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Summary 

 

This work is an exploratory study of coupling high-order time integrations to a finite-difference (FD) spatial 

discretization of the 1-D wave equation that combines eigth-order differencing at grid interior, with lateral 

formulas of order sixth and fourthat boundary neighborhood. This reduction of spatial accuracy at the grid 

vecinity of free surfaces is a known stability limitation of FD methods, when coupled to the two-step Leap-frog 

(LF) time stepping, which is widely used on seismic modeling. We first implement LF time integrations with an 

arbitrary accuracy order, as given from a standard Lax-Wendroff procedure, and compare results from the 

fourth-, sixth-, and twelfth order schemes, against the popular second-order LF. Our emphirical analyses 

establish the CFL stability constraints for propagation on an homogeneous medium, as first results, and then 

consider velocity heterogeneities when assessing dispersion and dissipation anomalies. Finally, we use a rapid 

expansion method (REM) to approximate the exponential of the semidiscrete FD discretization operator by a 

truncated Chebyshev matrix expansion. Althougth, REM has been previouslly applied to peudospectral (PS) wave 

simulations, this REM-FD scheme is the first reported in the technical literature according to our knowledge. 
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Introduction

This work is an exploratory study of coupling high-order time integrations to a finite-difference (FD)
spatial discretization of the 1-D wave equation that combines eigth order O(8) differencing at grid inte-
rior, with lateral formulas of order O(6) and O(4) at boundary neighborhood. This reduction of spatial
accuracy at the grid vecinity of free surfaces is a known stability limitation of FD methods, when cou-
pled to the two-step Leap-frog (LF) time stepping, which is widely used on seismic modeling. We first
implement LF time integrations with an arbitrary accuracy order, as given from a standard Lax-Wendroff
procedure, and compare results from the O(4), O(8), and O(12) order schemes, against the popular LF
O(2). Our emphirical analyses establish the CFL stability constraints for propagation on an homoge-
neous medium, as first results, and then consider velocity heterogeneities when assessing dispersion and
dissipation anomalies. Finally, we use a rapid expansion method (REM) to approximate the exponential
of the semidiscrete FD discretization operator by a truncated Chebyshev matrix expansion. Althougth,
REM has been previouslly applied to peudospectral (PS) wave simulations, this REM-FD scheme is the
first reported in the technical literature according to our knowledge.

Theory

We consider the formulation of the 1-D wave equation written in terms of the particle velocity v and
stress τ

ρvt = τx, τt = µvx, for 0≤ x≤ 1,0≤ t, (1)

where c2 = µ/ρ is the wave speed, and impose traction free boundary conditions at both end points,
i.e., τ(0, t) = τ(1, t) = 0. A uniform grid of N cells is defined by the nodes xi = i · h, for 0 ≤ i ≤ N
and h = 1

N , where discrete velocities vi are placed. This grid becomes staggered after including the
cell centers xi+1/2 = xi+xi+1

2 , where unknown stresses τi+1/2 are located. Numerical differentiation of
discrete velocities is performed by using staggered FD stencils that approximate vx at mid-cell points
xi+1/2. Likewise, stress differentation is carried out by similar staggered FD stencils that yield τx at
all grid nodes xi. This differentation strategy was used by Rojas et al. (2009) on wave propagation
problems where mimetic FD stencils have a consistent fourth-order O(4) accuracy along the whole
grid. In this work, we instead adopt standard Taylor-based stencils for staggering FD with accuracy of
order O(8) at most of grid interior points, but gradually reduced to formulas of order O(6) and O(4) at
the grid vecinity of boundary points. This mixed high-order FD discretization set is better suited when
coupling to highly precise time integration strategies. For notation compactness, we collect staggered FD
stencils for velocity differentiation in matrix D, while an alterntive matrix G collects the Taylor formulas
applied to stresses. Thus, the velocity differentiation process can be simply expressed as Dv, being
v = (v0, · · · ,vN)

T , and similarly, stress derivates can be calculated by Gτ , for τ = (τ1/2, · · · ,τN−1/2)
T .

Leap-frog (LF) schemes: The formulation of Leap-frog (LF) schemes starts from considering the tem-
poral Taylor expansion of each wavefield, and replacing high-order derivatives for its equivalent spatial
derivates through the wave equation (1). The application of this Lax-Wendroff procedure to wave prop-
agation problems is well-known, but most studies limit accuracy to order O(4), for instance Blanch
and Robertsson (1997). In the case of v, this procedure leads to the LF scheme of order O(k+ 1), for
k = 1,3,5, . . ., and given by

vn+ 1
2 = vn− 1

2 + pGτ
n +

1
24

p3(GD)Gτ
n +

1
1920

p5(GD)2Gτ
n + · · ·+ 1

2k−1k!
pk(GD)

k−1
2 Gτ

n. (2)

Above, p corresponds to the CFL stability parameter p = c∆t
h , and ∆t is the time step. For the system (1),

LF schemes take advantage of the time staggering of velocities with respect to stresses, which is denoted
by the supra indexes on discrete variables. A similar expansion represents the LF calculation of τn+1,
where τn and (GD)

k−1
2 G terms are replaced by vn+ 1

2 and (DG)
k−1

2 D, respectively. At the implementation
level, a new high-order term in (2) is computed by two succesive spatial differentiations of the previous
term, using matrices D and G, and storing temporary results on two auxiliary memory vectors.

