= +

=

= +

=

 (56) 

 
Now the system of equations (56) can be written in the matrix form 
 
 1 2m m

II
+ =U GU  (57) 

where 
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1 2

1 2
1 2

10 1 2 0

1 0 0 0,
2 0 0 1

0 0 1 0

m
I

Im
Im

I m
I

Im
I

V i S

V

T C i S
T

ρ
Δ

Δ

+

+
+

⎡ ⎤⎡ ⎤ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥= =⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎢ ⎥⎣ ⎦

U G  

and 

 , sin
2

t khS
h
Δ

Δ= =  . 

 
The corresponding characteristic equation of matrix G  is 
 

 2 2 2 2 41 2 4 0I

I

C S
ρ

Λ Δ Λ Λ− + + =  (58) 

 
We can see that this equation is the same as the characteristic equation (49) in the 
previous example. The only difference is in the value of S . Therefore, we get the same 
stability condition (53) for the investigated scheme  
 

  
1/ 2

I

I
t h

C
ρ

Δ
⎛ ⎞⎟⎜ ⎟≤ ⎜ ⎟⎜ ⎟⎜⎝ ⎠

 . 

 
This means that the analyzed velocity-stress staggered-grid FD scheme (54) is 
conditionally stable. 
 
 

Material Grid Parameters 
 
Material (or medium) grid parameters ( )I I hρ ρ=  and ( )IC C I h=  used in the above 
equations can be understood as some appropriate discrete approximations to density 
and elastic modulus, respectively. If the medium is homogeneous, then, obviously, 

Iρ ρ=  and IC C=  for all grid points. If the medium is sufficiently smooth, local 
values of  ρ  and C  will give good results. If the medium is not sufficiently smooth, 
then it is not trivial and intuitively obvious how to determine values of Iρ  and IC . In 
the limit case we face a problem of having a material discontinuity in the medium 
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across which  ρ  and C  (or at least one of them) change discontinuously. This problem 
is of the fundamental importance and will be addressed in a special section. 
 
 

Staggered-grid FD Schemes – A Summary 
 

The velocity-stress FD schemes analyzed in the previous sections correspond to the 
velocity-stress formulation of the equation of motion and Hooke’s law. It can be 
anticipated that it is possible to find FD schemes for the other three mentioned 
formulations – displacement-stress, displacement-velocity-stress and displacement 
formulations. Here we show the best analyzed velocity-stress FD scheme given by 
equations (24) and (25) in the usual form with the updated variable on one side of the 
equation. Without analysis we also give the corresponding displacement-stress and 
displacement-velocity-stress FD schemes. A reader can realize some particular features 
of the different staggered-grid schemes by looking at them together. Note that in the 1D 
case there is no difference between the staggered grid and partly-staggered grid. 
 
 
Displacement-stress FD scheme - solves equations (12) 
 

 
( )

( )

1 2 1 2 1

2 2
1 1

1 2 1 2

1

12

m m m
I I I I

m m m m m m
I I I I I I

I I

T C D D
h

t tD D D T T F
hρ ρ
Δ Δ

+ + +

+ −
+ −

= −

= − + − +
 (59) 

 
 
Displacement-velocity-stress FD scheme- solves equations (13) 
 

 

( )
( )

1 2 1 2 1

1 2 1 2
1 2 1 2

1 21

1

1

m m m
I I I I

m m m m m
I I II I

I I
mm m

I I I

T C D D
h

t tV V T T F
h

D D t V

ρ ρ
Δ Δ

Δ

+ + +

+ −
+ −

++

= −

= + − +

= +

 (60) 

 
 
 
 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 31

Velocity-stress FD scheme- solves equations (14) 
 

 
( )
( )

1 2 1 21
1 2 1 2 1 2 1

1 2 1 2
1 2 1 2

1

m mm m
I I I II

m m m m m
I I II I

I I

tT T C V V
h

t tV V T T F
hρ ρ

Δ

Δ Δ

− −−
+ + + +

+ −
+ −

= + −

= + − +
 (61) 

 
All the above FD schemes are 2nd-order accurate both in time and space. 
 
 
Displacement FD scheme - solves equation (15). Finding an appropriate FD scheme for 
the displacement formulation is a little bit more difficult simply because the equation of 
motion is the 2nd-order partial differential equation and we have to approximate the 
derivative 
 
  ( ) ( ), , ,x xC x d x t⎡ ⎤⎣ ⎦  . (62) 

 
If we define an auxiliary function Φ , 
 
  ,xCdΦ=  , (63) 
 
derivative (62) becomes ,xΦ  and its 2nd-order approximation may be 
 

   1 2 1 2
1, ( )x I II h

Φ Φ Φ+ −= −  . (64) 

 
Find now approximations to 1 2IΦ +  and 1 2IΦ − . From equation (63) we have 

 

   ,xd
C
Φ =  . (65) 

 
Integrate equation (65) along the grid line between the points I  and 1I + : 
 

1 1( ) , ( )
( )

I I

I I

x x

x
x x

x dx d x dx
C x
Φ+ +

=∫ ∫  . 
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Applying the mean-value theorem to the left-hand side integral and approximating the 
mean value by 1 2IΦ + , we obtain 

 

   
1

1 2 1
1
( )

I

I

x

I I I
x

dx D D
C x

Φ
+

+ += −∫  . (66) 

 
Define an effective material grid parameter as an integral harmonic average 
 

  
1

1

1 2
1 1

( )

I

I

x
H
I

x

C dx
h C x

+
−

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
∫  . (67) 

 
Then we can rewrite equation (66) in the form 
 

 1 2 1
1 2

I I IH
I

h D D
C

Φ + +
+

= −  . 

 
Applying the equation at the time level m we get the approximation 
 

   ( )1 2 1 2 1
1 H m m

I I I IC D D
h

Φ + + += −  . (68) 

 
Now it is easy to obtain the displacement FD scheme solving equation (15): 
 

  ( ) ( )

1 1

2 2

1 2 1 1 2 12

2

1 .

m m m
I I I

H m m H m m m
I I I I I I I

I I

D D D

t tC D D C D D F
hρ ρ
Δ Δ

+ −

+ + − −

= −

⎡ ⎤+ − − − +⎢ ⎥⎣ ⎦
 (69) 

 
It is obvious that the two key points in obtaining the scheme were the integration of 
equation (65) and definition of the harmonic average (67) as the effective material 
grid parameter. Note that the integration leading to the integral harmonic averaging of 
the elastic modulus ( )C x  was originally suggested by Tikhonov and Samarskii (see, 
e.g., Boore 1972; Mitchell 1969, p. 23) as a mathematical tool to avoid the derivative of 
the modulus ( )C x  in approximating term (62) that appears in the displacement 
formulation of the equation of motion. The trick was used then by some authors in 2D 
and 3D modeling because they recognized good numerical results obtained with the 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 33

schemes obtained using the harmonic averaging. Obviously, the main problem is how 
to approximate the mixed-derivative term, for example, 
 

( ) ( ), , , , ,x zC x z d x z t⎡ ⎤⎣ ⎦  

 
that appears in the 2D and 3D cases. Probably the most accurate displacement schemes 
based on the trick were developed by Zahradník (1995), and Zahradník and Priolo 
(1995) for the 2D case. Moczo et al. (1999) generalized Zahradník’s approach in the 3D 
case. The schemes were shown to be sufficiently accurate in the heterogeneous media if 
the P-to-S wave velocity ratio was smaller than approximately 2.2 (Moczo et al. 1999). 

An important aspect is that in the above papers still the fundamental and true reason 
for the harmonic averaging in heterogeneous media was not recognized. We will clarify 
this in the next section. 
 
 

Contact of Two Media – A Material Discontinuity 
 
Because we have to include material discontinuities in models of the Earth’s interior as 
one of the principal features of the medium, the problem of incorporating the boundary 
conditions on material discontinuities is of fundamental importance as already noted in 
the section on the heterogeneous and homogeneous FD schemes. Before we analyze the 
problem, we give a brief historical overview of how the medium heterogeneity and 
material discontinuities were accounted for in the FD modeling of seismic wave 
propagation and seismic motion. 

In their pioneering work, Alterman and Karal (1968) used the displacement FD 
scheme and homogeneous approach for models with simple geometry of the material 
discontinuities. They introduced a concept of fictitious grid points in order to 
approximate boundary conditions on material discontinuities. 

Difficulties in application of the homogeneous approach to curved discontinuities 
led Boore (1972) to his explicit continuous stress method. Boore tried to explicitly 
include stress-continuity condition on discontinuities differently from the homogeneous 
and heterogeneous approaches. Due to poor numerical properties of the method Boore 
(1972) applied the heterogeneous approach in his SH modeling. In order to follow 
detailed variation of the torsion modulus and, at the same time, to avoid derivative of 
the modulus, he calculated effective grid moduli as integral harmonic averages along 
grid lines between two neighboring grid points as suggested by Tikhonov and 
Samarskii (see, e.g., Mitchell 1969, p.23).  
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Ilan et al. (1975), and Ilan and Loewenthal (1976) solved the P-SV problem on the 
horizontal and vertical planar discontinuities with the homogeneous approach. Instead 
of the fictitious grid points they used Taylor expansions of displacement to couple the 
equation of motion with the boundary conditions. 

Kelly et al. (1976) presented their heterogeneous P-SV schemes with simple 
intuitive averaging of material parameters. They compared the heterogeneous and 
homogeneous formulations using numerical tests and showed unacceptable difference 
between the two approaches in the case of the corner-edge model. 

Kummer and Behle (1982) followed the approach of Ilan et al. (1975) and derived 
the 2nd-order SH schemes for different types of grid points lying on the step-like 
polygonal discontinuity between two homogeneous blocks. 

A major step forward in the FD modeling of seismic wave propagation in 
heterogeneous media was made by Virieux (1984, 1986)  who used the idea of the 
staggered grid (Madariaga  1976). Although Virieux did not say explicitly how he 
determined material grid parameters in his heterogeneous 2nd-order SH and P-SV 
velocity-stress schemes, his numerical results, in general, were acceptable at that time. 
The accuracy of the staggered-grid schemes did not suffer from large values of 
Poisson’s ratio, which was the case of all displacement schemes on conventional grids. 
Virieux also discussed the discrepancy between the homogeneous and heterogeneous 
formulations found by Kelly et al. (1976). He found it difficult to explain features of the 
homogeneous solution. We consider this a likely indication of a problem to find a 
proper FD approximation to the boundary conditions. 

An attempt to incorporate boundary conditions into a displacement FD scheme was 
made by Sochacki et al. (1991). They a priori assumed validity of the equation of 
motion at the discontinuity, wrote the equation in divergence form, and integrated it 
across the discontinuity. Then they approximated the integrated equation of motion. 

Schoenberg and Muir (1989) developed calculus allowing one to replace a stack of 
thin flat anisotropic layers by an equivalent (in the long-wavelength limit) 
homogeneous anisotropic medium. In other words, they found Hooke’s law for an 
averaged medium. They did this to simplify modeling of wave propagation for seismic 
exploration and, at the same time, to account for anisotropy in sedimentary basins. Muir 
et al. (1992) applied the Schoenberg-Muir (1989) calculus to a grid cell that contains 
material discontinuity, i.e., in general, they treated contents of the cell as a stack of thin 
flat layers that can be averaged by the Schoenberg-Muir calculus. 

Zahradník and Priolo (1995) published a methodologically important work. They 
explicitly addressed the fundamental question – whether the heterogeneous approach is 
justified, i.e., whether it is possible to find a heterogeneous formulation of the equation 
of motion. Assuming a discontinuity in material parameters they obtained from the 
equation of motion an expression whose dominant term is equivalent to the traction 
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continuity condition. This result was interpreted as justification of the FD schemes 
constructed purely from equations of motion (without explicit treatment of the traction 
continuity).  

Graves (1996) suggested an intuitive method how to determine effective material 
grid parameters in the 3D 4th-order velocity-stress staggered-grid schemes and 
numerically demonstrated good level of accuracy. Graves’ (1996) paper is important 
because, as far as we know, it was the first one on the staggered-grid modeling which 
explicitly and clearly explained how the heterogeneity is taken into account. Similarly 
clear explanation of the material grid parameterization was given by Ohminato and 
Chouet (1997) for their 3D 2nd-order displacement-stress scheme. 

Takeuchi and Geller’s (2000) scheme based on optimally accurate FD operators 
allows for material discontinuity which coincides with the grid lines (2D) or planes 
(3D). Following the approach of Geller and Takeuchi (1995), Mizutani (2002) 
developed a scheme for medium with a material discontinuity not coinciding with the 
grid line (2D problem). 

Moczo et al. (2002) analyzed an 1D problem in a medium consisting of two 
halfspaces. They considered boundary conditions at a welded planar interface of two 
halfspaces. They showed simple physical models of the contact of two media and found 
an averaged medium representing the boundary conditions at the contact. They 
concluded the 1D case with a heterogeneous formulation of the equation of motion and 
Hooke’s law, and the corresponding heterogeneous FD scheme. Moczo et al. (2002) 
then analyzed the 3D problem, suggested a 4th-order heterogeneous staggered-grid FD 
scheme, and demonstrated its superior accuracy compared to the standard staggered-
grid FD schemes. 

 Here we closely follow the analysis of the 1D case given by Moczo et al. (2002). 
 
 
Welded interface between two halfspaces. Consider two elastic halfspaces with a 
welded interface in the plane 0x= . The wave propagation in the halfspace is described 
by equations (12) with density 1ρ  and modulus 1C  in one halfspace and 2ρ  and 2C  in 
the other halfspace. At the welded interface the continuity of displacement and traction 
apply: 
   ( ) ( ) ( ) ( )1 2 1 20 0 , 0 0d d τ τ= =  . (70) 
 
We look for a proper heterogeneous FD scheme. Because a FD scheme is nothing else 
than a discrete approximation to an original differential problem, first we have to find a 
heterogeneous formulation of the differential problem, that is, the same form of the 
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equation of motion and Hooke’s law for points at the material discontinuity and point 
outside the material discontinuity. 
 
 
Simple physical model. Behavior of a linear elastic body can be represented by 
behavior of a spring (Hooke element). The stress-strain relation for the spring is 
 
  Cτ ε=  . (71) 
 
A welded contact of two elastic bodies can be represented by a system of two springs 
connected in series. The stresses acting on the springs are equal, 
 
 1 2τ τ τ= =  (72) 
 
in agreement with the traction-continuity condition. The strains are additive: 
 
  1 2ε ε ε= +  . (73) 
 
In a heterogeneous FD scheme we may have a grid point located just at an interface. 
Such a grid point has to represent properly the welded contact. In terms of our simple 
model, the grid point has to represent some ‘average spring’ which would, at the same 
time, 

a. obey the same form of the stress-strain relation as is relation (71), 
b. satisfy equality of the stresses (72), that is, the boundary condition at the 

contact. 
This is equivalent to finding an average elastic modulus C  and average strain ε  such 
that the two connected identical springs with the same elastic moduli C  and the same 
strains ε  is an equivalent system to the considered system of two springs with moduli 

1C  and 2C  connected in series. Because the resultant strain ε  of the system of two 
identical springs connected in series is 2ε ε= , we get from equation (73) 
 

 
1 2

2
C C
τ τε = +  

from which easily follows 
 
  Cτ ε= , (74) 
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where 

 ( )1 2
1
2

ε ε ε= +  (75) 

and 

 1 2

1 2

1 2

22
1 1

C CC
C C

C C

= =
++

 . (76) 

 
Relations (74) – (76) show that it is possible to find an average spring which satisfies 
the two conditions a. and b. The fundamental finding is that the elastic modulus of the 
average spring is the harmonic average of the elastic moduli of the two connected 
springs. 

In the elastodynamic problem we also have to include the acceleration. Consider a 
system of two connected particles with masses 1m  and 2m . The particles move 
together, i.e., they have the same acceleration (which is in agreement with the 
displacement continuity at the welded contact of two media) 
 
  1 2a a a= =  . (77) 
 
The forces acting on the particles are 
  
  1 1 2 2,F m a F m a= = . (78) 
 
The resultant force F  acting on the system is 
 
  1 2F F F= +  . (79) 
 
We want to find such an average mass m  and average force F  that the system of two 

connected particles of the same mass m  and subject to the same forces F  is an 
equivalent system to the considered system of two particles of masses 1m  and 2m . 

Since the resultant force F  of the equivalent system is 2F F=  , we get from 
equations (78) and (79) 
 

 1 22 F m a m a= +  , 
 

from which it immediately follows 
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   F m a=  , (80) 
 
where 

 ( )1 2
1
2

F F F= +  (81) 

 
and 

   ( )1 2
1
2

m m m= +  . (82) 

 
We see that it is possible to find an average particle which obeys the same law as any of 
the particles, equations (78), and, at the same time, satisfies the condition of equality of 
the accelerations (77). An important finding is that the mass of the average particle is 
the arithmetic average of the masses of the two connected particles. 

Applying this result to unit volumes of a continuum with densities 1ρ  and 2ρ  we 
get 

 F aρ=  (83) 
and 

  ( )1 2
1
2

ρ ρ ρ= +  . (84) 

 
Both above considerations on the simple physical models can be mathematically 

unified. Let ( )i xϕ , ( )ic x  and ( ) { };  1, 2ig x i ∈ , be real functions of a real argument x  
such that 

 
( ) ( ) ( )
( ) ( ) ( )

1 1 1

2 2 2

x c x g x

x c x g x

ϕ

ϕ

=

=
 (85) 

and 
  ( ) ( )1 20 0ϕ ϕ=  . (86) 

 
Functions ic  and ig  may have discontinuities of the first order at 0x= . Define 
 

  ( ) ( ) ( )1 2
10 0 0
2

g g g⎡ ⎤= +⎣ ⎦  . (87) 

 
Then it is easy to show that 
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   ( ) ( ) ( ) ( )1 20 0 0 0c gϕ ϕ= =  , (88) 

 
where 

  ( )

( ) ( )

( ) ( )
( ) ( )
1 2

1 2

1 2

2 0 020 1 1 0 0
0 0

c c
c

c c
c c

= =
++

 . (89) 

If 

 ( ) ( ) ( ) ( )1 2
1 2

1 1,c x c x
r x r x

= =  (90) 

we have 

   ( ) ( ) ( ) ( )1 2
10 0 0
0

g
r

ϕ ϕ= =  , (91) 

where 

  ( ) ( ) ( )1 2
10 0 0
2

r r r⎡ ⎤= +⎣ ⎦  . (92) 

 
 
Heterogeneous formulation of the equation of motion and Hooke’s law. Recalling 
equations (12), that is, the displacement-stress formulation, we can write the entire set 
of differential equations for both halfspaces and boundary conditions for the material 
discontinuity, that is, for the interface between the two halfspaces at 0x= : 
 

 
( )

( )

1 1 1 1 1 1
1

2 2 2 2 2 2
2

1 , , ,

1 , , ,

x x

x x

d f C d

d f C d

τ τ
ρ

τ τ
ρ

= + =

= + =
 (93) 

 
 
  ( ) ( ) ( ) ( )1 2 1 20 0 , 0 0d d τ τ= =  . (94) 
 
Then, based on the previous analysis, we can replace the boundary conditions by the 
same form of the equation of motion and Hooke’s law as we have for each of the 
halfspaces: 

 ( ) ( ) ( ) ( )10 , 0 0
0 xd fτ

ρ
⎡ ⎤= +⎢ ⎥⎣ ⎦  (95) 
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   ( ) ( ) ( )0 0 , 0xC dτ =  , (96) 
where 

 ( ) ( ) ( )1 2
10 0 0
2

ρ ρ ρ⎡ ⎤= +⎢ ⎥⎣ ⎦  (97) 

 

 ( )

( ) ( )1 2

20 1 1
0 0

C

C C

=
+

  (98) 

 

 ( ) ( ) ( )1 2 1 2
1, 0 (0) , 0 , 0 (0) (0)
2x x xf f fτ τ τ⎡ ⎤+ = + + +⎣ ⎦   (99) 

 

  ( ) ( ) ( )1 2
1, 0 , 0 , 0
2x x xd d d⎡ ⎤= +⎣ ⎦  . (100) 

 
Looking at equations (95) and (96) it is obvious that we have one and the same form of 
the equation of motion and Hooke’s law for all spatial points – no matter what is their 
position with respect to the material discontinuity. In other words, we have the 
heterogeneous formulation of the differential problem, and thus the basis for finding its 
FD approximation (that is, a proper FD scheme). 

