

3

Universidad Central de Venezuela

Facultad de Ciencias - Escuela de Computación

Postgrado en Ciencias de la Computación - Tópicos Especiales en Análisis Numéricos. Dr. Otilio Rojas.

Diferencias Finitas (DF) via Expansiones de Taylor y Coeficientes Indeterminados

5 1. Diferencia Finita Centrada para u' en x_i :

El gráfico 1 ilustra el objetivo de aproximar la pendiente exacta $u'(x_i)$ por la "diferencia finita"

$$D_0 u(x_i) = \frac{u(x_i + h) - u(x_i - h)}{2h}$$
 (1)

La idea es usar Taylor para construir esta aproximación y a la vez encontrar el Orden del Error Local de Truncamiento (E.L.T.) asociado.

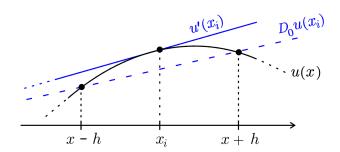


Figura 2.1. ..

6 Si expandimos u via Taylor alrededor de x_i , obtenemos:

$$u(x) = u(x_i) + u'(x_i)(x - x_i) + u''(x_i)\frac{(x - x_i)^2}{2} + u'''(x_i)\frac{(x - x_i)^3}{3!} + \cdots$$
 (2)

- donde x es arbitrario, pero hay condiciones de diferenciabilidad en u en el intervalo que contenga ambos
- 8 puntos: x y x_i . Al evaluar la expansion (2) en $x = x_i + h$

$$u(x_i + h) = u(x_i) + hu'(x_i) + \frac{h^2}{2}u''(x_i) + \frac{h^3}{3!}u'''(x_i) + \frac{h^4}{4!}u^{(iv)}(x_i) + \frac{h^5}{5!}u^{(v)} + \cdots$$
(3)

9 Al evaluar ahora en $x = x_i - h$

$$u(x_i - h) = u(x_i) - hu'(x_i) + \frac{h^2}{2}u''(x_i) - \frac{h^3}{3!}u'''(x_i) + \frac{h^4}{4!}u^{(iv)}(x_i) - \frac{h^5}{5!}u^{(v)} + \cdots$$
(4)

al sustraer (4) de (3),

$$u(x_i + h) - u(x_i - h) = 2hu'(x_i) + \frac{2h^3}{3!}u'''(x_i) + \frac{2h^5}{5!}u^{(v)}(x_i) + \cdots$$
 (5)

y al despejar de la ecuación (5) el valor $u'(x_i)$

$$u'(x_i) = \underbrace{\frac{u(x_i + h) - u(x_i - h)}{2h}}_{D_0(u_i)} - \underbrace{\frac{h^2}{3!} u'''(x_i) - \frac{h^4}{5!} u^{(v)}(x_i) + \cdots}_{E.L.T.}$$
(6)

- $_{\mathbf{12}}~$ Si aplicamos la fórmula en DF dada por D_{0} usando h "pequeño" en la computadora:
- 13 (a) $D_0(u_i) \approx u'(x_i)$
- 14 (b) E.L.T. será de orden h^2 , esto es, $E.L.T. \sim ch^2$, con c= constante porque los demás infinitos términos de Taylor presentan una magnitud mucho menor a ch^2 , al asumir acotadas las derivadas de orden mayor.
- El libro de texto como LeVeque [1] Pág 4, entre otros, por lo general denotan la expresión (6) como:

$$u'(x_i) = D_0(u_i) + \mathcal{O}(h^2),$$
 (7)

