

Universidad Central de Venezuela Facultad de Ciencias - Escuela de Computación Postgrado en Ciencias de la Computación - Tópicos Especiales en Análisis Numéricos. Dr. Otilio Rojas.

Métodos en Diferencias Finitas (MDF) Didácticos / Tradicionales para la Ec. de Onda 1D: Estabilidad y Dispersión Numéricas

- ⁵ Debemos retomar de la clase 01 al deducir la Ec. 1D de onda, la siguiente ecuación resultante de aplicar 2^{da}
- 6 Ley de Newton

$$\underbrace{\mathcal{T}(x+\Delta x)\frac{\partial}{\partial x}(x+\Delta x,t) - \mathcal{T}(x)\frac{\partial}{\partial x}(x,t)}_{\text{Fuerza Resultante}} = \underbrace{\rho(\overline{x})\frac{\partial^2}{\partial t^2}u(\overline{x},t)\Delta s}_{\text{masa}\times\text{aceleración}}$$
(4)

⁷ Al tomar el límite $\Delta x \to 0$ y usar (1) en (4)

$$\frac{\partial}{\partial x} \left[\tau(x) \frac{\partial}{\partial x} u(x, t) \right] = \rho(x) \frac{\partial}{\partial t^2} u(x, t)$$
(5)

8 La Ec. (5) se puede reescribir al considerar los parámetros de la cuerda rigidez y densidad, ambos variables

- en el espacio. Es decir, $\tau \leftrightarrow \mu$ y con el símbolo τ denotamos los términos de fuerza a las izquierda de (4).
- ¹⁰ En conclusión la Ec. (3) es equivalente al sistema desplazamiento (u) esfuerzo (τ)

$$\begin{cases} \tau(x,t) = \mu(x)\frac{\partial}{\partial x}u(x,t) & (6) \\ \rho(x)\frac{\partial^2 u}{\partial t^2}(x,t) = \frac{\partial}{\partial x}\tau(x,t) & (12 \\ a \text{ las C.I's:} & (6) \\ \rho(x) = \frac{\partial}{\partial x}\tau(x,t) & (6) \\ \rho(x) =$$

$$\begin{cases} u(x,0) = f(x) \\ \dot{u}(x,0) = g(x) \end{cases}$$
(7) ₁

13 Nota. Aquí abandonamos la notación del Stein [2], como 14 T es rigidez, y denotamos este parámetro por μ .

Donde \dot{u} denota $\frac{\partial u}{\partial x}$.

sujeto

11

En estas posibles CI's, f(x) realmente impone una deformación inicial sobre la cuerda: $f' = \frac{\partial u}{\partial x} \leftarrow y$ esta cantidad mide **la deformación.** La función g(x) también es de interés y podría ayudarnos a "direccionar" la propagación de esa deformación inicial. Esto trataremos de verlo a nivel computacional en las tareas. Ahora resultaría interesante revisar el texto Ziil/Cullen y la separación de variable para el caso de la Ec. de Onda (pág. 445-448) [1].

20 Condiciones de Fronteras:

- Frontera Sujeta: u(0) = u(L) = 0. Cuerda de extremos anclados
- Frontera Libre: τ(0) = τ(L) = 0. En este caso los extremos de la cuerda se mueven, pero no ejerciendo
 tensión o esfuerzo en el vació circundante.

Sistema Velocidad – Esfuerzo: la Ec. (6) se puede reescribir al considerar $\frac{\partial u}{\partial t}$ como una variable dependiente en lugar de u. Aquí

$$v = \dot{u}, \qquad \dot{u} = \frac{\partial u}{\partial t} \qquad y \qquad \tau_x = \frac{\partial \tau}{\partial x},$$
(8)

las cuales son notaciones muy usadas en ingeniería. De esta manera tenemos el sistema (6), reescrito como

$$\begin{cases} \dot{\tau} = \mu v_x \\ \rho \dot{v} = \tau_x \end{cases}$$
(9)

27 MDF's para el sistema Velocidad - Esfuerzo: malla nodales en espacio y tiempo

Discretización del Dominio

Figura 3.3.