Now it is more obvious that suggesting heterogeneous FD schemes over decades 
without having the heterogeneous formulation of the differential problem was just 
intuitive guessing even for the relatively simple 1D problem. 
 
 
Heterogeneous FD schemes. Having the heterogeneous formulation of the differential 
problem still we can have different FD schemes to approximate it. Of course, the 
schemes may differ for example by the spatial grid and order of approximation in space 
and time. There are, however, two important aspects: 
- the harmonic averaging of the elastic moduli and arithmetic averaging of densities at 
the material discontinuity, 
- averaging of the spatial derivatives of the functions at the material discontinuity. 
Only more detailed analysis or numerical tests can reveal, which of the two aspects is 
more important. 

Without going into details (see Moczo et al. 2002), the following staggered-grid FD 
scheme gives sufficient accuracy in a sense that it is capable ‘to see’ a true position of 
the material discontinuity in the grid; the discontinuity may be located at any grid point 
or anywhere between two neighboring grid points: 
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Displacement-stress FD scheme 
 

  
( )

( )

1 2 1 2 1

2 2
1 1

1 2 1 2

1

12 ,

m H m m
I I I I

m m m m m m
I I I I I IA A

I I

T C D D
h

t tD D D T T F
hρ ρ
Δ Δ

+ + +

+ −
+ −

= −

= − + − +
 (101) 

 
where 

 ( )
1 2

1 2

1 I

I

x
A
I

x

x dx
h

ρ ρ
+

−

= ∫  (102) 

and 

  
1

1

1 2
1 1

( )

I

I

x
H
I

x

C dx
h C x

+
−

+

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦
∫  . (103) 

 
In principle, the integral averaging allows both for smooth variation and discontinuous 
variation of the elastic modulus and density. Moczo et al. (2002) numerically tested 
accuracy of the scheme in media with material discontinuity and smoothly 
heterogeneous media. The FD scheme with arithmetic averaging of the density and 
harmonic averaging of the elastic modulus ‘can see’ the true position of the material 
discontinuity no matter whether the discontinuity goes through a grid point or not. Even 
for the smooth heterogeneity without material discontinuities it is much better to use 
scheme (101). 

We see that, in fact, this FD scheme differs from scheme (59) only by the definition 
of the effective grid modulus and density. 

Analogously to the displacement-stress FD scheme it is possible to obtain 
displacement-velocity-stress and velocity-stress FD schemes derived from the 
corresponding heterogeneous differential formulations. The schemes read 
 
Displacement-velocity-stress FD scheme 
 

 

( )
( )

1 2 1 2 1

1 2 1 2
1 2 1 2

1 21

1

1

m H m m
I I I I

m m m m m
I I II I A A

I I
mm m

I I I

T C D D
h

t tV V T T F
h

D D tV

ρ ρ
Δ Δ

Δ

+ + +

+ −
+ −

++

= −

= + − +

= +

 (104) 
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Velocity-stress FD scheme 
 

 
( )
( )

1 2 1 21
1 2 1 2 1 2 1

1 2 1 2
1 2 1 2

1

m mm m H
I I I II

m m m m m
I I II I A A

I I

tT T C V V
h

t tV V T T F
hρ ρ

Δ

Δ Δ

− −−
+ + + +

+ −
+ −

= + −

= + − +
 (105) 

 
Let us note that we numerically compared accuracy of the interior FD schemes (101) - 
(105) and found no differences. 

While schemes (101) - (105) are the 2nd-order accurate in space, it is possible to 
have schemes of the higher-order in space and time. However, while, for example, the 
4th-order in space reduces the memory requirements due to approximately twice smaller 
number of grid spacings required per wavelength (therefore – twice larger grid spacing 
compared to the 2nd-order), the 4th-order in time does not comparably reduce the time 
step but, obviously, increases the number of time levels which have to be kept in core 
memory for updating the next time level. 

An example of the 4th-order velocity-stress scheme is 
 

   

( ) ( )

( ) ( )

1
1 2 1 2

1 2 1 2 1 2 1 2
1 2 2 1 1

1 2 1 2

3 2 3 2 1 2 1 2
1

1 24 , 9 8 .

m m
I I

m m m mH
I II I I

m m
I I

m m m m m
I I I I IA A

I I

T T

tC a V V b V V
h

V V
t ta T T b T T F

h

a b

ρ ρ

Δ

Δ Δ

−
+ +

− − − −
+ + − +

+ −

+ − + −

=

⎡ ⎤+ − + −⎢ ⎥⎣ ⎦

=

⎡ ⎤+ − + − +⎢ ⎥⎣ ⎦

=− =
 (106) 

 
In the case of the displacement scheme, it is the same as scheme (69) except the 
definition of the effective grid density. 

Note that averaging is performed over one grid spacing. Consider first a material 
discontinuity between two homogeneous media. If the material discontinuity is exactly 
at a grid position of the displacement/particle velocity, the only averaged material grid 
parameter is the density assigned to the grid position. If the discontinuity is exactly at a 
grid position of the stress, the only averaged material grid parameter is the elastic 
modulus assigned to the grid position. If the discontinuity is anywhere between the grid 
position of the displacement/particle velocity and the grid position of the stress, then 
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there are two material parameters averaged – the density assigned to the nearest grid 
position of displacement/particle velocity, and the elastic modulus assigned to the 
nearest grid position of the stress.  Obviously, if the medium is smoothly heterogeneous 
or it consists of smoothly heterogeneous blocks separated by material discontinuities, 
averaged densities and averaged elastic moduli are assigned to all grid positions.  The 
values of averaged densities and elastic moduli are, in general, calculated by numerical 
integration performed over distance of one grid spacing and centered about the grid 
position to which the averaged parameter is to be assigned. 

The accuracy of the described FD scheme as well as inaccuracy of schemes with 
other than arithmetic averaging of the density and harmonic averaging of the elastic 
modulus are demonstrated in the results presented in the chapter on numerical 
examples. The results were obtained using the 1DFD program package that is a part of 
this introduction.  

Also note that while the reason for definition of the integral harmonic average of the 
elastic modulus (67) in the derivation of the displacement FD scheme was the 
Tikhonov-Samarski’s trick to avoid spatial differentiating of the modulus, we obtained 
the harmonic averaging as a necessary condition for the traction continuity at the 
material discontinuity in the heterogeneous formulation of the differential problem. 
Similarly, we obtained arithmetic averaging of the density as the necessary condition 
for displacement continuity at the material discontinuity. 
 
 

Free Surface 
 
Consider a free surface at 0x=  and medium at 0x≥ . At the free surface, traction is 
zero. In our simple 1D case this means that stress 0τ = . Recall, for example, the 
velocity-stress formulation of the equation of motion and Hooke’s law: 
 
  , , ,x xf Cρυ τ τ υ= + =  . 
 
Because we usually are interested in computing particle velocity at the free surface, 
locate the grid position for the particle velocity just at the free surface, grid index 

0I = , and thus the nearest grid position for the stress is half grid spacing from the free 
surface inside the medium, grid index 1 2I = , see Figure 4. 

It is obvious that if we want to use the FD scheme for the interior grid point, the 
scheme for updating the particle velocity, the second of equations (105), needs value 

1 2
mT− , that is, half grid spacing beyond the free surface (outside the medium), see Figure 

5. 
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 Figure 4.  Position of the free surface in the staggered spatial grid for the 

velocity-stress FD scheme. 
 
 
 

 
 
 
 Figure 5.  Free surface and the position of the virtual stress outside the medium. 
 
 
 

Levander (1988) suggested a technique which can be called the (antisymmetric) 
stress imaging. The idea is: if we assume 
 

 ( ) ( )2 2h hτ τ− =−  , 
that is, 

 1 2 1 2
m mT T− =−  , 

 

2h  

V  

0  

h  

1 2  1 T  

mediumvacuum

0  
x  

V  

1 2−  0  1 2  

T  

virtual  T  

mediumvacuum 
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we ensure that 
 

( )0 0τ = , 
 

which is the traction-free boundary condition at the free surface. 
Kristek et al. (2002) demonstrated that in the 3D case the stress-imaging technique 

in the 4th-order FD modeling needs at least twice more grid spacings per wavelength 
compared to what is enough inside the medium if the Rayleigh waves are to be 
propagated without significant grid dispersion even in the case of the simple 
homogeneous halfspace. Obviously, taking twice more grid spacings per wavelength 
degrades, in fact, the 4th-order scheme down to, approximately, the 2nd-order one. 

Therefore, Rodrigues (1993) who had made the same (unpublished) conclusions on 
the stress-imaging technique, suggested applying the stress imaging to the grid 
vertically refined near the free surface. His approach is explained in the paper by 
Kristek et al. (2002) and numerically tested. The technique gives the 4th-order accuracy, 
however, requires three times smaller time step. The consequence is three times more 
time levels to be computed compared to the regular staggered-grid scheme. (The factor 
of 3 comes from the most natural refinement of the staggered-grid; see, for example 
Kristek et al., 2002. For the other possible refinement see Wang et al., 2001.) 

In order to keep both the 4th-order accuracy and computational efficiency, Kristek et 
al. (2002) developed a technique based on the adjusted FD approximations, the AFDA 
technique. The principle of their technique is: 

-  directly prescribed zero values of the stress-tensor components at the free 
surface (in 2D or 3D, there is always at least one stress-tensor component 
located at the free surface), 

- application of the 4th-order FD approximations which only use the values at the 
grid positions inside the medium. 

Obviously, no stress imaging, that is, no virtual values above the free surface, are 
necessary. 

For updating 1 2
0
mV +  we can obtain the following 2nd-order scheme 

 

   1 2 1 2
1 2 3 20 0

0

1 13
3

m m m m
A

tV V T T
hρ
Δ+ − ⎛ ⎞⎟⎜= + − ⎟⎜ ⎟⎟⎜⎝ ⎠

 , 

 
where 

 ( )
2

0
0

2
h

A x dx
h

ρ ρ= ∫  . 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 46 

Note that the density is averaged only over the half grid spacing inside the medium. 
The 4th-order scheme is 

 

 1 2 1 2
1 2 3 2 5 2 7 20 0

0

1 35 35 21 5
8 24 40 56

m m m m m m
A

tV V T T T T
hρ
Δ+ − ⎛ ⎞⎟⎜= + − + − ⎟⎜ ⎟⎟⎜⎝ ⎠

 . 

 
In both above schemes we directly used the boundary condition ( )0 0τ = , that is, 

0 0mT = . 
In the case of the 4th-order scheme also derivatives at other grid positions have to be 

approximated by the adjusted FD approximations – see Kristek et al. (2002) or Moczo 
et al. (2004) for the complete FD scheme. 

Moczo et al. (2004) demonstrated very good accuracy of the AFDA technique even 
in the models with lateral material discontinuities reaching the free surface. 
 
Simulation of the traction-free condition along a nonplanar 2D or 3D surface is much 
more difficult task. This is not surprising due to the definition of the FD method. In 
other words, it is an inherent problem of the method. Until now no really satisfactory 
technique has been found. For a review of different approaches until 1996 see 
Robertsson (1996), Moczo et al. (1997), Ohminato and Chouet (1997), and Robertsson 
and Holliger (1997). Recent development can be found, for example, in papers by 
Hestholm (1999), Mittet (2002), Laws and Kragh (2002), Hestholm and Ruud (2002). 
 
 

Wave Excitation 
 
It is obvious that the body-force term in the equation of motion can be used to simulate 
source. In principle, it is enough to prescribe a desired source-time function and apply it 
at the grid position of the displacement or particle velocity. 

The wavefield excitation is more complicated in 3D. A detailed explanation, based 
on approaches by Alterman and Karal (1968), Fäh (1992), Frankel (1993), Zahradník 
(1995a), Zahradník and Moczo (1996), Graves (1996), and Moczo et al. (1997) can be 
found in the introductory text by Moczo (1998). 

For the alternative approaches see Yomogida and Etgen (1993) and Coutant et al. 
(1995). 

Here we do not refer to the dynamic source modeling which would deserve a 
special chapter. 
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Boundaries of the Grid 
 
The spatial FD grid has to have a finite size. Therefore it is bounded by artificial 
boundaries – for example grid planes which do not have neighbor grid points from one 
side. The boundaries of the grid should be designed so that they would represent the 
interaction of the wavefield inside the computational domain, covered by the grid, with 
the medium outside. In principle, the boundary of the grid may be anything between 
two extreme possibilities – absolutely reflecting or absolutely transparent. One 
possibility might be, for example, the boundary coinciding with a material 
discontinuity. A special case is a plane of symmetry. 

In most cases, however, the boundary is placed so that it should be transparent for 
waves impinging on the boundary from inside the medium. We can speak about 
nonreflecting or absorbing boundaries (or absorbing boundary conditions, ABC). In 
the FD method such a boundary can be only approximated. 

A large number of approximations to the nonreflecting boundaries have been 
developed. There are based on several ideas but, basically, most of them fall into one of 
two groups: 

- a finite boundary zone in which the wave is gradually attenuated, 
- an approximation to one-way wave equation at the boundary grid point (or several 

points – depending on the order of the scheme). 
 
Examples of the first approach are papers by Israeli and Orszag (1981), Korn and 
Stöckl (1982), Cerjan et al. (1985), Kosloff and Kosloff (1986), Sochacki et al. (1987),  
Bérenger (1994), Chew and Liu (1996), Collino and Tsogka (1998, 2001), Chen et al. 
(2000), Komatitsch and Tromp (2003), Festa and Nielsen (2003). The papers by 
Bérenger introduced the Perfectly Matched Layers (PML) that have recently become 
very popular because it is probably so far the best tool to prevent artificial reflections 
from the grid boundaries; see three latter papers. 
 
Examples of the second approach are papers by Lysmer and Kuhlemeyer (1969), 
Lindman (1975), Engquist and Majda (1977), Clayton and Engquist (1977), Reynolds 
(1978), Emmerman and Stephen (1983), Higdon (1990, 1991, 1992, 1994), Randall 
(1988), Stacey (1988), Peng and Toksöz (1994, 1995), Renaut and Petersen (1989), Zhu 
(1999), Liu and Archuleta (2000), Givoli (2004). 

The approach is to apply a paraxial (one-way) wave equation at the grid boundary 
since such an equation only permits energy propagation in a limited range of angles. An 
example of the 1st-order paraxial equation can be the equation for the SH-wave 
propagating in the x-direction, 
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1 , 0xd d
c
+ =  . 

 

Paraxial equations can be replaced by the FD schemes which are then applied at the 
boundary. For years the formulas obtained by Clayton and Engquist (1977), the A1 
formulas, had been the most popular and used. Emerman and Stephen (1983) showed 
that the Clayton and Engquist’s condition is unstable for 0.46β α < . Here, β  and α  
are the S- and P-wave velocities. Stacey (1988) showed stability of his condition for 

2.2α β < . Emerman and Stephen (1983) suggested a modification of the Clayton and 
Engquist (1977) condition which is stable for any 0β α > . 

Another approach is based on minimizing the coefficient of reflection at the 
artificial boundary such as in Reynolds (1978) and Peng and Toksöz (1994, 1995). 

Higdon (1991) developed an approximation of the absorbing boundary condition 
that is based on the composition of simple 1st-order differential operators. Each operator 
gives perfect absorption for a plane wave impinging on the boundary at certain velocity 
and angle of incidence. 

Recently, Liu and Archuleta (2000) combined the Clayton-Engquist’s A1 formulas 
with those by Higdon (1991) and obtained a well-working nonreflecting boundary. 
Their formulas are given in Moczo et al. (2002). 

Here we show several nonreflecting boundaries in a unified representation. As in 
the previous sections, we only include the 1D case. 
 
We finish with a unified representation of several boundary conditions. Consider a 
nonreflecting boundary at 0x= , that is at the grid position with index 0. A 
displacement value 1

0
mD +  can be updated according to the formula 

 

 

1 1 1
0 01 1 02 2

10 0 11 1 12 2

1 1 1
20 0 21 1 22 2 ,

m m m

m m m

m m m

D A D A D

A D A D A D

A D A D A D

+ + +

− − −

= +

+ + +

+ + +

 (107) 

 
where the coefficients pqA ; , {0,1, 2}p q ∈  are given in Table 1. In the table, tΔ  is the 
time step, h is the grid spacing, c is the velocity, and 
 
 
 
 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 49

 

 

( )
( )

1

1

1

/

1 /

/

1

1
1

/
0.4 .

x

t

xt

t

xt

h bG B G

h bG B G

h b B

c
c

G
B b

c t h
b

γ

γ
γ

γ

γ Δ

= − ⋅

= − ⋅

=

= −
=

= +
= −
=
=

 (108) 

 
The formulas (108) are simplified for the 1D case. Non-simplified formulas are given in 
Moczo et al. (2002). 

The formula (107) is applicable to the particle velocity if the velocity-stress FD 
scheme is used. If the displacement-velocity-stress FD scheme is used, it is possible to 
apply the formula to either the displacement or particle velocity. 
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Table 1. 
Coefficients of the absorbing boundary conditions (107) 

 
 

 Clayton & 
Engquist (A1) 

1977 

Reynolds 
 

1978 

Emerman 
& Stephen 

1983 

Liu & 
Archuleta 
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00A  0 0 0 0 

01A  0 0 
t h c
t h c

Δ
Δ

−
+

 1xh  
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Δ−  1 c t

h
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2 h c
t h cΔ +

 1 1t tc h+  
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2 h c
t h cΔ +

 1 1xt xt x tc h h c+ −
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Δ
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−
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Incorporation of the Realistic Attenuation 

 
 

Stress-Strain Relation in Viscoelastic Medium 
 
There are two key points which determine the incorporation of the attenuation into 
time-domain computations of seismic wave propagation and seismic motion: 
 

1. Earth’s materials remember their past, that is, the stress-strain relation also 
depends on time. This is due to the fact that the behavior of the material combines 
behaviors of both, elastic solids and viscous fluids. We can approximate such a 
behavior using viscoelastic models of medium. 
2. The observations show that the internal friction (a measure of attenuation) in the 
Earth, 1Q− , is nearly constant over the seismic frequency range. This is due to the 
fact that the Earth’s material is composed of different minerals and the attenuation 
in each of them is contributed by several physical processes. 
 