- donde $D_{\scriptscriptstyle 0}$ es una aproximación de segundo orden.
- Como ejemplo ilustrativo, podemos repetir la aplicación de D_0 presentado por R. LeVeque [1] en la tabla
- 19 1.1. Pág 5. En este caso, $u(x) = \operatorname{sen} x$ y $x_i = 1$. El valor exacto lo conocemos, por supuesto, porque sabemos
- derivar, $u'(x) = \cos x$ y su evaluación en x_i es $\cos(1) \approx 0.5403023$.
- La pregunta es: ¿cómo haríamos para obtener un resultado más preciso, es decir, más cercano a $u'(x_i)$?
- Leveque o a un caso más general aún. Por ahora, les planteo 2 opciones:

Opción 1: Malla Centro-distribuida (Staggered Grid)

$$u'(x_i) = \frac{u(x_i + h/2) - u(x_i - h/2)}{2(h/2)} - \frac{(h/2)^2}{3!}u'''(x_i) + \cdots$$
 (8)

donde se ha usado $D_{\scriptscriptstyle 0},$ pero con paso h/2, entonces

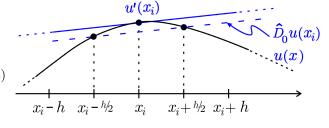


Figura 2.2.

$$u'(x_i) = \underbrace{\frac{u(x_i + h/2) - u(x_i - h/2)}{h}}_{\widehat{D}_0(u_i)} - \underbrace{\frac{h^2}{6 \times 4} u'''(x_i) + \cdots}_{E.L.T.}$$
(9)

- Notas: El E.L.T. sigue siendo $\mathcal{O}(h^2)$, pero con una magnitud de un 1/4 respecto a $D_0(u_i)$. Computacional-
- mente, D_0 y \widehat{D}_0 cuestan las mismas operaciones aritméticas.

23

Opción 2: Incrementar el número de nodos en la DF y con esto aumenta el orden de la aproximación. Por ejemplo, pasar de $\mathcal{O}(h^2)$ a $\mathcal{O}(h^4)$.

Aquí es poco intuitiva la formulación via pendientes y se pasa directamente a Taylor. Esto es, aplica Taylor a cada uno de los nodos: x_i-2h , x_i-h , x_i+h , x_i+2h , de modo que:

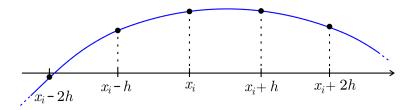


Figura 2.3.

Para $x = x_i - 2h$

$$u(x_i - 2h) = u(x_i) - 2hu'(x_i) + \frac{4h^2}{2}u''(x_i) - \frac{8h^3}{6}u'''(x_i) + \frac{16h^4}{4!}u^{(iv)}(x_i) - \frac{32h^5}{5!}u^{(v)}(x_i) + \cdots$$
 (10)

Para $x = x_i - h$

$$u(x_i - h) = u(x_i) - hu'(x_i) + \frac{h^2}{2}u''(x_i) - \frac{h^3}{6}u'''(x_i) + \frac{h^4}{4!}u^{(iv)}(x_i) - \frac{h^5}{5!}u^{(v)}(x_i) + \cdots$$
 (11)

 $\bullet \quad \text{Para } x = x_i + h$

$$u(x_i + h) = u(x_i) + hu'(x_i) + \frac{h^2}{2}u''(x_i) + \frac{h^3}{6}u'''(x_i) + \frac{h^4}{4!}u^{(iv)}(x_i) + \frac{h^5}{5!}u^{(v)}(x_i) + \cdots$$
 (12)

 $\bullet \quad \text{Para } x = x_i + 2h$

$$u(x_i + 2h) = u(x_i) + 2hu'(x_i) + \frac{4h^2}{2}u''(x_i) + \frac{8h^3}{6}u'''(x_i) + \frac{16h^4}{4!}u^{(iv)}(x_i) + \frac{32h^5}{5!}u^{(v)}(x_i) + \cdots$$
 (13)

Para combinar linealmente las expansiones anteriores, (10), (11), (12), y (13), se usa el **Método de**

Coeficientes Indeterminados. En este caso de 4 ecuaciones se encuentra a, b, c, d de tal manera de