At this point, we undertake a comparative stability analysis among LF integration methods. The goal
is finding the maximum CFL pMAX that avoids exponentially growing instabilities as n→ ∞ for fixed
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∆t. Here, this p value results from a matrix analysis that requires every method be written as a one-step
iteration φ n+1 = T (p)φ n. The threshold pMAX corresponds to the maximum CFL, at which the spectral
radius of T stays bounded by 1. Thus, we define φ n+1 = (vn+ 1

2 ,τn+1) and find the expression of T (p)
according to (2), and to the similar expansion for stress updating. In this work, we restrict this study to
the LF schemes with accuracy O(2), O(4), O(8), and O(12) order, and corresponding pMAX values are
listed in Table 1.

LF scheme O2 (LF2) O4 (LF4) O8 (LF8) O12 (LF12)
pMAX 0.815 2.324 2.816 2.840

Table 1: Maximum CFL p values for time integration Leap-frog schemes

A rapid expansion method (REM): The formulation starts after writing the model (1) in the following
semidiscrete form, where time dependences remain continuous,

φ̇(t) = Ahφ(t), where Ah =
c
h

[
0N+1 G

D 0N

]
and φ(t) = (v(t),τ(t)). (3)

Above, 0N+1 and 0N represent zero matrices with sub-indexed dimensions. The exponential matrix oper-
ator allows time updating the discrete solutions by the iterative formula φ(tn +∆t) = expm(∆tAh)φ(tn).
The accuracy and computing cost of this REM scheme strongly depends on the approximation of expm,
and Tal-ezer et al. (1987) employs the truncated expansion of Chebyshev matrix polynomials

expm(∆tAh)∼
M

∑
k=1

CkJk(R∆t)Qk
(
R−1Ah

)
where R =

c
h

max{eig(A)}. (4)

Above, A = (h/c)Ah, Jk represents the kth Bessel function of first kind, C0 = 1, and Ck = 2 for k ≥
2. The Chebyshev polynomials Qk satisfy the well-known three-term recurrence relation Qk+1(w) =
2wQk(w)+Qk−1, k ≥ 0, with initial iterates Q0(w) = I and Q1(w) = w, for w a matrix argument. The
scaling parameter R can be estimated from a bound for the eigenvalue spectrum of dimensionless matrix
A. In our FD implementation, we use the Gershgorin spectrum estimation given by the sum of the
absolute coefficients of the first lateral G stencil, i.e., max{eig(A)} ≤ |g11| + |g12| + · · · .

The total number M of non-neglected terms is a crucial implementation parameter, and Pestana and
Stoffa (2010) relates M with the parameter R∆t, for a convenient R estimation in the case of PS methods.
In this work, we find that M also results critical for stability purposes, and the higher is set up the
CFL p parameter, the more terms must be computed. For a representative set of p values, table 2
lists the minimum number of Chebyshev terms MMIN , above which the spectral radius of expm(∆tAh)
(approximated by (4)) is ∼ 1, within a tolerance of 10−12. For M ≥ MMIN , this REM implementation
behaves stably and more accurate than LF schemes in our numerical experimentations, as described in
next section. Here, we only compute REM solutions for parameters p = 2 and M = 32, which are used
as highly accurate references for LF solutions.