For a linear isotropic viscoelastic material the stress-strain relation is given by 
Boltzmann superposition and causality principle. In a simple scalar notation it is 

 

  ( ) ( ) ( )
t

t t dσ ψ τ ε τ τ
−∞

= −∫ , (109) 

 
where ( )tσ  is stress, ( )tε  time derivative of strain, and ( )tψ  stress relaxation 
function defined as a stress response to Heaviside unit step function in strain. 
According to equation (109), the stress at a given time t  is determined by the entire 
history of the strain until time t . The upper integration limit ensures the causality. 
Mathematically, the integral in equation (109), also called the hereditary integral, 
represents a time convolution of the relaxation function and strain rate. We can use 
symbol ∗  for the convolution. Equation (109) becomes 
 
 ( ) ( ) ( )t t tσ ψ ε= ∗  . (110) 
 
Due to properties of convolution, 
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 ( ) ( ) ( )t t tσ ψ ε= ∗  . (111) 
 
Since ( )tψ  is the stress response to a unit step function in strain, its time derivative, 
 
 ( ) ( )M t tψ=  (112) 
 
is the stress response to the Dirac δ -function in strain. Equation (111) can be written as 
 
 ( ) ( ) ( )t M t tσ ε= ∗  . (113) 

Hereafter we will use symbol F for the direct and F -1 for the inverse Fourier 
transforms 
 

 F ( ){ } ( ) ( )expx t x t i t dtω
∞

−∞

= −∫  ,   F  -1 ( ){ } ( ) ( )1 exp
2

X X i t dω ω ω ω
π

∞

−∞

= ∫  . 

 
ω  is the angular frequency. An application of the Fourier transform to equation (113) 
gives 
 
 ( ) ( ) ( )Mσ ω ω ε ω= ⋅  . (114) 
 
In general, ( )M ω  is a complex, frequency-dependent viscoelastic modulus. From 
equations (112) - (114) we get 
 
 ( )tψ = F  -1 ( ){ }M ω  (115) 
 
and, due to properties of the Fourier transform, 
 

 ( )tψ = F  -1 
( )M

i
ω
ω

⎧ ⎫⎪ ⎪⎪ ⎪⎨ ⎬⎪ ⎪⎪ ⎪⎩ ⎭
 . (116) 

 
Equation (114) indicates that the incorporation of the linear viscoelasticity and 
consequently attenuation into the frequency-domain computations is much easier than 
those in the time-domain computations – real frequency-independent moduli are simply 
replaced by complex, frequency-dependent quantities (the correspondence principle 
in the linear theory of viscoelasticity). 
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The time derivative of the stress is, see equation (111), 
 
 ( ) ( ) ( )t t tσ ψ ε= ∗  (117) 
 
or, due to equation  (112), 
   ( ) ( ) ( )t M t tσ ε= ∗  . (118) 

 
An instantaneous elastic response of the viscoelastic material is given by the so-

called unrelaxed modulus UM , a long-term equilibrium response is given by the 
relaxed modulus RM  

 
 ( ) ( )

0
lim , limU Rt t

M t M tψ ψ
→ →∞

= =  . (119) 

 
In the frequency domain 
 
 ( ) ( )

0
lim , limU RM M M M
ω ω

ω ω
→∞ →

= =  . (120) 

 
The modulus defect or relaxation of modulus is 
 
 U RM M Mδ = −  . (121) 
 
Given the viscoelastic modulus, the quality factor ( )Q ω  is 
 
 ( ) ( ) ( )Re / ImQ M Mω ω ω=  . (122) 
 

It is obvious that a numerical integration of the stress-strain relation (109) is 
practically intractable due to the large computer time and memory requirements. This 
led many modelers to incorporate only oversimplified ( )Q ω  laws in the time-domain 

computations. (In fact, some modelers still use the oversimplified ( )Q ω  laws despite 
the significant progress in incorporation of more realistic attenuation into the time-
domain computations.) 

On the other hand, the observations on attenuation of seismic waves led Liu et al. 
(1976) to use a superposition of several relaxation mechanisms to approximate the 
nearly constant ( )Q ω . 
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Conversion of the Convolutory Stress-Strain Relation 

into a Differential Form 
 

Before we briefly review how different authors approached the problem 
characterized by the above two key aspects, consider ( )M ω  as a rational function 
 

 ( ) ( )
( )

m

n

P i
M

Q i
ω

ω
ω

=  (123) 

with 

 ( ) ( ) ( ) ( )
1 1

,
m n

l l
m l n l

l l
P i p i Q i q iω ω ω ω

= =
= =∑ ∑  . (124) 

 
The application of the inverse Fourier transform to equation (114) with ( )M ω  given by 
equation (123) leads to 

 
( ) ( )

1 1

l ln m

l ll l
l l

d t d t
q p

dt dt
σ ε

= =
=∑ ∑  , (125) 

 
the nth-order differential equation for ( )tσ , which can be eventually numerically solved 
much more easily than the convolution integral. In other words, the convolution integral 
in equation (109) can be converted into a differential form if ( )M ω  is a rational 
function of iω . 
 
Day and Minster (1984) assumed that, in general, the viscoelastic modulus is not a 
rational function. Therefore they suggested approximating a viscoelastic modulus by an 
nth-order rational function and determining its coefficients by the Padé approximant 
method.  They obtained n ordinary differential equations for n additional internal 
variables, which replace the convolution integral. The sum of the internal variables 
multiplied by the unrelaxed modulus gives an additional viscoelastic term to the elastic 
stress. The revolutionary work of Day and Minster not only developed one particular 
approach but, in fact, indirectly suggested the future evolution – a direct use of the 
rheological models whose ( )M ω  is a rational function of iω . 

Emmerich and Korn (1987) realized that an acceptable relaxation function 
corresponds to rheology of what they defined as the generalized Maxwell body – n 
Maxwell bodies and one Hooke element (elastic spring) connected in parallel; see 
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Figure 6. Note that the generalized Maxwell body in the literature on rheology is 
defined without the additional single Hooke element. Therefore, we denote the model 
considered by Emmerich and Korn (1987) by GMB-EK. 

Because, in fact, any model consisting of linear springs and dashpots (Stokes 
elements) connected in series or parallel has its viscoelastic modulus in form of a 
rational function of iω , the GMB-EK allowed replacing the convolution integral by a  
differential form. Emmerich and Korn (1987) obtained for the new variables similar 
differential equations as Day and Minster (1984). In order to fit an arbitrary ( )Q ω  law 
they chose the relaxation frequencies logarithmically equidistant over a desired 
frequency range and used the least-square method to determine weight factors of the 
relaxation mechanisms (classical Maxwell bodies). Emmerich and Korn (1987) 
demonstrated that their approach is better than the approach based on the Padé 
approximant method in both accuracy and computational efficiency. 

Independently, Carcione et al. (1988a,b), in accordance with the approach of Liu et 
al. (1976), assumed the generalized Zener body (GZB) - n Zener bodies, that is, n 
standard linear bodies, connected in parallel; see Figure 7. Carcione et al. developed a 
theory for the GZB and introduced term memory variables for the obtained additional 
variables. 

We will briefly review the GMB-EK and GZB presented in papers by Emmerich 
and Korn (1987) and Carcione et al. (1988a,b), respectively. It is, however, useful first 
to remind basics of the simple rheological models. 
 
 

The GZB and GMB-EK Rheological Models 
 
Models which quite well approximate rheological properties and behavior of the real 
Earth’s material can be constructed by connecting the simplest rheological elements, 
Hooke and Stokes elements, in parallel or series. The properties of the models can be 
analyzed in the time and frequency domains. There are relatively simple rules in both 
domains that allow obtaining mathematical representations of the models. The 
frequency-domain rules for linear rheological models are given in Table 2. 
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 Figure 6.  Rheological model of the Generalized Maxwell Body (GMB-EK) 

defined by Emmerich and Korn (1987). HM  and lM  denote elastic 
moduli, lη  viscosity. 

 
 

Table 2. 
Frequency-domain rules for linear rheological models 

 

element stress-strain relation 
Hooke (spring)   ( ) ( )Mσ ω ε ω= ⋅ ,   M  - elastic modulus 

Stokes (dashpot)   ( ) ( )iσ ω ωη ε ω= ⋅ ,    η  - viscosity 
  

connection σ  ε  
in series equal additive 

in parallel additive equal 
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 Figure 7.  Rheological model of the Generalized Zener Body (GZB). For a 

classical Zener body (standard linear body) there are two equivalent 
models: H-p-M , that is, Hooke element connected in parallel with 
Maxwell body, and H-s-KV, that is, Hooke element connected in 
series with Kelvin-Voigt body. In the H-p-M model it is easier to 
recognize the relaxed modulus RlM  and modulus defect lMδ .  1lM  

and 2 lM  in the H-s-KV model denote elastic moduli. In both models 

lη  stands for viscosity. 
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GMB-EK. For the GMB-EK we easily find 
 

 ( )
1

n
l

H
ll

iMM M
i
ωω

ω ω=
= +

+∑  (126) 

with relaxation frequencies 

 ; 1,...,l
l

l

M l nω
η

= =  . (127) 

 
We find relaxed and unrelaxed moduli 
 

 ( ) ( )
0 1

lim , lim
n

R H U R l
l

M M M M M M M
ω ω

ω ω
→ →∞ =

≡ = ≡ = +∑  . (128) 

 
Since U RM M Mδ= + , 
 
 l lM Mδ=  . (129) 
 
Without any simplification we can consider 
 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  . (130) 

Then 

 ( )
1

n
l

R
ll

iaM M M
i
ω

ω δ
ω ω=

= +
+∑  . (131) 

 
 
Using relation (116) we easily obtain the relaxation function 
 

  ( ) ( )
1

l

n
t

R l
l

t M M a e H tωψ δ −

=

⎡ ⎤
⎢ ⎥= + ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑  , (132) 

 
where ( )H t  is the Heaviside unit step function. The above formulas were presented by 
Emmerich and Korn (1987). 
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GZB. From the two equivalent models of the GZB (see Figure 7) we choose the one in 
which a single ZB is of the H-p-M type (Hooke element in parallel with Maxwell 
body). This is because we can immediately see the meaning ( ,Rl lM Mδ ) of the elastic 

moduli of both Hooke elements in each ZB. For the GZB we easily obtain a well-
known 

 ( )
1

1
1

n
l

R l
ll

iM M
i

ε

σ

τ ω
ω

τ ω=

+=
+∑  (133) 

with relaxation times 
 

 , ,U l U ll l l
l l

l R l l l R l

M M
M M M M

ε
ε σ

σ

η η ττ τ
δ δ τ

= = =  (134) 

and 
   U l Rl lM M Mδ= +  . (135) 
 
The unrelaxed and relaxed moduli are 
 

 
( )

( )

0 1

1 1

lim

lim .

n

R Rl
l
n n

l
U Rl R l

ll l

M M M

M M M M M

ω

ε
ω σ

ω

τω δ
τ

→ =

→∞ = =

≡ =

≡ = = +

∑

∑ ∑
 (136) 

 
Using relation (116) we easily obtain the relaxation function 
 

 ( ) ( ) ( )
1

1 1 exp
n

l
Rl l

ll
t M t H tε

σ
σ

τψ τ
τ=

⎧ ⎫⎡ ⎤⎛ ⎞⎪ ⎪⎪ ⎪⎟⎪ ⎪⎜⎢ ⎥⎟= − − − ⋅⎜⎨ ⎬⎟⎢ ⎥⎜ ⎟⎪ ⎪⎜ ⎟⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭
∑  (137) 

 
Assuming simplification (Carcione, 2001) 
 

 1
Rl RM M

n
=  (138) 

we get 
 

( )

( ) ( ) ( )

1

1

1 ,
1

11 1 exp

n
lR

ll

n
l

R l
ll

iMM
n i

t M t H t
n

ε

σ

ε
σ

σ

τ ωω
τ ω

τψ τ
τ

=

=

+=
+

⎡ ⎤⎛ ⎞⎟⎜⎢ ⎥⎟= − − − ⋅⎜ ⎟⎢ ⎥⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎣ ⎦

∑

∑
 (139) 
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Formulas (138) and (139) were presented by Carcione (2001). As far as we know, 
papers dealing with the incorporation of the attenuation based on the GZB, starting 

from Liu et al. (1976), had the same error – the missing factor 1
n

 in the viscoelastic 

modulus and relaxation function ( 1
L

 in most of the papers, L being the number of 

classical Zener bodies, that is, the number of relaxation mechanisms). 
 
 

The Relation between the GZB and GMB-EK 
 

After papers by Emmerich and Korn (1987) and Carcione et al. (1988a,b) different 
authors decided either for the GMB-EK or GZB. 

The GMB-EK formulas were used by Emmerich (1992), Fäh 1992, Moczo and 
Bard (1993), and in many other papers. Moczo et al. (1997) applied the approach also 
in the finite-element method and hybrid finite-difference – finite-element method. An 
important aspect was that in the papers one memory variable was defined for one 
displacement component. Later Xu and McMechan (1995) introduced term composite 
memory variables which, however, did not differ from the variables used from the very 
beginning in the above papers. 

Robertsson et al. (1994) implemented the memory variables based on the GZB 
rheology into the staggered-grid velocity-stress finite-difference scheme. Their 
numerical results do not suffer from the missing factor  1 n  because they were 
performed for 1n= . Blanch et al. (1995) suggested an approximate single-parameter 
method, τ -method, to approximate constant ( )Q ω  law. Xu and McMechan (1998) 
used simulated annealing for determining a best combination of relaxation mechanisms 
to approximate a desired ( )Q ω  law. In the two latter papers the factor 1 n  was missing 
in the relaxation functions. 

As far as we know, in many following papers the authors using the GZB did not 
comment on the rheology of the GMB-EK and the corresponding time-domain 
algorithms, and the authors using the GMB-EK did not comment those for the GZB. 
Thus, two parallel sets of papers and algorithms had been developed during years. 
 
Therefore, following Moczo and Kristek (2004), look at the relation between the GZB 
and GMB-EK rheologies. Consider again the ZB (H-p-M) model. The application of 
the frequency-domain rules (Table 2) to the l-th ZB, that is to (H-p-M), gives 
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  ( ) ( )1 1 1 Rl Rl
l

l l l l

M M
M i M i

σ ω ε ω
δ η ω δ η ω

⎛ ⎞⎛ ⎞ ⎟⎟ ⎜⎜ ⎟⎟⋅ + = + + ⋅⎜⎜ ⎟⎟ ⎜⎜ ⎟ ⎟⎟⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠
 . (140) 

Defining 

 l
l

l

Mδω
η

=  (141) 

and rearranging equation (140) we get 
 

  ( ) ( ) ( ) ( ); l
l l l R l

l

i MM M M
i

δ ωσ ω ω ε ω ω
ω ω

= ⋅ = +
+

 . (142) 

 
For n ZB (H-p-M) connected in parallel, that is, for the GZB (Figure 7), the stress is 
 

 ( ) ( ) ( ) ( )
1 1

n n

l l
l l

Mσ ω σ ω ω ε ω
= =

⎡ ⎤
⎢ ⎥= = ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑  (143) 

 
and thus 

  ( )
1 1

n n
l

R l
ll l

i MM M
i

δ ω
ω

ω ω= =
= +

+∑ ∑  . (144) 

Since 

  
1 1

, ,
n n

R Rl U R l U R
l l

M M M M M M M Mδ δ
= =

= = + = +∑ ∑  , (145) 

 
without loss of generality we can consider 

 
1

; 1
n

l l l
l

M a M aδ δ
=

= =∑  (146) 

and get 

  ( )
1

n
l

R
ll

i aM M M
i
ω

ω δ
ω ω=

= +
+∑  . (147) 

 
We see that for the GZB (H-p-M), Figure 7, we obtained exactly the same ( )M ω  as it 
has been obtained by Emmerich and Korn (1987) for their GMB-EK (Figure 6). It is 
also easy to get the same for the GZB (H-s-KV) or to rewrite non-simplified ( )tψ  for 

the GZB, equation (137), into the form of ( )tψ  for the GMB-EK, equation (132), 
without any simplification. In other words, the rheology of the GMB-EK and GZB is 
one and the same. As a consequence, we can continue with the GMB-EK and its 
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simpler-form relations compared to those developed in papers on the GZB with two 
relaxation times. Also note that there is no need for a simplification (138) in equations 
(139). 
 
 

Introduction of the Anelastic Functions 
 
We will use term anelastic functions instead of memory variables. It is easy to rewrite 
the viscoelastic modulus (147) and relaxation function (132) using the unrelaxed 
modulus, 
 

 ( )
1

n
l l

U
ll

aM M M
i
ω

ω δ
ω ω=

= −
+∑  (148) 

and 

 ( ) ( ) ( )
1

1 l

n
t

U l
l

t M M a e H tωψ δ −

=

⎡ ⎤
⎢ ⎥= − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑  , (149) 

 
and obtain the time derivative of the relaxation function 
 

    
( ) ( )

( ) ( )
1 1

( ) 1 .l l

n n
t t

l l U l
l l

M t t

M a e H t M M a e tω ω

ψ

δ ω δ δ− −

= =

=
⎡ ⎤
⎢ ⎥= − ⋅ + − − ⋅⎢ ⎥⎢ ⎥⎣ ⎦

∑ ∑
 (150) 

 
Inserting equation (150) into equation (113) gives 
 

 

( ) ( ) ( )

( )

( )( ) ( )

1

1

( )

( )

1 ( )

l

l

t n
t

l l
l

t

U

t n
t

l
l

t M a e H t d

M t d

M a e t d

ω τ

ω τ

σ δ ω τ ε τ τ

δ τ ε τ τ

δ δ τ ε τ τ

− −

=−∞

−∞

− −

=−∞

= − ⋅ − ⋅

+ ⋅ − ⋅

− − ⋅ − ⋅

∑∫

∫

∑∫

 (151) 

and 

 ( ) ( ) ( ) ( )

1

l

tn
t

U l l
l

t M t M a e dω τσ ε δ ω ε τ τ− −

= −∞

= ⋅ − ⋅∑ ∫  . (152) 
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Now it is possible to replace the convolution integral by additional functions (anelastic 
functions, internal variables, new variables, memory variables). While Day and 
Minster (1984), Emmerich and Korn (1987) and Carcione et al. (1988a,b) defined the 
additional functions as dependent also on the material properties, for an important 
reason that will be explained later, Kristek and Moczo (2003) defined their anelastic 
functions as independent of the material properties. Here we follow Kristek and Moczo 
(2003). Defining an anelastic function 
 

 ( ) ( ) ( ) , 1,...,l

t
t

l lt e d l nω τζ ω ε τ τ− −

−∞

= ⋅ =∫  (153) 

 
we get the stress-strain relation in the form 
 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ζ
=

= ⋅ − ∑  . (154) 

 
Applying time derivative to equation (153) we get 
 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( )

l

l

t
t

l l

t
t

l l

l l

dt e d
dt

e d t

t t

ω τ

ω τ

ζ ω ε τ τ

ω ω ε τ τ ε

ω ζ ε

− −

−∞

− −

−∞

= ⋅

⎡ ⎤
⎢ ⎥= − ⋅ +⎢ ⎥
⎢ ⎥⎣ ⎦
⎡ ⎤= − +⎣ ⎦

∫

∫  (155) 

 
 
and 
 

 ( ) ( ) ( ) ; 1,...,l l l lt t t l nζ ω ζ ω ε+ = = . (156) 
 
Equations (154) and (156) define the time-domain stress-strain relation for the 
viscoelastic medium whose rheology corresponds to rheology of the GMB-EK (and to 
its equivalent – the GZB). 