34 Eliminar tantos términos del E.L.T. como sea posible en la nueva fórmula en DF:

$$a[\text{Ec.}(10)] + b[\text{Ec.}(11)] + c[\text{Ec.}(12)] + d[\text{Ec.}(13)]$$
 (14)

Condiciones a imponer sobre la ecuación (14)

$$au(x_{i}-2h) + bu(x_{i}-h) + cu(x_{i}+h) + du(x_{i}+2h) = (a+b+c+d)u(x_{i})$$

$$+(-2a-b+c+2d)hu'(x_{i})$$

$$+(4a+b+c+4d)\frac{h^{2}}{2}u''(x_{i})$$

$$+(-8a-b+c+8d)\frac{h^{3}}{6}u'''(x_{i})$$

$$+(16a+b+c+16d)\frac{h^{4}}{4!}u^{iv}(x_{i}) + \cdots$$

$$(15)$$

36 se requiere que

(I)
$$\begin{cases} -2a - b + c + 2d = 1 \\ 4a + b + c + 4d = 0 \\ -8a - b + c + 8d = 0 \end{cases}$$
 (16)
$$(IV) \begin{cases} 16a + b + c + 16d = 0 \end{cases}$$

- Donde el sistema (16): la ecuación (I) preserva u' en la fórmula DF y las ecuaciones (II), (III) y (IV) forzan los 1^{eros} términos del E.L.T. a cero.
- El sistema de Ecuaciones (16) se resuelve en MatLab/Maple/ o usando cálculo tradicional y así se encuentran
- 40 los coeficientes del estencil de DF. En este caso:

$$a = -d = \frac{1}{12}$$
, $y \qquad b = -c = -\frac{8}{12}$.

41 Al sustituir estos coeficientes en (15), se obtiene explícitamente la nueva DF

$$\underbrace{\frac{u(x_i - 2h) - 8u(x_i - h) + 8u(x_i + h) - u(x_i + 2h)}{12h}}_{D_{0,4}(u_i)} = u'(x_i) + \underbrace{\mathcal{O}(h^5)}_{E.L.T.}$$
(17)

- $D_{0,4}(x_i)$ es la fórmula en DF Centrada (subindex 0) con Cuarto Orden (subindex 4) en una malla Nodal. La
- misma aparece en Fornberg [2], Pág. 702, tabla 1.

Nuevas Fórmulas en DF muy útiles y que podrían construirse por Coeficientes Indeterminados

- [1] $\widehat{D}_{0,4}(u_i)$: Esta fórmula seria la versión Staggered de la construcción arriba.
- Nota. Esta formula DF es muy usada en nuestras aplicaciones y aparece en Fornberg [2].
- [2] Fórmula en DF en Malla Centro-distribuida para aproximar $u'(x_0)$ con segundo orden de precisión.

$$u'(x_0) = \underbrace{\frac{-8/3u_0 + 3u_{1/2} - 1/3u_{3/2}}{h}}_{D_+(u_0)} + \mathcal{O}(h^2)$$
 (18)

Nota: El símbolo "+" es usado para denotar "Forward" Differentiation por el LeVeque [1].

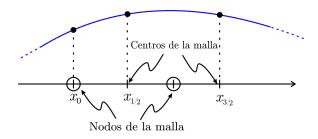


Figura 2.4.

48

[3] Formula en DF en Malla Staggered para aproximar $u'(x_0)$, pero con 4to orden de precisión. Esto es, $\widehat{D}_{+,4}(u_0)$.

52 Referencias

- [1] LeVeque, Randall J. (2007). Finite difference methods for ordinary and partial differential equations:
 steady-state and time-dependent problems. Society for Industrial and Applied Mathematics (SIAM),
 Philadelphia, USA.
- ⁵⁶ [2] Fornberg, B. (1988). Generation of finite difference formulas on arbitrarily spaced grids. *Mathematics of*⁵⁷ computation, 51(184),pp. 699-706.