29 malla: Colección de puntos (x_j, t_n) para j = 0, 1, ..., N; y n = 0, 1, 2, ...

$$(A) \begin{cases} \frac{v^{n+1} - v^n}{\Delta t} = \left(\frac{1}{\rho_j 2h}\right) \left(\mathcal{T}_{j+1}^n - \mathcal{T}_{j-1}^n\right) \\ \frac{\mathcal{T}_j^{n+1} - \mathcal{T}_j^n}{\Delta t} = \left(\frac{\mu_j}{2h}\right) \left(v_{j+1}^n - v_{j-1}^n\right) \end{cases}$$
(10)

28

Universidad Central de Venezuela / Facultad de Ciencias / Escuela de Computación. Postgrado en Ciencias de la Computación / Tópicos Especiales en Análisis Numéricos. Notas de Clases Preparada por: Dr. Otilio Rojas.-

³⁰ Este método (A) se llama **FTCS**: Forward in time and central in space, y resulta de sustituir la DF de 1^{er}

³¹ Orden $\mathcal{O}(\Delta t)$:

$$D_{+}(u) = \frac{u(t_n + \Delta t) - u(t_n)}{\Delta t}, \qquad (11)$$

32 y la DF de 2^{do} orden $\mathcal{O}(h^2)$:

$$D_0(u) = \frac{u(x_j + h) - u(x_j - h)}{2h},$$
(12)

³³ en las derivadas parciales respectivas en la Ec. (9)

Consistencia del MDF (A): Esta es la primera propiedad a estudiar en un MDF y esta asociada al E.L.T. en un punto de la malla (x_j, t_n) .

$$ELT\Big|_{(x_j, t_n)} = \left[MDF - EDP\right]\Big|_{v(x_j, t_n), \tau(x_j, t_n)} \leftarrow \text{Medir esta diferencia, pero en la solucin exacta a la EDP.}$$

$$= \rho(x_j) \left[\frac{v(x_j, t_{n+1}) - v(x_j, t_n)}{\Delta t} - \underbrace{v(x_j, t_n)}_{[*]} \right] + \left[\frac{\mathcal{T}(x_{j+1}, t_n) - \mathcal{T}((x_{j-1}, t_n))}{2h} - \underbrace{\mathcal{T}_x(x_j, t_n)}_{[**]} \right]$$

$$= \rho(x_j) \left[\frac{\Delta t}{2} \ddot{v}(x_j, t_n) + \cdots \right] + \left[-\frac{h^2}{6} \mathcal{T}_{xxx}(x_j, t_n) + \cdots \right]$$

$$= \mathcal{O}(\Delta t, h^2).$$
(13)

36

Para escribir la Ec. (13), se han usado los ELT ya conocidos al deducir las fórmulas en DF por Taylor, para
reemplazar [*] y [**]. Así, el método FTCS hereda el orden de truncamiento de las DF's usadas al construirlo
como era de esperarse. Nota no siempre pasa y hay ejemplos en la literatura que lo demuestran.

40 Ahora, un MDF es consistente si

$$\lim_{\Delta t, h \to 0} ELT(\Delta t, h) = 0$$
(14)

⁴¹ Note que esta propiedad se cumple para el método FTCS al tomar el límite en cuestión en la Ec. (13), bajo la ⁴² hipótesis que las derivadas \ddot{v} , τ_{xxx} , y de orden superior estén acotados. En la práctica, la consistencia prueba ⁴³ que el $MDF \rightarrow EDP$, la solución del 1^{ero} converge a la solución de 2^{do}, si en t_n contamos con la solución ⁴⁴ exacta, y se refina la malla infinitamente. Es decir, la consistencia trata el error de un paso de tiempo.

El problema es que esos ELT de orden $\mathcal{O}(\Delta t, h^2)$ se acumulan durante varios pasos de tiempo, y se le suman, los errores de redondeo. La pregunta es si la solución discreta del MDF permanecen acotado entonces la respuesta será en la Estabilidad del MDF.

- 48 Estabilidad del MDF (A): Análisis de Fourier.
- 49 Considere las soluciones discretas

$$\begin{cases} v_j^n = Ae^{i(-\omega(n\Delta t) + k(jh))} \\ \tau_j^n = Be^{i(-\omega(n\Delta t) + k(jh))} \end{cases}$$
(15)

50 y se introduce ambas Ecs de (15) en el MDF:

$$v_j^{n+1} - v_j^n = \left(\frac{\Delta t}{\rho 2h}\right) \left(\mathcal{T}_{j+1}^n - \mathcal{T}_{j-1}^n\right) \tag{16}$$