If the staggered-grid velocity-stress finite-difference scheme is to be used, then the 
time derivative of the stress is needed. In such a case, ( )M t  given by equation (150) is 
inserted into relation (118) and the above procedure of obtaining the anelastic functions 
and stress-strain relation can be followed with time derivatives of the stress and strain 
instead of the stress and strain themselves. An alternative procedure is to apply time 
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derivatives to equations (154) and (156), and define the anelastic function as the time 
derivative of the anelastic function (153). In either case we obtain 
 

 ( ) ( ) ( )
1

n

U l l
l

t M t M a tσ ε δ ξ
=

= ⋅ − ∑  (157) 

and 
   ( ) ( ) ( ) ; 1,...,l l l lt t t l nξ ω ξ ω ε+ = =  . (158) 
 
It is useful to define anelastic coefficients 
 

   ; 1,...,l l
U

MY a l n
M
δ= =  . (159) 

 
Then the stress-strain relations (154) and (157) become 
 

 ( ) ( ) ( )
1

n

U U l l
l

t M t M Y tσ ε ζ
=

= ⋅ − ∑  (160) 

and 

   ( ) ( ) ( )
1

n

U U l l
l

t M t M Y tσ ε ξ
=

= ⋅ − ∑  . (161) 

 

The related equations (156) and (158) are unchanged. It is clear that the stress or its 
time derivative can be calculated if the unrelaxed modulus and anelastic coefficients are 
known. The unrelaxed modulus is directly related to the elastic speed of wave 
propagation, the anelastic coefficients have to be determined from ( )Q ω -law. 

Using the anelastic coefficient, the elastic modulus and viscosity in the l-th MB are 

U lM Y  and 1
U l

l
M Y

ω
 , respectively, the relaxed modulus is 

1
1

n

R U l
l

M M Y
=

⎛ ⎞⎟⎜ ⎟= −⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠
∑ , 

 
and viscoelastic modulus 
 

   ( )
1

1
n

l
U l

ll
M M Y

i
ωω

ω ω=

⎡ ⎤
⎢ ⎥= −⎢ ⎥+⎢ ⎥⎣ ⎦

∑  . (162) 
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(Note that Emmerich and Korn 1987, used slightly less numerically accurate 
; 1,...,l l Ry a M M l nδ= = .)  The quality factor (122) is then 

 

   
( )

2 2
1

2

2 2
1

1

1

n
l

l
l l

n
l

l
l l

Y

Q
Y

ω ω
ω ω

ω ω
ω ω

=

=

+=
−

+

∑

∑
 . (163) 

 

From equation (163) we can get 
 

 ( ) ( )2 1
1

2 2
1

n
l l

l
l l

Q
Q Y

ω ω ω ω
ω

ω ω

−
−

=

+
=

+∑ . (164) 

 

Equation (164) can be used to numerically fit any ( )Q ω -law. Emmerich and Korn 
(1987) demonstrated that a sufficiently accurate approximation to nearly constant 
( )Q ω  is obtained if the relaxation frequencies lω  cover the frequency range under 

interest logarithmically equidistantly. If, for example, ( )Q ω  values are known at 
frequencies ; 1,..., 2 1k k nω = − , with 1 1 2 1, n nω ω ω ω−= =  , equation (164) can be 
solved for the anelastic coefficients using the least square method. 

A more detailed discussion of the frequency range and its sampling by frequencies 
kω  can be found in the paper by Graves and Day (2003; equations 13 and 14). 

 
In practice, a phase velocity at certain reference frequency rω , instead of the elastic 
velocity corresponding to the unrelaxed modulus, is known from measurements. The 
phase velocity ( )c ω  is given by 

   
( )

( ) 1 2
1 Re

M
c

ω
ω ρ

−⎡ ⎤⎛ ⎞⎢ ⎥⎟⎜ ⎟= ⎜⎢ ⎥⎟⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
 . (165) 

 
From equations (162) and (165) we get (Moczo et al. 1997) for the phase velocity 
( )rc ω  

   ( )2 1
22U r

RM c
R

ρ ω Θ+=  , (166) 

where 
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( )

( ) ( )

1 22 2
1 2

1 22 2
1 1

,

11 , .
1 1

n n
r l

l l
l lr l r l

R

Y Y ω ω

ω ω ω ω

Θ Θ

Θ Θ
= =

= +

= − =
+ +

∑ ∑
 (167) 

 
Thus, using equations (166) and (167), the unrelaxed modulus can be determined from 
the anelastic coefficients ; 1,...,lY l n= , and phase velocity ( )rc ω . 
 
 

Equations for the 1D Case – A Summary 
 
We can now generalize equations (12) - (15) for the smoothly heterogeneous 
viscoelastic medium. The considered formulations are: 
 
displacement-stress formulation 
 

 
1

, ,
n

M
x U U l l

l
d f M M Yρ σ σ ε ζ

=
= + = ⋅ − ∑  (168) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (169) 
 
displacement-velocity-stress formulation 
 

 
1

, , ,
n

M
x U U l l

l
f d M M Yρυ σ υ σ ε ζ

=
= + = = ⋅ − ∑  (170) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (171) 
 
velocity-stress formulation 
 

 
1

, ,
n

M
x U U l l

l
f M M Yρυ σ σ ε ξ

=
= + = ⋅ − ∑  (172) 

 
 ; 1,...,l l l l l nξ ω ξ ω ε+ = =  (173) 
 
displacement formulation 
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 ( ) ( )
1

, ,
n

M
U x U l l x

l
d M M Y fρ ε ζ

=
= ⋅ − +∑  (174) 

 
 ; 1,...,l l l l l nζ ω ζ ω ε+ = =  (175) 
 
In equations (168) - (175), M   and ε  stand for 
 

2λ μ+  and ,xd    in the case of the P wave 
or 

2μ        and 1
2 ,xd  in the case of the S wave. 

 
Note that in the above equations we used the upper index M for the anelastic functions 
to indicate that the anelastic function corresponds to modulus M. 
 
 

An FD Scheme for the Anelastic Functions 
 

With the 2nd-order accuracy, lζ  and lζ  may be approximated by a simple arithmetic 
average in time and central difference formula, 
 

 ( )1/ 2 1/ 2
1( ) ( ) ( ) ; 1,...,
2l m l m l mt t t l nζ ζ ζ+ −= + =  (176) 

and 
 

 ( )1/ 2 1/ 2
1( ) ( ) ( ) ; 1,...,l m l m l mt t t l n
t

ζ ζ ζ
Δ + −= − =  (177) 

 
respectively, where mt  denotes the m-th time level. Then each of the equations for the 
anelastic functions can be solved by 
 

  1/ 2 1/ 2
2 2( ) ( ) ( )

2 2
l l

l m m l m
l l

t tt t t
t t

ω ωζ ε ζ
ω ω+ −
Δ − Δ= +

+ Δ + Δ
 . (178) 

 
In the stress-strain relation related to the time level mt , 
 

  ( ) ( ) ( )
1

n
M

m U m U l l m
l

t M t M Y tσ ε ζ
=

= ⋅ − ∑  , (179) 
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the value of ( )l mtζ  is needed. It is obtained from 1/ 2( )l mtζ −  and 1/ 2( )l mtζ +  using 
equation (176). This means that both values,  1/ 2( )l mtζ −  and 1/ 2( )l mtζ + , have to be 
kept in memory for a spatial position at one time. 

It is, however, possible (Kristek and Moczo, 2003) to avoid the necessity to keep in 
memory both values.  Insert equation (178) into (176) and obtain 
 

 1/ 2
2( ) ( ) ( )

2 2
l

l m m l m
l l

tt t t
t t

ωζ ε ζ
ω ω +
Δ= − +

− Δ − Δ
 . (180) 

 
Insertion of equation (180) into the stress-strain relation (179) and rearrangement gives 
 

 ( ) ( ) ( )1/ 2
1

n
M

m m l l m
l

t M t Y tσ ε ζ +
=

= − ∑  (181) 

where 

 
1 2

1

1 2

1 ,

2, .
2 2

n
M M M

U l l l l U l
l

l
l l

l l

M M G Y Y G M Y

tG G
t t

ω
ω ω

=

⎛ ⎞⎟⎜ ⎟= + =⎜ ⎟⎜ ⎟⎜⎝ ⎠
Δ= =

− Δ − Δ

∑
  (182) 

 
Using scheme (178) and a proper scheme for equation (181) it is enough to have only 
one variable for one anelastic function at one grid position at one time. 

Note that equation (181) gives an apparent dependence of ( )mtσ  on the anelastic 
function only at the time level 1 2mt +  . This is just due to approximation (176). 

In the case of the staggered-grid velocity-stress finite-difference scheme, the form 
of equations is the same; only lζ  and ε  have to be replaced by lξ  and ε  , respectively. 
 
In principle, we could now write FD schemes for solving equations (168) - (175) for the 
smoothly heterogeneous viscoelastic medium. Instead, we continue with considerations 
on the presence of a material discontinuity and consequently finish with FD schemes 
for the viscoelastic medium with both the smooth heterogeneity and material 
discontinuities. 
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Contact of  Two Viscoelastic Media – A Material Discontinuity 
 

It is not a trivial task to find a heterogeneous formulation of the differential problem if 
the stress is given in the form of equation (160). In this situation it is, however, possible 
to try an approximation based on experience with very good accuracy of the FD scheme 
for the elastic medium with material discontinuities (Moczo et al. 2002). We will 
follow the approach suggested by Kristek and Moczo (2003) which has been shown 
sufficiently accurate using numerical tests against the discrete wavenumber method 
(Bouchon 1981, Coutant 1989). 

Consider a contact of two viscoelastic media. Each of the two media is described 
by a real density and complex frequency dependent modulus given, in the case of the 
GMB-EK (or, equivalently, GZB) rheology, by equation (162). The question is how to 
determine density, elastic (unrelaxed) modulus UM , and anelastic coefficients 

; 1,...,M
lY l n=  for an averaged medium that should represent the contact of two media 

(that is the boundary conditions at the interface between the two media) if a material 
discontinuity goes through a grid cell. 

We do not have any reason to consider other than volume arithmetic averaging for 
the density using formula (102). 

If we numerically average the viscoelastic modulus in the frequency domain (we 
can, for example, determine a volume harmonic average over the grid cell), we obtain 
an average viscoelastic modulus M  in the frequency domain. Having the averaged 
viscoelastic modulus, we can determine a quality factor corresponding to this modulus, 
equation (122), at frequencies ; 1,..., 2 1k k nω = − : 
 
 ( ) ( ) ( )Re Im ; 1, 2,..., 2 1k k kMQ M M k nω ω ω= = −  . (183) 
 
Having the values ( ) , 1, 2,..., 2 1kMQ k nω = − , we can apply a proper curve-fitting 

procedure in order to approximate a desired/observed ( )Q ω -law. If we assume that the 
rheology of the averaged medium can be approximated by the GMB-EK rheology, we 
can apply the least-square method to equation (164) to determine anelastic coefficients 

; 1,...,M
lY l n=  for the averaged medium from ( ) , 1, 2,..., 2 1kMQ k nω = − . 

What remains to determine is the average unrelaxed (elastic) modulus UM . It 
follows from equation (120) that ( )limUM M

ω
ω

→∞
= . An implication is that, in the limit, 

the harmonic averaging of the viscoelastic modulus gives the harmonic averaging of the 
unrelaxed modulus. This means that the unrelaxed (elastic) modulus UM  for the 
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averaged viscoelastic medium can be obtained in the same way as in the perfectly 
elastic medium, for example, using formula (103). 

 
 

FD Schemes for the 1D Case – A Summary 
 

Now we can summarize the possible FD schemes for the 1D problem in a viscoelastic 
medium with a smooth variation of material parameters and/or material discontinuities. 
In addition to already defined discrete variables, let ,

m
I lZ  and m

IE , be the discrete 

approximations to ( ), , ,m
I l lIh m tζ ζ ωΔ=  and ( ),m

I Ih m tε ε Δ= , respectively. Let  m
IT  

be the discrete approximation now to ( ),m
I Ih m tσ σ Δ= . 

 
Displacement-stress FD scheme 
 

 

( ) ( )
( ) ( )

1 2 2 1 1

1 2 2 1 1

1/ 2 1/ 2
1 2, 1 2 1 2,

1/ 2
1 2 1 2 1 2 1 2, 1 2,

1

1

1
2

2 2
2 2

m m m m m
I I I I I

m m m m m
I I I I I

m m ml l
I l I I l

l l
n

m m M m
I I I I l I l

l

E a D D b D D for the P wave
h

E a D D b D D for the S wave
h

t tZ E Z
t t

T M E Y Z

ω ω
ω ω

+ + − +

+ + − +

+ −
+ + +

+
+ + + + +

=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
Δ − Δ= +

+ Δ + Δ

= − ∑

( ) ( )
2

1 1
3 2 3 2 1 2 1 2

2

12m m m m m m m
I I I I I I IA

I

m
IA

I

tD D D a T T b T T
h

t F

ρ

ρ

Δ

Δ

+ −
+ − + −

⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦

+

(184)  

where 

 1 9,
24 8

a b=− =         in the 4th-order scheme (185) 

 
        0 , 1a b= =          in the 2nd-order scheme (186) 
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( )
1 2

1 2

1

1

1 2 1 2 1 1 2,
1

1 2, 2 1 2 1 2,

1

1 2

1

1 2

, 1

,

1

1 1,
( ) 2 ( )

1 1,
2 ( )

I

I

I

I

I

I

n
M

I U I l I l
l

M M
I l l U I I l

x
A
I

x

x

U I
x

x

U I
x

M M G Y

Y G M Y

x dx
h

M dx for the P wave
h x x

M dx for the S wave
h x

G

ρ ρ

λ μ

μ

+

−

+

+

+ + +
=

+ + +

−

+

−

+

⎛ ⎞⎟⎜ ⎟= +⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

=

=

⎡ ⎤
⎢ ⎥= ⎢ ⎥+⎢ ⎥⎢ ⎥⎣ ⎦
⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

∑

∫

∫

∫

1 2
2,

2 2
l

l l
l l

t G
t t

ω
ω ω
Δ= =

− Δ − Δ

 (187) 

 
Displacement-velocity-stress FD scheme 
 

 

( ) ( )

( ) ( )
1 2 2 1 1

1 2 2 1 1

1/ 2 1/ 2
1 2, 1 2 1 2,

1/ 2
1 2 1 2 1 2 1 2, 1 2,

1

1

1
2

2 2
2 2

m m m m m
I I I I I

m m m m m
I I I I I

m m ml l
I l I I l

l l
n

m m M m
I I I I l I l

l

E a D D b D D for the P wave
h

E a D D b D D for the S wave
h

t tZ E Z
t t

T M E Y Z

ω ω
ω ω

+ + − +

+ + − +

+ −
+ + +

+
+ + + + +

=

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
Δ − Δ= +

+ Δ + Δ

= − ∑

( ) ( )1 2 1 2
3 2 3 2 1 2 1 2

1 21

1m m m m m m
I I I II I A

I

m
IA

I
mm m

I I I

tV V a T T b T T
h

t F

D D t V

ρ

ρ

Δ

Δ

Δ

+ −
+ − + −

++

⎡ ⎤= + − + −⎢ ⎥⎣ ⎦

+

= +

 (188) 

 
and relations (185) - (187) apply. 
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Velocity-stress FD scheme 
 

 

( ) ( )
( ) ( )

1 2 2 1 1

1 2 2 1 1

1/ 2 1/ 2
1 2, 1 2 1 2,

1
1 2 1 2 1 2 1 2 1 2, 1 2,

1

1
2

2 2
2 2

m m m m m
I I I I I

m m m m m
I I I I I

m m ml l
I l I I l

l l

m m m M
I I I I I l I

H a V V b V V for the P wave
h

H a V V b V V for the S wave
h

t tX H X
t t

T T t M H Y X

ω ω
ω ω

Δ

+ + − +

+ + − +

+ −
+ + +

−
+ + + + + +

⎡ ⎤= − + −⎢ ⎥⎣ ⎦

⎡ ⎤= − + −⎢ ⎥⎣ ⎦
Δ − Δ= +

+ Δ + Δ

= + −

( ) ( )

1/ 2

1

1 2 1 2
3 2 3 2 1 2 1 2

1

n
m

l
l

m m m m m m
I I I II I A

I

m
IA

I

tV V a T T b T T
h

t F

ρ

ρ

Δ

Δ

+

=

+ −
+ − + −

⎡ ⎤
⎢ ⎥
⎢ ⎥⎢ ⎥⎣ ⎦

⎡ ⎤= + − + −⎢ ⎥⎣ ⎦

+

∑
 (189) 

 

where 1 2
m
IH +  and 1/ 2

1 2,
m
I lX ±
+  replaced  1 2

m
IE +  and 1/ 2

1 2,
m
I lZ ±
+  as their time derivatives. 

Relations (185) - (187) apply. 
We do not show here the displacement FD scheme. We do not know the 4th-order 
scheme. A 2nd-order scheme can be obtained easily. The displacement schemes have 
not been used lately by FD modelers. 
 
 

Equations and Considerations for the 3D Case 
 

In the 3D case it is assumed that the rheology of the medium is described by one GMB-
EK (or, equivalently, GZB) for the complex frequency-dependent bulk modulus and 
one GMB-EK for the complex frequency-dependent shear modulus. The stress-strain 
relation is (Kristek and Moczo, 2003) 
 

( )

( )

1
3

1
3

2

2

i j k k i j i j k k i j

n
k k i j k k

l i j i jl l l l
l

Y Yκ μ

σ κ ε δ μ ε ε δ

κ ζ δ μ ζ ζ δ

= + −

⎡ ⎤− + −⎢ ⎥⎣ ⎦∑
                   (190) 
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where { }, , 1, 2,3i j k ∈ , the equal-index summation convention does not apply to l, 

( )ixκ  and ( )ixμ  are unrelaxed (elastic) bulk and shear moduli, and lYκ  and lY μ  are the 
corresponding anelastic coefficients. The latter are obtained from 
 
    ( ) ( )2 2 2 24 4

3 3 , ; 1,...,l l l l lY Y Y Y Y l nκ α β μ βα β α β= − − = =  , (191) 

 

where ( ) 1 24
3α κ μ ρ⎡ ⎤= +⎢ ⎥⎣ ⎦  and ( )1 2β μ ρ=  are elastic (corresponding to unrelaxed 

moduli) P and S wave velocities, and anelastic coefficients lYα  and lY β  are obtained 
from the desired or measured Qα  and Qβ  values using the system of equations 
 

  ( ) ( ) { }
2 1

1
2 2

1
; 1,..., 2 1 , ,

n
l k l k

k l
l l k

Q
Q Y k nν ν
ν

ω ω ω ω
ω ν α β

ω ω

−
−

=

+
= = − ∈

+∑  . (192) 

 

For the anelastic functions we have the system of 6n independent equations 
 

 ; 1,...,i j i j
l l i jl l l nζ ω ζ ω ε+ = =  , (193) 

 

where the equal-index summation convention does not apply to any index. 
While equations (190) and (193) are usable for the conventional displacement, or 

staggered-grid displacement-stress and displacement-velocity-stress finite-difference 
schemes, equations 

 
( )

( )

1
3

1
3

2

2

i j k k i j i j k k i j

n
k k i j k k

l i j i jl l l l
l

Y Yκ μ

σ κ ε δ μ ε ε δ

κ ξ δ μ ξ ξ δ

= + −

⎡ ⎤− + −⎢ ⎥⎣ ⎦∑
 (194) 

 
and 
 ; 1,...,i j i j

l l i jl l l nξ ω ξ ω ε+ = =  (195) 
 

are needed for the staggered-grid velocity-stress finite-difference schemes. Again, the 
equal-index summation convention does not apply to index l in equation (194) and to 
any index in equation (195). 