CFL p 0.5 1 2 10 50
MMIN 18 25 34 105 390

Table 2: Minimum number of terms in REM series (4) for stable time integrations

Numerical example

In our numerical tests, wave motion takes place on a 1-D acoustic medium with one optional velocity
discontinuity, and both ends acting as free surfaces. The interior heterogeneity contrast depends on a
scalar α ≥ 1, such that acoustic speed might jump from c to αc, for waves crossing this point from
left to right. The initial stress distribution comprises two Ricker wavelets, and each pulse is centered
on one of the two homogeneous material blocks. Both wavelets have same strain energy content with
opposite amplitude signs for destructive interference at the junction point. The domain length and global
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simulation time are chosen in such a way that, periodically, the stress distribution becomes identical to
the initial condition, so we can quantify numerical errors in terms of envelope and phase misfits (EM and
PM). Hovewer, we only calculate EM and PM on the left material block with lower acoustic speed in case
that α > 1, given that shorter wavelengths would be observed on this block for a reference frequency, and
therefore have a coarser sampling on our uniform gridding simulations. When computing our numerical
solutions, we explore a set of spatial resolutions (4, 6, 8, 10, 12 and 14 poins per minimum wavelength,
ppw) and propagation distances are measured in terms of the dominant wavelength λ DOM. The setting of
ppw and λ DOM is done according to the initial Ricker wavelet on the left segment with a possibly smaller
breadth. Because of the CFL stability limit and computational costs increase with the time discretization
order, we adjust time steps in all simulations according to CFL = 0.5 (in the case of LF2), CFL = 1.6 (in
the cases of LF4, LF8 and LF12), and CFL = 2 (in the case of REM). Under these conditions, and taking
the computing cost of one LF2 iteration as reference, the CPU cost per iteration of alternative schemes
is∼ 1x, 3x, 5x, and 8x, in case of LF4, LF8, LF12, and REM (adding M = 34 terms in (4)), respectively.

Results

For each numerical scheme, figures 1,2, and 3 display the relative EM and PM misfits obtained in simu-
lations for three different wave speed configurations, namely α = 1, 2, and 5, respectively. Each scheme
is identified by a particular symbol, while different line styles represent the amount of wavelengths
λ DOM traveled by the reference Ricker pulse on the left acoustic block. Here, we only show misfits for
three representative traveling distances of 40λ DOM (solid lines), 80λ DOM (dashed lines), and 120λ DOM

(dotted lines). For an homogeneous medium, both EM and PM misfits respond well to the order of time
discretization, and for any given combination of grid sampling and propagation distance, LF2 solutions
are the least accurate, while accuracy of REM solutions is not reached by any LF scheme. The sig-
nificant similarity of LF8 and LF12 errors is remarkable, and show that LF corrections of high-order
Taylor terms are lost probably due to the arithmetic limitation. For a typical resolution assessment, let
us consider LF4 misfits on grids with 6 ppw, and notice that the LF2 method would require grids with
14 ppw to yield nearly similar EM and PM errors. Same conclusion holds when taking LF8-LF12 (or
REM) misfits at 6 ppw with respect to LF4 (or LF8-LF12) errors at 14 ppw. In the case of heterogenous
media, discrepancies on the accuracy of high-order LF methods reduce for α = 2, and finally leads to
indistinshable LF4-LF8-LF12 errors when α = 5. On these tests with α = 5, notice that LF2 and REM
continue to be the least and the most accurate schemes, respectively, but on grids with resolution of 8
ppw and higher.
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Figure 1: EM and PM errors of LF and REM simulations on a homogeneous medium (α = 1).

An alternative comparison is based on establishing our accuracy tolerance on 1% (EM = PM = 0.01),
and identifying the minimum grid sampling required to satisfy such tolerance at a propagation distance
of 40λ DOM, for instance. To do so, let us retake simulations on the homogeneous medium. Coarsely
speaking, the LF8, LF12 and REM methods achieve this accuracy target on the EM metric on grids with
4 ppw, while LF4 requires grids twice denser (i.e., a sampling of 8 ppw), and the LF2 scheme needs
meshes with at least 14 ppw. For each of these methods, a similar meshing is enough to satisfy the same
tolerance on PM errors, given than phases are better modeled than amplitudes, for any combination
of propagation distance and grid resolution. When heterogeneities are considered EM and PM misfits
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globally decay, so similar lower sampling advantanges of LF8, LF12, and REM methods with respect
to LF4 and LF2 schemes, can be observed for smaller error tolerances, for instance 0.01% (EM = PM =
0.0001) in the case of α = 5.
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Figure 2: EM and PM errors of LF and REM simulations on a heterogeneous medium (α = 2).
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Figure 3: EM and PM errors of LF and REM simulations on a heterogeneous medium (α = 5).

Conclusions

On LF simulations of 1D acoustic wave propagation, with an optional medium heterogeneity, fourth-
and higher-order time discretizations allow modeling amplitudes and phases with more accuracy than the
second-order scheme. For a similar computing cost, the error tolerance reached by the LF4 scheme on
grids with 6 ppw is almost matched by the LF2 method on meshes twice denser, and then double memory
requirements of the latter. Under same time sampling, higher-order LF8 and LF12 schemes behave
more precisely than LF4 on a medium with none, or only mild heterogeneities, but their additional
computational cost make these methods less attractive. REM integrations based on Chebyshev matrix
expansions show a much faster convergence than any of these LF methods on grids with 10 ppw and
less under same SG spatial discretization (limited to eigth order), and proves that global accuracy can
be further improved. However, LF4 seems as the more accurate and equally costly substitute of LF2 on
2-D and 3-D FD SG applications.
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