51 ⇒

$$A\left(e^{-i\omega\Delta t}-1\right)e^{i\left(-\omega(n\Delta t)+k(jh)\right)} = \left(\frac{\Delta t}{2\rho h}\right)\left(e^{ikh}-e^{-ikh}\right)Be^{i\left(-\omega(n\Delta t)+k(jh)\right)}$$
(17)

 $_{\tt 52}$ de modo que

$$A\left(e^{-i\omega\Delta t}-1\right) = \left(\frac{\Delta t}{2\rho h}\right)i\operatorname{sen}\left(kk\right),\tag{18}$$

para todo los casos en que $e^{i(-\omega(n\Delta t) + k(jh))} \neq 0.$

54 De forma análoga se introducen las Ecs. de (15) en el MDF:

$$\mathcal{T}_{j}^{n+1} - \mathcal{T}_{j}^{n} = \left(\frac{\Delta t\mu}{2h}\right) \left(v_{j+1}^{n} - v_{j-1}^{n}\right) \tag{19}$$

55 de modo que

$$B\left(e^{-i\omega\Delta t}-1\right) = \left(\frac{\Delta t\mu A}{h}\right)i\operatorname{sen}\left(kh\right)$$
(20)

56 Se considera ahora la nueva Ec. $(18)^*(20)$:

$$\left(e^{-i\omega\Delta t} - 1\right)^2 = -\left(\frac{\mu}{\rho}\right) \left(\frac{\Delta t}{h}\right)^2 \operatorname{sen}^2(kh)$$
(21)

- 57 Así los coeficientes A y B desaparecen. Note que $\mu/\rho = c^2$, la velocidad de la onda.
- 58 Así que el resultado anterior (21) se reescribe, como

$$\left(e^{-i\omega\Delta t} - 1\right)^2 = -\left[\underbrace{\frac{C\Delta t}{h}\operatorname{sen}\left(kh\right)}_{\mathbb{R}}\right]^2$$
(22)

 $_{\tt 59}~$ para combinaciones generales de kh. La única manera que esta condición se cumple es que

$$e^{-i\omega\Delta t} - 1 = \pm \left(\frac{c\Delta t}{h}\right) \operatorname{sen}(kh)i \quad \longleftarrow \quad \operatorname{complejopuro}$$
(23)

60 de donde,

$$\left|e^{-i\omega\Delta t}\right| = \left|1 \pm \left(\frac{c\Delta t}{h}\operatorname{sen}\left(kh\right)i\right)\right| > 1$$
(24)

Esto a su vez conduce a la solución para $\omega = ai$, con $a \int \mathbb{R}^+$,

$$e^{-i\omega\Delta t} = e^{a\Delta t} > 1.$$
⁽²⁵⁾

62 Sin embargo, la solución discreta v_j^n original

$$v_j^n = A \left[e^{a\Delta t} \right]^n e^{ij(kh)} = A \left[\underbrace{e^{a\Delta t}}_{(a)} \right]^n \underbrace{e^{i(jh)k}}_{(b)}$$
(26)

63 Donde:

+ .

- 64 (a): La exponencial es > 1.
- 65 (b) : La exponencial es Armónica en espacio, pero exponencial en tiempo.

Las soluciones discretas crecerán a medida que n crezca (nro de iteraciones). A este tipo de método se le llama **inestable**. Una conclusión semejante se tiene si se asume $\omega = a + bi$, con $a, b \in \mathbb{R}$, como una manera de satisfacer (24).

(B) Método CTCS. Este MDF pregunta el estencil en particular el modo (x_j, t_n) es el punto de expansión al formular el método, pero no permanece en el Estencil

$$\begin{cases} \frac{v_{j}^{n+1} - v_{j}^{n-1}}{2\Delta t} = \left(\frac{1}{2h\rho}\right) \left(\tau_{j+1}^{n} - \tau_{j-1}^{n}\right) \\ \frac{\tau_{j}^{n+1} - \tau_{j}^{n-1}}{2\Delta t} = \left(\frac{\mu}{2h}\right) \left(v_{j+1}^{n} - v_{j-1}^{n}\right) \end{cases}$$
(27)

Figura 3.4.

- 70
- ⁷¹ El ELT en el método de CTCS es $\mathcal{O}(h^2, \Delta t^2)$ y también resulta consistente.