In analogy to the 1D case, we can obtain for the stress-strain relation 
 

 1/ 2 1/ 2
2 2( ) ( ) ( )

2 2
i j i jl l

m i j m ml l
l l

t tt t t
t t

ω ωζ ε ζ
ω ω+ −
Δ − Δ= +

+ Δ + Δ
 (196) 

 
and 
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( ) ( ) ( ) ( )( )

( ) ( ) ( )( )

1
3

1
1/ 2 1/ 2 1/ 23

1

2

2 ,

i j m k k m i j i j m k k m i j

n
k k i j k k

l m i j m m i jl l l l
l

t t t t

Y t Y t tκ μ

σ κ ε δ μ ε ε δ

ζ δ ζ ζ δ+ + +
=

= + − −

⎡ ⎤+ −⎢ ⎥⎣ ⎦∑
 (197) 

 
where 

 

1 1
1 1

2 2

1 2

1 , 1

,
2, .

2 2

n n

l l l l
l l

l l l ll l

l
l l

l l

G Y G Y

Y G Y Y G Y
tG G

t t

κ μ

κ κ μ μ

κ κ μ μ

κ μ
ω
ω ω

= =

⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜⎟ ⎟= + = +⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

= =
Δ= =

− Δ − Δ

∑ ∑
 (198) 

 
Using scheme (196) and a proper scheme for equation (197) it is enough to have only 
one variable for one anelastic function at one grid position at one time. 

In the case of the staggered-grid velocity-stress finite-difference scheme, the form 
of equations is the same; only i j

lζ  and i jε  have to be replaced by i j
lξ  and i jε . 

The FD schemes for the 3D problem can be easily obtained based on the above 
equations in analogy with the FD schemes (184) - (189). 
 
 
Notes on the accuracy and computational efficiency. It is obvious that the incorporation 
of the realistic attenuation considerably increases the number of variables and 
parameters that have to be kept in computer (core) memory and number of operations. 
In order to reduce the increased memory requirements and also computational time, 
Zeng (1996), and, independently, Day (1998), and Day and Bradley (2001) developed 
approaches that allow spatial sampling of the anelastic functions and coefficients in a 
grid coarser than the grid for elastic quantities. Graves and Day (2003) analyzed 
stability and accuracy of the scheme with the coarse spatial sampling and defined 
effective modulus and quality factor necessary to achieve sufficient accuracy. 

A problem with the coarse spatial sampling (coarse graining in Day’s terminology) 
as it is shown in Figure 1 in the papers by Day (1998), and Day and Bradley (2001) is  
that it may easily happen that the medium from one side of some thought surface or real 
material discontinuity is characterized over, say, one half of the whole considered 
frequency range while the medium from the other side of the thought surface or 
discontinuity is characterized over the other half of the whole frequency range. In other 
words, the behavior of the two parts of the smoothly heterogeneous medium or two 
media in contact is characterized in two disjunctive (not overlapping) frequency sub-
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intervals. It is then obvious that the two media cannot physically interact. 
Consequently, the two media cannot be averaged. 

In principle, the geometry of the coarse spatial sampling shown in both papers is not 
the only possible. Keeping the same spatial periodicity of the relaxation frequencies, 
anelastic coefficients and functions, that is 2h, it is possible to distribute them in such a 
way that no surface or material discontinuity can divide the volume of a grid cell into 
two parts characterized in two disjunctive frequency sub-intervals. Still the alternative 
spatial distribution does not provide a satisfactory solution because it may happen that 
one part of the medium (or one medium in contact) will be characterized using, for 
example, relaxation frequencies 1 3 5 7, , ,ω ω ω ω  while the other part of the medium (or 

the other medium in contact) will be characterized using 2 4 6 8, , ,ω ω ω ω , which 

certainly is not a good solution. 
At a given spatial grid point, one can think about accounting for the relaxation 

frequencies, anelastic coefficients and functions not located at the grid point by a 
properly weighted values of the anelastic coefficients and functions located around the 
considered grid point. Such averaging, however, poses a problem: Because the anelastic 
functions (that is, internal variables or memory variables) originally introduced by Day 
and Minster (1984), Emmerich and Korn (1987) and Carcione et al. (1988a, b) are 
material-dependent (as already mentioned), any such spatial averaging (accounting for 
the functions missing at the considered grid point) would introduce an additional 
artificial averaging of the material parameters. This, obviously, is not good. 

There would be no problem with the coarse spatial sampling and at the same time 
with weighted spatial averaging of the anelastic functions at a grid point with only one 
of the all anelastic functions if the anelastic functions were material-independent. 
Therefore, Kristek and Moczo (2003) introduced material-independent anelastic 
functions and therefore we followed the approach in this text. 
 
Despite the increasing computer power numerical modelers of seismic wave 
propagation and earthquake motion have to include at least some of the computer 
memory and time optimization procedures if they want to address the present-time 
challenging seismological problems. Irregular spatial grids, grids with varying time 
steps, characterization of heterogeneity using distribution of material-cell types, core 
and disk memory optimizations, and parallelization are examples of procedures which 
can make the FD modeling significantly more efficient. A reader can find more details, 
for example, in papers by Graves (1996), Moczo et al. (1999), Tessmer (2000), Moczo 
et al. (2001), Caserta et al. (2002), Kang and Baag (2004). 
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Program Package 1DFD 
 

The  Fortran95  Computer  Program  Package 
for Finite-Difference Numerical 

Generation and Simulation of a 1D Seismic Wavefield 
in a 1D Heterogeneous Viscoelastic Medium 

 
 

Introduction 
 
The program package consists of five Fortran95 programs. Three of them, 

• program 1DFD_DS, 
• program 1DFD_DVS, 
• program 1DFD_VS, 

perform FD computations according to the 
• displacement-stress  (DS ) staggered-grid FD scheme, 
• displacement-velocity-stress (DVS) staggered-grid FD scheme, 
• velocity-stress   (VS ) staggered-grid FD scheme 

for a 1D wavefield in a 1D heterogeneous viscoelastic medium.  Two other programs, 
• program MODEL_PREP_1D, 
• program SOURTF, 

perform the model and source-time function preparation as input data for the 
computational programs 1DFD_DS, 1DFD_DVS, 1DFD_VS . 
 

The medium can be bounded from one side (in the programs it is the upper 
horizontal plane 0z= ) by either of the following boundaries: 

• free surface (traction-free condition), 
• plane of symmetry, 
• rigid boundary, 
• nonreflecting boundary (several types). 

 
 The medium can be bounded from the other side (the bottom horizontal plane 

0MAXz z= >  ) by a nonreflecting boundary (several types). 
 
 The medium can be either 

• perfectly elastic or 
• viscoelastic with rheology given by the GMB-EK model. 
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 The medium can be 
• homogeneous, 
• smoothly heterogeneous, 
• piece-wise homogeneous (material discontinuities between neighboring 

homogeneous blocks), 
• piece-wise smoothly heterogeneous (material discontinuities between 

neighboring smoothly heterogeneous blocks). 
 
The material discontinuities can be placed anywhere within the spatial grid, that is, the 
position of the material discontinuity can be directly at the grid point or anywhere 
between two neighboring grid points. 
 
The wavefield can be generated by a body-force term whose source-time function 
represents displacement. (Note that the application of the source-time function 
corresponding to the particle velocity would give the particle velocity instead of the 
displacement in the DS and DVS FD schemes. The application of the source-time 
function corresponding to the particle velocity would give the acceleration instead of 
the particle velocity in the DVS and VS FD schemes.) 
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Program 1DFD_DS 
 

Input files 
 
Program 1DFD_DS requires five input files: 

• an auxiliary file containing just the name of the current computation, 
• an input file with controlling parameters for the computation, 
• a file containing  the elastic material parameters of the model, 
• a file containing the anelastic material parameters of the model, 
• a file containing the source-time function. 

 
 
Auxiliary file 'HF_1DFD_DS' 
 
The file type is ASCII and contains the following variable: 
 
Name  of  Variable Type Description 

JOBNAME A17 
The name of the current computation. This name is 
taken as a base for constructing the names of other 
input and output files. 

 
 
Input data file 'JOBNAME.IN' 
 
The file type is ASCII and contains several controlling variables associated in the nine 
namelists. The file also contains positions of receivers. 
 
 
NAMELIST  /NAMES/ MO_FILE_NAME,    Q_FILE_NAME 
 
Name  of  Variable Type Description 

MO_FILE_NAME A20 

The name of the file containing elastic parameters and 
densities describing material cells. The elastic 
parameters have to be computed according to equation 
(103) and densities according to equation (102). 

Q_FILE_NAME A20 
The name of the file containing anelastic coefficients 
describing material cells. The anelastic coefficients 
have to be computed according to equation (183). 
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NAMELIST  /KEYS/  KEY_TLD,  KEY_SND 
 
Name  of  Variable Type Description 

KEY_TLD logical 

.TRUE.: An output file in ASCII format is generated. 
It contains time levels of the displacements 
at specified receivers. 

.FALSE.: The output file is not generated. 

KEY_SND logical 

.TRUE.: An output file in SismoVi format is generated  
It contains time levels of the displacements 
at specified receivers. 

.FALSE.: The output file is not generated. 
 
 
NAMELIST  /CONTROLDATA/ MT1  , MT2   , DT   , IPAS1 ,  MZ   , H  
 

Name  of  Variable Type Description 

MT1,  MT2 integer 

The computation is performed from the time level 
MT1 until the time level MT2.  
MT1 has to be always equal to 1. 
MT2 has to be an odd number. 

DT real 

The time step tΔ  in seconds. It has to satisfy the 
stability condition for the 4th-order staggered grid DS 

FD scheme, i.e. 
max

6
7

ht
v

Δ ≤ , where maxv  is the 

maximum P-wave or S-wave velocity and h  is a grid 
spacing. 

IPAS1 integer 

If IPAS1 = 1, then the displacement values at each 
time   level are stored. 
If IPAS1 = 2 (3,...), then the displacement values at 
each second (third,...) time level are stored. 

MZ integer 
The total number of the grid points in the grid minus 1. 
One grid point represents, in fact, one physical 
horizontal plane. 

H real The grid spacing in meters. The total size of the grid in 
meters is (MZ+1)*H. 

 
 
 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 81

NAMELIST /ATTEN/ FRJMAX, FRANGE, NRFREQ 
This namelist refers to inclusion of the realistic model of attenuation based on rheology 
of the model GMB-EK. 
 

Name  of  Variable Type Description 

FRJMAX real 

The upper limit of the frequency range in which the 
anelastic coefficients lY  fits the desired Futterman 
( )Q ω  law by solving equation (164). It should be larger 

than maximum frequency ACf  up to which the 
computation should be sufficiently accurate. For the 4th-

order DS FD scheme min

6AC
vf

h
≈ , where minv  is the 

minimum velocity in the model and h  is a grid spacing. 
In fact, the effect of the grid dispersion is cumulative 
with increasing travel distance. 
  
If  FRJMAX = 0,  the attenuation is not included. 

FRANGE real 

This variable determines the frequency range for the 
attenuation in which the anelastic coefficients lY  fit the 
desired Futterman ( )Q ω  law by solving equation (164). 
FRANGE = 3, e.g., means frequency range 

310 ,−∗FRJMAX FRJMAX . 

NRFREQ integer The number of relaxation frequencies describing the 
rheology of the GMB-EK. 

 
 
NAMELIST /NONREF/ OMG,  WB,  KTTO,  KTBO 
This namelist refers to the nonreflecting boundaries of the grid. Several types of the 
nonreflecting boundaries are included. 
 
Name  of  Variable Type Description 

OMG real 
The dominant frequency in Hz at which artificial 
reflections should be suppressed more than at other 
frequencies. 

WB real 
The weight coefficient b  for the Liu-Archuleta type of 
nonreflecting boundary (108). It has to satisfy 
condition 0 0.4b≤ ≤ . 
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Name  of  Variable Type Description 

KTTO integer 

The key determining type of the top boundary of the 
grid: 
                       < 0:  free surface         
                       = 0:  plane of symmetry 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

KTBO integer 

The key determining type of the bottom boundary of 
the grid: 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

 
 
NAMELIST /TXT/   TEXT 
 
Name  of  Variable Type Description 

TEXT A20 An arbitrary alphanumeric text  
(e.g., describing the computation) 

 
NAMELIST /SNAP/  IPAS2 
Included only if  KEY_SND = .TRUE. 
  
Name  of  Variable Type Description 

IPAS2 integer 

If IPAS2 = 1, then the displacement values at each 
time   level are stored. 
If IPAS2 = 2 (3,...), then the displacement values at 
each second (third,...) time level are stored. 
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NAMELIST /SOURCE/ LS 
  

Name  of  Variable Type Description 

LS integer The index (position) of the grid point at which the 
body force will be applied. 

 
 
    NAMELIST /REC/          MR 
  
Name  of  Variable Type Description 
MR integer The number of receivers. 
 
 
At the end of the file, MR integer numbers in the free form specify grid indices of the 
receivers. Index 0 means the top boundary of the computational model.  
 
 
 
Input data file MO_FILE_NAME 
 
The file type is binary and contains the arithmetic averages of density and harmonic 
averages of modulus in all grid cells. Data is read by  
 

READ ( 14 ) ( DEN(L),  M (L  ), L = 0, MZ) 
 

Name  of  Variable Type Description 

DEN  (L)      real 

The arithmetic average of the density in 3kg m−⋅ . 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (102). 

M (L) real 

The harmonic average of the unrelaxed torsion 
modulus μ  (S wave) or 2λ μ+  (P wave); both in Pa. 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (103). 
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Input data file Q_FILE_NAME 
 
The file type is binary and contains NRFREQ anelastic coefficients for each grid cell. 
Data is read by  
 
    READ ( 15 ) ( YM (L,1:NRFREQ), L = 0, MZ) 

 
Name  of  Variable Type Description 

YM  (L, IFREQ)     real 
The anelastic material coefficient at the IFREQ-th 
relaxation frequency corresponding to viscoelastic 
modulus M determined using equation (183). 

 
 
 
Input data file 'STF.DAT' 
 
The file type is ASCII and contains the source-time function of the body force. Data is 
read by  
 

J = 1 
DO 
  READ (10,*,IOSTAT = IOS) SOURTF (J) 
  IF (IOS == -1) EXIT 
  J = J + 1 

    END DO 
 
Name  of  Variable Type Description 
SOURTF (J) real The source-time function at time level J. 
   
 
 

Output files 
 
Program 1DFD_DS generates several output files depending on the input parameters: 

• a log file containing the input parameters (as read by the program) and error 
messages, 

• a file containing displacement values at specified receivers in ASCII format if  
KEY_TLD = .TRUE., 
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• a file containing displacement values at specified receivers in the SismoVi 
format if  KEY_SND = .TRUE.. (SismoVi is a Python code for visualization of 
multiple traces developed by Geza Seriani). 

 
 
Log file 'JOBNAME.LOG' 
 
The file type is ASCII and contains the input parameters read from file 
‘JOBNAME.IN’. If there is an error, then the file also contains the error message. 
 
 
Output data file 'JOBNAME_D.DAT' 
 
The file is generated only if  KEY_TLD = .TRUE. 
The file type is ASCII and contains values of the displacement at the specified receivers 
at each IPAS1 time level in the column form, e.g. 
 

Time Displacement values 
at receiver 1 

Displacement values 
at receiver 2 . . . Displacement values 

at receiver MR 
 
 
Output data file 'JOBNAME_SD.DAT' 
 
The file is generated only if  KEY_SND = .TRUE. 
The file type is ASCII and contains values of the displacement at the specified receivers 
at each IPAS2 time level in the SismoVi format. 
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Program 1DFD_DVS 
 

Input files 
 
Program 1DFD_DVS requires five input files: 

• an auxiliary file containing just the name of the current computation, 
• an input file with controlling parameters for the computation, 
• a file containing  the elastic material parameters of the model, 
• a file containing the anelastic material parameters of the model, 
• a file containing the source-time function. 

 
 
Auxiliary file 'HF_1DFD_DVS' 
 
The file type is ASCII and contains the following variable: 
 
Name  of  Variable Type Description 

JOBNAME A17 
The name of the current computation. This name is 
taken as a base for constructing the names of other 
input and output files. 

 
 
Input data file 'JOBNAME.IN' 
 
The file type is ASCII and contains several controlling variables associated in the nine 
namelists. The file also contains positions of receivers. 
 
 
NAMELIST  /NAMES/ MO_FILE_NAME,    Q_FILE_NAME 
 
Name  of  Variable Type Description 

MO_FILE_NAME A20 

The name of the file containing elastic parameters and 
densities describing material cells. The elastic 
parameters have to be computed according to equation 
(103) and densities according to equation (102). 

Q_FILE_NAME A20 
The name of the file containing anelastic coefficients 
describing material cells. The anelastic coefficients 
have to be computed according to equation (183). 
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NAMELIST  /KEYS/  KEY_TLD,  KEY_SND,  KEY_TLV,  KEY_SNV 
 
Name  of  Variable Type Description 

KEY_TLD logical 

.TRUE.: An output file in ASCII format is generated. 
It contains time levels of the displacements 
at specified receivers. 

.FALSE.: The output file is not generated. 

KEY_SND logical 

.TRUE.: An output file in SismoVi format is 
generated. It contains time levels of the 
displacements at specified receivers. 

.FALSE.: The output file is not generated. 

KEY_TLV logical 

.TRUE.: An output file in ASCII format is generated. 
It contains time levels of the particle 
velocities at specified receivers. 

.FALSE.: The output file is not generated. 

KEY_SNV logical 

.TRUE.: An output file in SismoVi format is 
generated. It contains time levels of the 
particle velocities at specified receivers. 

.FALSE.: The output file is not generated. 
 
 
NAMELIST  /CONTROLDATA/  MT1  , MT2   , DT   , IPAS1 ,  MZ   , H  
 
Name  of  Variable Type Description 

MT1,  MT2 integer 
The computation is performed from the time level 
MT1 until the time level MT2.  
MT1 has to be always equal to 1. 

DT real 

The time step tΔ  in seconds. It has to satisfy the 
stability condition for the 4th-order staggered grid DVS 

FD scheme, i.e. 
max

6
7

ht
v

Δ ≤ , where maxv  is the 

maximum P-wave or S-wave velocity and h  is a grid 
spacing. 

IPAS1 integer 

If IPAS1 = 1, then the displacement and/or particle-
velocity values at each time level are stored. 
If IPAS1 = 2 (3,...), then the displacement and/or 
particle-velocity values at each second (third,...) time 
level are stored. 
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Name  of  Variable Type Description 

MZ integer 
The total number of the grid points in the grid minus 1. 
One grid point represents, in fact, one physical 
horizontal plane. 

H real The grid spacing in meters. The total size of the grid in 
meters is (MZ+1)*H. 

 
 
 
NAMELIST  /ATTEN/ FRJMAX, FRANGE, NRFREQ 
This namelist refers to inclusion of the realistic model of attenuation based on rheology 
of the model GMB-EK. 
 
Name  of  Variable Type Description 

FRJMAX real 

The upper limit of the frequency range in which the 
anelastic coefficients lY  fits the desired Futterman 
( )Q ω  law by solving equation (164). It should be 

larger than maximum frequency ACf  up to which the 
computation should be sufficiently accurate. For the 

4th-order DS FD scheme min

6AC
vf

h
≈ , where minv  is the 

minimum velocity in the model and h  is a grid spacing. 
In fact, the effect of the grid dispersion is cumulative 
with increasing travel distance. 
  
If  FRJMAX = 0, the attenuation is not included. 

FRANGE real 

This variable determines the frequency range for the 
attenuation in which the anelastic coefficients lY  fit the 
desired Futterman ( )Q ω  law by solving equation (164)
.  FRANGE = 3, e.g., means frequency range 

310 ,−∗FRJMAX FRJMAX . 

NRFREQ integer The number of relaxation frequencies describing the 
rheology of the GMB-EK. 
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NAMELIST  /NONREF/ OMG,  WB,  KTTO,  KTBO 
This namelist refers to the nonreflecting boundaries of the grid. Several types of the 
nonreflecting boundaries are included. 
 
Name  of  Variable Type Description 

OMG real 
The dominant frequency in Hz at which artificial 
reflections should be suppressed more than at other 
frequencies. 

WB real 
The weight coefficient b  for the Liu-Archuleta type of 
nonreflecting boundary (108). It has to satisfy 
condition 0 0.4b≤ ≤ . 

KTTO integer 

The key determining type of the top boundary of the 
grid: 
                       < 0:  free surface         
                       = 0:  plane of symmetry 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

KTBO integer 

The key determining type of the bottom boundary of 
the grid: 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

 
 
NAMELIST  /TXT/  TEXT 
  
Name  of  Variable Type Description 

TEXT A20 An arbitrary alphanumeric text  
(e.g. describing the computation) 
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NAMELIST  /SNAP/  IPAS2 
Included only if  KEY_SND = .TRUE. or KEY_SNV = .TRUE. 
  
Name  of  Variable Type Description 

IPAS2 integer 

If IPAS2 = 1, then the displacement and/or particle-
velocity values at each time level are stored. 
If IPAS2 = 2 (3,...), then the displacement and/or 
particle-velocity values at each second (third,...) time 
level are stored. 

 
 
NAMELIST  /SOURCE/ LS 
  
Name  of  Variable Type Description 

LS integer The index (position) of the grid point at which the 
body force will be applied. 

 
 
NAMELIST  /REC/  MR 
  
Name  of  Variable Type Description 
MR integer The number of receivers. 
 
 
At the end of the file MR integer numbers in the free form specify grid indices of the 
receivers. Index 0 means the top boundary of the computational model.  
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Input data file MO_FILE_NAME 
 
The file type is binary and contains the arithmetic averages of density and harmonic 
averages of modulus in all grid cells. Data is read by  
 

READ ( 14 ) ( DEN(L),  M (L  ), L = 0, MZ) 
 

Name  of  Variable Type Description 

DEN  (L)      real 

The arithmetic average of the density in 3kg m−⋅ . 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (102). 

M (L) real 

The harmonic average of the unrelaxed torsion 
modulus μ  (S wave) or 2λ μ+  (P wave); both in Pa. 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (103). 

 
 
Input data file Q_FILE_NAME 
 
The file type is binary and contains NRFREQ anelastic coefficients for each grid cell. 
Data is read by   
 
    READ ( 15 ) ( YM (L,1:NRFREQ), L = 0, MZ) 

 
Name  of  Variable Type Description 

YM  (L, IFREQ)     real 

The value of the anelastic material coefficient at the 
IFREQ-th relaxation frequency corresponding to 
viscoelastic modulus M determined using equation (183)
. 

 
 
Input data file 'STF.DAT' 
 
The file type is ASCII and contains the source-time function of the body force. Data is 
read by  
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J = 1 
DO 
  READ (10,*,IOSTAT = IOS) SOURTF (J) 
  IF (IOS == -1) EXIT 
  J = J + 1 

    END DO 
 

Name  of  Variable Type Description 
SOURTF (J) real The source-time function at time level J. 

 
 
 

Output files 
 
Program 1DFD_DVS generates several output files depending on the input parameters: 

• a log file containing the input parameters (as read by the program) and error 
messages, 

• a file containing displacement values at specified receivers in ASCII format if  
KEY_TLD = .TRUE., 

• a file containing displacement values at specified receivers in the SismoVi 
format if  KEY_SND = .TRUE., 

• a file containing particle-velocity values at specified receivers in ASCII format 
if  KEY_TLV = .TRUE., 

• a file containing particle-velocity values at specified receivers in the SismoVi 
format if  KEY_SNV = .TRUE.. 

 
 
Log file 'JOBNAME.LOG' 
 
The file type is ASCII and contains the input parameters read from file 
‘JOBNAME.IN’. If there is some error the file also contains the error message. 
 
 
Output data file 'JOBNAME_D.DAT' 
 
The file is generated only if  KEY_TLD = .TRUE. 
The file type is ASCII and contains values of the displacement at the specified receivers 
at each IPAS1 time level in the column form, e.g. 
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Time Displacement 
values at receiver 1 

Displacement values 
at receiver 2 . . . Displacement values 

at receiver MR 
 
 
Output data file 'JOBNAME_SD.DAT' 
 
The file is generated only if  KEY_SND = .TRUE. 
The file type is ASCII and contains values of the displacement at the specified receivers 
at each IPAS2 time level in the SismoVi format. 
 
 
Output data file 'JOBNAME_V.DAT' 
 
The file is generated only if  KEY_TLV = .TRUE. 
The file type is ASCII and contains values of the particle velocity at the specified 
receivers at each IPAS1 time level in the column form, e.g. 
 

Time Particle-velocity 
values at receiver 1 

Particle-velocity 
values at receiver 2 . . . Particle-velocity 

values at receiver MR
 
 
Output data file 'JOBNAME_SV.DAT' 
 
The file is generated only if  KEY_SNV = .TRUE. 
The file type is ASCII and contains values of the particle velocity at the specified 
receivers at each IPAS2 time level in the SismoVi format.  
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Program 1DFD_VS 
 

Input files 
 
Program 1DFD_VS requires five input files: 

• an auxiliary file containing just the name of the current computation, 
• an input file with controlling parameters for the computation, 
• a file containing  the elastic material parameters of the model, 
• a file containing the anelastic material parameters of the model, 
• a file containing the source-time function. 

 
 
Auxiliary file 'HF_1DFD_VS' 
 
The file type is ASCII and contains the following variable: 
 
Name  of  Variable Type Description 

JOBNAME A17 
The name of the current computation. This name is 
taken as a base for constructing the names of other 
input and output files. 

 
 
Input data file 'JOBNAME.IN' 
 
The file type is ASCII and contains several controlling variables associated in the nine 
namelists. The file also contains positions of receivers. 
 
 
NAMELIST  /NAMES/ MO_FILE_NAME,    Q_FILE_NAME 
 
Name  of  Variable Type Description 

MO_FILE_NAME A20 

The name of the file containing elastic parameters and 
densities describing material cells. The elastic 
parameters have to be computed according to equation 
(103) and densities according to equation (102). 

Q_FILE_NAME A20 
The name of the file containing anelastic coefficients 
describing material cells. The anelastic coefficients 
have to be computed according to equation (183). 
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NAMELIST  /KEYS/  KEY_TLV,  KEY_SNV 
 
Name  of  Variable Type Description 

KEY_TLV logical 

.TRUE.: An output file in ASCII format is generated. 
It contains time levels of the particle 
velocities at specified receivers. 

.FALSE.: The output file is not generated. 

KEY_SNV logical 

.TRUE.: An output file in SismoVi format is 
generated. It contains time levels of the 
particle velocities at specified receivers. 

.FALSE.: The output file is not generated. 
 
 
NAMELIST  /CONTROLDATA/  MT1  , MT2   , DT   , IPAS1 ,  MZ   , H  
 
Name  of  Variable Type Description 

MT1,  MT2 integer 
The computation is performed from the time level 
MT1 until the time level MT2.  
MT1 has to be always equal to 1. 

DT real 

The time step tΔ  in seconds. It has to satisfy the 
stability condition for the 4th-order staggered grid VS 

FD scheme, i.e. 
max

6
7

ht
v

Δ ≤ , where maxv  is the 

maximum P-wave or S-wave velocity and h  is a grid 
spacing. 

IPAS1 integer 

If IPAS1 = 1, then the particle-velocity values at each 
time level are stored. 
If IPAS1 = 2 (3,...), then the particle-velocity values at 
each second (third,...) time level are stored. 

MZ integer 
The total number of the grid points in the grid minus 1. 
One grid point represents, in fact, one physical 
horizontal plane. 

H real The grid spacing in meters. The total size of the grid in 
meters is (MZ+1)*H. 
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NAMELIST  /ATTEN/ FRJMAX, FRANGE, NRFREQ 
This namelist refers to inclusion of the realistic model of attenuation based on rheology 
of the model GMB-EK. 
 
Name  of  Variable Type Description 

FRJMAX real 

The upper limit of the frequency range in which the 
anelastic coefficients lY  fits the desired Futterman 
( )Q ω  law by solving equation (164). It should be 

larger than maximum frequency ACf  up to which the 
computation should be sufficiently accurate. For the 

4th-order VS FD scheme min

6AC
vf

h
≈ , where minv  is 

the minimum velocity in the model and h  is a grid 
spacing. In fact, the effect of the grid dispersion is 
cumulative with increasing travel distance. 
  
If  FRJMAX = 0, the attenuation is not included. 

FRANGE real 

This variable determines the frequency range for the 
attenuation in which the anelastic coefficients lY  fit the 
desired Futterman ( )Q ω  law by solving   (164). 
FRANGE = 3, e.g., means frequency range 

310 ,−∗FRJMAX FRJMAX . 

NRFREQ integer The number of relaxation frequencies describing the 
rheology of the GMB-EK. 

 
 
NAMELIST  /NONREF/ OMG,  WB,  KTTO,  KTBO 
This namelist refers to the nonreflecting boundaries of the grid. Several types of the 
nonreflecting boundaries are included. 
 
Name  of  Variable Type Description 

OMG real 
The dominant frequency in Hz at which artificial 
reflections should be suppressed more than at other 
frequencies. 

WB real 
The weight coefficient b  for the Liu-Archuleta type of 
nonreflecting boundary (108). It has to satisfy 
condition 0 0.4b≤ ≤ . 
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Name  of  Variable Type Description 

KTTO integer 

The key determining type of the top boundary of the 
grid: 
                       < 0:  free surface         
                       = 0:  plane of symmetry 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

KTBO integer 

The key determining type of the bottom boundary of 
the grid: 
                       = 1:  rigid boundary         
                       = 2:  Reynolds 
                       = 3:  Peng & Toksöz 
                       = 4:  Emmerman & Stephen 
                       = 5:  Clayton & Engquist A1 
                       = 6:  Liu-Archuleta 

 
 
NAMELIST  /TXT/  TEXT 
  
Name  of  Variable Type Description 

TEXT A20 An arbitrary alphanumeric text  
(e.g. describing the computation) 

 
 
NAMELIST  /SNAP/  IPAS2 
Included only if  KEY_SNV = .TRUE. 
  
Name  of  Variable Type Description 

IPAS2 integer 

If IPAS2 = 1, then the particle-velocity values at each 
time level are stored. 
If IPAS2 = 2 (3,...), then the particle-velocity values at 
each second (third,...) time level are stored. 
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NAMELIST  /SOURCE/ LS 
  
Name  of  Variable Type Description 

LS integer The index (position) of the grid point at which the 
body force will be applied. 

 
 
NAMELIST  /REC/  MR 
  
Name  of  Variable Type Description 
MR integer The number of receivers. 
 
 
At the end of the file MR integer numbers in free form specify grid indices of the 
receivers. Index 0 means the top boundary of the computational model. 
 
 
 
Input data file MO_FILE_NAME 
 
The file type is binary and contains the arithmetic averages of density and harmonic 
averages of modulus in all grid cells. Data is read  
 

READ ( 14 ) ( DEN(L),  M (L  ), L = 0, MZ) 
 

Name  of  Variable Type Description 

DEN  (L)      real 

The arithmetic average of the density in 3kg m−⋅ . 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (102). 

M (L) real 

The harmonic average of the unrelaxed torsion 
modulus μ  (S wave) or 2λ μ+  (P wave); both in Pa. 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (103). 

 
 
 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 100 

Input data file Q_FILE_NAME 
 
The file type is binary and contains NRFREQ anelastic coefficients for each grid cell. 
Data is read by  
 
    READ ( 15 ) ( YM (L,1:NRFREQ), L = 0, MZ) 

 
Name  of  Variable Type Description 

YM  (L, IFREQ)     real 
The anelastic material coefficient at the IFREQ-th 
relaxation frequency corresponding to viscoelastic 
modulus M determined using equation (183). 

 
 
 
Input data file 'STF.DAT' 
 
The file type is ASCII and contains the source-time function of the body force. Data is 
read by  
 

J = 1 
DO 
  READ (10,*,IOSTAT = IOS) SOURTF (J) 
  IF (IOS == -1) EXIT 
  J = J + 1 

    END DO 
 

Name  of  Variable Type Description 
SOURTF (J) real The source-time function at time level J. 

 
 
 

Output files 
 
Program 1DFD_VS generates several output files depending on the input parameters: 

• a log file containing the input parameters (as read by the program) and error 
messages, 

• a file containing particle-velocity values at specified receivers in ASCII format 
if  KEY_TLV = .TRUE., 
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• a file containing particle-velocity values at specified receivers in the SismoVi 
format if  KEY_SNV = .TRUE.. 

 
 
Log file 'JOBNAME.LOG' 
 
The file type is ASCII and contains the input parameters read from file 
‘JOBNAME.IN’. If there is some error the file also contains the error message. 
 
 
Output data file 'JOBNAME_V.DAT' 
 
The file is generated only if  KEY_TLV = .TRUE. 
The file type is ASCII and contains values of the particle velocity at the specified 
receivers at each IPAS1 time level in the column form, e.g. 
 

Time Particle-velocity 
values at receiver 1 

Particle-velocity 
values at receiver 2 . . . Particle-velocity 

values at receiver MR
 
 
Output data file 'JOBNAME_SV.DAT' 
 
The file is generated only if  KEY_SNV = .TRUE. 
The file type is ASCII and contains values of the particle velocity at the specified 
receivers at each IPAS2 time level in the SismoVi format. 
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Program  MODEL_PREP_1D 
 

Input files 
 
Program MODEL_PREP_1D requires one input file containing control parameters for 
the model preparation. The physical parameters of the model, i.e., the depth dependence 
of the velocity, density and quality factor should be described in the Fortran module 
‘mod_func.f90’ using functions. The example is given below. 
 
 
Input data file 'MODEL.IN' 
 
The file type is ASCII and contains several controlling variables associated in the three 
namelists. 
 
 
NAMELIST  /CONTROL/   H, ZMAX, PTS, KEY_Q 
 
Name  of  Variable Type Description 
H real The grid spacing in meters. 

ZMAX real 
The size of the model in meters. The top boundary of 
the model is at 0z= , the bottom boundary is at 
z= ZMAX . 

PTS integer 

The number of points for numerical integration in 
determination of the arithmetic (102) and harmonic 
(103) averages. The larger PTS the more precise 
numerical integration. 
 
PTS has to be even. 

KEY_Q logical 

.TRUE.:  The anelastic coefficients are computed from 
Q values. 

.FALSE.: The anelastic coefficients are equal to zero, 
i.e., the medium is elastic. 
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NAMELIST  /OUT_FILES/  MO_FILE_NAME,    Q_FILE_NAME 
 
Name  of  Variable Type Description 

MO_FILE_NAME A20 

The name of the file containing elastic parameters and 
densities describing material cells. The elastic 
parameters are computed according to equation (103) 
and densities according to equation (102). The 
generated file is an input file for the FD computation. 

Q_FILE_NAME A20 

The name of the file containing anelastic coefficients 
describing material cells. The anelastic coefficients are 
computed according to equation (183). The generated 
file is an input file for the FD computation. 

 
 
NAMELIST  /PARAMS/ FRJMAX, FRANGE, NRFREQ, FREF 
This namelist refers to inclusion of a realistic model of attenuation based on rheology of 
the GMB-EK. 
 
Name  of  Variable Type Description 

FRJMAX real 

The upper limit of the frequency range in which the 
anelastic coefficients lY  fit the desired Futterman 
( )Q ω  law by solving equation (164). It should be 

larger than maximum frequency ACf  up to which the 
computation should be sufficiently accurate. For the 

4th-order DS FD scheme min

6AC
vf

h
≈ , where minv  is 

the minimum velocity in the model and h  is a grid 
spacing. In fact, the effect of the grid dispersion is 
cumulative with increasing travel distance. 

FRANGE real 

This variable determines the frequency range for the 
attenuation in which the anelastic coefficients lY  fit the 
desired Futterman ( )Q ω  law. 
For example, FRANGE = 3 means frequency range 

310 ,−∗FRJMAX FRJMAX . 

NRFREQ integer The number of relaxation frequencies, i.e., the number 
of classical Maxwell bodies in the GMB-EK. 
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Name  of  Variable Type Description 

FREF real 
The reference frequency at which the velocity and the 
factor quality are prescribed in the Fortran functions in 
the module 'mod_func.f90'. 

 
 
 
Fortran module 'mod_func.f90' 
 
The file type is ASCII and is a part of program MODEL_PREP_1D. It contains Fortran 
functions describing the velocity ( function FUNCV (Z) ), density ( function 
FUNCRHO (Z) ), and quality factor ( function FUNCQ (Z) ) as functions of the depth 
(i.e., variable ; 0,z z ∈ ZMAX  ).  

 
An example for the model of a single layer over halfspace is given below. The 

depth of a layer is 200 m with wave velocity 625 /m s , density 1600 3/kg m , and 
quality factor 50. The wave velocity in the halfspace is 3126 /m s , density 1800 

3/kg m , and quality factor 1000 (i.e., the halfspace is elastic).  
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MODULE MOD_FUNC 
 
IMPLICIT NONE 
 
CONTAINS 
!------------------------------------------------ P or S-wave velocity 
  FUNCTION FUNCV (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCV 
     
    IF ( Z < 200.0 ) THEN 
      !LAYER 
      FUNCV = 625. 
    ELSE 
      !HALFSPACE 
      FUNCV = 3126. 
    END IF 
 
  END FUNCTION FUNCV 
 
!------------------------------------------------------------- Density 
  FUNCTION FUNCRHO (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCRHO 
 
    IF ( Z < 200.0 ) THEN 
      !LAYER 
      FUNCRHO = 1600. 
    ELSE 
      !HALFSPACE 
      FUNCRHO = 1800. 
    END IF 
 
  END FUNCTION FUNCRHO 
 
!------------------------------------------ P or S-wave quality factor 
  FUNCTION FUNCQ (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCQ 
   
    IF ( Z < 200.0 ) THEN 
      !LAYER 
      FUNCQ = 50. 
    ELSE 
      !HALFSPACE 
      FUNCQ = 10000. 
    END IF 
 
  END FUNCTION FUNCQ 
 
 
END MODULE 
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Output files 
 
Program MODEL_PREP_1D generates three output files: 

• a log file containing parameters of the generated grid, 
• a file containing  the elastic material parameters of the model, 
• a file containing the anelastic material parameters of the model. 
 