Universidad Central de Venezuela / Facultad de Ciencias / Escuela de Computación. Postgrado en Ciencias de la Computación / Tópicos Especiales en Análisis Numéricos. Notas de Clases Preparada por: Dr. Otilio Rojas.-

Pág. 5/7

72 Estabilidad vía Fourier. Supongamos:

$$v_j^n = A e^{i(-\omega)n\Delta t + kjh}, \quad y \quad \tau_j^n = B e^{i(-\omega n\Delta t + kjk)}$$
(28)

⁷³ Al sustituir v_j^n y τ_j^n de (28) en las dos ecuaciones discreta del MDF (27):

$$-A \operatorname{sen} \left(\omega \Delta t\right) = \left(\frac{\Delta t}{\rho h}\right) B \operatorname{sen} kh; \qquad -B \operatorname{sen} \omega \Delta t = \frac{\mu \Delta t}{h} \operatorname{sen} (kh)$$
(29)

⁷⁴ Al tomar el producto de ambas Ecs. de (29):

$$\operatorname{sen}^{2}(\omega\Delta t) = \left(\frac{C\Delta t}{h}\right)^{2} \operatorname{sen}^{2} kh, \quad \operatorname{con} \quad C^{2} = \frac{\mu}{\rho}$$
(30)

⁷⁵ Una condición necesaria para que $\omega \in \mathbb{R}$ es que se cumpla la condición.

$$\left(\frac{C\Delta t}{h}\right) \le 1\tag{31}$$

⁷⁶ la expresión (31) es la condición CFL (Courant - Friedrichs - Lewy).

⁷⁷ Interpretación de CFL. De la condición del CFL (31) se desprende

$$\{\widehat{C\Delta t}\} \leq \{\widehat{h}\}$$
 -> Espaciamiento entre los nodos de la malla.
Distancia que recorre la onda en Δt unidades de tiempo.

Figura 3.5.

Así, la perturbación no puede desplazarse más que una celda de la malla. Sin embargo, note que el MDF propagará "parte" de esa perturbación a x_j desde x_{j-1} , dado que v_j^{n+1} resulta un promedio de los valores de $v \ge \tau$ en los puntos/nodos del estencil.

78 (c) Método CTCS centro-distribuido o Staggered:

79

Figura 3.6.

En espacio, las velocidades se definen en los nodos $x_j = jh$, j = 0, 1, ..., N, mientras que los esfuerzos estan definidos en los centros de celda $x_{j+1/2}$, j = 0, ..., N - 1. Adicionalmente, consideremos evaluaciones τ_0 y τ_N en los bordes en tiempo, los esfuerzo son nodales y donde τ^0 representa la condición inicial (CI). Las velocidades son staggered respecto a τ , pero podría considerarse v^0 o $v^{-1/2}$, para representar una CI en velocidad. El valor $v^{-1/2}$ representa una "extrapolación" a t < 0.

$$\frac{v_j^{n+1/2} - v_j^{n-1/2}}{\Delta t} = \left(\frac{1}{\rho h}\right) \left(\tau_{j+1/2}^n - \tau_{j-1/2}\right); \frac{\tau_{j+1/2}^{n+1} - \tau_{j+1/2}^n}{\Delta t} = \frac{\mu}{\Delta x} \left(v_{j+1}^{n+1/2} - v_j^{n+1/2}\right) \tag{33}$$

Universidad Central de Venezuela / Facultad de Ciencias / Escuela de Computación. Postgrado en Ciencias de la Computación / Tópicos Especiales en Análisis Numéricos. Notas de Clases Preparada por: Dr. Otilio Rojas.-

80 Este método tiene el mismo costo computacional del método CTCS nodal, pero su ELT es menor. Es más,

$$ELT^{\text{staggered}} \sim \frac{1}{4}ELT^{\text{nodal}}.$$
 (34)

En cuanto a su estabilidad, la condición CFL es exactamente la misma que (31), y lo cual queda como
ejercicio de tarea.

Referencias

- [1] Zill, D G. and Cullen, M. R. (2015) Differential Equation with Boundary-Value Problems. 7th Edition,
 Cengage Learning. Canada.
- [2] Stein, S., and Wysession, M. (2009). An introduction to seismology, earthquakes, and earth structure.
 Blackwell Publishing. Malden, MA.
- [3] Moczo, P., Kristek, J., & Halada, L. (2004). The finite-difference method for seismologists. An Intro duction. Comenius University, Bratislava.

Pág. 7/