 
Log file 'MODEL.LOG' 
 
The file type is ASCII and contains information on the generated grid, specifically: 

• the grid spacing in meters, 
• the number of grid cells, 
• the value of parameter MZ.  

 
 
Output data file MO_FILE_NAME 
 
The file type is binary and contains the arithmetic averages of density and harmonic 
averages of modulus in all grid cells. The file serves as the input file for the FD 
computation. Data is written by  
 

WRITE ( 14 ) ( DEN(L),  M (L  ), L = 0, MZ) 
 

Name  of  Variable Type Description 

DEN  (L)      real 

The arithmetic average of the density in 3kg m−⋅ . 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (102). 

M (L) real 

The harmonic average of the unrelaxed torsion 
modulus μ  (S wave) or 2λ μ+  (P wave); both in Pa. 
The average is taken over a distance of H centered at 
the grid point which is the position of the displacement 
in the grid cell L, see equation (103). 
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Output data file Q_FILE_NAME 
 
The file type is binary and contains the NRFREQ anelastic coefficients for each grid 
cell. The file serves as the input file for the FD computation. Data is written by  
 
    WRITE ( 15 ) ( YM (L,1:NRFREQ), L = 0, MZ) 

 
Name  of  Variable Type Description 

YM  (L, IFREQ)     real 

The value of the anelastic material coefficient at the 
IFREQ-th relaxation frequency corresponding to the 
viscoelastic modulus M determined using equation (183)
. 

 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 109

Program  SOURTF 
 

Input files 
 
Program SOURTF requires one input file containing the controlling parameters for the 
source-time function preparation.  
 
 
Input file 'SOURTF.IN' 
 
The file type is ASCII and contains several controlling variables associated in the two 
namelists.  
 
 
NAMELIST  /INPUT/ NSIG,  DT 
 
Name  of  Variable Type Description 

NSIG integer 

The key determining the type of the generated signal: 
                      = 1:  Kupper 
                      = 2:  Ricker 
                      = 3:  Gabor 
                      = 4:  Berlage 

DT real The time step tΔ  in seconds. It has to be the same as 
in the FD computation. 

 
 
The next namelist is one of the following namelists - depending on the chosen type of 
the input signal. 
 
 
Kupper signal  ( NSIG = 1 ) 
 
The signal is defined by 

 ( ) 1sin 2 sin 4
2

t ts t
T T

π π
⎛ ⎞ ⎛ ⎞⎟ ⎟⎜ ⎜= −⎟ ⎟⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜⎝ ⎠ ⎝ ⎠

, 

 
where T  is approximately the dominant period and the signal is defined in the interval 

0,T . 
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NAMELIST /SIGNAL_1/ TP 
 
Name  of  Variable Type Description 
TP real The dominant period T . 
 
 
 
Ricker signal  ( NSIG = 2 ) 
 
The signal is defined by 

 ( )
2

1 ;
2 2

a S

P

t ts t a e a
t

π π− ⎛ ⎞⎛ ⎞ − ⎟⎜⎟⎜ ⎟= − = ⎜⎟⎜ ⎟⎟⎟ ⎜⎜ ⎟⎜⎝ ⎠ ⎝ ⎠
, 

 
where Pt  is the dominant period, 1.1S Pt t= , and the signal is defined in the interval 

0, 2 St . 
 
NAMELIST /SIGNAL_2/ TP, TS 
 
Name  of  Variable Type Description 
TP real The dominant period Pt  in seconds. 

TS real 
The time shift St  in seconds. 
If 0=TS , then TS  is determined using 1.1S Pt t= . 

 
 
 
Gabor signal  ( NSIG = 3 ) 
 
The signal is defined by 

 ( )
( )

( )( )
2

2

cos 2
P Sf t t

P Ss t e f t t
π

γ π Ψ

⎛ ⎞− ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠= − + , 

 
where Pf  is (for certain values of γ  and Ψ ) the dominant frequency, γ  controls the 

width of the signal envelope, 0.45S
P

t
f
γ= , and the signal is defined in the interval 

0, 2 St . 
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NAMELIST /SIGNAL_3/ GAMA, FP, PSI, TS 
 
Name  of  Variable Type Description 

GAMA real 
Parameter γ  controlling the width of the signal 
envelope. 

FP real The dominant frequency Pf  in Hz. 

PSI real Phase Ψ  in radians. 

TS real 
The time shift St  in seconds. 

If 0=TS , then TS  is determined using 0.45S
P

t
f
γ= . 

 
 
 
Berlage signal ( NSIG = 4 ) 
 
The signal is defined by 

 ( ) ( )
( )

( )( )
2

sin 2
P Sf t t

S P Ss t t t e f t t
π

ζ γ π
−

−
= − − , 

 
where Pf  is the dominant frequency, γ  controls the width of the signal envelope, and 
the signal is defined in the interval 0, St . 
 
NAMELIST /SIGNAL_4/ GAMA, FP, ZETA, TS 
 
Name  of  Variable Type Description 

GAMA real 
Parameter γ  controlling the width of the signal 
envelope. 

FP real The dominant frequency Pf  in Hz. 

ZETA real Parameter ζ . 

TS real The time shift St  in seconds. 
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Output files 
 
Program SOURTF generates three output files: 

• a file containing the source-time function which can be read by the FD code, 
• a file containing the source-time function and its envelope, 
• a file containing the power, amplitude and phase Fourier spectrum of the 

source-time function. 
 

Output data file 'STF.DAT' 
 
The file type is ASCII and contains the source-time function of the body force. Data is 
written by  
 

DO J = 1, NT 
  WRITE (10,*) SOURTF (J) 

  END DO 
 
Name  of  Variable Type Description 
SOURTF (J) real The source-time function at time level J. 
 
 
Output data file 'SOURTF.DAT' 
 
The file type is ASCII and contains the source-time function and its envelope in the 
three-column form, i.e.  
 

Time Source-time 
function 

Envelope of the 
source-time function 

 
 
Output data file 'SPECTR.DAT' 
 
The file type is ASCII and contains the power, amplitude and phase Fourier spectrum 
of the source-time function in the four-column form, i.e.  
 

Frequency 

Power Fourier 
spectrum 

 of the source-time 
function 

Amplitude Fourier 
spectrum 

 of the source-time 
function 

Phase Fourier 
spectrum 

 of the source-time 
function 
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Numerical Examples 
 

We present three simple numerical examples. They should help reader to use the 
program package 1DFD. The first example is the model of unbounded homogeneous 
elastic medium. A user can observe (un)stable behavior of the generated wave 
depending on the choice of the time step and the source-time function. Moreover, the 
user can observe performance of different types of nonreflecting boundaries.  

The second example is the model of a single elastic layer over a elastic halfspace. 
The model allows observing the capability of the FD schemes to see a true position of a 
material discontinuity in the grid, investigate the effect of the layer on the surface 
motion, particularly, possible resonant phenomena in the layer. 

The third example illustrates the incorporation of attenuation in the time-domain FD 
computations using the GMB-EK rheological model. A model of the unbounded 
viscoelastic homogeneous medium is used. The user can observe effects of the 
attenuation on the wave propagation. 

All examples are supplemented by several exercises. 
The examples together with the program package 1DFD can be found in the 

attached CD or at http://www.spice-rtn.org/ . 
 
 
 

Unbounded Homogeneous Elastic Medium 
Example 1 

 
Description of the example 

 
Physical model: 
The unbounded homogeneous elastic medium with parameters: 

P-wave velocity  1125 /PV m s=  
S-wave velocity  625 /SV m s=  

Density   31600 /kg mρ =  
 
Source: 
The plane S wave with the source-time function defined by Gabor signal 
 

( )
( )

( )( )
2

2

cos 2
P Sf t t

P Ss t e f t t
π

γ π Ψ

⎛ ⎞− ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠= − + , 
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with parameters 1.0, 0.45 , , 1.0
2P Sf Hz t sπγ Ψ= = = = . 

 
Computational model: 
The size of the computational model:    31000 m 
The grid spacing:       50h m=  

The time step:       6 0.0685
7 S

ht s
V

Δ ≤ =  

The top boundary of the computational model:  nonreflecting boundary according to  
Emerman & Stephen (1983) 

The bottom boundary of the computational model:  nonreflecting boundary according to  
Emerman & Stephen (1983) 

The grid position of the body-force:   LS = 12 
 
The chosen grid spacing implies the maximum frequency ACf  up to which the 
computation is sufficiently accurate:  

 2
6

S
AC

Vf Hz
h

=  

 
Output: 
The receivers are placed at the first 51 grid points from the top boundary of the model. 
Depending on the applied FD scheme either the displacement (DS scheme) or particle 
velocity (VS scheme) or both (DVS scheme) will be stored. 
 
 

Computational procedure 
 
The computational procedure consists of 

• the compilation of the computer codes, 
• the generation of the computational model, 
• the generation of the source-time function, 
• the FD computation, 
• the drawing of the results. 

 
 
Compilation of the computer codes: 

The program package 1DFD is written in standard Fortran90. Each program has its 
own Makefile written for the Linux operating systems with Intel® Fortran Compiler 
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8.0. They have to be edited and changed according to the used Fortran90 compiler. 
After that the user can compile the program package (using Linux statement ‘make’ in 
each directory). 

 
Generation of the computational model: 

Program MODEL_PREP_1D can be used to generate the computational model. 
The physical parameters of the model have to be prescribed in the Fortran module 
mod_func.f90 which contains three Fortran functions (FUNCV, FUNCRHO and 
FUNCQ). The listing of the module is below.  

The module is in the directory with input files for Exercise 1 and has to be copied 
into the directory with the source file of program MODEL_PREP_1D. The program 
has to be recompiled. Then the executable file should be copied back into directory 
with the input files for Exercise 1. The computation should be run in the directory.  

The controlling parameters are read in from file MODEL.IN (see below). 
 

Program MODEL_PREP_1D generates the ASCII log file MODEL.LOG and two 
binary files, E_01.MO and E_01.Q, which serve as the input files for the FD 
computation.  
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mod_func.f90 
 
MODULE MOD_FUNC 
 
IMPLICIT NONE 
 
CONTAINS 
!------------------------------------------------ P or S-wave velocity 
  FUNCTION FUNCV (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCV 
     
    FUNCV = 625. 
 
  END FUNCTION FUNCV 
 
!------------------------------------------------------------- Density 
  FUNCTION FUNCRHO (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCRHO 
 
    FUNCRHO = 1600. 
 
  END FUNCTION FUNCRHO 
 
!------------------------------------------ P or S-wave quality factor 
  FUNCTION FUNCQ (Z) 
 
    FUNCQ = 10000. 
 
  END FUNCTION FUNCQ 
 
 
END MODULE 

MODEL.IN 
 
&CONTROL     H = 50, ZMAX = 31000, PTS = 10, KEY_Q = F / 
   
&OUT_FILES   MO_FILE_NAME = 'E_01.MO',  Q_FILE_NAME = 'E_01.Q'/ 
 
&PARAMS      FRJMAX = 5, FRANGE = 2, FREF = 0.5, NRFREQ = 1/ 
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Generation of the source-time function: 
The source-time function described by Gabor signal can be generated using 

program SOURTF. The executable file should be copied into directory with the input 
files for Exercise 1 and run there. Program reads the input data from file SOURTF.IN 
(see below) and generates three output files: 

• STF.DAT containing the source-time function which can be read by the FD 
code, 

• SOURTF.DAT containing the source-time function and its envelope, 
• SPECTR.DAT containing the power, amplitude and phase Fourier spectra of 

the source-time function. 

 
The generated source-time function (file SOURTF.DAT) can be visualized using 

program Gnuplot 4.0 and by running the script Show_STF.gnuplot. Similarly, the 
power Fourier spectrum of the source-time function can be visualized (file 
SPECTR.DAT) by running the script Show_STF_spec.gnuplot in Gnuplot 4.0.  
 

  
Figure 8.  The source-time function, Gabor signal, (left), and its power Fourier 

spectrum (right) plotted using the Gnuplot scripts Show_STF.gnuplot and 
Show_STF_spec.gnuplot 

 

SOURTF.IN 
 
&INPUT        NSIG = 3, DT = 0.0685/ 
 
&SIGNAL_3     GAMA = 1.0, FP = 0.45, PSI = 1.570796, TS = 1.0 / 
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The FD computation: 
The next step is the FD computation. There is one input file containing the 

controlling parameters for each FD code in the directory with the input files for 
Exercise 1. The name of the input file is read in from the auxiliary file HF_1DFD_DS 
(or HF_1DFD_DVS or HF_1DFD_VS). The executable files should be copied into this 
directory and they should be run there.  

The FD programs read the input data from file E_DS_01.IN (program 1DFD_DS), 
or E_DVS_01.IN  (program 1DFD_DVS), or E_VS_01.IN  (program 1DFD_VS). 
An example of E_DVS_01.IN is given below. 

 
Program 1DFD_DVS produces one log file, E_DVS_01.LOG, and four files 
containing results: 

• E_DVS_01_D.DAT - displacement values in the chosen receivers in the form 
of columns, 

• E_DVS_01_V.DAT - particle velocity values in the chosen receivers in the 
form of columns, 

E_DVS_01.IN 
 
&NAMES        MO_FILE_NAME = 'E_01.MO', Q_FILE_NAME = 'E_01.Q' / 
 
&KEYS         KEY_TLV = T, KEY_TLD = T, KEY_SNV = T, KEY_SND = T / 
 
&CONTROLDATA  MT1 = 1, MT2 = 300, IPAS1 = 1, MZ = 620, H = 50,  
              DT = 0.0685 / 
   
&ATTEN        FRJMAX = 5., FRANGE = 2., NRFREQ = 1 / 
 
&NONREF       OMG = 3.14, WB = 0.4, KTTO = 4, KTBO = 4 / 
 
&TXT          TEXT = 'EXAMPLE 01' / 
 
&SNAP         IPAS2 = 1 / 
 
&SOURCE       LS = 12 / 
 
&REC          MR = 51 / 
50 49 48 47 46 45 44 43 42 41 
40 39 38 37 36 35 34 33 32 31 
30 29 28 27 26 25 24 23 22 21 
20 19 18 17 16 15 14 13 12 11 
10  9  8  7  6  5  4  3  2  1 
0 
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• E_DVS_01_SD.DAT - displacement values in the chosen receivers in the 
SismoVi form, 

• E_DVS_01_SV.DAT - particle velocity values in the chosen receivers in the 
SismoVi form. 

A quick look at the one of the first two files on the screen can help indicate whether the 
computation is stable or unstable.   
 
Drawing results: 
Results can be drawn using the supplemented program SismoVi 1.05 with the 
following settings (see red ellipses in the Fig. 9): 

• Overlap:   98% 
• Space length:   80 

 

 
 
Figure 9.   Results of Example 1 plotted using program SismoVi 1.05. Left –Traces of 

the displacement values stored at 51 receivers starting from the top 
boundary of the computational model. It is clearly seen that the wavefield is 
excited from the 13th grid position and there are two waves propagating in 
the opposite directions. Right – the controlling parameters. The red ellipses 
indicate the values which have to be changed. Setting up the space-length 
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parameter to 2 allows seeing spurious reflections from the top boundary of 
the computational region. 

 
 

Exercises 
 

• Use either 1D_FD_DS for the displacement-stress FD scheme or 1D_FD_DVS 
for the displacement-velocity-stress FD scheme or 1D_FD_VS for the velocity-
stress scheme and compare results.  

• Change the time step DT and observe the effect on stability. See the results 
when the stability condition is violated. 

• Use different types of the nonreflecting boundary and see the amplitude of the 
spurious reflections. Compare performance of different types of the 
nonreflecting boundaries. 

• Use the source-time functions with various frequency ranges and see the effect 
of the grid dispersion. The frequency range of Gabor signal is controlled by 
parameter γ  - the lower γ  the broader is the frequency range. 

• Excite P wave instead of S wave.  
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Single Layer over Halfspace 
Example  2 

 
Description of the example 

 
Four models of the layer over halfspace are presented. They differ from each other by 
the layer thickness which is: 

A 200.0 m 
B 207.5 m 
C 237.5 m 
D 225.0 m 

The purpose of computing four modifications is to demonstrate the capability of the 
scheme to see the true position of the layer-halfspace interface in the spatial grid. In the 
case of models B and C, the interface does not coincide with any grid position. For 
each model theoretical solution obtained by the analytical matrix method (file 
MICRO.DAT) is provided. (Program MICRO by V.Červený.) 
 
 
Physical model: 
A homogeneous elastic layer over halfspace. Four different layer thicknesses are 
considered: { }200.0 , 207.5 , 237.5 , 225.0m m m m . 

 

     Layer          Halfspace 
 

P-wave velocity  1125 /PV m s=   5468 /PV m s=  
S-wave velocity  625 /SV m s=   3126 /SV m s=  

Density   31600 /kg mρ =   31800 /kg mρ =  
 
 
Source: 
Plane S wave with the source-time function defined by Gabor signal 
 

( )
( )

( )( )
2

2

cos 2
P Sf t t

P Ss t e f t t
π

γ π Ψ

⎛ ⎞− ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠= − + , 

 

with parameters: 1.0, 0.45 , , 1.0
2P Sf Hz t sπγ Ψ= = = = . 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 122 

The plane wave is excited at the depth of 600 m. 
 
 
Computational model: 
The size of the computational model:   31000 m 
The grid spacing:      50h m=  

The time step:      
( )

6 0.0135
7 max S

ht s
V

Δ ≤ =  

The top boundary of the computational model: free-surface (zero-traction) 
condition 

The bottom boundary of the computational model:  nonreflecting boundary according to  
Emerman & Stephen (1983) 

The grid position of the body-force:   LS = 12 
 
The chosen grid spacing implies the maximum frequency ACf  up to which the 
computation is sufficiently accurate: 

 
( )min

2
6

S
AC

V
f Hz

h
=  

 
 
Output: 
One receiver located at the free surface. Depending on the used FD scheme, either 
displacement (DS scheme) or particle velocity (VS scheme) or both (DVS scheme) will 
be stored. 
 
 

Computational procedure 
 
The computational procedure consists of 

• the compilation of the computer codes, 
• the generation of the computational model, 
• the generation of the source-time function, 
• the FD computation, 
• the drawing of the results. 

 
Compilation of the computer codes: 

The program package 1DFD is written in standard Fortran90. Each program has its 
own Makefile written for the Linux operating systems with Intel® Fortran Compiler 
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8.0. They have to be edited and changed according to the used Fortran90 compiler. 
After that the user can compile the program package (using Linux statement ‘make’ in 
each directory). 

 
Generation of the computational model: 

Program MODEL_PREP_1D can be used to generate the computational model. 
The physical parameters of the model have to be prescribed in the Fortran module 
mod_func.f90 which contains three Fortran functions (FUNCV, FUNCRHO and 
FUNCQ). The listing of the module is below.  

The module is in each subdirectory A, B, C or D of the directory with input files for 
Exercise 2 and has to be copied into the directory with the source file of program 
MODEL_PREP_1D. The program has to be recompiled. Then the executable file 
should be copied back into directory with the input files for Exercise 2. The 
computation should be run in the directory.  
The controlling parameters are read in from file MODEL.IN (see below). 

 
Program MODEL_PREP_1D generates the ASCII log file MODEL.LOG and two 

binary files, E_02.MO and E_02.Q, which serve as the input files for the FD 
computation. 

 

MODEL.IN 
 
&CONTROL     H = 50, ZMAX = 31000, PTS = 100, KEY_Q = F / 
   
&OUT_FILES   MO_FILE_NAME = 'E_02.MO',  Q_FILE_NAME = 'E_02.Q'/ 
 
&PARAMS      FRJMAX = 5, FRANGE = 2, FREF = 0.5, NRFREQ = 1/ 
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mod_func.f90  for model A (thickness of a layer 200.0 m) 
 
MODULE MOD_FUNC 
 
IMPLICIT NONE 
 
CONTAINS 
!------------------------------------------------ P or S-wave velocity 
  FUNCTION FUNCV (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCV 
     
    IF (Z<200.0) THEN 
      !LAYER 
      FUNCV = 625. 
    ELSE 
      !HALFSPACE 
      FUNCV = 3126. 
    END IF 
 
  END FUNCTION FUNCV 
 
!------------------------------------------------------------- Density 
  FUNCTION FUNCRHO (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCRHO 
 
    IF (Z<200.0) THEN 
      !LAYER 
      FUNCRHO = 1600. 
    ELSE 
      !HALFSPACE 
      FUNCRHO = 1800. 
    END IF 
 
  END FUNCTION FUNCRHO 
 
!------------------------------------------ P or S-wave quality factor 
  FUNCTION FUNCQ (Z) 
 
    FUNCQ = 10000. 
 
  END FUNCTION FUNCQ 
 
END MODULE 
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Generation of the source-time function: 
The source-time function described by Gabor signal can be generated using 

program SOURTF. The executable file should be copied into directory with the input 
files for Exercise 2 and run there. Program reads the input data from file SOURTF.IN 
(see below) and generates three output files: 

• STF.DAT containing the source-time function which can be read by the FD 
code, 

• SOURTF.DAT containing the source-time function and its envelope, 
• SPECTR.DAT containing the power, amplitude and phase Fourier spectra of 

the source-time function. 

 
The generated source-time function (file SOURTF.DAT) can be visualized using 

program Gnuplot 4.0 and by running the script Show_STF.gnuplot. Similarly, the 
power Fourier spectrum of the source-time function can be visualized (file 
SPECTR.DAT) by running the script Show_STF_spec.gnuplot in Gnuplot 4.0.   
 

  
Figure 10.  Source-time function described by Gabor signal (left) and its power Fourier 

spectrum (right) plotted using Gnuplot scripts Show_STF.gnuplot and 
Show_STF_spec.gnuplot 

 
 

SOURTF.IN 
 
&INPUT        NSIG = 3, DT = 0.0135 / 
 
&SIGNAL_3     GAMA = 1.0, FP = 0.45, PSI = 1.570796, TS = 1.0 / 
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The FD computation: 
The next step is the FD computation. There is one input file containing the 

controlling parameters for each FD code in the directory with the input files for 
Exercise 2. The name of the input file is read in from the auxiliary file HF_1DFD_DS 
(or HF_1DFD_DVS or HF_1DFD_VS). The executable files should be copied into this 
directory and they should be run there.  
The FD programs read the input data from file E_DS_02.IN (program 1DFD_DS), or 
E_DVS_02.IN  (program 1DFD_DVS), or E_VS_02.IN  (program 1DFD_VS). An 
example of E_DVS_02.IN is given below. 

 
Program 1DFD_DVS produces one log file, E_DVS_02.LOG, and four files 
containing results: 

• E_DVS_02_D.DAT - displacement values in the chosen receivers in the form 
of columns, 

• E_DVS_02_V.DAT - particle velocity values in the chosen receivers in the 
form of columns, 

• E_DVS_02_SD.DAT - displacement values in the chosen receivers in the 
SismoVi form, 

• E_DVS_02_SV.DAT - particle velocity values in the chosen receivers in the 
SismoVi form. 

E_DVS_02.IN 
 
&NAMES        MO_FILE_NAME = 'E_02.MO', Q_FILE_NAME = 'E_02.Q' / 
 
&KEYS         KEY_TLV = T, KEY_TLD = T, KEY_SNV = T, KEY_SND = T / 
 
&CONTROLDATA  MT1 = 1, MT2 = 3000, IPAS1 = 1, MZ = 620, H = 50,  
              DT = 0.0137 / 
   
&ATTEN        FRJMAX = 0., FRANGE = 2., NRFREQ = 1 / 
 
&NONREF       OMG = 3.14, WB = 0.4, KTTO = -1, KTBO = 4 / 
 
&TXT          TEXT = 'EXAMPLE 02' / 
 
&SNAP         IPAS2 = 1 / 
 
&SOURCE       LS = 12 / 
 
&REC          MR = 1 / 
0 
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A quick look at the one of the first two files on the screen can help indicate whether the 
computation is stable or unstable. 
Drawing results: 
Results can be drawn using program Gnuplot 4.0 and by running script 
CompE02.gnuplot (Fig. 11). Comparison of two particle-velocity traces will be 
displayed – one by the FD computation (green line) and one obtained by the analytical 
matrix method using program MICRO (red line). 
 

 
Model  A (200.0 m) 

 
Model  B (207.5 m) 

 
Model  C (237.5 m) 

 
Model  D (225.0 m) 

 
Figure 11.  Results of Example 2 plotted using program Gnuplot 4.0. Two traces of the 

particle velocity recorded at the receiver on the free surface are compared 
together – the FD solution (green line) and the analytical matrix solution 
obtained using program MICRO (red line). 
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Exercises 
 

• Vary the thickness of the layer within one grid spacing and observe differences 
in the seismic motion. 

• Reduce the value of PTS in the input file MODEL.IN and observe the effect of 
accuracy of the numerical integration in computation of the effective material 
parameters on the capability of the FD scheme to see a true position of the 
material discontinuity. 
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Unbounded Homogenous Viscoelastic Medium 
Example  3 

 
Description of the example 

 
The example illustrates the incorporation of attenuation in the time-domain FD 
computations using the GMB-EK rheological model. A plane wave is propagated 
through the viscoelastic medium. Seismograms at two receivers will be used to 
calculate the frequency-dependent apparent phase velocity ( )appv f  and apparent 

quality factor ( )appQ f .  

Let xΔ  be the distance and ( ),v x f   the Fourier amplitude spectrum of the particle-

velocity time history at location x. Then the apparent Q is given by relation 
 

 ( ) ( ) ( ) ( )1 ln , ln ,app
app

v f
Q f v x x f v x f

f xπ
Δ

Δ
− ⎡ ⎤=− + −⎢ ⎥⎣ ⎦ . (199) 

 
The frequency-dependent apparent phase velocity ( )appv f  is given by 

 ( ) ( )
2app

xv f f
f

π Δ
Φ

= , (200) 

where ( )fΦ  is the difference between the phase Fourier spectra  of the particle-
velocity time histories at locations  x xΔ+  and x. This calculation is performed using 
the supplemented program APPQ. 

Finally, the apparent quality factor ( )appQ f  will be compared with the quality 
factor approximated using the GMB-EK,  equation (163), where coefficients lY  are 
determined by fitting desired ( )Q ω  using equation (164). The apparent phase velocity 

( )appv f  will be compared with the phase velocity determined using equation (166). 
 
 
Physical model: 
A homogeneous viscoelastic unbounded medium with parameters: 

The reference frequency    0.5reff Hz=   

P-wave velocity at frequency reff    ( ) 1125 /P refV f m s=  

S-wave velocity at frequency reff    ( ) 625 /S refV f m s=  
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Density       31600 /kg mρ =  
Quality factor for P-waves at frequency reff  ( ) 50P refQ f =  

Quality factor for S-waves at frequency reff  ( ) 50S refQ f =  

 
 
Source: 
The plane S wave with the source-time function defined by Gabor signal 
 

( )
( )

( )( )
2

2

cos 2
P Sf t t

P Ss t e f t t
π

γ π Ψ

⎛ ⎞− ⎟⎜ ⎟−⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠= − + , 

 

with parameters: 0.5, 0.45 , , 0.5
2P Sf Hz t sπγ Ψ= = = = . 

 
 
Computational model: 
 

The size of the computational model:   31000 m 
 

The grid spacing:      50h m=  
 

The time step:      
_ unrelaxed

6 0.0672
7 S

ht s
V

Δ ≤ =  but  

0.02t sΔ =  will be used for a better 
estimate of ( )appv f  and ( )appQ f . 

 

The top boundary of the computational model:  nonreflecting boundary according to  
Emerman & Stephen (1983) 

The bottom boundary of the computational model:  nonreflecting boundary according to  
Emerman & Stephen (1983) 

 

The grid position of the body-force:   LS = 112 
 

The number of relaxation frequencies:  4 
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The frequency range in which the anelastic coefficients lY  fit the desired Futterman 

( )Q ω  law, equation (164):    35 10 , 0.5 Hz−∗  

 

 
The chosen grid spacing implies the maximum frequency ACf  up to which the 
computation is sufficiently accurate:  

 2
6

S
AC

Vf Hz
h

=  

  
 
 
Output: 
2 receivers separated by distance of 22 grid points, i.e. 1100 m. Depending on the used 
FD scheme, we will store either displacement (DS scheme) or particle velocity (VS 
scheme), or both (DVS scheme). 
 
 

Computational procedure 
 
The computational procedure consists of 

• the compilation of the computer codes, 
• the generation of the computational model, 
• the generation of the source-time function, 
• the FD computation, 
• the computation of the apparent phase velocity and apparent quality factor, 
• the computation of the phase velocity and quality factor in medium with the 

GMB-EK rheology, 
• the comparison of the results. 
 
 

Compilation of the computer codes: 
The program package 1DFD is written in standard Fortran90. Each program has its 

own Makefile written for the Linux operating systems with Intel® Fortran Compiler 
8.0. They have to be edited and changed according to the used Fortran90 compiler. 
After that the user can compile the program package (using Linux statement ‘make’ in 
each directory). 
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Generation of the computational model: 
Program MODEL_PREP_1D can be used to generate the computational model. 

The physical parameters of the model have to be prescribed in the Fortran module 
mod_func.f90 which contains three Fortran functions (FUNCV, FUNCRHO and 
FUNCQ). The listing of the module is below.  

The module is in the directory with input files for Exercise 3 and has to be copied 
into the directory with the source file of program MODEL_PREP_1D. The program 
has to be recompiled. Then the executable file should be copied back into directory 
with the input files for Exercise 3. The computation should be run in the directory.  

The controlling parameters are read in from file MODEL.IN (see below). 
 

mod_func.f90 
 
MODULE MOD_FUNC 
 
IMPLICIT NONE 
 
CONTAINS 
!------------------------------------------------ P or S-wave velocity 
  FUNCTION FUNCV (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCV 
     
    FUNCV = 625. 
 
  END FUNCTION FUNCV 
 
!------------------------------------------------------------- Density 
  FUNCTION FUNCRHO (Z) 
 
    REAL, INTENT(IN) :: Z 
    REAL             :: FUNCRHO 
 
    FUNCRHO = 1600. 
 
  END FUNCTION FUNCRHO 
 
!------------------------------------------ P or S-wave quality factor 
  FUNCTION FUNCQ (Z) 
 
    FUNCQ = 50. 
 
  END FUNCTION FUNCQ 
 
 
END MODULE 



SPICE – Marie Curie Research Training Network 
SPICE Research and Training Workshop,  Venice, Italy,  Sep. 25 – Oct. 2  2004 

  

Moczo, Kristek, Halada:  The  Finite-Difference  Method  for  Seismologists.  An  Introduction 

 133

 
   

Program MODEL_PREP_1D generates the ASCII log file MODEL.LOG and two 
binary files, E_03.MO and E_03.Q, which serve as the input files for the FD 
computation.  
 
 
 
Generation of the source-time function: 

The source-time function described by Gabor signal can be generated using 
program SOURTF. The executable file should be copied into directory with the input 
files for Exercise 3 and run there. Program reads the input data from file SOURTF.IN 
(see below) and generates three output files: 

• STF.DAT containing the source-time function which can be read by the FD 
code, 

• SOURTF.DAT containing the source-time function and its envelope, 
• SPECTR.DAT containing the power, amplitude and phase Fourier spectra of 

the source-time function. 

 
 

The generated source-time function (file SOURTF.DAT) can be visualized using 
program Gnuplot 4.0 and by running the script Show_STF.gnuplot. Similarly, the 
power Fourier spectrum of the source-time function can be visualized (file 
SPECTR.DAT) by running the script Show_STF_spec.gnuplot in Gnuplot 4.0.  

SOURTF.IN 
 
&INPUT        NSIG = 3, DT = 0.02 / 
 
&SIGNAL_3     GAMA = 0.5, FP = 0.45, PSI = 1.570796, TS = 0.5 / 

MODEL.IN 
 
&CONTROL     H = 50, ZMAX = 31000, PTS = 10, KEY_Q = T / 
   
&OUT_FILES   MO_FILE_NAME = 'E_03.MO',  Q_FILE_NAME = 'E_03.Q'/ 
 
&PARAMS      FRJMAX = 5, FRANGE = 2, FREF = 0.5, NRFREQ = 4/ 
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Figure 12.  The source-time function, Gabor signal, (left), and its power Fourier 

spectrum (right) plotted using the Gnuplot scripts Show_STF.gnuplot and 
Show_STF_spec.gnuplot 

 
 
 
The FD computation: 

The next step is the FD computation. There is one input file containing the 
controlling parameters for each FD code in the directory with the input files for 
Exercise 1. The name of the input file is read in from the auxiliary file HF_1DFD_DS 
(or HF_1DFD_DVS or HF_1DFD_VS). The executable files should be copied into this 
directory and they should be run there.  

The FD programs read the input data from file E_DS_03.IN (program 1DFD_DS), 
or E_DVS_03.IN  (program 1DFD_DVS), or E_VS_03.IN  (program 1DFD_VS). 
An example of E_DVS_03.IN is given below. 

 
Program 1DFD_DVS produces one log file, E_DVS_03.LOG, and four files 
containing results: 

• E_DVS_03_D.DAT - displacement values in the chosen receivers in the form 
of columns, 

• E_DVS_03_V.DAT - particle velocity values in the chosen receivers in the 
form of columns, 

• E_DVS_03_SD.DAT - displacement values in the chosen receivers in the 
SismoVi form, 

• E_DVS_03_SV.DAT - particle velocity values in the chosen receivers in the 
SismoVi form. 
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A quick look at the one of the first two files on the screen can help indicate whether the 
computation is stable or unstable.   
 
The computation of the apparent phase velocity and apparent quality factor: 

Program APPQ can be used to calculate the apparent phase velocity and apparent 
quality factor according to equations (200) and (199).  
 

The input parameters for program APPQ are read from file ‘APPQ.IN’ in the 
following structure: 
 
NAMELIST  /INPUT/ MT, DT, DX, INPUT_FILE_NAME 
 

Name  of  Variable Type Description 

MT integer 

The number of samples in the input file 
containing the particle-velocity values at two 
receivers, i.e., the number of stored time levels 
in the output files of the FD computation. 

DT real The time step tΔ  in seconds.  

E_DVS_03.IN 
 
&NAMES        MO_FILE_NAME = 'E_03.MO', Q_FILE_NAME = 'E_03.Q' / 
 
&KEYS         KEY_TLV = T, KEY_TLD = T, KEY_SNV = T, KEY_SND = T / 
 
&CONTROLDATA  MT1 = 1, MT2 = 800, IPAS1 = 1, MZ = 620, H = 50,  
              DT = 0.02 / 
   
&ATTEN        FRJMAX = 5., FRANGE = 2., NRFREQ = 4 / 
 
&NONREF       OMG = 3.14, WB = 0.4, KTTO = 4, KTBO = 4 / 
 
&TXT          TEXT = 'EXAMPLE 03' / 
 
&SNAP         IPAS2 = 1 / 
 
&SOURCE       LS = 112 / 
 
&REC          MR = 2 / 
88 110 
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Name  of  Variable Type Description 
DX real The distance between two receivers (in meters). 

INPUT_FILE_NAME character*20 The name of the input file containing the 
particle-velocity values at two receivers. 

 
The input file INPUT_FILE_NAME containing the particle-velocity values at two 
receivers has to be ASCII with following column form: 
 

Time Particle-velocity 
values at receiver 1 

Particle-velocity 
values at receiver 2 

 
Note, that the plane wave has to propagate from receiver 1 to receiver 2 ! 
 
An example of the file  ‘APPQ.IN’: 

 
The program will generate file ‘APPQ.DAT’ containing values of the apparent phase 
velocity and apparent quality factor in the column form: 
 

Frequency Apparent 
 quality factor 

Apparent 
 phase velocity  

 
 
 
The computation of the phase velocity and quality factor in medium with the 
GMB-EK rheology: 

It is possible to numerically fit any ( )Q ω -law using equation (164) and find the 

corresponding anelastic coefficients lY . Then the quality factor ( )Q ω  is calculated 
according to equation (163) and the unrelaxed modulus UM  using equation (166). The 
phase velocity ( )c ω  is calculated using equations  (162) and (165). 

APPQ.IN 
 
&INPUT     MT=800, DT=0.02, DX = 1100., 
           INPUT_FILE_NAME = ‘E_DVS_03_V.DAT‘/ 
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The procedure to fit specifically Futterman ( )Q ω -law is encoded in program 

FUTTER. The program generates a file with ( )Q ω  and ( )c ω  for both the theoretical 

Futterman ( )Q ω -law  and the GMB-EK approximation to the Futterman ( )Q ω -law.  
The program works in an interactive regime. The user is supposed to input the 

following variables:        (values in Example 
3) 

• The reference frequency in Hz      (0.5) 
• Velocity at the reference frequency in m/s     (625.) 
• Quality factor at the reference frequency     (50.) 
• The frequency range (the same value and meaning as variable FRANGE in the 

input data for the FD computation or model preparation)   (2.) 
• The maximum frequency (the same value and meaning as variable FRJMAX in 

the input data for FD computation or model preparation)   (5.) 
• The number of the relaxation frequencies (the same value and meaning as 

variable NRFREQ in the input data for the FD computation or model 
preparation)         (4) 

The program then calculates and outputs on screen the unrelaxed velocity in m/s and 
generates the ASCII file ‘FUTTER.DAT’ with the following column form: 
 

Frequency Approximated 
 quality factor 

Theoretical 
 quality factor 

Approximated 
phase velocity 

Theoretical 
 phase velocity  

 
 
Comparing results: 
Results can be compared using program Gnuplot 4.0 and by running script  
Show_Q.gnuplot and Show_v.gnuplot, Fig. 13. It is clear from the figure that in the 
frequency range (0.1, 2.0) Hz the FD computation gives the same apparent ( )appQ f  as 

( )Q f  approximated by the GMB-EK rheology. The similar comparison is true for the 

apparent phase velocity ( )appv f  and the phase velocity ( )c f  determined by the GMB-
EK rheology. Due to the frequency content of the source-time function and due to the 
grid dispersion a growing discrepancy above 2 Hz can be observed.  On the other hand, 
the discrepancy below 0.1 Hz is due to the short time window of the computed seismic 
motion. 
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Figure 13.  Comparison of the apparent ( )appQ f  and ( )appv f  in FD computation 

(blue), ( )Q f  and ( )c f  approximated by the GMB-EK rheology (red) and 

theoretical Futterman ( )Q f -law and ( )c f  (green). 

 
 

Exercise 
 

• Change the number of relaxation frequencies, frequency range and maximum 
frequency and see the variations of seismic motion. 
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